
Rani et al. Journal of Cloud Computing           (2024) 13:63  
https://doi.org/10.1186/s13677-024-00630-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An optimized neural network 
with AdaHessian for cryptojacking attack 
prediction for Securing Crypto Exchange 
Operations of MEC applications
Uma Rani1, Sunil Kumar2, Neeraj Dahiya3, Kamna Solanki4, Shanu Rakesh Kuttan5, Sajid Shah6, 
Momina Shaheen7 and Faizan Ahmad8* 

Abstract 

Bitcoin exchange security is crucial because of MEC’s widespread use. Cryptojacking has compromised MEC app 
security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and Ada-
Hessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural 
network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and Ada-
Hessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian 
optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking 
attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU 
on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking 
attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE 
0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consump-
tion, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cyber-
security issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations 
delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network 
management.
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Introduction
Mobile Edge Computing (MEC) apps are vulnerable to 
cryptojacking attacks, which can compromise their secu-
rity and performance. Deploying computing resources 
closer to end-users and devices at the network edge is 
what Mobile Edge Computing is all about. The plat-
form’s closeness makes it ideal for a variety of businesses, 
including bitcoin exchanges, by reducing latency and 
improving application efficiency. An online threat known 
as cryptojacking—or malicious crypto-mining—occurs 
when cybercriminals secretly employ a device’s process-
ing power to mine cryptocurrency. Because the com-
putational resources in MEC are shared and dispersed, 
these attacks can have serious consequences. Devices in 
the MEC infrastructure are the targets of cryptojacking 
attacks, which aim to exploit their computing power. This 
can encompass both conventional computer resources 
and specialist gear like graphics processing units (GPUs) 
or tensor processing units (TPUs), which are frequently 
employed in cryptocurrency mining. Any illicit utiliza-
tion of computer resources for cryptocurrency mining 
has the potential to drastically diminish the performance 
of MEC applications due to the fact that MEC depends 
on low-latency communication and fast processing at 
the network edge. Reductions in overall system efficiency 
and increases in reaction times are possible outcomes of 
increased resource use.

Many cryptojacking attempts aim to remain unde-
tected by end users by operating invisibly in the back-
ground. Because of how covert these strikes are, they 
could be difficult to spot and counter quickly in a MEC 
setting. Since cryptojacking attacks in MEC might not 
display conventionally malevolent behavior, conven-
tional security methods might not be enough to iden-
tify them. The dispersed nature of MEC also makes it 
more difficult to keep an eye on everything from one 
place. It takes a multipronged strategy to prevent cryp-
tojacking in MEC. To achieve this goal, it is necessary 
to install intrusion detection systems that are specifi-
cally designed for MEC settings, establish strong access 
restrictions, update and patch software on a regular 
basis, and educate users about the dangers of using 
untrusted apps. The capacity to identify cryptojacking 
attacks can be improved by utilizing machine learning 
methods, as indicated in the preceding abstract. Algo-
rithms like this can study resource consumption trends 
linked to cryptocurrency mining and sound the alarm 
when they see anything out of the ordinary. Because of 
the dispersed and resource-constrained nature of MEC 
settings, proactive security measures are required to 
mitigate the cryptojacking threat in MEC. The MEC 
ecosystem may be made more safe for cryptocurrency 

exchange activities by combining powerful detection 
algorithms with rigorous access restrictions and user 
education [1]. The victim’s device may experience per-
formance degradation, higher power bills, and even 
hardware failure as a result of the mining process. An 
example of a possible cryptojacking attack is as follows:

• Infection: The hacker exploits a hole in the target’s 
defenses by inserting malicious code. This code, 
which is often written in JavaScript, is meant to 
operate invisibly.

• Distribution: The malicious code might be dis-
seminated via a variety of vectors, including hacked 
websites, phishing emails, infected files, or mali-
cious advertisements.

• Execution: Malicious code is run on a victim’s 
device when they visit a hacked website or inter-
act with the malicious content. It then begins min-
ing cryptocurrency with the device’s resources, 
whether Bitcoin, Monero, or Ethereum.

• Use of Materials: Due to the extensive computa-
tional activities being done by the mining script, 
the victim’s device experiences a decrease in per-
formance, increased fan activity, and higher energy 
consumption.

• Gains for the Aggressor: The bitcoin is mined and 
then sent to the wallet of the attacker. Since the 
infected machines are pooling their resources, the 
attacker can amass a large sum of bitcoin.

Several high-profile cases over the past few years 
illustrate the development of the cryptojacking danger 
[2]. Some early examples of cryptojacking attacks are as 
follows:

1. Coinhive: With the introduction of the JavaScript-
based mining service Coinhive in 2017, website own-
ers may use their users’ CPU resources to mine the 
cryptocurrency Monero. While it was promoted 
as a non-intrusive way for websites to earn money, 
attackers soon began injecting Coinhive scripts onto 
hacked websites in an attempt to steal cryptocur-
rency.

2. Tesla Cloud Cryptojacking: In 2018, it was revealed 
that bitcoin miners have gained access to Tesla’s 
(an electric vehicle company) cloud infrastructure. 
Intruders hacked into Tesla’s Amazon Web Services 
(AWS) account and mined cryptocurrency using the 
company’s computing resources.

3. Government website cryptojacking: In 2018, crypto-
jacking attacks hit a number of government websites 
throughout the globe, including those of the United 
Kingdom and the United States. In order to mine 
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cryptocurrencies using users’ computers, attackers 
installed malicious malware into these sites.

4. Smominru Botnet: Since its discovery in 2017, the 
Smominru botnet has infected hundreds of thou-
sands of machines throughout the world. It was 
designed to mine the Monero cryptocurrency and 
mostly affected Windows computers. The botnet 
propagated itself in a number of ways, one of which 
was through taking advantage of Windows security 
holes.

5. Kitty Malware and Drupalgeddon2: In 2018, cyber-
criminals used the Drupalgeddon2 vulnerability 
(CVE-2018–7600) to spread Kitty, bitcoin min-
ing malware. This trojan exploited security holes in 
Drupal websites in order to mine cryptocurrency.

6. Android Malware Used to Mine Cryptocurrencies: 
Cryptojacking attacks have even reached mobile 
devices. Malicious applications and compromised 
websites have both been found to install bitcoin min-
ing malware on Android devices.

7. Cryptojacking in Industrial Supply Networks: In 
certain incidents, hackers inserted cryptojacking 
software into supply chain procedures. In these inci-
dents, hackers spread malware across a wide variety 
of devices by exploiting vulnerabilities in recently 
released software patches.

8. Watering Hole Attacks: Websites frequented by a 
specific demographic are the targets of "watering 
hole" attacks. The tactic has been used by attackers to 
insert cryptojacking scripts into websites frequented 
by targeted groups.

9. Cryptojacking Ransomware: There have been cases 
of cryptojacking being used in conjunction with ran-
somware, with the attackers threatening to keep min-
ing on the victim’s machine until a ransom is paid. 
Because of this, victims are under even more pres-
sure to give in to the demands of their assailants.

These are but a few of the many historical cases of 
cryptojacking that have been documented. Attackers 
will certainly come up with new ways and strategies to 
take advantage of the increased interest in cryptocur-
rencies as the cryptocurrency landscape continues to 
change. Staying up-to-date on cybersecurity best prac-
tices and implementing suitable security measures can 
help people and businesses fend off these attacks and 
stop cryptocurrencies from being mined without per-
mission [3]. Cryptojacking, or the illegal use of com-
putational resources to mine cryptocurrency, has been 
combated with the use of artificial intelligence (AI). 
Algorithms based on artificial intelligence may "learn" 
typical system behavior and "spot" deviations, such 
as unexpected increases in CPU or GPU utilization. 

Cryptojacking is a common cause of these surges. Arti-
ficial intelligence can monitor and assess how processes 
and programs are functioning in real time. Resource-
intensive calculations outside of typical user or system 
behavior are at the heart of cryptojacking. AI is capa-
ble of detecting these discrepancies. Artificial intelli-
gence has been taught to spot signatures in the kinds 
of scripts or code used in cryptojacking attacks. These 
patterns can be found by AI models by examining 
active processes or network traffic. Systems driven by 
AI can keep a constant eye on server load and traffic. 
They are able to quickly detect resource use anomalies 
that may indicate cryptojacking [4].

Deploying AI models on the cloud allows for ubiq-
uitous resource tracking. This has been used to spot 
instances that are acting strangely and using too much 
resources, both of which has been signs of cryptojack-
ing. Features characteristic of cryptojacking has been 
extracted by AI models from network traffic, scripts, or 
processes. Predictive models using these traits can be 
used to identify active or attempted attacks. In order to 
counteract evolving cryptojacking methods and innova-
tive attack patterns, AI systems may continually learn 
from fresh data [5]. Artificial intelligence systems can 
automatically take action against cryptojacking, such as 
isolating compromised machines, alerting system admin-
istrators, or killing off malicious code. Advanced threat 
detection skills are one way in which AI might supple-
ment more conventional security measures. It can be 
used in tandem with other security measures to prevent 
cryptojacking, such as firewalls, antivirus programs, 
and intrusion detection systems. In order to lessen the 
likelihood of unknowing participation in cryptojacking 
attacks, AI-powered platforms can aid in teaching users 
about the warning indications of cryptojacking and safe 
online habits. The identification and countermeasures 
of cryptojacking can be greatly aided by artificial intelli-
gence. A multi-layered security approach, including arti-
ficial intelligence, frequent software upgrades, network 
monitoring, and user education, is crucial for successful 
protection against cryptojacking, but remember that no 
solution is foolproof [6]. The critical contribution of this 
research is as follows:

• The purpose of this study is to ensures that crypto-
jacking attacks can be detected efficiently at the net-
work’s edge

• In this study, AdaHessian optimization enhances the 
model’s training process by adapting learning rates 
and efficiently navigating the loss landscape.

• Post-training quantization reduces memory and 
computational demands by converting model weights 
and activations to lower bit-width representations.
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• The model implements an importance scoring mech-
anism, incorporating insights from AdaHessian, to 
identify and prune less informative parameters.

• This process optimizes model size while preserving 
prediction accuracy.

• The suggested model outperforms the state-of-the-
art in terms of precision, accuracy, and sensitivity.

The full study should be written as follows: “Review of 
Literature” section discusses previous research, “Data-
set” section de-scribes the dataset in detail, “Method” 
section explains the proposed method, “Results and 
analysis” section describes the experi-mental results and 
analysis, and “Conclusion” section discusses the conclu-
sion and future works.

Review of literature
Eskandari et  al. [1] looked at the growing trend of 
browser-based cryptocurrency mining, namely Monero 
mining with Coinhive and related code-bases. In this 
paradigm, the user visits a website, downloads JavaS-
cript code, which operates client-side in her browser 
and mines bitcoin (usually without her knowledge or 
agreement), and then pays the seigniorage to the hosting 
website. Intentionally, websites have used this to replace 
or supplement ad income; inadvertently, websites have 
served the code as a consequence of a breach (in which 
case the attacker has collected the seigniorage).

The detection of bitcoin miners using NetFlow/IPFIX 
network data is presented as a machine learning-based 
technique [5]. In contrast to DPI-based methods, our 
approach can detect miners with comparable accuracy 
at a fraction of the cost. Knowing whether or not bitcoin 
miners are sneaking onto their networks to use them 
without authorization is of utmost importance in this 
scenario. IP address lists from recognized mining pools, 
DNS traffic processing, and direct Deep Packet Inspec-
tion (DPI) across all traffic may all be used to identify 
them immediately. However, none of these techniques 
has been successful in identifying miners utilizing anony-
mous mining servers or has proven inexpensive enough 
for widespread deployment in real-world networks.

The static, dynamic, and economic elements of 
browser-based cryptojacking are comprehensively exam-
ined [4]. To 1) quantify their prevalence throughout 
the web, 2) highlight their platform preferences, and 3) 
investigate the complexity of their code, we undertake 
content-, currency-, and code-based classification of 
cryptojacking samples as part of our static analysis. To 
isolate cryptojacking code from non-malicious JavaS-
cript, we use unsupervised learning, which improves 
accuracy to 96.4%. In our dynamic study, we look at 
how cryptojacking affects the utilization of vital system 

resources like the CPU and the battery. To further inves-
tigate the communication between the victim node and 
the dropzone cryptojacking server, we use browser fin-
gerprinting. We also develop a theoretical framework to 
examine the practicality of cryptojacking as a comple-
ment to traditional forms of internet advertising. Based 
on our findings, the model is economically unrealistic 
due to a sizable negative profit and loss gap. Finally, we 
develop enhanced countermeasures for in-browser cryp-
tojacking by utilizing insights from our analysis.

Yulianto et  al. [2] included Taint analysis-based cryp-
tojacking protection as a Chrome addon. In this study, 
the Man-In-The-Middle (MITM) attack was modeled 
and abused to test for security measures. In the event 
of a cryptojacking attack, users will be alerted via the 
suggested methodology. As a result, the user is able to 
inspect the features of the scripts that are actively pro-
cessing in the site’s background. This study demonstrates 
that taint analysis is a useful tool for protecting against 
cryptojacking. The taint analysis technique can identify 
19 cryptojacking-infected websites out of a random sam-
ple of 100 websites.

The problem of cryptojacking, in which miners are 
discreetly placed inside browser code without the user’s 
awareness, is investigated in detail in a new work [6]. As 
such, we examine the top 50,000 Alexa-ranked websites 
and discover a sizeable portion of them partaking in this 
predatory activity, frequently with highly disguised code. 
In addition, mining protection plugins like NoMiner 
don’t catch such subtly buried occurrences. As a result, 
we suggest a machine learning approach that makes use 
of real-time, hardware-assisted profiling of browser code. 
We are able to accurately categorize mining programs 
(with a 99% success rate) based on their micro-architec-
ture, and we can even detect when the mining code has 
been severely encrypted or obfuscated. We develop our 
own add-on for Chrome and demonstrate its superior 
performance compared to existing add-ons. The sug-
gested architecture is compatible with all commercially 
available CPUs and imposes little burden on the user’s 
computer.

Lachtar et al. [7] investigates a cross-platform, generic 
approach to identifying cryptojacking attempts. We pre-
sent an end-to-end detection approach that makes use of 
subtle modifications to the microarchitecture to moni-
tor instructions often employed by hash algorithms. Our 
approach adds almost no extra time to tests across a vari-
ety of SPEC 2006 workloads, as shown by the evaluation.

Tanana and Tanana [8] present a more robust detection 
tool for countering cryptojacking. They also provide a 
brief overview of the history of cryptojacking (also known 
as harmful mining) and a survey of the most signifi-
cant efforts to far. Our earlier efforts in harmful mining 
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detection will be reviewed, as will our current detection 
engine, which is mostly based on CPU utilization algo-
rithms. While prior work produced an 81% detection rate 
against a specified set of cryptojacking samples, we will 
integrate new measures for malicious mining identifica-
tion, such as network consumption and calls to crypto-
graphic libraries, to improve this to 93%. Finally, we’ll talk 
about expanding the suggested detection method to GPU 
cryptojackers.

To far, no research has been conducted to determine 
whether or not particular technological aspects of a 
website might raise (reduce) the risk of being hacked for 
cryptojacking operations. To answer this question, Di 
Tizio & Nam Ngo [9],suggest a case–control research 
utilizing a dataset of cryptojacking websites gathered 
by a WebCrawler implementation of Minesweeper. Pre-
liminary findings from our investigation suggest a link 
between a few different website features, but the data 
does not reach statistical significance. In order to have a 
deeper understanding of the implications of these con-
nections, additional research is needed.

For both browser-based and executable-type crypto-
jacking examples [10], proposes a complicated detec-
tion approach based on CPU load by an application. Our 
method’s corresponding prototype identification soft-
ware was developed utilizing a decision tree algorithm. 
The software was successful 82% of the time when tested 
against a small subset of known cryptojacking samples in 
a controlled virtual machine environment. Finally, we’ll 
talk about how the proposed method can be applied 
more broadly in the future.

To identify cryptojacking without needing any train-
ing data or prior knowledge of the attacks, Gomes et al. 
[11], provides a hybrid technique. Using unsupervised 
machine learning methods, our Cryp-tojacking Intrusion 
Detection Approach, Cryingjackpot, collects and com-
bines information based on flow and performance coun-
ters to group hosts that exhibit similar behaviors. Using a 
synthetic and a hybrid dataset, we conduct experimental 
evaluations of Cryingjackpot, with F1-scores reaching 
97%.

A protection against cryptojacking that operates on 
both the hardware and operating system levels has been 
presented [12]. Our approach is app-agnostic, unlike pre-
vious studies that only looked for cryptojacking in brows-
ers. We demonstrate that common tracking instructions 
used in cryptographic hash functions has been exploited 
as robust fingerprints of cryptojacking attacks. We show 
that our system can withstand the attacks of cryptojack-
ing malware, which frequently use multi-threaded and 
throttling evasion strategies. Through rigorous testing 
on a wide variety of workloads, including real-world con-
sumer applications, we are able to accurately describe 

the stability of our system. Finally, testing using a suite of 
benchmark programs reveals that our proof-of-concept 
solution has negligible effect on overall performance.

It is proposed by Caprolu et al. [13] that network traffic 
alone, even when encrypted and intermingled with non-
malicious traces, has been used to detect and identify the 
actions of crypto-clients. First, we conduct a comprehen-
sive study of the actual network traces produced by Bit-
coin, Monero, and Bytecoin, taking into account both the 
natural traffic and the traffic modified by a virtual private 
network. To recognize cryptocurrency-related behaviors 
including pool mining, solo mining, and active full nodes, 
we then present Crypto-Aegis, a Machine Learning 
(ML) based framework constructed using our research 
findings. Our approach has several desirable qualities, 
including device and infrastructure independence, and 
an impressive F1-score of 0.96 and an AUC for the ROC 
of 0.99. We feel that our methodology, backed by its great 
findings, pave the path for additional study in this field, 
given the scope and originality of the danger addressed.

Lightweight cryptojacking traffic detection based on 
network behavior characteristics for an ISP is designed 
by Hu et al. [14]. This approach does not require access to 
the payload of network traffic. Using a specially designed 
lab, we gather cryptojacking traffic and analyze it to see 
what distinguishing characteristics can be gleaned from 
the first four packets of a cryptojacking flow. Based on 
our experiments, we conclude that the machine learn-
ing classifier random forest can correctly and efficiently 
detect cryptojacking traffic using the extracted discrimi-
native aspects of network traffic.

Using data collected from academic articles, two big 
cryptojacking sample datasets, and 45 notable attack 
incidents, Tekiner et al. [15] give a comprehensive over-
view of cryptojacking malware. As a result, several 
papers offered strategies for detecting cryptojacking 
malware based on a wide range of dynamic/behavioral 
traits. However, there is no systematic analysis of the lit-
erature that provides a thorough knowledge of the new 
cryptojacking malware. Finally, we offer guidance to the 
research community in this developing area by present-
ing lessons gained and future avenues for study.

IoT botnets have been on the rise over the past five 
years, and this article Borys et al. [16] explores this phe-
nomenon in depth. However, an IP camera by itself is not 
capable of generating a Distributed Denial of Service. 
However, more than 150,000 IP cameras in a botnet may 
create 1 Tbps of bandwidth. Many people are caught off 
guard by botnets since their attacks and infections aren’t 
as obvious as a distributed denial of service (DDoS), and 
in other circumstances, these cameras and printers are 
used to steal information or silently mine cryptocurren-
cies at the expense of the IoT device owner.
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CIRCUIT is a method proposed by Hong et al. [17] to 
accurately identify cryptojacking websites. The JavaScript 
memory heap is where much of our attention lies since 
it can withstand attempts to obfuscate the script code 
and because it contains data about the objects declared 
and their reference relationships. The script code behav-
ior of the website is then represented by a reference flow 
that is extracted from the JavaScript heap. Therefore, if a 
website has a reference flow for cryptojacking, CIRCUIT 
will conclude that the website is engaging in cryptojack-
ing. Among the 300,000 most visited websites, we discov-
ered 1,813 that were actually cryptojacking. In addition, 
we modeled the reported evasion tactics and took into 
account the fact that features of cryptojacking websites 
are now visible on legitimate websites as well, providing 
novel insights into cryptojacking.

For in-browser cryptojacking detection, Sachan et  al. 
[18] uses temporal characteristics like query frequency 
and query burst, graph-based features like degree and 
diameter, and non-temporal features like the string-
based. We utilize them to train ML systems on data 
spanning from just two hours to the whole history of 
humankind. Based on our findings, the best perfor-
mance for supervised learning is achieved by K-Means 
with K = 2, while the greatest performance for unsuper-
vised learning is achieved by DecisionTrees classifier 
with 59.5% Recall on cryptojacked DN. Comparing the 
cryptojacking DNs to other known malicious DNs, simi-
larity analysis shows little to no difference. It also shows 
that state-of-the-art approaches has been improved by 
expanding their feature sets in order to better detect 
cryptojacking that occurs within a web browser. Our 
signature-based study further reveals that throughout the 
months of October-December 2021, not a single official 
Indian Government website was compromised by cryp-
tojackers. However, by analyzing resource use, we are 
able to single out 10 distinct DNs with their own unique 
characteristics.

The Bayesian cryptojacking detector [19] takes into 
account the four primary cryptojacking activity metrics: 
CPU load, RAM utilization, network access, and calls to 
cryptographic libraries. The initial step of a detector’s 
process is to compare the relevant metrics to predeter-
mined thresholds derived from empirical studies of cryp-
tojackers. The extended Bayes theorem is then used to 
assess the conditional probability of meeting or failing to 
meet predetermined cryptojacking infection criteria. The 
likelihood of a cryptojacker’s success is then determined 
using the compared results and conditional probabili-
ties. The detectors then make a call based on whether or 
not the calculated probability exceeds a predetermined 
threshold. Such an analysis yields an estimated detec-
tion rate of 0.90, a false-positive error rate of 0.013, and 

a false-negative error rate of 0.0056. In the final section 
of this work, we describe ways in which the cryptojacking 
detector has been enhanced.

A cryptojacking detection system [20], dubbed CJDe-
tector, was developed using characteristics of the cryp-
tojacking process. In particular, it detects malicious 
mining by tracking CPU activity and inspecting function 
call data. This method not only identifies the attack we 
outlined efficiently, but it can be used in general. CJDe-
tector’s recognition precision is 99.33%. Finally, we exam-
ined cryptojacking in action by testing Alexa’s top 50,000 
websites. While we did find that cryptojacking was 
decreasing in prevalence, we also observed that it is still a 
significant danger to networks.

Material and method
Dataset
Time-sequenced information on actual cryptojack-
ing attacks has been found in the Cryptojacking Attack 
Timeseries Dataset [11]. To mine cryptocurrency with-
out the victim’s knowledge or permission is known as 
"cryptojacking." This data collection is gathered so that 
the features, trends, and patterns of such attacks over a 
certain time period has been studied and comprehended.

Data Features:

• Timestamp: The time and date of the attack.
• Attack Type: The specific flavor of the cryptojacking 

attack.
• Location: Where exactly this attack came from.
• Affected Systems: What networks or devices were 

hacked and what data was stolen.
• Hashrate: The amount of processing time squandered 

by the adversary’s mining activities.
• Duration: The time frame of the attack.
• Coin Mined: Coins of the attack’s cryptocurrency 

that were mined.
• Victim IP: The victim’s Internet Protocol address.

Figure 1 demonstrate the data distribution of the device 
and associated attacks. Predictor importance, also known 
as feature or variable importance, can be used to assess 
a machine learning model’s prediction ability. Know-
ing how significant the predictors are helps the authors 
comprehend the model, understand what drives the pre-
dictions, and have been choose or develop features to 
improve it. Different algorithms and situations have eval-
uated feature importance differently. Additionally, vari-
ous models and data sets require different techniques. 
Combining techniques and domain experience helps 
understand predictive value in a machine learning prob-
lem. The dataset includes 3 CSV files, as described below.
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• Anormal dataset
• Normal dataset
• Complete dataset

Figure  2 demonstrate the count of attack check 
whether it is true or false. The true represent that the 
attack exists otherwise it is false. Handling missing 
values is a crucial step in the preprocessing of data for 
machine learning models. Missing data can negatively 
impact the performance and reliability of a machine 
learning model, and addressing it appropriately is 
essential for several reasons:

• Avoiding Biased Analysis: Ignoring missing values 
can lead to biased analysis and inaccurate model 
predictions. If the missing data is not handled, the 
model might learn patterns based on incomplete 
information, leading to incorrect conclusions.

• Preserving Data Integrity: Maintaining data integ-
rity is vital for the accuracy of the model. Leaving 
missing values untreated can distort the relation-
ships and patterns within the dataset, affecting the 
overall quality of the analysis.

• Maintaining Model Performance: Many machine 
learning algorithms cannot handle missing data 
during training. Handling missing values enables 
the model to be trained on a complete dataset, 
improving its performance and generalization on 
new, unseen data.

Common methods for handling missing values 
include imputation techniques (mean, median, or 
regression imputation), deletion of missing data, or 
more advanced methods such as multiple imputa-
tion. The choice of method depends on the nature of 
the data, the extent of missingness, and the specific 
requirements of the machine learning task at hand. 
Figure 3 highlights the percentage of the attack_check. 
IQR Method (Interquartile Range) is being applied 
to handle the outliers. This method is robust and less 

Fig. 1 Data Distribution

Fig. 2 Counting of attack_check
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sensitive to extreme values compared to methods based 
on mean and standard deviation.

Method
Artificial neural networks (ANNs) with several layers of 
neurons are known as deep neural networks (DNNs). 
DNNs are versatile computing tools that can perform 
tasks such as speech recognition, language process-
ing, and picture classification after being trained on big 
datasets.

Layered networks of linked neurons make up DNNs. 
Data to be processed by the DNN enters at the first layer, 
which is termed the input layer. The predictions made 
by the DNN are generated in the last layer, known as the 
output layer. The intermediate layers, known as hidden 
layers, are what really learn the data’s salient character-
istics [21].

Backpropagation is used to teach DNNs how to learn. 
The DNN’s predictions are evaluated against the true 
results in backpropagation. The mistakes are sent back 
into the network, where they are used to fine-tune the 
neuron weights. Repeat this step until the DNN’s pre-
dictions are satisfactory. While deep neural networks 
(DNNs) are a strong machine learning tool, they has 
been difficult to train and demand a lot of data. However, 
DNNs are becoming increasingly popular in machine 
learning research and applications because to their 
shown efficacy across a wide range of tasks [4]. Some of 
the many advantages of utilizing deep neural networks 
include:

• Data patterns are no longer a mystery to them.
• They have several applications.
• They’ve been proven useful in many different set-

tings.

Some difficulties that arise while employing deep neu-
ral networks include:

• They are not always easy to teach.
• They need a mountain of information.
• They risk overfitting at times.

The deep neural networks are an effective machine 
learning technique. They are versatile and capable of 
learning intricate data patterns for use in many fields. 
However, they are notoriously difficult to train and need 
copious amounts of data.

Deep neural networks architecture
Artificial neural networks known as Deep Neural Net-
works (DNNs) include several layers between the input 
and output stages. These networks were developed to 
comprehend high-dimensional data sets and represent 
complicated functions [4–6, 8, 22]. An summary of their 
structure is as follows:

Input layer
The input layer takes in a wide variety of information that 
has been useful in predicting cyber attacks. Examples of 
such data include system logs, network traffic, and user 
trends. Each neuron in this layer represents a different 
dimension of this data.

Hidden layers
Between the input and output layers is where the major-
ity of the network’s processing takes place. A neural net-
work’s "depth" is equal to its number of hidden layers.

• Fully-Connected Layers: Every neuron in one layer 
communicates with every neuron in the layer above 
and below it.

• Convolutional Layers: Convolutional layers are 
mostly used for image identification tasks and apply a 
series of filters to the input to generate feature maps.

• Recurrent Layers: Connections in recurrent layers 
can loop back within the layer, making them useful 
for sequence prediction applications like language 
modeling.

• Normalization Layers: These layers help speed up the 
training process by standardizing the outputs of the 
layer below them.

Fig. 3 % of attack_check
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• Dropout Layers: In order to avoid training a model to 
a specific data set, dropout layers occasionally change 
some of the input units to zero.

Activation functions
The system becomes non-linear once activation func-
tions are applied. Rectified Linear Unit (ReLU), Sig-
moid, and Tanh activation functions are all rather 
common.

Output layer
This layer’s job is to generate the final prediction or cat-
egorization. In classification tasks, the number of neu-
rons here is normally equal to the number of classes, 
but in regression tasks, it is equal to one [3].

Loss function and optimization
A loss function is used to measure a DNN’s effective-
ness. In order to train a model, this loss function is 
minimized using optimization procedures like stochas-
tic gradient descent.

Backpropagation
The prediction error minimization method utilized by 
the network is called backpropagation. It modifies the 
network’s weights and biases to reduce the inaccuracy.

Because of their flexibility, deep neural networks 
has been tailored to suit a wide range of datasets and 
applications. They have been used effectively in several 
fields, including those of natural language processing, 
video game playing, and picture and audio recognition.

Working
Undoubtedly, there are several processes that can be 
broken down into sub-steps and depicted in a thorough 
flow chart to describe the process of creating and exe-
cuting a Deep Neural Network (DNN) for cyber attack 
prediction [11, 21, 23, 24]. The process is outlined in 
text form below:

• The first step is to define the issue that needs solv-
ing, such as categorizing cyberattacks or identify-
ing suspicious activity in network data. The model 
collect raw data from the system, the network, and 
the users to better understand the problem.

• In Step 2, the model deal with missing values 
and normalize and scale the data. It selects and 
extracts relevant features from raw data, making it 
machine-learning-ready. It determines the specific 
DNN architecture to be employed, such as a Fully 
Connected DNN, a CNN, an RNN, or a combina-

tion of these. The data is sent into the DNN’s input 
layer. Convolutional layers are used to process spa-
tial patterns, while autoencoders are employed for 
outlier identification and feature representation.

• The hidden layers are put into action in Step 2.

✓ All Sub-Levels Interconnected
✓ RNN/LSTM Recurrent Layers
✓ Layers of Normalization
✓ Regularization through Dropout Layers

In this step, the model provide all of the neurons in 
the hidden layers non-linear activation functions like 
ReLU, Sigmoid, or Tanh. It have neurons representing 
the number of classes in the prediction issue or a single 
neuron representing binary classification implemented 
in the output layer.

• In Step 3, a loss function is selected based on the 
task at hand, such as the mean squared error in 
regression or the categorical cross entropy in clas-
sification.

• Next step 4, the optimization technique is chosen 
to reduce the loss, often stochastic gradient descent 
(SGD) or its variants such as Adam. The model is 
then trained with the training dataset and validated 
with test data to make any necessary adjustments and 
prevent overfitting.

• In step 5, Model performance indicators including as 
accuracy, precision, recall, and F1-score are used to 
test dataset evaluation. If the model’s results satisfy 
constraints, it has been applied into production and 
use it to forecast cyber attacks in real time.

• Last step retrain and fine-tune the model when fresh 
data becomes available or as the nature of cyber 
threats changes.

While Deep Neural Networks (DNNs) have demon-
strated great potential for predicting cyber attacks, they 
are not without their drawbacks shown in Fig. 4.

Here are some of the more significant difficulties and 
restrictions that may arise from employing DNNs in 
this setting  [11]. In order to train properly, DNNs need 
a lot of information. The predictive capacity of the net-
work has been jeopardized if there is insufficient high-
quality, labeled data for incidents of cyber attacks [9, 
10, 25, 26]. Training DNNs is resource-intensive since 
it requires specialized hardware like GPUs and a lot 
of processing power. The incomprehensibility of how 
DNNs arrive at their predictions has led to their being 
labeled "black-box" models [13]. This is a potential issue 
in the field of cybersecurity, since knowing the reasoning 
behind a prediction is often essential for making sound 
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judgments [20]. When the data is unbalanced or lack-
ing in diversity, deep learning models are more likely to 
overfit. Overfitting impedes the model’s ability to gen-
eralize to novel input. The computing time required for 
training and inference by DNNs may not match real-time 
requirements, especially in systems that demand instant 
response, although they can be successful at spotting pat-
terns suggestive of cyber threats [7, 15, 27–29].

As such, a model trained on historical data may 
not be enough for defending against emerging cyber 
threats [25]. As a result, the model needs to be updated 
and retrained frequently, which has been time-consum-
ing and costly. While DNNs excel at automating feature 
learning, preprocessing procedures like feature extraction 
and selection still need for expert knowledge, especially 
when the input data originates from disparate sources 
like as logs, network flows, or system metrics [27]. There 

are ethical and privacy concerns since the training data 
may include sensitive or personally identifiable infor-
mation (PII). Small changes to the input data can trick 
DNNs into making inaccurate predictions, making them 
susceptible to adversarial attacks. This is especially wor-
risome in the context of cybersecurity, when attackers 
may wilfully modify data in order to remain undetected. 
Understanding both the domain (cybersecurity) and the 
model (DNN) is necessary for the daunting task of modi-
fying the DNN’s complicated hyperparameters and archi-
tectural choices [12–14, 30–32].

These drawbacks have prompted studies into hybrid 
methods that integrate deep learning with more con-
ventional forms of cybersecurity, as well as investiga-
tions into more interpretable machine learning models 
that can be relied upon and analyzed with more pre-
cision. Overfitting occurs when a machine learning 

Fig. 4 Working of DNNs system
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model learns the training data too well, accumulat-
ing noise or random oscillations instead of patterns. 
When applied to unknown data, this may reduce gen-
eralization performance. Deep neural networks and 
sophisticated decision trees can recall all training data, 
including noise. Insufficient training data can cause 
model overfitting and poor generalizability to new data. 
Overfitting occurs more often in models that allow too 
much complexity. For instance, a high-degree polyno-
mial regression fits training data well but generalizes 
poorly. Dropout training was employed for this work. 
Each cycle, dropout randomly eliminates neurons from 
the network to minimize overreliance on one neuron.

Proposed methodology
In many machine learning applications, accuracy is 
more important than speed, and optimizing a DNN 
may help enhance both. It is more probable that a 
model will correctly predict or classify data if it has 
been adequately optimized. Optimization methods 
can greatly hasten the learning procedure. The ability 
to rapidly cycle through several training models and 
hyperparameter settings is crucial for experimental 
purposes [19, 33, 34]. The reduced memory and pro-
cessing needs of an optimized model make it easier and 
cheaper to roll out to production settings. In the con-
text of Deep Neural Networks (DNNs), optimizers are 
algorithms used to minimize (or maximize) the objec-
tive function J(θ)) over the neural network parameters 
θ, which could include weights and biases. The objec-
tive function, often referred to as the loss function or 
cost function, measures how well the neural network 
performs on the dataset.

Common types of optimizers

1. Stochastic Gradient Descent (SGD): The simplest and 
most widely used optimization algorithm. It updates 
each parameter θi according to the Eq. 1:

where α is the learning rate.

2. Momentum: A variation of SGD that takes into 
account the past gradients to smooth out the update 
as per the Eqs. 2 and 3:

(1)θ i = θ i − α
∂J

∂θ i

where β is the momentum term.

3.  Adagrad: It adapts the learning rate during training 
for each parameter θi  depending on the historical 
gradient information for that parameter.

The Adagrad update formula for parameter θ at itera-
tion t in the Eq. 4:

Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
Gt: The diagonal matrix containing the sum of squared 

historical gradients up to iteration t.
ε: A small constant (usually a small positive number, 

like 1e-8) added for numerical stability.
∇θf(θt): The gradient of the loss function with respect 

to parameter θ at iteration t.

4. RMSprop: Similar to Adagrad but introduces an 
exponentially decaying average to give more weight 
to recent gradients.

The RMSprop update formula for parameter θ at itera-
tion t in the eq. 5:

Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
Gt: The diagonal matrix containing the exponentially 

weighted moving average of squared gradients up to iter-
ation t.

ε: A small constant (usually a small positive number, 
like 1e-8) added for numerical stability.
∇θf(θt): The gradient of the loss function with respect 

to parameter θ at iteration t.

5. Adam: Combines the ideas of Momentum and 
RMSprop. It keeps an exponentially decaying average 
of past gradients and the element-wise square of past 
gradients.

The Adam update formula for parameter θ at iteration t 
in the eqs. 6, 7, 8, 9 and 10:

(2)v = βv − α∇J

(3)θ = θ+ v

(4)θt+1 = θt − α/
√
(Gt + ε) ∗ ∇θ f(θt)

(5)θt+1 = θt −
(

α/
(√

(Gt + ε)
))

∗ ∇θ f(θt)
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Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
β1 and β2: Exponential decay rates for  1st and  2nd 

moment estimates, respectively.
ε: A small constant for numerical stability.
mt: The  1st moment estimate (mean of gradients) at 

iteration t.
vt: The  2nd moment estimate (uncentered variance of 

gradients) at iteration t.
t: The current iteration.
∇θf(θt): The gradient of the loss function with respect 

to parameter θ at iteration t.
The Eqs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 define the work-

ing of the optimizers applied in neural networks. These 
equations involves various variables that plays major role 
in predictions of attack. Quantization and pruning are 
two methods for optimizing and minimizing the foot-
print of deep neural networks (DNNs) for usage on low-
powered mobile devices [17, 18, 35–38]. When training 
DNNs, however, a second-order optimization approach 
called AdaHessian has been employed to boost training 
efficiency and convergence. Let’s talk quickly about each 
of these methods:

• AdaHessian Optimization: AdaHessian is an opti-
mization technique that broadens the scope of SGD 
(Stochastic Gradient Descent) and Adam, two classic 
gradient-based optimization tools. The training rates 
for each parameter are adaptively modified using sec-
ond-order information. As an effective alternative to 
conventional optimization techniques, this strategy 
has the potential to speed up training for deep neu-
ral networks and enhance convergence. AdaHessian’s 
hyperparameters, such learning rate, weight decay, 
and momentum, need to be tweaked for optimal per-
formance.

• Quantization: By decreasing the accuracy of model 
parameters like weights and activations, we have 
quantization. For this reason, it is common practice 

(6)mt = β1 ∗mt−1 + (1− β1) ∗ ∇θ f(θt)

(7)vt = β2 ∗ vt−1 + (1− β2) ∗ (∇θ fθt))
2

(8)mt_hat = mt/
(

1− β1
t
)

(9)vt_hat = v_t/
(

1− β2
t
)

(10)θt+1 = θt −
(

α/
(√(

vt_hat + ε
)))

∗mt_hat

in deep learning to transform floating-point quanti-
ties to fixed-point or integer representations with 
a smaller bit width. A model can be quantized, for 
instance, such that it operates on 8-bit integers rather 
than 32-bit floating-point values. This helps conserve 
memory and expedite inference on computers with 
efficient integer-processing capabilities. Common 
methods for quantizing DNNs include post-training 
quantization and training with quantization in mind.

• Pruning: In order to improve the performance of a 
trained DNN, it can be "pruned," which means that 
unused connections (weights) or even whole neurons 
(channels) are removed. The model’s inference time 
and memory requirements has been decreased by 
pruning. It can also help the model generalize better 
by decreasing the amount of overfitting.

When accuracy drops as a result of pruning, it’s nec-
essary to retrain or fine-tune meticulously. Effective 

Fig. 5 Working of proposed model
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optimization and deployment of DNNs has been achieved 
by combining AdaHessian with quantization and prun-
ing. In proposed method, these methods can be coupled 
in Fig. 5 as follows:

Deep neural networks (DNNs) require many opera-
tions to combine pruning, post-training quantization, 
and AdaHessian optimization. The goal of this approach 
is to produce a DNN that is as small and efficient as possi-
ble without sacrificing performance. Here is an approach 
that takes advantage of all these methods:

Step 1. Initial Model Training with AdaHessian: The 
AdaHessian optimization technique is used to train 
the deep neural network at this stage. In this stage, 
we optimize the first version of the model as much 
as possible. It guarantees that a representative dataset 
is used for training and that the hyperparameters are 
adjusted appropriately.
Step 2. Model Evaluation after Training: This phase 
follows training and consists of an evaluation of the 
trained model’s accuracy and performance using a 
validation dataset.
Step 3. Post-Training Quantization: In this process, 
the weights and activations of the trained DNN are 
transformed into representations with a smaller 
bit width. It is capable of employing quantization 
strategies, such as those used in TensorFlow and 
PyTorch. If you want to discover the optimal bal-
ance between model size and inference speed, you 
should try out various quantization levels (e.g., 
8-bit, 4-bit).
Step 4. Importance Scoring for Pruning: The next 
thing to do is to assign weights and neuron weights 
in the quantized model important scores. Using 
these ratings, we may narrow down which parame-
ters need to be trimmed. It may make it possible to 
calculate significance scores using techniques like 
magnitude-based pruning, saliency-based pruning, 
and Hessian-based pruning. AdaHessian is useful 
for calculating significance using the Hessian met-
ric.
Step 5. Pruning Decision: In this phase, we estab-
lished a cutoff value or criterion dependent on 
the significance ratings. At this cutoff, parameters 
(weights or neurons) are either kept or removed. 
Insignificant parameters are those that fall below the 
cutoff. Based on the model architecture and pruning 
approach, the author can choose to prune either indi-
vidual weights, neurons, or channels.

Step 6. Pruning: Now it’s time to prune the quanti-
fied model according to the established standards. If 
a neuron or its associated connection has a weight 
below the pruning threshold, it will be removed and 
make the necessary changes to the model’s structure 
(such as deleting individual neurons and modifying 
the layers above and below them).
Step 7. Fine-Tuning after Pruning: this action 
to restore any accuracy lost as a result of prun-
ing, retrain the model. Start training with a lower 
learning rate using the leftover weights from the 
trimmed model and adjusting the model’s fine 
points after trimming and quantization has been 
done.
Step 8. Quantified and pruned model evaluation: This 
phase involves testing the improved model on a vali-
dation set. It evaluates its performance in relation to 
that of the original model and the quantized model, 
taking into account accuracy and other important 
criteria.
Step 9. Iterate if Necessary: The process of trimming 
and fine-tuning may require iterations based on the 
outcomes of step 8. To find the sweet spot between 
model size and accuracy, you may play around with 
hyperparameters like pruning threshold and fine-
tuning time.
Step 10. Deployment: After the performance of the 
trimmed and quantized model has been evaluated 
and deemed satisfactory, it has been deployed to the 
target platform after careful consideration of the nec-
essary hardware and software.
Step 11. Monitoring and Maintenance: Quantization 
and pruning may involve trade-offs that effect real-
world performance, thus it is important to regularly 
check the performance of the deployed model in pro-
duction. It’s ready to fine-tune or retrain the model as 
needed to accommodate new or different data sets or 
parameters.

AdaHessian optimization, post-training quantiza-
tion, and pruning all contribute to a compact and effi-
cient DNN that can function in contexts with limited 
resources without sacrificing accuracy.

Pseudo code of proposed hybrid model
The Pseudo code of the proposed hybrid model is as 
follows.
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// Pseudo code Proposed hybrid Model
Input: Cryptojacking Dataset
Output: Attack class
1. Apply data Pre-processing
2. Define DNN Architecture
2.1 model = Sequential()
2.2 model.add(Dense(128, activation = ’relu’, input_shape = (feature_dim,)))
2.3 model.add(Dense(64, activation = ’relu’))
2.4 model.add(Dense(32, activation = ’relu’))
2.5 model.add(Dense(1, activation = ’sigmoid’))
3. Compile Model with AdaHessian Optimizer
3.1 model.compile(loss = ’binary_crossentropy’, optimizer = AdaHes-
sianOptimizer(), metrics = [’accuracy’])
4. Train the Model
4.1 model.fit(X_train, y_train, epochs = 50, batch_size = 32, valida-
tion_split = 0.2)
5. Model Evaluation
# Before Quantization
5.1 model.evaluate(X_test, y_test)
6. Post-Training Quantization
6.1 quantize_model = tfmot.quantization.keras.quantize_model
6.2 q_aware_model = quantize_model(model)
6.3 q_aware_model.compile(loss = ’binary_crossentropy’,
6.4 optimizer = AdaHessianOptimizer(), metrics = [’accuracy’])
7. Fine-Tuning after Quantization
7.1 q_aware_model.fit(X_train, y_train, batch_size = 32, epochs = 10, 
validation_split = 0.2)
8. Re-Evaluate the Model
# After Quantization
8.1 q_aware_model.evaluate(X_test, y_test)

Finding the optimal configuration for your application 
requires some trial and error. In order to forecast crypto-
jacking attacks, this study merges three separate methods 
into a unified framework: pruning, post-training quan-
tization, and AdaHessian optimization. The innovative 
aspect is the combination and complementarity of vari-
ous techniques to improve speed and precision.

• Optimal AdaHessian Functions: This paper highlights 
the new use of AdaHessian, a second-order optimi-
zation method, to the problem of foreseeing crypto-
jacking attacks. AdaHessian gives you an edge over 
conventional optimization strategies due to its flex-
ibility in adjusting learning rates and allowing you to 
investigate the loss landscape in novel ways.

• Prioritizing Effectiveness: The primary emphasis 
of this study is on efficiency without sacrificing the 
accuracy of predictions. This focus on low-overhead 
detection techniques is unusual in the field of crypto-
jacking attack forecasting.

• Quantification for Efficient Use of Resources: it focus 
on post-training quantization to cut down on model 
size and compute needs, making the model appropri-
ate for contexts with limited resources. Quantization 
approach combination with machine learning for 
security is an underdeveloped area.

• Value-Based Editing: Insights from AdaHessian are 
utilized to create a unique scoring method for deter-

mining which branches to remove. Your method 
stands out since you use many methods to reduce the 
size of the model without sacrificing accuracy.

• Analyzing Data Sets in the Real World: In this study, 
we highlight the fact that we have extensively evalu-
ated your methodology using real-world network 
traffic facts to prove its practicality and efficacy.

• Analyzing the Differences: This paper presents a com-
prehensive comparison of your strategy to existing 
approaches to predicting cryptojacking attacks. Bring 
to light how proposed unique method enhances effi-
ciency and precision.

• Threat to Safety: The paper delves into the wider  
security consequences of your efforts. Highlight how 
your method’s efficiency benefits can aid in the iden-
tification of cryptojacking attacks in a way that is both 
effective and scalable, hence improving cybersecurity.

• Application in Real Life: This study emphasizes the 
possibility for your solution to be used in practice on 
edge devices, routers, and network gateways, demon-
strating the practical significance of your research.

The authors prove the originality and relevance of their 
method for forecasting cryptojacking attacks utilizing 
pruning, post-training quantization, and AdaHessian 
optimization by addressing these concerns and highlight-
ing the specific contributions and innovations of their 
study.

Results and analysis
Experimental setup
Here we provide the outcomes of the simulations con-
ducted on the cryptojacking dataset. The current models 
and the one that is being proposed are built using Python 
and its essential libraries, such as Numpy, Sci-kit, Mat-
plot, Pandas, and Tensor Flow. This is all run on a com-
puter with the following specifications: 16  GB of RAM, 
Core i7, 10700 processor, CPU @ 3.7Ghz, and Windows 
11 operating system [16, 20, 39–42]. We transformed 
the dataset into picture datasets after doing the neces-
sary pre-processing. Using k-fold cross-validation, the 
dataset is partitioned into two parts: training and testing. 
We have conducted a binary classification on the dataset 
using both the proposed and current deep learning mod-
els. The simulation parameters are displayed in Table 1.

Artificial neural networks use activation functions to 
mathematically operate on each neuron in a layer. It lets 
the network learn and approximate complex data by add-
ing non-linearity. Different activation functions behave 
differently. Selecting an activation function should take 
into account the problem’s characteristics, neural net-
work architecture, and task performance. To determine 
the ideal activation functions for a neural network, 
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experiments must consider each function’s problem-
related attributes [43–48].

Experimental results
This dataset replicates the real-world data in PCAPs by 
including benign and the most recent examples of com-
mon attacks. It additionally contains the findings of an 
analysis of the network traffic performed with CIC_Flow_
Meter, complete with labelled flows organized according 
to the protocols, date and time stamp, origin and destina-
tion IP addresses, the source with destination port num-
bers, and attack. Figure 6 show that when trying to make 
sense of the connections between the many elements and 
qualities that make up a dataset, a correlation matrix has 

Table 1 Parameters used for simulation

Parameters Details

CNN Model Transfer Learning and Light-weight CNN 
(mobile-V3) with SVM

No Training Layers 100–250

Epochs 50–100

Optimizer used Stochastic Gradient Descent (SGD) 
Optimizer

Model learning rate 0.001
Loss function Categorical Cross Entropy (CCE) function

Activation function SoftMax, ReLu

Batch size 256

Hidden Layer Architecture (256,128,64)

Fig. 6 Corelation matrix
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been quite helpful. Patterns and interdependencies that 
has been symptomatic of cyber attacks or abnormalities 
can be uncovered with the use of such a matrix.

In Fig.  7 we have measured the Confusion matrix 
results for all the methods, i.e., existing and proposed on 
the given dataset. False negatives can have serious con-
sequences. False negatives in medical diagnostics can 
lead to missed or delayed treatment of actual illnesses. 
Security applications’ intrusion detection systems might 
overlook serious threats if they generate false negatives. 
Model or test threshold decisions effect the false posi-
tive/negative trade-off. Some apps prioritize one over the 
other; adjusting the threshold can balance them.

Figure 8 shows an accuracy and loss curve, and Fig. 9 
shows the ROC curve for given dataset for the proposed 
model.

Table  2 presents experimental results comparison for 
existing and proposed methods. CNN with Stochastic 
Gradient Descent (SGD) optimizer achieves a recall of 
91.13%, precision 93.62%, F1-Score 93.59%. Momentum 
optimizer achieves Recall 95.39%, Precision 96.69% and 

F1-Score 95.81%. Adagrad optimizer achieves Recall 
94.85%, Precision 96.99% and F1-Score 96.48%.

RMSprop optimizer achieves Recall 96.39%, Preci-
sion 96.79% and F1-Score 97.96%. The proposed method 
achieves Recall 99.72%, Precision 98.93% and F1-Score 
99.12%. The model’s high F1 score reflects a good recall-
precision balance, allowing it to recognize positive 
and negative cryptojacking efforts. MEC applications 
improve bitcoin exchange security. AdaHessian optimi-
zation reduces false positives and negatives. To minimize 
unnecessary disruptions, limit false positives so legiti-
mate processes are not mistaken for assaults. Reducing 
false negatives improves the model’s cryptojacking detec-
tion and warning. High F1 scores show the model’s cryp-
tojacking detection skill. Enhancing the system’s ability to 
notice and respond quickly to threats reduces the risk of 
crypto exchange attacks.

We have calculated various performance measuring 
parameters for existing and proposed methods. Table  3 
presents the accuracy results prescribed dataset for exist-
ing and proposed methods for different classes. For class 

Fig. 7 Confusion matrix of proposed model

Fig. 8 Loss curve (Binary Classification) for the proposed model

Fig. 9 ROC curve (Binary Classification) for proposed model

Table 2 Experimental results comparison

Optimizers Recall Precision F1-Score

Stochastic Gradient 
Descent (SGD)

91.13% 93.62% 93.59%

Momentum 95.39% 96.69% 95.81%

Adagrad 94.85% 96.99% 96.48%

RMSprop 96.39% 96.79% 97.96%

Adam 97.05% 95.09% 96.05%

Proposed Method 99.72% 98.93% 99.12%
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‘not malicous’, the proposed method achieves 98.85% 
accuracy, for ’ ‘not malicous’’ 99.13% accuracy.

Discussion
The increasing complexity of Deep Neural Networks 
(DNNs) requires improved optimization algorithms for 
practical implementation, especially in cybersecurity, 
where real-time decision-making is crucial. Our work 
uses pruning, post-training quantization, and AdaHes-
sian optimization to solve the computational and security 
issues of DNNs that predict Cryptojacking attempts.

AdaHessian optimization
AdaHessian optimization in DNN training is our first 
important contribution. Despite its relevance in improv-
ing generalization and convergence, SGD, Adam, and 
RMSprop neglect the loss landscape’s curvature. By add-
ing second-order optimization, AdaHessian enhances the 
model’s loss landscape navigation. Our research showed 
that AdaHessian’s Cryptojacking prediction accuracy 
improved, showing its cybersecurity value.

Pruning
Network pruning removed unnecessary connections and 
neurons after DNN training. Pruning reduces model size 
and strengthens the network against overfitting. Edge 
devices, where computational resources are few, require 
a smaller form.

Post-training quantization
Post-training quantization converted float data to inte-
gers with a reduced bit width to minimize model size. 
The inference process was sped up and the memory foot-
print was considerably reduced without losing accuracy. 
Post-training quantization is desirable for current models 
since it does not need network reteaching.

Cryptojacking attack prediction
Throughout the trial, our model’s predictive ability to 
prevent Cryptojacking assaults was critical. The model 
was quick and accurate when various optimization pro-
cedures were coupled. The approach is important in 
cybersecurity, where time and precision are crucial.

Limitations
Our study results are promising, but with limitations. No 
one has investigated the model’s resilience to malevolent 
actors. Our technology has only been tested on some 
Cryptojacking attempts, hence its applicability to other 
cybercrimes is unknown.

This research strongly supports implementing complex 
optimization approaches into cybersecurity DNNs. We 
used AdaHessian optimization, pruning, and post-train-
ing quantization to create a computationally efficient and 
accurate Cryptojacking prediction system. More research 
is needed to validate the framework’s resilience to hostile 
assaults and expand its cybersecurity applications.

Conclusion
To predict Cryptojacking attacks, we examined the chal-
lenging challenges of improving DNNs for cybersecu-
rity applications in this research. Traditional DNNs are 
powerful, but their high computational cost and large 
model sizes make them unsuitable for resource-con-
strained applications. Pruning, post-training quantiza-
tion, and AdaHessian optimization were used to solve 
these challenges. We found that AdaHessian optimiza-
tion improves training, enabling Cryptojacking attack 
prediction with minimal computational power. Next, we 
pruned superfluous neurons and connections to reduce 
model size without impacting accuracy. Finally, post-
training quantization reduced memory footprint and 
increased inference speed, making the model ideal for 
resource-constrained applications like edge computing 
in real life. Neural networks can predict cryptojacking 
attempts, which is useful. Cryptojacking involves unlaw-
ful cryptocurrency mining on computers. Attacks can be 
prevented with early detection. AdaHessian optimization 
and optimized neural networks enhance training time 
and efficiency. Optimization method AdaHessian accel-
erates neural network convergence. Crypto exchange 
operations must be protected from financial and repu-
tational losses. Proactive security can be improved by 
machine learning prediction models. Many applications 
have come from the study. Before deploying machine 
learning models in cyberspace, they stress the need for 
extensive optimization and security methods. Then, 
they demonstrate that high processing cost and model 

Table 3 Accuracy results comparison for classification

Attack Class Stochastic Gradient 
Descent (SGD)

Momentum Adagrad RMSprop Adam Proposed 
Hybrid 
model

Not malicous 89.12 91.07 85.95 87.68 92.34 98.85

Malicous 90.13 90.95 85.63 85.97 91.35 99.13
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size reductions do not affect prediction accuracy. We 
conclude that our technique lays the groundwork for 
cyber security research using cutting-edge optimization 
methods. We use advanced optimization techniques and 
real cybersecurity applications to offer a powerful, inex-
pensive, and scalable cryptojacking solution. Our work 
optimizes machine learning and safeguards the digital 
environment against new crime.
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