
Rani et al. Journal of Cloud Computing (2024) 13:63
https://doi.org/10.1186/s13677-024-00630-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An optimized neural network
with AdaHessian for cryptojacking attack
prediction for Securing Crypto Exchange
Operations of MEC applications
Uma Rani1, Sunil Kumar2, Neeraj Dahiya3, Kamna Solanki4, Shanu Rakesh Kuttan5, Sajid Shah6,
Momina Shaheen7 and Faizan Ahmad8*

Abstract

Bitcoin exchange security is crucial because of MEC’s widespread use. Cryptojacking has compromised MEC app
security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and Ada-
Hessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural
network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and Ada-
Hessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian
optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking
attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU
on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking
attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE
0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consump-
tion, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cyber-
security issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations
delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network
management.

Keywords Mobile Edge Computing (MEC) Deep Neural network model, Post-training quantization, AdaHessian
optimizer, Cryptojacking attack, Crypto Exchange Operations

*Correspondence:
Faizan Ahmad
fahmad@cardiffmet.ac.uk
1 Department of CSE, World College of Technology & Management,
Gurugram, Haryana, India
2 Department of CSE, Guru Jambheshwar University of Science &
Technology, Hisar, Haryana, India
3 Department of CSE, SRM University Delhi-NCR, Sonipat, Haryana, India
4 Department of Computer Science Engineering, UIET, Maharshi
Dayanand University, Rohtak, Haryana, India
5 Department of CSE, Chouksey Engineering College Bilaspur,
Chhattisgarh, India
6 Prince Sultan University, Riyadh, Saudi Arabia

7 Department of Computing, University of Roehampton London, London,
UK
8 Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff,
UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00630-y&domain=pdf

Page 2 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

Introduction
Mobile Edge Computing (MEC) apps are vulnerable to
cryptojacking attacks, which can compromise their secu-
rity and performance. Deploying computing resources
closer to end-users and devices at the network edge is
what Mobile Edge Computing is all about. The plat-
form’s closeness makes it ideal for a variety of businesses,
including bitcoin exchanges, by reducing latency and
improving application efficiency. An online threat known
as cryptojacking—or malicious crypto-mining—occurs
when cybercriminals secretly employ a device’s process-
ing power to mine cryptocurrency. Because the com-
putational resources in MEC are shared and dispersed,
these attacks can have serious consequences. Devices in
the MEC infrastructure are the targets of cryptojacking
attacks, which aim to exploit their computing power. This
can encompass both conventional computer resources
and specialist gear like graphics processing units (GPUs)
or tensor processing units (TPUs), which are frequently
employed in cryptocurrency mining. Any illicit utiliza-
tion of computer resources for cryptocurrency mining
has the potential to drastically diminish the performance
of MEC applications due to the fact that MEC depends
on low-latency communication and fast processing at
the network edge. Reductions in overall system efficiency
and increases in reaction times are possible outcomes of
increased resource use.

Many cryptojacking attempts aim to remain unde-
tected by end users by operating invisibly in the back-
ground. Because of how covert these strikes are, they
could be difficult to spot and counter quickly in a MEC
setting. Since cryptojacking attacks in MEC might not
display conventionally malevolent behavior, conven-
tional security methods might not be enough to iden-
tify them. The dispersed nature of MEC also makes it
more difficult to keep an eye on everything from one
place. It takes a multipronged strategy to prevent cryp-
tojacking in MEC. To achieve this goal, it is necessary
to install intrusion detection systems that are specifi-
cally designed for MEC settings, establish strong access
restrictions, update and patch software on a regular
basis, and educate users about the dangers of using
untrusted apps. The capacity to identify cryptojacking
attacks can be improved by utilizing machine learning
methods, as indicated in the preceding abstract. Algo-
rithms like this can study resource consumption trends
linked to cryptocurrency mining and sound the alarm
when they see anything out of the ordinary. Because of
the dispersed and resource-constrained nature of MEC
settings, proactive security measures are required to
mitigate the cryptojacking threat in MEC. The MEC
ecosystem may be made more safe for cryptocurrency

exchange activities by combining powerful detection
algorithms with rigorous access restrictions and user
education [1]. The victim’s device may experience per-
formance degradation, higher power bills, and even
hardware failure as a result of the mining process. An
example of a possible cryptojacking attack is as follows:

• Infection: The hacker exploits a hole in the target’s
defenses by inserting malicious code. This code,
which is often written in JavaScript, is meant to
operate invisibly.

• Distribution: The malicious code might be dis-
seminated via a variety of vectors, including hacked
websites, phishing emails, infected files, or mali-
cious advertisements.

• Execution: Malicious code is run on a victim’s
device when they visit a hacked website or inter-
act with the malicious content. It then begins min-
ing cryptocurrency with the device’s resources,
whether Bitcoin, Monero, or Ethereum.

• Use of Materials: Due to the extensive computa-
tional activities being done by the mining script,
the victim’s device experiences a decrease in per-
formance, increased fan activity, and higher energy
consumption.

• Gains for the Aggressor: The bitcoin is mined and
then sent to the wallet of the attacker. Since the
infected machines are pooling their resources, the
attacker can amass a large sum of bitcoin.

Several high-profile cases over the past few years
illustrate the development of the cryptojacking danger
[2]. Some early examples of cryptojacking attacks are as
follows:

1. Coinhive: With the introduction of the JavaScript-
based mining service Coinhive in 2017, website own-
ers may use their users’ CPU resources to mine the
cryptocurrency Monero. While it was promoted
as a non-intrusive way for websites to earn money,
attackers soon began injecting Coinhive scripts onto
hacked websites in an attempt to steal cryptocur-
rency.

2. Tesla Cloud Cryptojacking: In 2018, it was revealed
that bitcoin miners have gained access to Tesla’s
(an electric vehicle company) cloud infrastructure.
Intruders hacked into Tesla’s Amazon Web Services
(AWS) account and mined cryptocurrency using the
company’s computing resources.

3. Government website cryptojacking: In 2018, crypto-
jacking attacks hit a number of government websites
throughout the globe, including those of the United
Kingdom and the United States. In order to mine

Page 3 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

cryptocurrencies using users’ computers, attackers
installed malicious malware into these sites.

4. Smominru Botnet: Since its discovery in 2017, the
Smominru botnet has infected hundreds of thou-
sands of machines throughout the world. It was
designed to mine the Monero cryptocurrency and
mostly affected Windows computers. The botnet
propagated itself in a number of ways, one of which
was through taking advantage of Windows security
holes.

5. Kitty Malware and Drupalgeddon2: In 2018, cyber-
criminals used the Drupalgeddon2 vulnerability
(CVE-2018–7600) to spread Kitty, bitcoin min-
ing malware. This trojan exploited security holes in
Drupal websites in order to mine cryptocurrency.

6. Android Malware Used to Mine Cryptocurrencies:
Cryptojacking attacks have even reached mobile
devices. Malicious applications and compromised
websites have both been found to install bitcoin min-
ing malware on Android devices.

7. Cryptojacking in Industrial Supply Networks: In
certain incidents, hackers inserted cryptojacking
software into supply chain procedures. In these inci-
dents, hackers spread malware across a wide variety
of devices by exploiting vulnerabilities in recently
released software patches.

8. Watering Hole Attacks: Websites frequented by a
specific demographic are the targets of "watering
hole" attacks. The tactic has been used by attackers to
insert cryptojacking scripts into websites frequented
by targeted groups.

9. Cryptojacking Ransomware: There have been cases
of cryptojacking being used in conjunction with ran-
somware, with the attackers threatening to keep min-
ing on the victim’s machine until a ransom is paid.
Because of this, victims are under even more pres-
sure to give in to the demands of their assailants.

These are but a few of the many historical cases of
cryptojacking that have been documented. Attackers
will certainly come up with new ways and strategies to
take advantage of the increased interest in cryptocur-
rencies as the cryptocurrency landscape continues to
change. Staying up-to-date on cybersecurity best prac-
tices and implementing suitable security measures can
help people and businesses fend off these attacks and
stop cryptocurrencies from being mined without per-
mission [3]. Cryptojacking, or the illegal use of com-
putational resources to mine cryptocurrency, has been
combated with the use of artificial intelligence (AI).
Algorithms based on artificial intelligence may "learn"
typical system behavior and "spot" deviations, such
as unexpected increases in CPU or GPU utilization.

Cryptojacking is a common cause of these surges. Arti-
ficial intelligence can monitor and assess how processes
and programs are functioning in real time. Resource-
intensive calculations outside of typical user or system
behavior are at the heart of cryptojacking. AI is capa-
ble of detecting these discrepancies. Artificial intelli-
gence has been taught to spot signatures in the kinds
of scripts or code used in cryptojacking attacks. These
patterns can be found by AI models by examining
active processes or network traffic. Systems driven by
AI can keep a constant eye on server load and traffic.
They are able to quickly detect resource use anomalies
that may indicate cryptojacking [4].

Deploying AI models on the cloud allows for ubiq-
uitous resource tracking. This has been used to spot
instances that are acting strangely and using too much
resources, both of which has been signs of cryptojack-
ing. Features characteristic of cryptojacking has been
extracted by AI models from network traffic, scripts, or
processes. Predictive models using these traits can be
used to identify active or attempted attacks. In order to
counteract evolving cryptojacking methods and innova-
tive attack patterns, AI systems may continually learn
from fresh data [5]. Artificial intelligence systems can
automatically take action against cryptojacking, such as
isolating compromised machines, alerting system admin-
istrators, or killing off malicious code. Advanced threat
detection skills are one way in which AI might supple-
ment more conventional security measures. It can be
used in tandem with other security measures to prevent
cryptojacking, such as firewalls, antivirus programs,
and intrusion detection systems. In order to lessen the
likelihood of unknowing participation in cryptojacking
attacks, AI-powered platforms can aid in teaching users
about the warning indications of cryptojacking and safe
online habits. The identification and countermeasures
of cryptojacking can be greatly aided by artificial intelli-
gence. A multi-layered security approach, including arti-
ficial intelligence, frequent software upgrades, network
monitoring, and user education, is crucial for successful
protection against cryptojacking, but remember that no
solution is foolproof [6]. The critical contribution of this
research is as follows:

• The purpose of this study is to ensures that crypto-
jacking attacks can be detected efficiently at the net-
work’s edge

• In this study, AdaHessian optimization enhances the
model’s training process by adapting learning rates
and efficiently navigating the loss landscape.

• Post-training quantization reduces memory and
computational demands by converting model weights
and activations to lower bit-width representations.

Page 4 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

• The model implements an importance scoring mech-
anism, incorporating insights from AdaHessian, to
identify and prune less informative parameters.

• This process optimizes model size while preserving
prediction accuracy.

• The suggested model outperforms the state-of-the-
art in terms of precision, accuracy, and sensitivity.

The full study should be written as follows: “Review of
Literature” section discusses previous research, “Data-
set” section de-scribes the dataset in detail, “Method”
section explains the proposed method, “Results and
analysis” section describes the experi-mental results and
analysis, and “Conclusion” section discusses the conclu-
sion and future works.

Review of literature
Eskandari et al. [1] looked at the growing trend of
browser-based cryptocurrency mining, namely Monero
mining with Coinhive and related code-bases. In this
paradigm, the user visits a website, downloads JavaS-
cript code, which operates client-side in her browser
and mines bitcoin (usually without her knowledge or
agreement), and then pays the seigniorage to the hosting
website. Intentionally, websites have used this to replace
or supplement ad income; inadvertently, websites have
served the code as a consequence of a breach (in which
case the attacker has collected the seigniorage).

The detection of bitcoin miners using NetFlow/IPFIX
network data is presented as a machine learning-based
technique [5]. In contrast to DPI-based methods, our
approach can detect miners with comparable accuracy
at a fraction of the cost. Knowing whether or not bitcoin
miners are sneaking onto their networks to use them
without authorization is of utmost importance in this
scenario. IP address lists from recognized mining pools,
DNS traffic processing, and direct Deep Packet Inspec-
tion (DPI) across all traffic may all be used to identify
them immediately. However, none of these techniques
has been successful in identifying miners utilizing anony-
mous mining servers or has proven inexpensive enough
for widespread deployment in real-world networks.

The static, dynamic, and economic elements of
browser-based cryptojacking are comprehensively exam-
ined [4]. To 1) quantify their prevalence throughout
the web, 2) highlight their platform preferences, and 3)
investigate the complexity of their code, we undertake
content-, currency-, and code-based classification of
cryptojacking samples as part of our static analysis. To
isolate cryptojacking code from non-malicious JavaS-
cript, we use unsupervised learning, which improves
accuracy to 96.4%. In our dynamic study, we look at
how cryptojacking affects the utilization of vital system

resources like the CPU and the battery. To further inves-
tigate the communication between the victim node and
the dropzone cryptojacking server, we use browser fin-
gerprinting. We also develop a theoretical framework to
examine the practicality of cryptojacking as a comple-
ment to traditional forms of internet advertising. Based
on our findings, the model is economically unrealistic
due to a sizable negative profit and loss gap. Finally, we
develop enhanced countermeasures for in-browser cryp-
tojacking by utilizing insights from our analysis.

Yulianto et al. [2] included Taint analysis-based cryp-
tojacking protection as a Chrome addon. In this study,
the Man-In-The-Middle (MITM) attack was modeled
and abused to test for security measures. In the event
of a cryptojacking attack, users will be alerted via the
suggested methodology. As a result, the user is able to
inspect the features of the scripts that are actively pro-
cessing in the site’s background. This study demonstrates
that taint analysis is a useful tool for protecting against
cryptojacking. The taint analysis technique can identify
19 cryptojacking-infected websites out of a random sam-
ple of 100 websites.

The problem of cryptojacking, in which miners are
discreetly placed inside browser code without the user’s
awareness, is investigated in detail in a new work [6]. As
such, we examine the top 50,000 Alexa-ranked websites
and discover a sizeable portion of them partaking in this
predatory activity, frequently with highly disguised code.
In addition, mining protection plugins like NoMiner
don’t catch such subtly buried occurrences. As a result,
we suggest a machine learning approach that makes use
of real-time, hardware-assisted profiling of browser code.
We are able to accurately categorize mining programs
(with a 99% success rate) based on their micro-architec-
ture, and we can even detect when the mining code has
been severely encrypted or obfuscated. We develop our
own add-on for Chrome and demonstrate its superior
performance compared to existing add-ons. The sug-
gested architecture is compatible with all commercially
available CPUs and imposes little burden on the user’s
computer.

Lachtar et al. [7] investigates a cross-platform, generic
approach to identifying cryptojacking attempts. We pre-
sent an end-to-end detection approach that makes use of
subtle modifications to the microarchitecture to moni-
tor instructions often employed by hash algorithms. Our
approach adds almost no extra time to tests across a vari-
ety of SPEC 2006 workloads, as shown by the evaluation.

Tanana and Tanana [8] present a more robust detection
tool for countering cryptojacking. They also provide a
brief overview of the history of cryptojacking (also known
as harmful mining) and a survey of the most signifi-
cant efforts to far. Our earlier efforts in harmful mining

Page 5 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

detection will be reviewed, as will our current detection
engine, which is mostly based on CPU utilization algo-
rithms. While prior work produced an 81% detection rate
against a specified set of cryptojacking samples, we will
integrate new measures for malicious mining identifica-
tion, such as network consumption and calls to crypto-
graphic libraries, to improve this to 93%. Finally, we’ll talk
about expanding the suggested detection method to GPU
cryptojackers.

To far, no research has been conducted to determine
whether or not particular technological aspects of a
website might raise (reduce) the risk of being hacked for
cryptojacking operations. To answer this question, Di
Tizio & Nam Ngo [9],suggest a case–control research
utilizing a dataset of cryptojacking websites gathered
by a WebCrawler implementation of Minesweeper. Pre-
liminary findings from our investigation suggest a link
between a few different website features, but the data
does not reach statistical significance. In order to have a
deeper understanding of the implications of these con-
nections, additional research is needed.

For both browser-based and executable-type crypto-
jacking examples [10], proposes a complicated detec-
tion approach based on CPU load by an application. Our
method’s corresponding prototype identification soft-
ware was developed utilizing a decision tree algorithm.
The software was successful 82% of the time when tested
against a small subset of known cryptojacking samples in
a controlled virtual machine environment. Finally, we’ll
talk about how the proposed method can be applied
more broadly in the future.

To identify cryptojacking without needing any train-
ing data or prior knowledge of the attacks, Gomes et al.
[11], provides a hybrid technique. Using unsupervised
machine learning methods, our Cryp-tojacking Intrusion
Detection Approach, Cryingjackpot, collects and com-
bines information based on flow and performance coun-
ters to group hosts that exhibit similar behaviors. Using a
synthetic and a hybrid dataset, we conduct experimental
evaluations of Cryingjackpot, with F1-scores reaching
97%.

A protection against cryptojacking that operates on
both the hardware and operating system levels has been
presented [12]. Our approach is app-agnostic, unlike pre-
vious studies that only looked for cryptojacking in brows-
ers. We demonstrate that common tracking instructions
used in cryptographic hash functions has been exploited
as robust fingerprints of cryptojacking attacks. We show
that our system can withstand the attacks of cryptojack-
ing malware, which frequently use multi-threaded and
throttling evasion strategies. Through rigorous testing
on a wide variety of workloads, including real-world con-
sumer applications, we are able to accurately describe

the stability of our system. Finally, testing using a suite of
benchmark programs reveals that our proof-of-concept
solution has negligible effect on overall performance.

It is proposed by Caprolu et al. [13] that network traffic
alone, even when encrypted and intermingled with non-
malicious traces, has been used to detect and identify the
actions of crypto-clients. First, we conduct a comprehen-
sive study of the actual network traces produced by Bit-
coin, Monero, and Bytecoin, taking into account both the
natural traffic and the traffic modified by a virtual private
network. To recognize cryptocurrency-related behaviors
including pool mining, solo mining, and active full nodes,
we then present Crypto-Aegis, a Machine Learning
(ML) based framework constructed using our research
findings. Our approach has several desirable qualities,
including device and infrastructure independence, and
an impressive F1-score of 0.96 and an AUC for the ROC
of 0.99. We feel that our methodology, backed by its great
findings, pave the path for additional study in this field,
given the scope and originality of the danger addressed.

Lightweight cryptojacking traffic detection based on
network behavior characteristics for an ISP is designed
by Hu et al. [14]. This approach does not require access to
the payload of network traffic. Using a specially designed
lab, we gather cryptojacking traffic and analyze it to see
what distinguishing characteristics can be gleaned from
the first four packets of a cryptojacking flow. Based on
our experiments, we conclude that the machine learn-
ing classifier random forest can correctly and efficiently
detect cryptojacking traffic using the extracted discrimi-
native aspects of network traffic.

Using data collected from academic articles, two big
cryptojacking sample datasets, and 45 notable attack
incidents, Tekiner et al. [15] give a comprehensive over-
view of cryptojacking malware. As a result, several
papers offered strategies for detecting cryptojacking
malware based on a wide range of dynamic/behavioral
traits. However, there is no systematic analysis of the lit-
erature that provides a thorough knowledge of the new
cryptojacking malware. Finally, we offer guidance to the
research community in this developing area by present-
ing lessons gained and future avenues for study.

IoT botnets have been on the rise over the past five
years, and this article Borys et al. [16] explores this phe-
nomenon in depth. However, an IP camera by itself is not
capable of generating a Distributed Denial of Service.
However, more than 150,000 IP cameras in a botnet may
create 1 Tbps of bandwidth. Many people are caught off
guard by botnets since their attacks and infections aren’t
as obvious as a distributed denial of service (DDoS), and
in other circumstances, these cameras and printers are
used to steal information or silently mine cryptocurren-
cies at the expense of the IoT device owner.

Page 6 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

CIRCUIT is a method proposed by Hong et al. [17] to
accurately identify cryptojacking websites. The JavaScript
memory heap is where much of our attention lies since
it can withstand attempts to obfuscate the script code
and because it contains data about the objects declared
and their reference relationships. The script code behav-
ior of the website is then represented by a reference flow
that is extracted from the JavaScript heap. Therefore, if a
website has a reference flow for cryptojacking, CIRCUIT
will conclude that the website is engaging in cryptojack-
ing. Among the 300,000 most visited websites, we discov-
ered 1,813 that were actually cryptojacking. In addition,
we modeled the reported evasion tactics and took into
account the fact that features of cryptojacking websites
are now visible on legitimate websites as well, providing
novel insights into cryptojacking.

For in-browser cryptojacking detection, Sachan et al.
[18] uses temporal characteristics like query frequency
and query burst, graph-based features like degree and
diameter, and non-temporal features like the string-
based. We utilize them to train ML systems on data
spanning from just two hours to the whole history of
humankind. Based on our findings, the best perfor-
mance for supervised learning is achieved by K-Means
with K = 2, while the greatest performance for unsuper-
vised learning is achieved by DecisionTrees classifier
with 59.5% Recall on cryptojacked DN. Comparing the
cryptojacking DNs to other known malicious DNs, simi-
larity analysis shows little to no difference. It also shows
that state-of-the-art approaches has been improved by
expanding their feature sets in order to better detect
cryptojacking that occurs within a web browser. Our
signature-based study further reveals that throughout the
months of October-December 2021, not a single official
Indian Government website was compromised by cryp-
tojackers. However, by analyzing resource use, we are
able to single out 10 distinct DNs with their own unique
characteristics.

The Bayesian cryptojacking detector [19] takes into
account the four primary cryptojacking activity metrics:
CPU load, RAM utilization, network access, and calls to
cryptographic libraries. The initial step of a detector’s
process is to compare the relevant metrics to predeter-
mined thresholds derived from empirical studies of cryp-
tojackers. The extended Bayes theorem is then used to
assess the conditional probability of meeting or failing to
meet predetermined cryptojacking infection criteria. The
likelihood of a cryptojacker’s success is then determined
using the compared results and conditional probabili-
ties. The detectors then make a call based on whether or
not the calculated probability exceeds a predetermined
threshold. Such an analysis yields an estimated detec-
tion rate of 0.90, a false-positive error rate of 0.013, and

a false-negative error rate of 0.0056. In the final section
of this work, we describe ways in which the cryptojacking
detector has been enhanced.

A cryptojacking detection system [20], dubbed CJDe-
tector, was developed using characteristics of the cryp-
tojacking process. In particular, it detects malicious
mining by tracking CPU activity and inspecting function
call data. This method not only identifies the attack we
outlined efficiently, but it can be used in general. CJDe-
tector’s recognition precision is 99.33%. Finally, we exam-
ined cryptojacking in action by testing Alexa’s top 50,000
websites. While we did find that cryptojacking was
decreasing in prevalence, we also observed that it is still a
significant danger to networks.

Material and method
Dataset
Time-sequenced information on actual cryptojack-
ing attacks has been found in the Cryptojacking Attack
Timeseries Dataset [11]. To mine cryptocurrency with-
out the victim’s knowledge or permission is known as
"cryptojacking." This data collection is gathered so that
the features, trends, and patterns of such attacks over a
certain time period has been studied and comprehended.

Data Features:

• Timestamp: The time and date of the attack.
• Attack Type: The specific flavor of the cryptojacking

attack.
• Location: Where exactly this attack came from.
• Affected Systems: What networks or devices were

hacked and what data was stolen.
• Hashrate: The amount of processing time squandered

by the adversary’s mining activities.
• Duration: The time frame of the attack.
• Coin Mined: Coins of the attack’s cryptocurrency

that were mined.
• Victim IP: The victim’s Internet Protocol address.

Figure 1 demonstrate the data distribution of the device
and associated attacks. Predictor importance, also known
as feature or variable importance, can be used to assess
a machine learning model’s prediction ability. Know-
ing how significant the predictors are helps the authors
comprehend the model, understand what drives the pre-
dictions, and have been choose or develop features to
improve it. Different algorithms and situations have eval-
uated feature importance differently. Additionally, vari-
ous models and data sets require different techniques.
Combining techniques and domain experience helps
understand predictive value in a machine learning prob-
lem. The dataset includes 3 CSV files, as described below.

Page 7 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

• Anormal dataset
• Normal dataset
• Complete dataset

Figure 2 demonstrate the count of attack check
whether it is true or false. The true represent that the
attack exists otherwise it is false. Handling missing
values is a crucial step in the preprocessing of data for
machine learning models. Missing data can negatively
impact the performance and reliability of a machine
learning model, and addressing it appropriately is
essential for several reasons:

• Avoiding Biased Analysis: Ignoring missing values
can lead to biased analysis and inaccurate model
predictions. If the missing data is not handled, the
model might learn patterns based on incomplete
information, leading to incorrect conclusions.

• Preserving Data Integrity: Maintaining data integ-
rity is vital for the accuracy of the model. Leaving
missing values untreated can distort the relation-
ships and patterns within the dataset, affecting the
overall quality of the analysis.

• Maintaining Model Performance: Many machine
learning algorithms cannot handle missing data
during training. Handling missing values enables
the model to be trained on a complete dataset,
improving its performance and generalization on
new, unseen data.

Common methods for handling missing values
include imputation techniques (mean, median, or
regression imputation), deletion of missing data, or
more advanced methods such as multiple imputa-
tion. The choice of method depends on the nature of
the data, the extent of missingness, and the specific
requirements of the machine learning task at hand.
Figure 3 highlights the percentage of the attack_check.
IQR Method (Interquartile Range) is being applied
to handle the outliers. This method is robust and less

Fig. 1 Data Distribution

Fig. 2 Counting of attack_check

Page 8 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

sensitive to extreme values compared to methods based
on mean and standard deviation.

Method
Artificial neural networks (ANNs) with several layers of
neurons are known as deep neural networks (DNNs).
DNNs are versatile computing tools that can perform
tasks such as speech recognition, language process-
ing, and picture classification after being trained on big
datasets.

Layered networks of linked neurons make up DNNs.
Data to be processed by the DNN enters at the first layer,
which is termed the input layer. The predictions made
by the DNN are generated in the last layer, known as the
output layer. The intermediate layers, known as hidden
layers, are what really learn the data’s salient character-
istics [21].

Backpropagation is used to teach DNNs how to learn.
The DNN’s predictions are evaluated against the true
results in backpropagation. The mistakes are sent back
into the network, where they are used to fine-tune the
neuron weights. Repeat this step until the DNN’s pre-
dictions are satisfactory. While deep neural networks
(DNNs) are a strong machine learning tool, they has
been difficult to train and demand a lot of data. However,
DNNs are becoming increasingly popular in machine
learning research and applications because to their
shown efficacy across a wide range of tasks [4]. Some of
the many advantages of utilizing deep neural networks
include:

• Data patterns are no longer a mystery to them.
• They have several applications.
• They’ve been proven useful in many different set-

tings.

Some difficulties that arise while employing deep neu-
ral networks include:

• They are not always easy to teach.
• They need a mountain of information.
• They risk overfitting at times.

The deep neural networks are an effective machine
learning technique. They are versatile and capable of
learning intricate data patterns for use in many fields.
However, they are notoriously difficult to train and need
copious amounts of data.

Deep neural networks architecture
Artificial neural networks known as Deep Neural Net-
works (DNNs) include several layers between the input
and output stages. These networks were developed to
comprehend high-dimensional data sets and represent
complicated functions [4–6, 8, 22]. An summary of their
structure is as follows:

Input layer
The input layer takes in a wide variety of information that
has been useful in predicting cyber attacks. Examples of
such data include system logs, network traffic, and user
trends. Each neuron in this layer represents a different
dimension of this data.

Hidden layers
Between the input and output layers is where the major-
ity of the network’s processing takes place. A neural net-
work’s "depth" is equal to its number of hidden layers.

• Fully-Connected Layers: Every neuron in one layer
communicates with every neuron in the layer above
and below it.

• Convolutional Layers: Convolutional layers are
mostly used for image identification tasks and apply a
series of filters to the input to generate feature maps.

• Recurrent Layers: Connections in recurrent layers
can loop back within the layer, making them useful
for sequence prediction applications like language
modeling.

• Normalization Layers: These layers help speed up the
training process by standardizing the outputs of the
layer below them.

Fig. 3 % of attack_check

Page 9 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

• Dropout Layers: In order to avoid training a model to
a specific data set, dropout layers occasionally change
some of the input units to zero.

Activation functions
The system becomes non-linear once activation func-
tions are applied. Rectified Linear Unit (ReLU), Sig-
moid, and Tanh activation functions are all rather
common.

Output layer
This layer’s job is to generate the final prediction or cat-
egorization. In classification tasks, the number of neu-
rons here is normally equal to the number of classes,
but in regression tasks, it is equal to one [3].

Loss function and optimization
A loss function is used to measure a DNN’s effective-
ness. In order to train a model, this loss function is
minimized using optimization procedures like stochas-
tic gradient descent.

Backpropagation
The prediction error minimization method utilized by
the network is called backpropagation. It modifies the
network’s weights and biases to reduce the inaccuracy.

Because of their flexibility, deep neural networks
has been tailored to suit a wide range of datasets and
applications. They have been used effectively in several
fields, including those of natural language processing,
video game playing, and picture and audio recognition.

Working
Undoubtedly, there are several processes that can be
broken down into sub-steps and depicted in a thorough
flow chart to describe the process of creating and exe-
cuting a Deep Neural Network (DNN) for cyber attack
prediction [11, 21, 23, 24]. The process is outlined in
text form below:

• The first step is to define the issue that needs solv-
ing, such as categorizing cyberattacks or identify-
ing suspicious activity in network data. The model
collect raw data from the system, the network, and
the users to better understand the problem.

• In Step 2, the model deal with missing values
and normalize and scale the data. It selects and
extracts relevant features from raw data, making it
machine-learning-ready. It determines the specific
DNN architecture to be employed, such as a Fully
Connected DNN, a CNN, an RNN, or a combina-

tion of these. The data is sent into the DNN’s input
layer. Convolutional layers are used to process spa-
tial patterns, while autoencoders are employed for
outlier identification and feature representation.

• The hidden layers are put into action in Step 2.

✓ All Sub-Levels Interconnected
✓ RNN/LSTM Recurrent Layers
✓ Layers of Normalization
✓ Regularization through Dropout Layers

In this step, the model provide all of the neurons in
the hidden layers non-linear activation functions like
ReLU, Sigmoid, or Tanh. It have neurons representing
the number of classes in the prediction issue or a single
neuron representing binary classification implemented
in the output layer.

• In Step 3, a loss function is selected based on the
task at hand, such as the mean squared error in
regression or the categorical cross entropy in clas-
sification.

• Next step 4, the optimization technique is chosen
to reduce the loss, often stochastic gradient descent
(SGD) or its variants such as Adam. The model is
then trained with the training dataset and validated
with test data to make any necessary adjustments and
prevent overfitting.

• In step 5, Model performance indicators including as
accuracy, precision, recall, and F1-score are used to
test dataset evaluation. If the model’s results satisfy
constraints, it has been applied into production and
use it to forecast cyber attacks in real time.

• Last step retrain and fine-tune the model when fresh
data becomes available or as the nature of cyber
threats changes.

While Deep Neural Networks (DNNs) have demon-
strated great potential for predicting cyber attacks, they
are not without their drawbacks shown in Fig. 4.

Here are some of the more significant difficulties and
restrictions that may arise from employing DNNs in
this setting [11]. In order to train properly, DNNs need
a lot of information. The predictive capacity of the net-
work has been jeopardized if there is insufficient high-
quality, labeled data for incidents of cyber attacks [9,
10, 25, 26]. Training DNNs is resource-intensive since
it requires specialized hardware like GPUs and a lot
of processing power. The incomprehensibility of how
DNNs arrive at their predictions has led to their being
labeled "black-box" models [13]. This is a potential issue
in the field of cybersecurity, since knowing the reasoning
behind a prediction is often essential for making sound

Page 10 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

judgments [20]. When the data is unbalanced or lack-
ing in diversity, deep learning models are more likely to
overfit. Overfitting impedes the model’s ability to gen-
eralize to novel input. The computing time required for
training and inference by DNNs may not match real-time
requirements, especially in systems that demand instant
response, although they can be successful at spotting pat-
terns suggestive of cyber threats [7, 15, 27–29].

As such, a model trained on historical data may
not be enough for defending against emerging cyber
threats [25]. As a result, the model needs to be updated
and retrained frequently, which has been time-consum-
ing and costly. While DNNs excel at automating feature
learning, preprocessing procedures like feature extraction
and selection still need for expert knowledge, especially
when the input data originates from disparate sources
like as logs, network flows, or system metrics [27]. There

are ethical and privacy concerns since the training data
may include sensitive or personally identifiable infor-
mation (PII). Small changes to the input data can trick
DNNs into making inaccurate predictions, making them
susceptible to adversarial attacks. This is especially wor-
risome in the context of cybersecurity, when attackers
may wilfully modify data in order to remain undetected.
Understanding both the domain (cybersecurity) and the
model (DNN) is necessary for the daunting task of modi-
fying the DNN’s complicated hyperparameters and archi-
tectural choices [12–14, 30–32].

These drawbacks have prompted studies into hybrid
methods that integrate deep learning with more con-
ventional forms of cybersecurity, as well as investiga-
tions into more interpretable machine learning models
that can be relied upon and analyzed with more pre-
cision. Overfitting occurs when a machine learning

Fig. 4 Working of DNNs system

Page 11 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

model learns the training data too well, accumulat-
ing noise or random oscillations instead of patterns.
When applied to unknown data, this may reduce gen-
eralization performance. Deep neural networks and
sophisticated decision trees can recall all training data,
including noise. Insufficient training data can cause
model overfitting and poor generalizability to new data.
Overfitting occurs more often in models that allow too
much complexity. For instance, a high-degree polyno-
mial regression fits training data well but generalizes
poorly. Dropout training was employed for this work.
Each cycle, dropout randomly eliminates neurons from
the network to minimize overreliance on one neuron.

Proposed methodology
In many machine learning applications, accuracy is
more important than speed, and optimizing a DNN
may help enhance both. It is more probable that a
model will correctly predict or classify data if it has
been adequately optimized. Optimization methods
can greatly hasten the learning procedure. The ability
to rapidly cycle through several training models and
hyperparameter settings is crucial for experimental
purposes [19, 33, 34]. The reduced memory and pro-
cessing needs of an optimized model make it easier and
cheaper to roll out to production settings. In the con-
text of Deep Neural Networks (DNNs), optimizers are
algorithms used to minimize (or maximize) the objec-
tive function J(θ)) over the neural network parameters
θ, which could include weights and biases. The objec-
tive function, often referred to as the loss function or
cost function, measures how well the neural network
performs on the dataset.

Common types of optimizers

1. Stochastic Gradient Descent (SGD): The simplest and
most widely used optimization algorithm. It updates
each parameter θi according to the Eq. 1:

where α is the learning rate.

2. Momentum: A variation of SGD that takes into
account the past gradients to smooth out the update
as per the Eqs. 2 and 3:

(1)θ i = θ i − α
∂J

∂θ i

where β is the momentum term.

3. Adagrad: It adapts the learning rate during training
for each parameter θi depending on the historical
gradient information for that parameter.

The Adagrad update formula for parameter θ at itera-
tion t in the Eq. 4:

Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
Gt: The diagonal matrix containing the sum of squared

historical gradients up to iteration t.
ε: A small constant (usually a small positive number,

like 1e-8) added for numerical stability.
∇θf(θt): The gradient of the loss function with respect

to parameter θ at iteration t.

4. RMSprop: Similar to Adagrad but introduces an
exponentially decaying average to give more weight
to recent gradients.

The RMSprop update formula for parameter θ at itera-
tion t in the eq. 5:

Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
Gt: The diagonal matrix containing the exponentially

weighted moving average of squared gradients up to iter-
ation t.

ε: A small constant (usually a small positive number,
like 1e-8) added for numerical stability.
∇θf(θt): The gradient of the loss function with respect

to parameter θ at iteration t.

5. Adam: Combines the ideas of Momentum and
RMSprop. It keeps an exponentially decaying average
of past gradients and the element-wise square of past
gradients.

The Adam update formula for parameter θ at iteration t
in the eqs. 6, 7, 8, 9 and 10:

(2)v = βv − α∇J

(3)θ = θ+ v

(4)θt+1 = θt − α/
√
(Gt + ε) ∗ ∇θ f(θt)

(5)θt+1 = θt −
(

α/
(√

(Gt + ε)
))

∗ ∇θ f(θt)

Page 12 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

Where:
θt+1: The updated parameter at iteration t+1.
θt: The parameter at iteration t.
α: The learning rate.
β1 and β2: Exponential decay rates for 1st and 2nd

moment estimates, respectively.
ε: A small constant for numerical stability.
mt: The 1st moment estimate (mean of gradients) at

iteration t.
vt: The 2nd moment estimate (uncentered variance of

gradients) at iteration t.
t: The current iteration.
∇θf(θt): The gradient of the loss function with respect

to parameter θ at iteration t.
The Eqs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 define the work-

ing of the optimizers applied in neural networks. These
equations involves various variables that plays major role
in predictions of attack. Quantization and pruning are
two methods for optimizing and minimizing the foot-
print of deep neural networks (DNNs) for usage on low-
powered mobile devices [17, 18, 35–38]. When training
DNNs, however, a second-order optimization approach
called AdaHessian has been employed to boost training
efficiency and convergence. Let’s talk quickly about each
of these methods:

• AdaHessian Optimization: AdaHessian is an opti-
mization technique that broadens the scope of SGD
(Stochastic Gradient Descent) and Adam, two classic
gradient-based optimization tools. The training rates
for each parameter are adaptively modified using sec-
ond-order information. As an effective alternative to
conventional optimization techniques, this strategy
has the potential to speed up training for deep neu-
ral networks and enhance convergence. AdaHessian’s
hyperparameters, such learning rate, weight decay,
and momentum, need to be tweaked for optimal per-
formance.

• Quantization: By decreasing the accuracy of model
parameters like weights and activations, we have
quantization. For this reason, it is common practice

(6)mt = β1 ∗mt−1 + (1− β1) ∗ ∇θ f(θt)

(7)vt = β2 ∗ vt−1 + (1− β2) ∗ (∇θ fθt))
2

(8)mt_hat = mt/
(

1− β1
t
)

(9)vt_hat = v_t/
(

1− β2
t
)

(10)θt+1 = θt −
(

α/
(√(

vt_hat + ε
)))

∗mt_hat

in deep learning to transform floating-point quanti-
ties to fixed-point or integer representations with
a smaller bit width. A model can be quantized, for
instance, such that it operates on 8-bit integers rather
than 32-bit floating-point values. This helps conserve
memory and expedite inference on computers with
efficient integer-processing capabilities. Common
methods for quantizing DNNs include post-training
quantization and training with quantization in mind.

• Pruning: In order to improve the performance of a
trained DNN, it can be "pruned," which means that
unused connections (weights) or even whole neurons
(channels) are removed. The model’s inference time
and memory requirements has been decreased by
pruning. It can also help the model generalize better
by decreasing the amount of overfitting.

When accuracy drops as a result of pruning, it’s nec-
essary to retrain or fine-tune meticulously. Effective

Fig. 5 Working of proposed model

Page 13 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

optimization and deployment of DNNs has been achieved
by combining AdaHessian with quantization and prun-
ing. In proposed method, these methods can be coupled
in Fig. 5 as follows:

Deep neural networks (DNNs) require many opera-
tions to combine pruning, post-training quantization,
and AdaHessian optimization. The goal of this approach
is to produce a DNN that is as small and efficient as possi-
ble without sacrificing performance. Here is an approach
that takes advantage of all these methods:

Step 1. Initial Model Training with AdaHessian: The
AdaHessian optimization technique is used to train
the deep neural network at this stage. In this stage,
we optimize the first version of the model as much
as possible. It guarantees that a representative dataset
is used for training and that the hyperparameters are
adjusted appropriately.
Step 2. Model Evaluation after Training: This phase
follows training and consists of an evaluation of the
trained model’s accuracy and performance using a
validation dataset.
Step 3. Post-Training Quantization: In this process,
the weights and activations of the trained DNN are
transformed into representations with a smaller
bit width. It is capable of employing quantization
strategies, such as those used in TensorFlow and
PyTorch. If you want to discover the optimal bal-
ance between model size and inference speed, you
should try out various quantization levels (e.g.,
8-bit, 4-bit).
Step 4. Importance Scoring for Pruning: The next
thing to do is to assign weights and neuron weights
in the quantized model important scores. Using
these ratings, we may narrow down which parame-
ters need to be trimmed. It may make it possible to
calculate significance scores using techniques like
magnitude-based pruning, saliency-based pruning,
and Hessian-based pruning. AdaHessian is useful
for calculating significance using the Hessian met-
ric.
Step 5. Pruning Decision: In this phase, we estab-
lished a cutoff value or criterion dependent on
the significance ratings. At this cutoff, parameters
(weights or neurons) are either kept or removed.
Insignificant parameters are those that fall below the
cutoff. Based on the model architecture and pruning
approach, the author can choose to prune either indi-
vidual weights, neurons, or channels.

Step 6. Pruning: Now it’s time to prune the quanti-
fied model according to the established standards. If
a neuron or its associated connection has a weight
below the pruning threshold, it will be removed and
make the necessary changes to the model’s structure
(such as deleting individual neurons and modifying
the layers above and below them).
Step 7. Fine-Tuning after Pruning: this action
to restore any accuracy lost as a result of prun-
ing, retrain the model. Start training with a lower
learning rate using the leftover weights from the
trimmed model and adjusting the model’s fine
points after trimming and quantization has been
done.
Step 8. Quantified and pruned model evaluation: This
phase involves testing the improved model on a vali-
dation set. It evaluates its performance in relation to
that of the original model and the quantized model,
taking into account accuracy and other important
criteria.
Step 9. Iterate if Necessary: The process of trimming
and fine-tuning may require iterations based on the
outcomes of step 8. To find the sweet spot between
model size and accuracy, you may play around with
hyperparameters like pruning threshold and fine-
tuning time.
Step 10. Deployment: After the performance of the
trimmed and quantized model has been evaluated
and deemed satisfactory, it has been deployed to the
target platform after careful consideration of the nec-
essary hardware and software.
Step 11. Monitoring and Maintenance: Quantization
and pruning may involve trade-offs that effect real-
world performance, thus it is important to regularly
check the performance of the deployed model in pro-
duction. It’s ready to fine-tune or retrain the model as
needed to accommodate new or different data sets or
parameters.

AdaHessian optimization, post-training quantiza-
tion, and pruning all contribute to a compact and effi-
cient DNN that can function in contexts with limited
resources without sacrificing accuracy.

Pseudo code of proposed hybrid model
The Pseudo code of the proposed hybrid model is as
follows.

Page 14 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

// Pseudo code Proposed hybrid Model
Input: Cryptojacking Dataset
Output: Attack class
1. Apply data Pre-processing
2. Define DNN Architecture
2.1 model = Sequential()
2.2 model.add(Dense(128, activation = ’relu’, input_shape = (feature_dim,)))
2.3 model.add(Dense(64, activation = ’relu’))
2.4 model.add(Dense(32, activation = ’relu’))
2.5 model.add(Dense(1, activation = ’sigmoid’))
3. Compile Model with AdaHessian Optimizer
3.1 model.compile(loss = ’binary_crossentropy’, optimizer = AdaHes-
sianOptimizer(), metrics = [’accuracy’])
4. Train the Model
4.1 model.fit(X_train, y_train, epochs = 50, batch_size = 32, valida-
tion_split = 0.2)
5. Model Evaluation
Before Quantization
5.1 model.evaluate(X_test, y_test)
6. Post-Training Quantization
6.1 quantize_model = tfmot.quantization.keras.quantize_model
6.2 q_aware_model = quantize_model(model)
6.3 q_aware_model.compile(loss = ’binary_crossentropy’,
6.4 optimizer = AdaHessianOptimizer(), metrics = [’accuracy’])
7. Fine-Tuning after Quantization
7.1 q_aware_model.fit(X_train, y_train, batch_size = 32, epochs = 10,
validation_split = 0.2)
8. Re-Evaluate the Model
After Quantization
8.1 q_aware_model.evaluate(X_test, y_test)

Finding the optimal configuration for your application
requires some trial and error. In order to forecast crypto-
jacking attacks, this study merges three separate methods
into a unified framework: pruning, post-training quan-
tization, and AdaHessian optimization. The innovative
aspect is the combination and complementarity of vari-
ous techniques to improve speed and precision.

• Optimal AdaHessian Functions: This paper highlights
the new use of AdaHessian, a second-order optimi-
zation method, to the problem of foreseeing crypto-
jacking attacks. AdaHessian gives you an edge over
conventional optimization strategies due to its flex-
ibility in adjusting learning rates and allowing you to
investigate the loss landscape in novel ways.

• Prioritizing Effectiveness: The primary emphasis
of this study is on efficiency without sacrificing the
accuracy of predictions. This focus on low-overhead
detection techniques is unusual in the field of crypto-
jacking attack forecasting.

• Quantification for Efficient Use of Resources: it focus
on post-training quantization to cut down on model
size and compute needs, making the model appropri-
ate for contexts with limited resources. Quantization
approach combination with machine learning for
security is an underdeveloped area.

• Value-Based Editing: Insights from AdaHessian are
utilized to create a unique scoring method for deter-

mining which branches to remove. Your method
stands out since you use many methods to reduce the
size of the model without sacrificing accuracy.

• Analyzing Data Sets in the Real World: In this study,
we highlight the fact that we have extensively evalu-
ated your methodology using real-world network
traffic facts to prove its practicality and efficacy.

• Analyzing the Differences: This paper presents a com-
prehensive comparison of your strategy to existing
approaches to predicting cryptojacking attacks. Bring
to light how proposed unique method enhances effi-
ciency and precision.

• Threat to Safety: The paper delves into the wider
security consequences of your efforts. Highlight how
your method’s efficiency benefits can aid in the iden-
tification of cryptojacking attacks in a way that is both
effective and scalable, hence improving cybersecurity.

• Application in Real Life: This study emphasizes the
possibility for your solution to be used in practice on
edge devices, routers, and network gateways, demon-
strating the practical significance of your research.

The authors prove the originality and relevance of their
method for forecasting cryptojacking attacks utilizing
pruning, post-training quantization, and AdaHessian
optimization by addressing these concerns and highlight-
ing the specific contributions and innovations of their
study.

Results and analysis
Experimental setup
Here we provide the outcomes of the simulations con-
ducted on the cryptojacking dataset. The current models
and the one that is being proposed are built using Python
and its essential libraries, such as Numpy, Sci-kit, Mat-
plot, Pandas, and Tensor Flow. This is all run on a com-
puter with the following specifications: 16 GB of RAM,
Core i7, 10700 processor, CPU @ 3.7Ghz, and Windows
11 operating system [16, 20, 39–42]. We transformed
the dataset into picture datasets after doing the neces-
sary pre-processing. Using k-fold cross-validation, the
dataset is partitioned into two parts: training and testing.
We have conducted a binary classification on the dataset
using both the proposed and current deep learning mod-
els. The simulation parameters are displayed in Table 1.

Artificial neural networks use activation functions to
mathematically operate on each neuron in a layer. It lets
the network learn and approximate complex data by add-
ing non-linearity. Different activation functions behave
differently. Selecting an activation function should take
into account the problem’s characteristics, neural net-
work architecture, and task performance. To determine
the ideal activation functions for a neural network,

Page 15 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

experiments must consider each function’s problem-
related attributes [43–48].

Experimental results
This dataset replicates the real-world data in PCAPs by
including benign and the most recent examples of com-
mon attacks. It additionally contains the findings of an
analysis of the network traffic performed with CIC_Flow_
Meter, complete with labelled flows organized according
to the protocols, date and time stamp, origin and destina-
tion IP addresses, the source with destination port num-
bers, and attack. Figure 6 show that when trying to make
sense of the connections between the many elements and
qualities that make up a dataset, a correlation matrix has

Table 1 Parameters used for simulation

Parameters Details

CNN Model Transfer Learning and Light-weight CNN
(mobile-V3) with SVM

No Training Layers 100–250

Epochs 50–100

Optimizer used Stochastic Gradient Descent (SGD)
Optimizer

Model learning rate 0.001
Loss function Categorical Cross Entropy (CCE) function

Activation function SoftMax, ReLu

Batch size 256

Hidden Layer Architecture (256,128,64)

Fig. 6 Corelation matrix

Page 16 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

been quite helpful. Patterns and interdependencies that
has been symptomatic of cyber attacks or abnormalities
can be uncovered with the use of such a matrix.

In Fig. 7 we have measured the Confusion matrix
results for all the methods, i.e., existing and proposed on
the given dataset. False negatives can have serious con-
sequences. False negatives in medical diagnostics can
lead to missed or delayed treatment of actual illnesses.
Security applications’ intrusion detection systems might
overlook serious threats if they generate false negatives.
Model or test threshold decisions effect the false posi-
tive/negative trade-off. Some apps prioritize one over the
other; adjusting the threshold can balance them.

Figure 8 shows an accuracy and loss curve, and Fig. 9
shows the ROC curve for given dataset for the proposed
model.

Table 2 presents experimental results comparison for
existing and proposed methods. CNN with Stochastic
Gradient Descent (SGD) optimizer achieves a recall of
91.13%, precision 93.62%, F1-Score 93.59%. Momentum
optimizer achieves Recall 95.39%, Precision 96.69% and

F1-Score 95.81%. Adagrad optimizer achieves Recall
94.85%, Precision 96.99% and F1-Score 96.48%.

RMSprop optimizer achieves Recall 96.39%, Preci-
sion 96.79% and F1-Score 97.96%. The proposed method
achieves Recall 99.72%, Precision 98.93% and F1-Score
99.12%. The model’s high F1 score reflects a good recall-
precision balance, allowing it to recognize positive
and negative cryptojacking efforts. MEC applications
improve bitcoin exchange security. AdaHessian optimi-
zation reduces false positives and negatives. To minimize
unnecessary disruptions, limit false positives so legiti-
mate processes are not mistaken for assaults. Reducing
false negatives improves the model’s cryptojacking detec-
tion and warning. High F1 scores show the model’s cryp-
tojacking detection skill. Enhancing the system’s ability to
notice and respond quickly to threats reduces the risk of
crypto exchange attacks.

We have calculated various performance measuring
parameters for existing and proposed methods. Table 3
presents the accuracy results prescribed dataset for exist-
ing and proposed methods for different classes. For class

Fig. 7 Confusion matrix of proposed model

Fig. 8 Loss curve (Binary Classification) for the proposed model

Fig. 9 ROC curve (Binary Classification) for proposed model

Table 2 Experimental results comparison

Optimizers Recall Precision F1-Score

Stochastic Gradient
Descent (SGD)

91.13% 93.62% 93.59%

Momentum 95.39% 96.69% 95.81%

Adagrad 94.85% 96.99% 96.48%

RMSprop 96.39% 96.79% 97.96%

Adam 97.05% 95.09% 96.05%

Proposed Method 99.72% 98.93% 99.12%

Page 17 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

‘not malicous’, the proposed method achieves 98.85%
accuracy, for ’ ‘not malicous’’ 99.13% accuracy.

Discussion
The increasing complexity of Deep Neural Networks
(DNNs) requires improved optimization algorithms for
practical implementation, especially in cybersecurity,
where real-time decision-making is crucial. Our work
uses pruning, post-training quantization, and AdaHes-
sian optimization to solve the computational and security
issues of DNNs that predict Cryptojacking attempts.

AdaHessian optimization
AdaHessian optimization in DNN training is our first
important contribution. Despite its relevance in improv-
ing generalization and convergence, SGD, Adam, and
RMSprop neglect the loss landscape’s curvature. By add-
ing second-order optimization, AdaHessian enhances the
model’s loss landscape navigation. Our research showed
that AdaHessian’s Cryptojacking prediction accuracy
improved, showing its cybersecurity value.

Pruning
Network pruning removed unnecessary connections and
neurons after DNN training. Pruning reduces model size
and strengthens the network against overfitting. Edge
devices, where computational resources are few, require
a smaller form.

Post-training quantization
Post-training quantization converted float data to inte-
gers with a reduced bit width to minimize model size.
The inference process was sped up and the memory foot-
print was considerably reduced without losing accuracy.
Post-training quantization is desirable for current models
since it does not need network reteaching.

Cryptojacking attack prediction
Throughout the trial, our model’s predictive ability to
prevent Cryptojacking assaults was critical. The model
was quick and accurate when various optimization pro-
cedures were coupled. The approach is important in
cybersecurity, where time and precision are crucial.

Limitations
Our study results are promising, but with limitations. No
one has investigated the model’s resilience to malevolent
actors. Our technology has only been tested on some
Cryptojacking attempts, hence its applicability to other
cybercrimes is unknown.

This research strongly supports implementing complex
optimization approaches into cybersecurity DNNs. We
used AdaHessian optimization, pruning, and post-train-
ing quantization to create a computationally efficient and
accurate Cryptojacking prediction system. More research
is needed to validate the framework’s resilience to hostile
assaults and expand its cybersecurity applications.

Conclusion
To predict Cryptojacking attacks, we examined the chal-
lenging challenges of improving DNNs for cybersecu-
rity applications in this research. Traditional DNNs are
powerful, but their high computational cost and large
model sizes make them unsuitable for resource-con-
strained applications. Pruning, post-training quantiza-
tion, and AdaHessian optimization were used to solve
these challenges. We found that AdaHessian optimiza-
tion improves training, enabling Cryptojacking attack
prediction with minimal computational power. Next, we
pruned superfluous neurons and connections to reduce
model size without impacting accuracy. Finally, post-
training quantization reduced memory footprint and
increased inference speed, making the model ideal for
resource-constrained applications like edge computing
in real life. Neural networks can predict cryptojacking
attempts, which is useful. Cryptojacking involves unlaw-
ful cryptocurrency mining on computers. Attacks can be
prevented with early detection. AdaHessian optimization
and optimized neural networks enhance training time
and efficiency. Optimization method AdaHessian accel-
erates neural network convergence. Crypto exchange
operations must be protected from financial and repu-
tational losses. Proactive security can be improved by
machine learning prediction models. Many applications
have come from the study. Before deploying machine
learning models in cyberspace, they stress the need for
extensive optimization and security methods. Then,
they demonstrate that high processing cost and model

Table 3 Accuracy results comparison for classification

Attack Class Stochastic Gradient
Descent (SGD)

Momentum Adagrad RMSprop Adam Proposed
Hybrid
model

Not malicous 89.12 91.07 85.95 87.68 92.34 98.85

Malicous 90.13 90.95 85.63 85.97 91.35 99.13

Page 18 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

size reductions do not affect prediction accuracy. We
conclude that our technique lays the groundwork for
cyber security research using cutting-edge optimization
methods. We use advanced optimization techniques and
real cybersecurity applications to offer a powerful, inex-
pensive, and scalable cryptojacking solution. Our work
optimizes machine learning and safeguards the digital
environment against new crime.

Acknowledgements
The authors would like to acknowledge the support of EIAS (Emerging Intel-
ligent Autonomous Systems) Data Science Lab, Prince Sultan University, KSA.

Authors’ contributions
The authors confirm contribution to the paper as follows: study concep-
tion and design: UR, SK and ND; data collection: KS and SRK; analysis and
interpretation of results: SS, MS and FA; draft manuscript preparation: ND, SRK
and FA. All authors reviewed the results and approved the final version of the
manuscript.

Funding
This research received no specific grant from any funding agency in the pub-
lic, commercial, or not-for-profit sectors.

Availability of data and materials
Publicly available datasets were analyzed in this study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 9 December 2023 Accepted: 9 March 2024

References
 1. Eskandari S, Leoutsarakos A, Mursch T, Clark J (2018) A first look at

browser-based cryptojacking. Proceedings - 3rd IEEE European Sym-
posium on Security and Privacy Workshops, EURO S and PW. pp 58–66.
https:// doi. org/ 10. 1109/ EuroS PW. 2018. 00014

 2. Yulianto AD, Sukarno P, Warrdana AA, Al Makky M (2019) Mitigation of
cryptojacking attacks using taint analysis. 2019 4th International Confer-
ence on Information Technology, Information Systems and Electrical
Engineering, ICITISEE 2019. pp 234–238. https:// doi. org/ 10. 1109/ ICITI
SEE48 480. 2019. 90037 42

 3. Burgess J, Carlin D, O’Kane P, Sezer S (2019) MANiC: Multi-step assessment
for crypto-miners. 2019 International Conference on Cyber Security and
Protection of Digital Services, Cyber Security. pp 1–8. https:// doi. org/ 10.
1109/ Cyber SecPO DS. 2019. 88850 03

 4. Saad M, Khormali A, Mohaisen A (2019) Dine and dash: static, dynamic,
and economic analysis of in-browser cryptojacking. ECrime Researchers
Summit, ECrime. pp 1–12. https:// doi. org/ 10. 1109/ eCrim e47957. 2019.
90375 76

 5. Munoz JZI, Suarez-Varela J, Barlet-Ros P (2019) Detecting cryptocurrency
miners with NetFlow/IPFIX network measurements. 2019 IEEE Interna-
tional Symposium on Measurements and Networking, M and N 2019
- Proceedings. https:// doi. org/ 10. 1109/ IWMN. 2019. 88049 95

 6. Tahir R, Durrani S, Ahmed F, Saeed H, Zaffar F, Ilyas S (2019) The Browsers
Strike Back: Countering Cryptojacking and Parasitic Miners on the Web.
Proceedings - IEEE INFOCOM. pp 703–711. https:// doi. org/ 10. 1109/ INFOC
OM. 2019. 87373 60

 7. Lachtar N, Elkhail AA, Bacha A, Malik H (2020) A cross-stack approach
towards defending against cryptojacking. IEEE Comput Archit Lett
19(2):126–129. https:// doi. org/ 10. 1109/ LCA. 2020. 30174 57

 8. Tanana D, Tanana G (2020) Advanced behavior-based technique for
cryptojacking malware detection. 2020 14th International Conference on
Signal Processing and Communication Systems, ICSPCS 2020 - Proceed-
ings. pp 16–19. https:// doi. org/ 10. 1109/ ICSPC S50536. 2020. 93100 48

 9. Di Tizio G, Nam Ngo C (2020) Are you a favorite target for cryptojacking?
A case-control study on the cryptojacking ecosystem. Proceedings - 5th
IEEE European Symposium on Security and Privacy Workshops. Euro S
and PW 2020:515–520. https:// doi. org/ 10. 1109/ EuroS PW513 79. 2020.
00075

 10. Tanana D (2020) Behavior-based detection of cryptojacking malware.
Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioel-
ectronics and Information Technology, USBEREIT. pp 543–545. https:// doi.
org/ 10. 1109/ USBER EIT48 449. 2020. 91177 32

 11. Gomes G, Dias L, Correia M (2020) CryingJackpot: network flows and
performance counters against cryptojacking. 2020 IEEE 19th International
Symposium on Network Computing and Applications, NCA. https:// doi.
org/ 10. 1109/ NCA51 143. 2020. 93066 98

 12. Lachtar N, Elkhail AA, Bacha A, Malik H (2021) An application agnostic
defense against the dark arts of cryptojacking. Proceedings - 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN. pp 314–325. https:// doi. org/ 10. 1109/ DSN48 987. 2021. 00044

 13. Caprolu M, Raponi S, Oligeri G, Di Pietro R (2021) Cryptomining makes
noise: detecting cryptojacking via Machine Learning. Comput Commun
171:126–139. https:// doi. org/ 10. 1016/j. comcom. 2021. 02. 016

 14. Hu H, Shu Z, Song X, Cheng G, Gong J (2021) Detecting cryptojacking
traffic based on network behavior features. 2021 IEEE Global Communi-
cations Conference, GLOBECOM 2021 - Proceedings. pp 1–6. https:// doi.
org/ 10. 1109/ GLOBE COM46 510. 2021. 96850 85

 15. Tekiner E, Acar A, Uluagac AS, Kirda E, Selcuk AA (2021) SoK: Cryptojack-
ing malware. Proceedings - 2021 IEEE European Symposium on Security
and Privacy, Euro S and P. pp 120–139. https:// doi. org/ 10. 1109/ EuroS
P51992. 2021. 00019

 16. Borys A, Kamruzzaman A, Thakur HN, Brickley JC, Ali ML, Thakur K (2022)
An evaluation of IoT DDoS cryptojacking malware and Mirai Botnet. 2022
IEEE World AI IoT Congress, AIIoT. pp 725–729. https:// doi. org/ 10. 1109/
AIIoT 54504. 2022. 98171 63

 17. Hong H, Woo S, Park S, Lee J, Lee H (2022) Circuit: a Javascript memory
heap-based approach for precisely detecting cryptojacking websites. IEEE
Access 10:95356–95368. https:// doi. org/ 10. 1109/ ACCESS. 2022. 32048 14

 18. Sachan RK, Agarwal R, Shukla SK (2022) DNS based in-browser cryp-
tojacking detection. 2022 4th International Conference on Blockchain
Computing and Applications, BCCA. pp 259–266. https:// doi. org/ 10.
1109/ BCCA5 5292. 2022. 99222 45

 19. Gaidamakin N, Tanana D (2022) Naïve Bayes cryptojacking detector. Pro-
ceedings - 2022 Ural Symposium on Biomedical Engineering, Radioelec-
tronics and Information Technology, USBEREIT 2022. pp 259–262. https://
doi. org/ 10. 1109/ USBER EIT56 278. 2022. 99233 49

 20. Xu G, Dong W, Xing J, Lei W, Liu J, Gong L, Feng M, Zheng X, Liu S (2023)
Delay-CJ: A novel cryptojacking covert attack method based on delayed
strategy and its detection. Digit Commun Netw. https:// doi. org/ 10. 1016/j.
dcan. 2022. 04. 030

 21. Varlioglu S, Gonen B, Ozer M, Bastug M (2020) Is cryptojacking dead
after coinhive shutdown? Proceedings - 3rd International Conference on
Information and Computer Technologies, ICICT. pp 385–389. https:// doi.
org/ 10. 1109/ ICICT 50521. 2020. 00068

 22. Nahmias D, Cohen A, Nissim N, Elovici Y (2019) TrustSign: trusted malware
signature generation in private clouds using deep feature transfer
learning. Proceedings of the International Joint Conference on Neural
Networks. pp 1–8. https:// doi. org/ 10. 1109/ IJCNN. 2019. 88518 41

 23. Aktepe S, Varol C, Shashidhar N (2020) MiNo: the chrome web browser
add-on application to block the hidden cryptocurrency mining activities.
8th International Symposium on Digital Forensics and Security, ISDFS.
https:// doi. org/ 10. 1109/ ISDFS 49300. 2020. 91164 43

https://doi.org/10.1109/EuroSPW.2018.00014
https://doi.org/10.1109/ICITISEE48480.2019.9003742
https://doi.org/10.1109/ICITISEE48480.2019.9003742
https://doi.org/10.1109/CyberSecPODS.2019.8885003
https://doi.org/10.1109/CyberSecPODS.2019.8885003
https://doi.org/10.1109/eCrime47957.2019.9037576
https://doi.org/10.1109/eCrime47957.2019.9037576
https://doi.org/10.1109/IWMN.2019.8804995
https://doi.org/10.1109/INFOCOM.2019.8737360
https://doi.org/10.1109/INFOCOM.2019.8737360
https://doi.org/10.1109/LCA.2020.3017457
https://doi.org/10.1109/ICSPCS50536.2020.9310048
https://doi.org/10.1109/EuroSPW51379.2020.00075
https://doi.org/10.1109/EuroSPW51379.2020.00075
https://doi.org/10.1109/USBEREIT48449.2020.9117732
https://doi.org/10.1109/USBEREIT48449.2020.9117732
https://doi.org/10.1109/NCA51143.2020.9306698
https://doi.org/10.1109/NCA51143.2020.9306698
https://doi.org/10.1109/DSN48987.2021.00044
https://doi.org/10.1016/j.comcom.2021.02.016
https://doi.org/10.1109/GLOBECOM46510.2021.9685085
https://doi.org/10.1109/GLOBECOM46510.2021.9685085
https://doi.org/10.1109/EuroSP51992.2021.00019
https://doi.org/10.1109/EuroSP51992.2021.00019
https://doi.org/10.1109/AIIoT54504.2022.9817163
https://doi.org/10.1109/AIIoT54504.2022.9817163
https://doi.org/10.1109/ACCESS.2022.3204814
https://doi.org/10.1109/BCCA55292.2022.9922245
https://doi.org/10.1109/BCCA55292.2022.9922245
https://doi.org/10.1109/USBEREIT56278.2022.9923349
https://doi.org/10.1109/USBEREIT56278.2022.9923349
https://doi.org/10.1016/j.dcan.2022.04.030
https://doi.org/10.1016/j.dcan.2022.04.030
https://doi.org/10.1109/ICICT50521.2020.00068
https://doi.org/10.1109/ICICT50521.2020.00068
https://doi.org/10.1109/IJCNN.2019.8851841
https://doi.org/10.1109/ISDFS49300.2020.9116443

Page 19 of 19Rani et al. Journal of Cloud Computing (2024) 13:63

 24. Romano A, Zheng Y, Wang W (2020) MinerRay: semantics-aware analysis
for ever-evolving cryptojacking detection. Proceedings - 2020 35th IEEE/
ACM International Conference on Automated Software Engineering, ASE.
pp 1129–1140. https:// doi. org/ 10. 1145/ 33248 84. 34165 80

 25. Gomes F, Correia M (2020) Cryptojacking detection with CPU Usage
Metrics. 2020 IEEE 19th International Symposium on Network Computing
and Applications, NCA. https:// doi. org/ 10. 1109/ NCA51 143. 2020. 93066 96

 26. Nukala VSKA (2020) Website Cryptojacking Detection Using Machine
Learning : IEEE CNS 20 Poster. 2020 IEEE Conference on Communications
and Network Security, CNS. https:// doi. org/ 10. 1109/ CNS48 642. 2020.
91623 42

 27. Caviglione L, Mazurczyk W, Repetto M, Schaffhauser A, Zuppelli M (2021)
Kernel-level tracing for detecting stegomalware and covert channels in
Linux environments. Comput Netw 191:108010. https:// doi. org/ 10. 1016/j.
comnet. 2021. 108010

 28. Nunes P, Antunes M, Silva C (2021) Evaluating cybersecurity attitudes
and behaviors in Portuguese healthcare institutions. Proc Comput Scie
181(2019):173–181. https:// doi. org/ 10. 1016/j. procs. 2021. 01. 118

 29. Piasecki S, Urquhart L, McAuley PD (2021) Defence against the dark
artefacts: Smart home cybercrimes and cybersecurity standards. Comput
Law Secur Rev 42:105542. https:// doi. org/ 10. 1016/j. clsr. 2021. 105542

 30. Guo H, Yu X (2022) A survey on blockchain technology and its security.
Blockchain Res Appl 3(2):100067. https:// doi. org/ 10. 1016/j. bcra. 2022.
100067

 31. Markopoulou D, Papakonstantinou V (2021) The regulatory framework for
the protection of critical infrastructures against cyberthreats: Identifying
shortcomings and addressing future challenges: the case of the health
sector in particular. Comput Law Secur Rev 41:105502. https:// doi. org/ 10.
1016/j. clsr. 2020. 105502

 32. Slijepčević D, Henzl M, Daniel Klausner L, Dam T, Kieseberg P, Zeppelzauer
M (2021) k-Anonymity in practice: how generalisation and suppression
affect machine learning classifiers. Comput Secur 111:102488. https:// doi.
org/ 10. 1016/j. cose. 2021. 102488

 33. Szczepaniuk EK, Szczepaniuk H (2022) Analysis of cybersecurity compe-
tencies: recommendations for telecommunications policy. Telecommuni-
cations Policy 46(3):102282. https:// doi. org/ 10. 1016/j. telpol. 2021. 102282

 34. Wang E, Zurowski S, Duffy O, Thomas T, Baggili I (2022) Juicing V8: a
primary account for the memory forensics of the V8 JavaScript engine.
Forensic Sci Int Digit Investig 42:301400. https:// doi. org/ 10. 1016/j. fsidi.
2022. 301400

 35. Adjibi BV, Mbodji FN, Bissyande TF, Allix K, Klein J (2022) The devil is in the
details: unwrapping the cryptojacking malware ecosystem on android.
Proceedings - 2022 IEEE 22nd International Working Conference on
Source Code Analysis and Manipulation, SCAM. pp 153–163. https:// doi.
org/ 10. 1109/ SCAM5 5253. 2022. 00023

 36. Chen L, Xia Y, Ma Z, Zhao R, Wang Y, Liu Y, Sun W, Xue Z (2022) SEAF: a
Scalable, Efficient, and Application-independent Framework for container
security detection. J Inform Sec Appl 71:103351. https:// doi. org/ 10. 1016/j.
jisa. 2022. 103351

 37. Varlioglu S, Elsayed N, Elsayed Z, Ozer M (2022) The dangerous combo:
fileless malware and cryptojacking. Conference Proceedings - IEEE
SOUTHEASTCON. pp 125–132. https:// doi. org/ 10. 1109/ South eastC on486
59. 2022. 97640 43

 38. Wu MH, Huang JH, Chen JX, Wang HJ, Chiu CY (2022) Machine Learning
to Identify Bitcoin Mining by Web Browsers. 2022 IEEE 2nd International
Conference on Computation, Communication and Engineering, ICCCE.
pp 66–69. https:// doi. org/ 10. 1109/ ICCCE 55785. 2022. 10036 239

 39. Cabrera-Arteaga J, Monperrus M, Toady T, Baudry B (2023) WebAssembly
diversification for malware evasion. Comput Secur 131:103296. https://
doi. org/ 10. 1016/j. cose. 2023. 103296

 40. Chatzoglou E, Kouliaridis V, Kambourakis G, Karopoulos G, Gritzalis S
(2023) A hands-on gaze on HTTP/3 security through the lens of HTTP/2
and a public dataset. Comput Secur 125:103051. https:// doi. org/ 10.
1016/j. cose. 2022. 103051

 41. Firdaus A, Aldharhani GS, Ismail Z, Ab Razak MF (2022) The summer heat
of cryptojacking season: detecting cryptojacking using heatmap and
fuzzy. International Conference on Cyber Resilience, ICCR. pp 1–5. https://
doi. org/ 10. 1109/ ICCR5 6254. 2022. 99958 91

 42. Sarefo S, Dawson M, Banyatsang M (2023) An exploratory analysis of
the cybersecurity threat landscape for Botswana. Proc Comput Sci
219(2022):1012–1022. https:// doi. org/ 10. 1016/j. procs. 2023. 01. 379

 43. Al-kahtani MS, Mehmood Z, Sadad T, Zada I, Ali G, ElAffendi M (2023)
Intrusion detection in the internet of things using fusion of GRU-LSTM
deep learning model. Intell Autom Soft Comput 37(2):2283

 44. Dalal S, Lilhore UK, Faujdar N, Simaiya S, Ayadi M, Almujally NA, Ksibi A
(2023) Next-generation cyber attack prediction for IoT systems: leverag-
ing multi-class SVM and optimized CHAID decision tree. J Cloud Comput
12(1):137

 45. Enilov M, Mishra T (2023) Gold and the herd of Cryptos: saving oil in
blurry times. Energy Econ 122:106690. https:// doi. org/ 10. 1016/j. eneco.
2023. 106690

 46. Ha T, Yang H, Hong S (2023) Automated weak signal detection and
prediction using keyword network clustering and graph convolutional
network. Futures 152:103202. https:// doi. org/ 10. 1016/j. futur es. 2023.
103202

 47. Lilhore UK, Dalal S, Simaiya S (2024) A cognitive security framework for
detecting intrusions in IoT and 5G utilizing deep learning. Comput Secur
136:103560

 48. Moreno-Sancho AA, Pastor A, Martinez-Casanueva ID, Gonzalez-Sanchez
D, Triana LB (2023) A data infrastructure for heterogeneous telemetry
adaptation. Application to Netflow-based cryptojacking detection.
Proceedings of the 26th Conference on Innovation in Clouds, Internet
and Networks, ICIN. pp 105–112. https:// doi. org/ 10. 1109/ ICIN5 6760. 2023.
10073 490

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3324884.3416580
https://doi.org/10.1109/NCA51143.2020.9306696
https://doi.org/10.1109/CNS48642.2020.9162342
https://doi.org/10.1109/CNS48642.2020.9162342
https://doi.org/10.1016/j.comnet.2021.108010
https://doi.org/10.1016/j.comnet.2021.108010
https://doi.org/10.1016/j.procs.2021.01.118
https://doi.org/10.1016/j.clsr.2021.105542
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.clsr.2020.105502
https://doi.org/10.1016/j.clsr.2020.105502
https://doi.org/10.1016/j.cose.2021.102488
https://doi.org/10.1016/j.cose.2021.102488
https://doi.org/10.1016/j.telpol.2021.102282
https://doi.org/10.1016/j.fsidi.2022.301400
https://doi.org/10.1016/j.fsidi.2022.301400
https://doi.org/10.1109/SCAM55253.2022.00023
https://doi.org/10.1109/SCAM55253.2022.00023
https://doi.org/10.1016/j.jisa.2022.103351
https://doi.org/10.1016/j.jisa.2022.103351
https://doi.org/10.1109/SoutheastCon48659.2022.9764043
https://doi.org/10.1109/SoutheastCon48659.2022.9764043
https://doi.org/10.1109/ICCCE55785.2022.10036239
https://doi.org/10.1016/j.cose.2023.103296
https://doi.org/10.1016/j.cose.2023.103296
https://doi.org/10.1016/j.cose.2022.103051
https://doi.org/10.1016/j.cose.2022.103051
https://doi.org/10.1109/ICCR56254.2022.9995891
https://doi.org/10.1109/ICCR56254.2022.9995891
https://doi.org/10.1016/j.procs.2023.01.379
https://doi.org/10.1016/j.eneco.2023.106690
https://doi.org/10.1016/j.eneco.2023.106690
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1109/ICIN56760.2023.10073490
https://doi.org/10.1109/ICIN56760.2023.10073490

	An optimized neural network with AdaHessian for cryptojacking attack prediction for Securing Crypto Exchange Operations of MEC applications
	Abstract
	Introduction
	Review of literature
	Material and method
	Dataset
	Method
	Deep neural networks architecture
	Input layer
	Hidden layers
	Activation functions
	Output layer
	Loss function and optimization
	Backpropagation

	Working
	Proposed methodology
	Common types of optimizers
	Pseudo code of proposed hybrid model

	Results and analysis
	Experimental setup
	Experimental results

	Discussion
	AdaHessian optimization
	Pruning
	Post-training quantization
	Cryptojacking attack prediction
	Limitations

	Conclusion
	Acknowledgements
	References

