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Abstract 

Intelligent transport systems (ITS) provide various cooperative edge cloud services for roadside vehicular applica‑
tions. These applications offer additional diversity, including ticket validation across transport modes and vehicle 
and object detection to prevent road collisions. Offloading among cooperative edge and cloud networks plays a key 
role when these resources constrain devices (e.g., vehicles and mobile) to offload their workloads for execution. ITS 
used different machine learning and deep learning methods for decision automation. However, the self-autonomous 
decision-making processes of these techniques require significantly more time and higher accuracy for the aforemen‑
tioned applications on the road-unit side. Thus, this paper presents the new offloading ITS for IoT vehicles in coopera‑
tive edge cloud networks. We present the augmented convolutional neural network (ACNN) that trains the workloads 
on different edge nodes. The ACNN allows users and machine learning methods to work together, making decisions 
for offloading and scheduling workload execution. This paper presents an augmented federated learning scheduling 
scheme (AFLSS). An algorithmic method called AFLSS comprises different sub-schemes that work together in the ITS 
paradigm for IoT applications in transportation. These sub-schemes include ACNN, offloading, scheduling, and secu‑
rity. Simulation results demonstrate that, in terms of accuracy and total time for the considered problem, the AFLSS 
outperforms all existing methods.
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Introduction
Internet of Things (IoT) enabled public transport has 
been increasing daily [1]. Different modes of public 
transport, such as the metro, train, and bus, are oper-
ated in many metropolises around the world [2]. IoT-
based applications like traffic prediction, ticketing, and 
trip planning are widely utilized in public transport. In 
European countries, it is common for trams and buses 
to be ridden on the road, while the metro and train are 
ridden on distinct routes [3, 4]. As a result, public trans-
port providers collaborate to offer user-friendly services 
to passengers. Intelligent transport systems (ITS) are 
an emerging paradigm comprising artificial intelligence 
(AI) schemes, vehicles, traffic, fog, and cloud nodes. 
ITS offers automated services such as traffic prediction, 
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vehicle collision detection, and pedestrian and vehicle 
detection based on mobility services in fog cloud net-
works [5].

Recently, significant advancements have been made in 
the Intelligent Transport Systems (ITS) paradigm, utiliz-
ing cooperative edge and cloud networks to achieve var-
ious objectives. Several studies such as [6–8] suggested 
secure and road traffic maintenance ITS systems based 
on ubiquitous fog cloud services in smart cities. How-
ever, these studies only considered one type of transport 
mode in their architectures. These studies investigated 
many modes of transport-enabled road traffic predic-
tion [9–13]. The different modes, such as buses and 
vans, bikes, and cars, are considered in these studies. 
The pedestrian, road traffic, and collision types of objec-
tives were investigated in these studies. The secure and 
big data-enabled processing of mobility-aware vehicle 
services for multi-mode transports was investigated 
in these studies [14–20]. These studies processed the 
heterogeneous data that was collected from different 
IoT sources. Using edge computing, these studies have 
implemented federated learning and convolutional neu-
ral network (CNN) schemes to process data from IoT 
sources. Edge computing is a subset of cloud comput-
ing that brings computing and storage services to radio 
networks. However, all the studies above deepened 
upon the black box of AI to make any decision without 
involving humans.

There are many research questions in ITS for IoT 
applications in edge cloud networks. (i) Existing ITS 
paradigms only consider roadside transport modes 
and provide services with a homogeneous routing map 
in smart cities. (ii) The presented AI schemes implic-
itly decide on IoT data with the explicit interaction of 
humans. (iii) Existing ITS are straightforward and need 
to consider the many constraints of IoT applications in 
their research paradigms.

This paper presents the novel Federated-IoT-enabled 
Intelligent Transport System (ITS) in Road Augmented 
Convolutional Neural Network (ACNN) Integrated 
Edge Networks. We consider the cooperative edge and 
cloud nodes together to perform workload offloading 
of vehicles and pedestrians on them. The objective is to 
optimize the time, cost, and security of IoT applications 
in edge cloud networks. The paper makes the following 
novel contributions to the research work:

–	 In this paper, we present an augmented federated 
learning scheduling scheme (AFLSS). Whereas 
AFLSS is an algorithmic methodology and consists 

of different sub-schemes: ACNN, offloading, sched-
uling, and security schemes in the ITS paradigm for 
transport IoT applications.

–	 In the paper, we present the federated learning-ena-
bled ITS paradigm, which comprises different public 
transport modes in edge cloud networks. IoT appli-
cations such as traffic detection, ticketing, and trip 
planning are considered in this work.

–	 We introduce a security scheme based on a secure 
hashing algorithm (SHA-256) [21] to process the dif-
ferent routing data securely.

–	 We present the ACNN scheme, in which all param-
eters are configured explicitly to improve transpar-
ency, security, time, and cost for IoT applications in 
edge cloud networks.

The paper has the following subsections: “Related 
work”  section discusses the existence of ITS paradigms 
and their findings and limitations. “Proposed intelligent 
transport system”  section shows the components of the 
proposed ITS paradigm. “Proposed methodology”  sec-
tion shows the algorithm framework for the considered 
problem. “Experimental design”  section shows the per-
formance evaluation and results discussion. “Conclusion 
and future” section is the research conclusion and future 
work of the study.

Related work
These days, the usage of IoT transportation applications 
has been growing progressively. For instance, traffic pre-
diction, ticketing validation, accident monitoring, map 
routing searching, and trip planning require real-time 
data on transports from the mobility environment. ITS 
obtained the optimal results in these network-enabled 
IoT applications. In related work, we discussed road-
unit-side services based on cooperative edge cloud net-
works. The network management-enabled networking 
position enabled services with the mobility suggested 
in [1]. IoT applications offload workloads for execution 
and can invoke network-enabled routing services from 
any location in smart cities. However, this work focused 
on fixed services and scheduling decisions made during 
application design. The cooperative vehicle and pedes-
trian-enabled ITS paradigms presented in these studies 
[2–4]. These studies suggested cooperative schemes in 
which vehicles can offload their workload and communi-
cate with each other to avoid any collisions with pedestri-
ans in smart cities. These studies presented the trajectory 
positioning enabled locations, collected the content-
aware IoT applications, and processed services in ITS 
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networks. However, these studies consider a single type 
of transport mode and fixed pedestrian data. The security 
constraints for the data have yet to be considered in these 
studies.

The offloading ITS paradigms for the security of IoT 
data are presented in these studies [5–7]. The federated 
learning integrated with the graph neural network and 
optimized the ITS services for IoT applications. These 
applications collect and offload different types of data: 
traffic, IoT location, and vehicle and pedestrian data 
from different sources in smart cities. Federated learn-
ing enabled ITS to process secure data among edge 
cloud networks. Computing nodes, such as edge and 
cloud computing, are placed in different places in smart 
cities to support transport data and allow seamless 
invoking of services in other places in networks. SHA-
256 schemes are implemented in federated learning to 
process and offload cooperative data among computing 
nodes.

The secure big data offloading of traffic data among 
cooperatives processed by ITS paradigms in these 
studies [8–10]. The spatial big data networks of traffic 
signals and vehicle IoT devices are processed on differ-
ent edge cloud networks in the networks. The Hadoop 
framework was deployed in these studies. The data was 
trained and tested based on the CNN scheme. Due to 
different modalities such as audio, video, and text, 
these studies processed the data on other CNN chan-
nels in the edge networks. However, due to heteroge-
neous nodes, data security is a critical challenge in ITS 
paradigms. The data security in heterogeneous nodes, 
such as edge and cloud nodes, is based on centralized 
and blockchain technologies presented in these works 
[11–15]. The ITS paradigms utilize various security 
methods, such as proof of work, proof of credibility, 
and Byzantine fault-tolerant schemes, to ensure the 
safety of IoT applications running on diverse computing 
nodes. However, data modality training and validation 
on the centralized incurred higher power consumption, 
resources, and costs for IoT applications and service 
providers in ITS paradigms.

The fine-grained and coarse-grained offloading and 
scheduling enabled semi-vertical federated learning 
based on CNN efficient ITS paradigms are presented in 
[16–20]. The main goal is to meet the training and vali-
dation of data modality at different nodes with the mini-
mum resource consumption and time at heterogeneous 
computing nodes. Federated learning allows different 
edge computing nodes to train different modality data 
and aggregate them on the centralized node for making 

the final decision. Data security, time, and cost con-
straints are optimized in these paradigms. These studies 
[21–25] studies suggested joint offloading and schedul-
ing schemes for vehicular applications in cooperative 
edge cloud networks. The goal was to minimize applica-
tion processing services’ response time, energy, and cost. 
These studies [26, 27, 25, 28–30] suggested fine-grained 
and coarse-grained offloading and scheduling schemes 
for vehicular applications. These studies considered secu-
rity constraints during the offloading and scheduling of 
IoT vehicular applications on edge cloud networks. The 
secure coarse-grained offloading scheme (SCOS) and 
fine-grained secure offloading scheme (SFOS) in these 
studies suggested the security and time mechanism on 
different nodes such as local vehicle nodes, wireless 
nodes, and cloud nodes.

To our knowledge, Federated-IoT-enabled Intelligent 
Transport Systems (ITS) in Road Augmented Con-
volutional Neural Network (ACNN) Integrated Edge 
Networks have yet to be studied. The augmented CNN 
in federated learning added the setting of a method in 
which humans and machines perform together instead 
of decisions made by the machine learning algorithms. 
We integrated federated learning on different edge 
cloud networks to train and test data based on CNN 
methods.

Proposed intelligent transport system
This paper considers the different transport modes 
such as trams, buses, metros, and trains with different 
routing operations and data in smart cities. This paper 
presents the ITS system as shown in Fig. 1 consisting 
of different levels and components. The local routing-
level servers collect and provide infrastructure-level 
information in ITS. These are distinct local servers 
such as cars, pedestrians, buses, and trams managed 
by their local routing operation in their regions. How-
ever, the local routing level only collects information 
from vehicles and pedestrians through the signal and 
cameras.

The operation level consisted of heterogeneous, scal-
able edge nodes in distributed ITS at the smart city level. 
Each edge node trains the data collected from the rout-
ing level using an augmented convolutional neural net-
work (ACNN). Due to the volume of data, we divided 
the transport data into local datasets based on federated 
learning. Level 3 is the highly scalable, centralized cloud-
based server that aggregates all trained data offloaded 
from edge computing and aggregates them as a single 



Page 4 of 16Lakhan et al. Journal of Cloud Computing           (2024) 13:79 

Fig. 1  IoT workload offloading efficient intelligent transport system in federated ACNN integrated cooperated edge-cloud networks
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large dataset. We detail the proposed ITS paradigm’s pro-
cess in the problem formulation.

We differentiate all transport by their local routes in the 
proposed ITS paradigm. In our work, we assume that L 
number of route data points is generated by local routing. 
Each local server has speed and fixed resources, e.g., ǫz ∈ Z 
and ζz ∈ Z . We consider the l1 = {p = 1, . . . ,P} number of 
pedestrians walking on the road-unit-side on the designated 
routes in smart cities. In ITS, we are also considering tick-
eting IoT applications. Therefore, passengers can pay and 
validate tickets in different transports. Therefore, we dif-
ferentiate the transport modes by their types. The number 
of cars is represented by l1 = {m = 1, . . . ,M} . The number 
of public buses is represented by l3 = {b = 1, . . . ,B} . We 
present the trams in this expression l4 = {tr = 1, . . . ,TR} . 
As defined above, each component (e.g., pedestrian, car, 
tram, and bus) has its own generated local routes. There-
fore, for the operation, all data is offloaded to the number 
of edge nodes, e.g., {k = 1, . . . ,K } . Each edge and cloud 
node k ∈ K  is scalable and heterogeneous and contains the 
resources ǫk and speed ζk in the ITS paradigm. Each edge 
node trained the offloaded routing data based on ACNN 
deep learning methods based on given parameters. We 
consider the tuple of parameters of ACNN in the following 
way: < input, conv, pool, FC , softmax > . We represent the 
trained data based on their features by {s = 1, . . . , S} . The 
particular dataset expressed as s and S shows the aggre-
gated dataset of all merged trained datasets into one cen-
tralized server. We assume that the considered problem has 
different constraints, e.g., {c = 1, . . . ,C} as shown in Fig. 1.

It is assumed that IoT applications, such as ticketing, 
pedestrian and vehicle detection, the timetable of trans-
port routing, and searching by {r = 1, . . . ,A} , are utilized. 
Therefore, each IoT application has many constraints, 
such as {c = 1, . . . ,C} , during their execution in the ITS 
paradigm on the road-unit side. We determined the local 
routing time in the following way:.

Equation (1) determines the local processing time of 
local routing of different transports in level 1.

Equation (2) determines the edge processing time of 
operation on different offloaded data from the local rout-
ing in ITS.

(1)Local =

L

l=1

Z

z=1

l

ζl
.

(2)Edge =

S∑

s=1

K∑

k=1

s

ζk
.

Equation (2) determines the edge processing time of 
operation on different offloaded data from the local rout-
ing in ITS.

Equation (4) shows the communication time between 
local routing to the edge and cloud nodes during offload-
ing and downloading data.

Equation (5) determines the encryption process of all 
device requests with public and private keys.

Equation (6) determines the encryption process of all 
requests on all devices with public and private keys.

The accuracy of the prediction is determined in the fol-
lowing way:.

Equation (7) determined the accuracy of the applica-
tions for the given tasks on the request data.

The total time for the IoT applications is determined in 
the following way:

Equation (8) shows the total processing and commu-
nication time on different levels during processing in the 
ITS paradigm.

Proposed methodology
This paper proposes the AFLSS algorithm methodol-
ogy, which consists of different schemes. AFLSS con-
sisted of offloading, CNN, and scheduling schemes 
to solve the combinatorial problem with the given 
constraints.

(3)Cloud =
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S =
s
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.
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(PK , l, s, p, q).

(6)Dec =
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Z∑

z=1

K∑

k=1

Enc(PV , l, s, p, q).

(7)accuracy =
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s=1

A∑

r=1
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s

ζk
r ∼ S.

TP + TN
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.

(8)Total =

A∑

r=1

Local + Com+ Ede + Cloud + Enc + Dec.
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Algorithm 1 AFLSS algorithm methodology

In AFLSS, all IoT applications are connected to the 
centralized server and invoke services from the central-
ized server. The centralized server is federated learn-
ing-enabled, which offers transport services based on 
trained and merged data from different datasets. IoT 
applications perform parallel offloading of data, invoke 
services from the local routing server, and are central-
ized during execution in the ITS paradigm. AFLSS 
Algorithm 1 has the following steps:

–	 The IoT applications offload the data securely to the 
local routing servers. At the operation level, the oper-
ation servers at the edge nodes train and validate the 
offload.

–	 The ACNN trained the data locally at the edge serv-
ers and offloaded the centralized server for further 
decision with the explicit parameters.

–	 All the edge servers and centralized servers in the 
ITS paradigm are collaborated based on oriental fed-
erated learning schemes.

Due to the many sub-schemes, we discussed the 
AFLSS methodology in detail based on the given sce-
nario, as shown in Fig. 2. The local routing servers col-
lected the vehicle, pedestrian, and signal data from their 
distinct routes. The data collection process collects data 
from different sources, such as pedestrian devices, vehi-
cle devices, traffic signals, and routes. It is assumed to 

Fig. 2  Scenario: AFLSS algorithm methodology working schemes
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be the data input for the edge nodes. The edge nodes 
are heterogeneous and process the locally generated raw 
data with the pre-processing technique and train them 
based on an augmented CNN scheme before offload-
ing the centralized server for further decision-making. 
The augmented CNN is explainable and has customized 
layers, such as training and security, added to the CNN 
algorithm. The decision parameters, such as training, 
security, and offloading, are explicitly set in our ACNN 
scheme. All the locally trained datasets at edge nodes, 
e.g., S, L, K, are offloaded to the centralized server for the 
final decision and invoking services for IoT applications. 
The centralized process scheduled the merged trained 
datasets for the IoT applications and offered them many 
services in the ITS paradigm, as shown in Fig. 2.

Local routing data processing
Local routing is a complex process in smart cities. In par-
ticular, along with pedestrians, different vehicle modes are 
used on the road. For instance, electric scooters, cars, bicy-
cles, trucks, buses, and other vehicles. Therefore, safety for 
pedestrians is paramount. Consequently, we suggest the life 
safety ITS paradigm, which collects information on all trans-
port modes and traffic data from different sources as part 
of the local routing. In this paper, the local routing shows 
the basis of data collection from various IoT devices during 
execution in intelligent cities. We present the local routing 
scheme with other steps as shown in Algorithm 2. The local 
routing servers only collect information in the form of data 
from different sources. The data has various forms, includ-
ing images, location coordinates, and text. Algorithm  2 
shows data collection from other sources, and servers 
offload data in real-time to the edge servers for further pre-
processing and training based on given requirements.

Algorithm 2 AFLSS algorithm methodology

Edge nodes ACNN scheme
We integrated the security in the ACNN scheme, where 
the security of offloaded workloads was validated 
based on deadline, resource, and time constraints in 

the system. In our framework, we consider the differ-
ent heterogeneous edge nodes that are placed in the 
local smart cities. These edge nodes are heterogene-
ous, which means they have different computing capa-
bilities and resource thresholds. We connected all edge 
nodes through federated learning as operation nodes, 
where distinct datasets are trained at local edges, and 
the security of their datasets is maintained at the edge 
nodes. Algorithm 3 determines the training of datasets 
on different edge nodes based on augmented CNN. 
We have integrated the different datasets for transport 
applications on different edge nodes, pedestrians, vehi-
cle detection, trams, and traffic. We trained datasets on 
local autonomous edge nodes using augmented CNN 
and federated learning. The trained weights of the data-
sets were then sent to the aggregated node so that they 
could be run. We define the steps of Algorithm 3 in the 
following way:

–	 The Algorithm 3 takes the input as different comput-
ing nodes, datasets, and hyper-parameters on differ-
ent channels on different computing nodes.

–	 This expression S are federated weights, where 
trained datasets are offloaded to the aggregated for 
computing.

–	 We set the different hyper-parameters of augmented 
CNN, such as convolutional, hidden, dense, and fully 
connected layers, with the modification. Here, we 
added the security layer for encrypting the trained 
models before sharing them with the aggregated 
node.

–	 Each trained model has weight and security with a 
distinct index, as shown in steps 1 to 6.

–	 Each edge node implements an augmented CNN 
where channels process the different dataset values 
and extract their features, as shown in steps 7 to 
34.

–	 We encrypted the trained model with additional 
two-way verification based on advanced standard 
encryption (AES-256) asymmetric schemes. Both 
public and private keys are used to encrypt and 
decrypt trained models for merge and execution.

–	 The softmax function gets the results based on 
the probability function for different channels on 
different edge nodes. The softmax function has 
different probability values, such as 0.3, 0.7, and 
0.6. The probability value, e.g., 0.3 in the softmax 
function, determined that we trained according to 
the given requirements, and it is the same for all 
nodes.
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Algorithm 3 Secure edge assisted ACNN scheme

Federated learning enabled services and scheduling 
scheme
We implemented federated learning with additional 
nodes to improve the efficiency of transport services 
for different kinds of IoT applications. For instance, 
ticket validation and pedestrian and vehicle detec-
tion help avoid collisions in smart cities. We trained 
all workloads at different layer edge nodes and com-
pared them to cloud computing for service providing 
to the applications. The scalability and interoperability 
of cooperated edge and cloud nodes are flexible and 
can be increased and decreased at runtime. We have 
defined the federated learning process in Algorithm 4, 
which consists of various steps. In steps 1 to 5, the 
locally trained datasets from different edge nodes are 
offloaded and merged at the aggregated node for deci-
sion-making and analysis for other applications. From 
steps 11 to 14, we performed federated learning. In 
our case, federated learning is the central server, where 

different edge nodes and applications are integrated to 
perform their tasks. Algorithm  4 performs the differ-
ent functions in federated learning, such as the Total 
function and accuracy for different applications based 
on given task data. The decision will be based on a 
trained aggregated model for the assigned tasks. Fed-
erated learning is implemented at the central worker 
nodes, offering different services and transport modes 
to pedestrians in smart cities.

Algorithm 4 Federated learning enabled scheduling and aggregation 
scheme

Time complexity and space complexity
This paper considers workload offloading and schedul-
ing in cooperative edge cloud networks. We considered 
the workloads, such as pedestrians, transport modes, and 
training data. To solve the problem, we presented the 
AFLSS algorithm scheme, which consisted of different 
schemes. Therefore, we determined the time complexity 
by O(NlogN). Meanwhile, N shows the different num-
ber of schemes involved in AFLSS, and log(N) shows the 
number of operations performed in the various schemes 
during workload offloading and scheduling in cooperated 
edge cloud networks.

Experimental design
In the performance evaluation, we show the performance 
of proposed methods for different transport applications 
on road-unit side services. The simulator consisted of 
different parameters, as shown in Table  1. We consider 
the different simulation parameters for conducting the 
different experiments for the problem. We repeated the 
experiments many times due to leveraging new data into 
the simulator and obtaining optimal results on real case 
scenarios. Simulation parameters shown in Table 1 con-
sisted of different parameter details such as developing 



Page 9 of 16Lakhan et al. Journal of Cloud Computing           (2024) 13:79 	

languages, computing configuration, data, and different 
configuration setting values for experiments. We config-
ured various JAVA, Python, Kotlin, and C programming 
parameters.

We exploited the real-time transport data of Reuter 
Oslo, which is available publicly for experiments. The 
data has a variety of parameters. However, we use only 
a few parameters according to our research problem. 
The considered parameters are transport type, position-
ing (start and end), route type with distinct identification 
numbers (ID), and traffic signals in smart cities. Table 2 
illustrates the dataset of roadside unit paths in Oslo city. 
We downloaded the dataset of OSLO city from the Reu-
ter website, the biggest public transport company in Oslo, 
Noways. Table  2 shows different routers for different 

transports and pedestrians and single waiting times in 
Oslo city. The implemented data is publicly available, 
updated, and leveraged after 24 hours.

Implementation of AFLSS framework
We denoted the implementation components of the 
simulator in different classes, as shown in Fig. 3. We told 
the elements of object-oriented programming (OOP). In 
the simulator, we can reuse components from top-level 
abstraction to implementation, such as overloading and 
overriding. The method overloading shows that differ-
ent transport methods, such as trams, trains, buses, and 
metros, can be implemented as inherited methods. In 
essence, Object-Oriented Programming (OOP) and Uni-
fied Modeling Language (UML) collaborate to encour-
age the generation of reusable elements by providing an 
organized and visual method for software design. OOP 
principles steer the crafting of modular and encapsulated 
classes, whereas UML diagrams function as tools for 
communication and visualization, facilitating the design 
and depiction of these reusable elements within a system. 
We denoted the simulation of the proposed work in dif-
ferent unified modeling languages (UML). The simula-
tor AFLSS starts with editable encapsulated interfaces, 
which can be changed with depreciation. These interfaces 
are inherited from sub-classes such as routing, operation, 
and aggregated classes. The polymorphism allows multi-
mode public transport methods to be implemented with 
different parameters for a single objective in IoT trans-
port applications.

Object-Oriented Programming (OOP) and Unified 
Modeling Language (UML) allow the simulator to change 
the different versions, such as reusable elements, through 
various classes and object-based concepts. After imple-
menting the simulator, the method depreciation and ver-
sion will be changed at runtime. Therefore, the code with 
different versions will be provided in future updates, and 
a new programming interface application (API) will be 
upgraded for new features in the simulator.

Case study augmented CNN
We executed the different cases in the simulator, such as 
the vehicle-to-vehicle information and pedestrian-to-
vehicle information on the other road unit sides, as shown 
in Fig.  4. Therefore, all transport applications have vari-
ous services for public transport traffic in smart cities. It 
allows pedestrians and users to get information about 
public transport from other complex streets available for 
travel. The pedestrian can choose the optimal path for 
walking with less traffic, and the vehicle can choose the 
best route for driving and executing in intelligent cities. 
Therefore, the simulator is flexible, and more road unit-
side services can be implemented, as shown in Fig. 4.

Table 1  Simulation parameters

Value Description

Platform X86 Runtime

Resource Docker Container

Language JAVA, KOTLIN, Python and C

L 20

K 5

l 1-TB to 2 TB, 128 GB to 256 GB RAM

k 5 TB to 10 TB GB, 512 GB RAM

P 20,000

B 1000

M 2000

TR 500

Table 2  Dataset: Transports and road-unit Oslo

Transport-Type Starts RouteID Signal(minutes)

Tram Frognerseteren 1 10

Bus Voksenkollen 1 10

Bus Lillevann 1 10

Car Skogen 1 10

Car Holmenkollen 1 10

Tram Skadalen 1 10

Tram Vettakollen 1 10

Tram Gaustad 1 10

Tram Vinderen 1 10

Tram Steinerud 1 10

Tram Osteras 2 10

Tram Osteras 2 10

Metro Lijodet 2 10

Bus Hovseter 2 10

Pedestrian Borgen 2 10

Pedestrian Kolsas 3 10

Pedestrian Bergkrystallen 4 10

Car Sognsvann 2 10
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Result analysis
We design the setting of the experiments with differ-
ent constraints such as accuracy, precision, recall, time, 
security, and resources during offloading and scheduling 
for vehicular applications. In the result analysis, we con-
ducted different experiments according to the proposed 
architecture 1. The architecture consisted of local rout-
ing, operational, and scheduling data for IoT transport 
applications. Table 3 shows the analysis of different met-
rics for all IoT applications based on different methods. 

We compare the performances of methods with metrics 
such as method, application, total (minutes), accuracy, 
F1 score, recall, and precision. We determined the total 
time in minutes, and accuracy and other metrics are 
determined in percentages. Table  3 shows that AFLSS 
outperforms, has higher accuracy due to the augmented 
amendment in methods, and has a lower total time due 
to dividing the tasks offloaded into different edge and 
cloud networks. Table 4 shows the performances of dif-
ferent vehicles during pedestrian detection and vehicle 

Fig. 3  Unified modeling language-assisted simulator classes
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detection on the streets. IoT transport applications show 
pedestrian information availability to vehicles. Therefore, 
traffic, pedestrian, and vehicle information is collected 
at runtime. Table  4 shows that AFLSS outperformed all 
other vehicle and pedestrian detection methods in smart 
cities. We processed the 50,000 pedestrian image data 
and 50,0000 image data for training methods and detect-
ing their object nature in smart cities. Figure 5 shows the 
performances of different methods in routing local data 
processing for ticket validation among different transport 
modes. These three methods, such as AFLSS, CNN, and 
FCNN, were integrated into the simulation environment 
to analyze the performance of local routing coopera-
tion among different transport modes. The local routing 

computing nodes offload their data to the edge nodes for 
further analysis and training based on designated param-
eters. The parameters are data size, offloading time, ticket 
validation, and training accuracy to perform the differ-
ent tasks. We consider the different tasks, such as vehicle 
cooperation among different transport modes due to cus-
tomers traveling with the same ticket. Figure 5 shows that 
AFLSS outperformed CNN and FCNN regarding ticket 
validation among transport modes. The main reason 
is that we trained and divided the process into different 
parts, such as local routing, operation, and scheduling, 
and trained data on edge nodes with the minimum delay 
and higher accuracy. The aggregation server combines 
different transports from different edge servers and offers 

Fig. 4  Cooperative edge cloud road services for pedestrian and vehicle detection

Table 3  IoT Transport application results analysis

Method Application Total (minutes) Accuracy F1-Score Recall Precision

AFLSS r1 7 98 0.97 0.96 0.98

AFLSS r2 9 98 0.98 0.97 0.97

AFLSS r3 6 99 0.97 0.96 0.97

FCNN r1 13 92 0.91 0.92 0.93

FCNN r2 17 93 0.92 0.93 0.92

FCNN r3 16 94 0.93 0.92 0.93

CNN r1 21 85 0.85 0.88 0.91

CNN r2 25 83 0.84 0.89 0.91

CNN r3 30 84 0.82 0.86 0.92
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services to the IoT application. It gained optimal results 
in terms of ticket validation accuracy as compared to 
existing federated learning and CNN methods for IoT 
transport applications. The main reason for the AFLSS 
algorithm is to perform optimally than existing CNN and 
FCNN is that, AFLSS augments and changes the param-
eter and feature settings at the runtime of offloading and 
scheduling when tasks are missing their deadlines. How-
ever, existing CNN and FCNN are fixed and do not allow 
to change the parameters, therefore, many tasks missed 
their deadlines and consumed much more resources as 
compared to AFLSS in simulation.

Figure  6 shows the performances of different meth-
ods for road cooperation between vehicles in coopera-
tive edge cloud networks. We simulated this situation 
with different configuration parameters, such as 500 
locations, 2000 road paths, and 100 to 200 meters for 

vehicle detection and collision avoidance. Figure 6 shows 
that AFLSS has higher accuracy in complex locations to 
detect vehicles and avoid collisions than CNN FCNN 
studies. The existing methods suffered from augmented 
properties, where deep learning and machine learn-
ing models depend on black-box decision models. The 
augmented properties allow the methods to decide with 
machines and humans to avoid any wrong vehicle colli-
sion. Therefore, the proposed work has higher accuracy 
than existing studies. We conducted the experiments 
based on real-time levering data from the dataset, to 
determine the traffic of transports on the road-unit side 
in smart cities. Therefore, we are considering the differ-
ent cases such as pedestrian detection on the road-unit 
side, vehicle ratio, and transport detection on the road-
side. AFLSS, outperformed in all cases as compared to 
existing methods to run the transport in the simulation.

Table 4  Pedestrian and vehicle detection results analysis

Method Pedestrian Vehicle Accuracy F1-Score Recall Precision

AFLSS 10,0000 20,000 99 0.98 0.97 0.96

AFLSS 20,0000 30,000 98 0.96 0.98 0.97

AFLSS 50,0000 50,000 99 0.98 0.99 0.99

FCNN 10,0000 10,000 92 0.91 0.92 0.93

FCNN 20,000 20,000 93 0.92 0.93 0.92

FCNN 50,000 50,000 94 0.93 0.92 0.93

CNN 10,000 10,000 85 0.85 0.88 0.91

CNN 20,000 20,000 83 0.84 0.89 0.91

CNN 50,000 50,000 84 0.82 0.86 0.92

Fig. 5  Performance of methods local routing and IoT ticket validation application among different transport modes
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Figure 7 shows different scenarios such as P2V (pedes-
trian to vehicle), V2V (vehicle to vehicle), and V2O 
(vehicle to object) performances in IoT applications in 
cooperative edge cloud networks. As shown in Fig.  7, 
the performance determined that road cooperation 
among moving and stationary objects can be detected 
and processed to avoid collisions on the road-unit side. 
Figure  7 shows that the proposed method obtained low 
total delays compared to existing methods to perform 
the aforementioned tasks in cooperative edge cloud net-
works. We implemented different cases where different 

applications and services could be used to avoid net-
work collision and traffic detection. Traffic prediction 
and service transport mode availability can be deter-
mined for traveling in networking. Predicting traffic on 
different types of public transportation is a complicated 
and always-growing field that combines large data sets, 
advanced machine learning techniques, and real-time 
data flows. The main goal is to improve transportation 
systems, make operations more efficient, and make com-
muting better for everyone. Therefore, optimal results 
were obtained in different cases during the simulation, as 

Fig. 6  Road cooperation performances for different IoT transport applications

Fig. 7  IoT transport implementation at augmented CNN in smart cities



Page 14 of 16Lakhan et al. Journal of Cloud Computing           (2024) 13:79 

shown in Fig. 7. The proposed AFLSS outperformed in all 
cases and obtained the optimal results during the simula-
tion of given data for experiments.

We exploited the different methods as baseline meth-
ods. This baseline research [26, 25, 27–30] approach 
implemented detailed and broad offloading and sched-
uling plans for vehicular applications. These investi-
gations took into account security limitations while 
offloading and scheduling IoT vehicular applications 
on edge cloud networks. The studies introduced the 
Secure Coarse-Grained Offloading Scheme (SCOS) 
and Fine-Grained Secure Offloading Scheme (SFOS), 
outlining security and time mechanisms across various 
nodes, including local vehicle nodes, wireless nodes, 
and cloud nodes. Figure  8 shows the performance of 
security validity with time constraints between vehicles 
and edge and cloud servers. The x-axis shows the num-
ber of different multi-modal transport vehicles offload 
workloads with the consumer IoT devices with the par-
allel sequences and y-axis shows the security validity 
ratio with the time constraints in edge cloud networks. 
We integrated these baseline approaches with the pro-
posed scheme such as AFLSS, FSOS, and CSOS. Fig-
ure 8 shows that AFLSS has a higher ratio of validation 
according to time constraints as compared to existing 
coarse-grained and fine-grained offloading schemes 
for transport applications. With the random stochastic 
vehicle IoT workloads such as x=32 transport vehicles 
have lower time constraints ratio with the security vali-
dation such as Y 0.727078 with AFLSS as compared to 
existing studies. However, other approaches with the 

x=16 and x=32 have higher time delay with the security 
validity among nodes as compared to proposed AFLSS 
during offloading and scheduling edge cloud networks. 
We devised an ACNN security mechanism based on the 
AES-256 algorithm where time, resource, deadline, and 
security validity are the features of tasks during offload-
ing and scheduling on different IoT consumers’ edge 
cloud networks. Therefore, AFLSS has optimal results 
of security validation with the trade-off between time 
and security among different offloading and scheduling 
workloads on different computing nodes for vehicular 
applications.

Finding and limitation
The main finding of this work is to design a practical 
cooperative ITS system for IoT transport applications. 
We have enhanced resource management, time utili-
zation, and security constraints for IoT applications. 
However, resource instability leads to higher costs and 
overhead in resource allocations. Therefore, we aim to 
address these factors and constraints in the next ver-
sion of our work and extend its application to other 
countries in the intelligent transport system.

Conclusion and future
In contemporary times, the intelligent transport sys-
tem (ITS) offers various cooperative edge cloud services 
for roadside vehicular applications. The applications 
exhibited diverse functionalities, including ticket valida-
tion across transport modes and detecting vehicles and 
objects to prevent road collisions. The offloading process 

Fig. 8  Security offloading trade-off between time and validity
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between cooperative edge and cloud networks was piv-
otal when devices (e.g., vehicles and mobile devices) had 
resource constraints, prompting them to offload their 
workloads for execution.

ITS employed various machine learning and deep 
learning methods for decision automation. However, the 
autonomous decisions made by these techniques in the 
past consumed a significant amount of time and required 
higher accuracy for the aforementioned applications on 
the road-unit side.

This research paper presents a novel offloading Intelli-
gent Transport System (ITS) for IoT vehicles within coop-
erative edge cloud networks. The augmented convolutional 
neural network (ACNN) was presented as a model that 
trained workloads on different edge nodes. The ACNN 
facilitated collaboration between users and machine meth-
ods, enabling them to make decisions regarding offloading 
and scheduling workload execution jointly.

The paper also introduced an augmented federated learn-
ing scheduling scheme (AFLSS). AFLSS, an algorithmic 
method, comprised various sub-schemes that collabora-
tively operated within the ITS paradigm for IoT applica-
tions in transportation. These sub-schemes encompass 
ACNN, offloading, scheduling, and security. Simulation 
results indicated that AFLSS surpassed all existing methods 
regarding accuracy and total time for the problem.

In the future, we plan to apply blockchain technology 
to address the interoperability and cost issues in the pro-
posed architecture for IoT transport applications.
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