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Abstract 

Cloud applications are built from a set of components often deployed as containers, which can be deployed 
individually on separate Virtual Machines (VMs) or grouped on a smaller set of VMs. Additionally, the application 
owner may have inhibition constraints regarding the co-location of components. Finding the best way to deploy 
an application means finding the best groups of components and the best VMs, and it is not trivial because of the 
complexity coming from the number of possible options. The problem can be mapped onto may known com-
binatorial problems as binpacking and knapsack formulations. However, these approaches often assume homo-
geneus resources and fail to incorporate the inhibition constraints. The main contribution of this paper are firstly 
a novel formulation of the grouping problem as constrained Coalition Structure Generation (CSG) problem, includ-
ing the specification of the value function which fulfills the criteria of a Characteristic Function Game (CFG). The 
CSG problem aims to determine stable and disjoint groups of players collaborating to optimize the joint outcome 
of the game, and a CFG is a common representation of a CSG, where each group is assigned a value and where the 
value of the game is the sum of the groups’ contributions. Secondly, the Integer-Partition (IP) CSG algorithm has been 
modified and extended to handle constraints. The proposed approach is evaluated with the extended IP algorithm, 
and a novel exhaustive search algorithm establishing the optimum grouping for comparison. The evaluation shows 
that our approach with the modified algorithm evaluates on average significantly less combinations than the CSG 
state-of-the-art algorithm. The proposed approach is promising for optimized constrained Cloud application manage-
ment as the modified IP algorithm can optimally solve constrained grouping problems of attainable sizes.

Introduction
Cloud applications are by definition distributed appli-
cations consisting of multiple, communicating compo-
nents often deployed as containers  [1]. More and more 
applications are hybrid Cloud applications meaning that 
the application components are deployed to different 
Cloud infrastructures, private infrastructures, and on 
heterogeneous hardware provided by dedicated comput-
ing devices close to the sensors for applications collect-
ing and processing data from sensors. Furthermore, each 

application component has resource requirements and 
dependencies on the data location. Also, an application 
component may depend on a timely data flow with other 
components or external data sources. Cloud application 
components can be deployed individually on separate 
Virtual Machines (VMs) or grouped on a smaller set of 
Virtual Machines (VMs), “Edge”, and “Fog” nodes in the 
computing continuum [2].

Finding the best way to deploy and manage distributed 
Cloud applications over multiple Cloud providers is a 
complex optimization problem  [3]. Solving this optimi-
zation problem means finding the best application con-
figuration so that the application utility is maximized 
by the deployment and subject to the operational con-
straints set for the application. It is well known that the 
utility of an application is essential to guide autonomic 
decisions related to the application configuration or its 
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deployment  [4], and rational economical agents should 
maximize their utility [5].

This optimization problem can be decomposed into a 
two-stage approach. One first decides on the constrained 
attribute values of the components to be deployed, and 
then uses these values to filter the available VMs selecting 
only the VMs that can be used to instantiate each compo-
nent type  [3]. The grouping can of benefit be combined 
with the selection step. The problem is then to parti-
tion the set of components into a set of non-overlapping 
groups and then for each group (subset) select one of the 
available VMs that gives the highest utility for the appli-
cation owner.

There could be several reasons for grouping to be 
beneficial. An application with temporal workflow 
dependencies among the application components will 
benefit from grouping components from various stages 
of a workflow path into one execution group. This one 
execution group can use and re-use a single VM for 
executing the chain of components one after the other 
thereby avoid data communication delays. It is particu-
larly important for time-sensitive workflows, where the 
workflow must be executed as fast as possible, like work-
flows processing medical data  [6]. Secondly, a group-
ing of application components can be beneficial where 
a set of components processes data from the same data 
source. Grouping will then minimize data traffic outside 
the VM and minimize latency in the data access and the 
communication between the application components, 
and hence improve the application performance. It is 
beneficial for latency-sensitive applications, like stream-
ing or gaming applications, which are becoming more 
and more popular. Thirdly, deploying only one applica-
tion component per VM may inherently waste resources. 
Consider the case where a component requires 5 cores to 
run, but there are only VMs available with 4 or 8 cores. 
Hence, only the larger VM can be used, and one will 
save cost by deploying also a smaller application compo-
nent requiring only two or three cores to the same VM, 
if such a component type exists in the application. All 
these aspects are relevant for the applications deployed 
in the computing continuum, where the efficient use of 
resources is crucial [7].

The grouping of application components can be 
approached in two ways: 

1.	 One may first select the VMs to use, and then deploy 
the components in an optimal way over the selected 
machines; or

2.	 One may first group the components and then select 
the appropriate VMs providing enough resources to 
host the various groups of components.

From a datacentre point of view the machines are not 
virtual, and therefore datacentre management must be 
based on the first approach, which has then been carried 
over to Cloud resource management solutions  [8], such 
as Kubernetes1. The second approach gives more free-
dom to the optimization process. It allows for situations 
where the application will be deployed to many different 
Cloud providers offering different VM types, or where 
the available VM types may change over the application 
lifetime. The second approach will better support appli-
cation management from the application owner perspec-
tive where the number of Cloud provider deployment 
offers is almost countless. Furthermore, according to the 
authors’ knowledge, the second approach was not inves-
tigated before. The second approach is aligned with the 
modern Cloud application optimization approaches like 
the Multi-cloud Execution ware for Large scale Optimised 
Data Intensive Computing2 (MELODIC), which are used 
to manage Cloud applications deployed in hybrid Cloud 
settings where hardware accelerators and Cloud platform 
services are included as application component deploy-
ment options [3]. The second approach to the grouping is 
therefore the main focus in this paper.

The main contribution of this paper is a new approach 
for solving the constrained grouping problem for Cloud 
application deployment and optimization. It is a two-
stage process where not only the best placement of com-
ponents into VMs is found, but also the best set of VMs. 
The grouping problem is then formulated as Coalition 
Structure Generation (CSG) problem. According to the 
authors’ knowledge, the algorithms from the CSG field 
have not been used for Cloud application components 
management before. To solve this grouping problem, 
the authors propose a novel cost-saving function which 
allows the use of algorithms defined for Characteristic 
Function Game (CFG) type of CSG.

Finally, we have extended the CSG Integer-Partition 
(IP) [9] algorithm to include inhibition constraints. We 
also present a novel restricted growth function exhaus-
tive search algorithm, which is guaranteed to gener-
ate all possible combinations of component groups and 
provides the baseline for evaluation our CSG IP algo-
rithm . A thorough and realistic evaluation shows that 
our modified IP outperforms the state-of-the-art vanilla 
algorithms for a larger number of grouping restrictions 
among the application components, and for some experi-
ments for all of the tested cases. The number of con-
structed groupings by the modified IP algorithm is much 
lower than by the state-of-the-art CSG algorithm, and 
thousands of times lower than by the exhaustive search. 

1  https://​kuber​netes.​io/
2  https://​melod​ic.​cloud/

https://kubernetes.io/
https://melodic.cloud/
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It means that the decision on the constrained grouping of 
Cloud application components can be optimal for appli-
cations composed of more components. The constrained 
grouping gives more optimal deployments in terms of 
both cost and performance, hence a better overall opti-
mization of Cloud applications.

Since the application component grouping problem 
can be mapped onto multiple well studied combina-
torial optimization problems, this paper starts with a 
formal definition of the grouping problem and its com-
plexity in “Grouping background” section and gives an 
overview of relevant approaches and results from the 
literature. This section makes the paper comprehen-
sive and self-contained, but can be omitted on a first 
reading as it is only a background for understanding 
the optimization problem defined in “Cloud application 
optimization”  section and the grouping approach in 
“Grouping approach”  section. “Exhaustive search”  sec-
tion derives our exhaustive search algorithm and pro-
vides an analysis of the complexity leading to a method 
for computing the complexity of a given grouping 
problem with inhibition constraints among the appli-
cation components. This section provides the baseline 
for the evaluation, and may be omitted on a first read-
ing if one is only interested in the evaluation of our 
approach. “Constraint aware CSG”  section provides a 
detailed exposition of our constraint aware CSG algo-
rithm, and this quite technical section is a reference for 
anyone interested in replicating our thorough evalua-
tion results presented in “Evaluation”  section. Finally, 
the discussion of the results and the future work are 
presented “Discussion” and “Conclusion and future 
work” sections.

Grouping background
In this section, we present the related problems and algo-
rithms for the set partitioning problem that can possibly 
be used for the constrained optimal grouping of Cloud 
application components. Also, existing algorithms and 
approaches to optimize the Cloud application compo-
nents with inhibition constraints and possible limited 
VM offering are discussed. We note that the majority of 
approaches are focused on scheduling or management on 
the given fixed set of resources or on the given cluster of 
VMs while the approach presented in this paper aims to 
decide on both the application components placement 
and the best VMs to host them. The approach presented 
in this paper makes the problem more complex, but also 
more realistic because both decisions must be made to 
perform the optimal deployment of Cloud applications. 
We present a few papers we managed to find in this area 
as well as the Cloud application management approaches 
we found.

Grouping model
The Cloud application components can be deployed 
individually on separate VMs or grouped together on a 
smaller set of VMs. The grouping G is a partitioning of 
the set of component types into exhaustive and disjoint 
groups, G = {G1, . . . ,G|G|} In other words, for an index 
set I ⊂ N

+ where inf(I) = 1 , the goal is to find a group-
ing G = G1, . . . ,G|I|  so that T = ∪i∈IGi with disjoint 
groups, i.e. Gi ∩Gj = ∅ for i  = j , maximizing the total 
value of the groups

The least number of groups in the grouping is the single 
group identical to T , and the most groups that can parti-
tion the application component type set T is the group-
ing where each group has one single component type as 
a member. Hence, the number of groups in the partition 
must fulfil 1 ≤ |I| ≤ |T|.

Once the requirement attributes of the various applica-
tion components have been decided, the components can 
potentially be grouped together on the best fitted VMs, if 
there is at least one VM that is capable to host each group.

The selection of the VM to host the group is defined by 
the combined attributes of the application components in 
the group: An allocation of a group to a VM is feasible if the 
combined resource requirements of the assigned attribute 
values of the components in the group do not exceed the 
resource capacity of the VM in any resource dimension.

The requirement attributes for components are decided 
at the type level, so it is sufficient to know the component 
types of the components in a group to decide on the VM 
capable of hosting the group. Hence, the grouping done 
at the type level has the consequence that the size of a 
grouping |G| must be less or equal the number of types, 
i.e. |Gi| ≤ |T| . Furthermore, one can note that the differ-
ent groups possible is the power set of the set of compo-
nent types less the empty set, G ∈ 2T\∅ , and the number 
of different groups is therefore one less than the size of 
the power set: 2|T| − 1 . It is therefore theoretically possi-
ble to enumerate a priori all the different groups that can 
be formed for an application having less than around fifty 
different component types T.

Worst case complexity
The complexity of finding the optimal grouping depends 
on the search strategy used, and it is therefore impossi-
ble to state the complexity in generality. However, in the 
worst case, an exhaustive search is needed to evaluate all 
possible ways to partition the set of application compo-
nent types as the optimal partition can only be found by 
assigning a value to each partition and then ranking the 
values of the partitions.

(1)maxV (G)
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Let the number of groups in the partition be fixed as |I| , 
then the number of ways the |T| application component 
types can be grouped into |I| groups is given by the Stir-
ling number of the second kind ([10], p. 73-76):

where

is the binomial coefficient with the recursive form (2) 
better supporting computation with integer arithmetic. 
Adding the Stirling number of the second kind together 
for all the possible number of groups there can be in the 
partition, or the grouping, gives the total number of par-
titions one can create from the set T . This is known as 
the Bell number B (|T|) from being discussed by E. T. 
Bell [11]:

where the recursive formula (4) was proven by Rota [12]; 
the form (5) was given by Dobinski [13]; the finite series 
expansion (6) was given by Comtet  [14], and the upper 
bound (7) was recently established by Berend and 
Tassa [15]. If the size of the application component type 
set |T| is not too large, the Bell numbers can be com-
puted3 with polynomial complexity by combining the 

S2(|T|, |I|) = |I|S2(|T| − 1, |I|)+S2(|T| − 1, |I| − 1)
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recursive binomial coefficient (2) with the recursive for-
mula (4).

It is useful to obtain the Bell number for a particular set 
of application components to ensure the time feasibility 
of solving directly the grouping problem by an exhaus-
tive search since the number of possible groupings grows 
exponentially as the Bell number with the size of the set 
of application components |T|.

Group Technology
A similar problem to the one described in this paper 
existed for many years and it was known in the man-
ufacturing industry as Group Technology  [16]. It is a 
manufacturing technique where there are machines 
and there are parts that should be prepared with the 
use of these machines. The goal is similar to the group-
ing of VMs which means to find the set of groups called 
families and a set of parts called cells that should be 
executed together. One can map cells to component 
groups and families to VMs. However, the machines in 
Group Technology are physical hence they have limited 
cardinality whereas the infinite elasticity promised by 
Cloud providers lifts this limitation. The solutions to 
these problems such as Production Flow Analysis  [17] 
were firstly designed to be solved manually, without 
computers. Then some computer techniques were also 
applied, and the problem was formulated as the Set 
Partition Problem.

Allocation
Given the first approach mentioned in “Introduc-
tion”  section to optimization where one first will select 
the VMs to be used by the application, one may con-
sider the optimized grouping problem as an allocation 
problem  [18]. In this case the application component 
instances are allocated to a predefined subset of the avail-
able VMs since the number of available VMs offered by 
the available Cloud providers make the optimization 
problem prohibitively large. However, if one would like to 
optimize the allocation, it will be better to use bin pack-
ing algorithms.

Bin packing
Bin packing minimizes the number of VMs used for 
hosting the given set of components, i.e. minimize the 
bins to pack. There are many algorithms that can be 
used to approximate the optimal packing  [19]. Bansal 
et  al. have derived the currently best algorithm for 
homogeneous VMs where the aim is to pack the com-
ponents on as few VMs as possible [20]. To the authors’ 
knowledge, the best algorithm for heterogeneous VMs 

3  The authors have a C++ implementation available on request.
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that also allows associating a cost to the various bin 
types available, i.e. the VMs, with the goal of mini-
mising the total cost of the bins is the approximation 
scheme due to Patt-Shamir and Rawitz [21].

Multidimensional Knapsack Problem
One may alternatively consider the optimization as a 
knapsack problem  [22], or more specifically as a mul-
tidimensional knapsack problem given that the com-
ponents to be grouped have resource requirements in 
multiple dimensions. There are many heuristics pro-
posed for this kind of problems  [23]. However, the 
problem at hand is known as a Multiple Multidimen-
sional Knapsack Problem (MMKP) since it is necessary 
to pack all the VMs at the same time. This variant of 
the knapsack problem has received little attention, but 
Yi and Cai have proposed a polynomial time approxi-
mation  [24], and Song et  al. have, to our knowledge, 
developed the only exact algorithm available  [25]. The 
use of MMKP for data centre management has been 
demonstrated by Camati et  al. who evaluated several 
MMKP heuristics for allocating VMs to homogeneous 
servers  [26]. The problem can be relaxed by consider-
ing each VM as an individual knapsack that is assigned 
component instances, and only one of each type. This 
corresponds to the Multiple-Choice Multidimensional 
Knapsack Problem (MCMKP), and the best polynomial 
time approximation scheme is due to He et al. [27]. The 
issue with using MCMKP in this way is that there is no 
global optimization of the goodness of the assignment 
and trying to maximise all the packings at the same 
time leads to a Multiobjective Multidimensional Knap-
sack Problem (MOMKP) [28]. However, only problems 
with at most three objectives have been considered for 
which heuristic approaches exist and finding a solution 
is closely related to the Pareto front of the utility opti-
mization problem [29].

From a Cloud application management perspective, 
it will be desirable to group the components first and 
then select the VMs that optimizes the global applica-
tion utility which is the second approach mentioned 
in “Introduction” section. For instance, the MELODIC 
platform provides utility optimized autonomic cross-
Cloud application deployment and management, and 
acquires the needed application resources from the 
wide variety of VMs offered by multiple Cloud pro-
viders  [3]. Hence, the number of possible ‘bins’ avail-
able would render the bin packing infeasible. However, 
there is an alternative to bin packing as Voß and Lalla-
Ruiz have shown that the MCMKP can be reformu-
lated as a set partitioning problem [30]. This approach 
is followed in this paper.

Game theory: Coalition Structure Generation
The set partitioning problem is well studied in the field 
of game theory where is it known as coalitional games 
or Coalition Structure Generation (CSG). One of the 
most common types of CSG is the Characteristic Func-
tion Game (CFG). It is a type of CSG where the value 
of each group is the same independently from other 
groups in the grouping, and the value of the group-
ing is the sum of group values. There are many algo-
rithms for the optimal CSG in CFG. A survey provided 
by Rahwan et al. [31] describes the various approaches 
in this area and states that algorithms for the optimal 
CSG in CFG are the fastest in this field. However, for 
a larger number of component types, it may be not 
possible to run an optimal algorithm because of its 
exponential complexity. This was the motivation for 
anytime CSG in CFG algorithms, such as the Integer-
Partition (IP) [9] proposed by Rahwan et al.. They are 
searching the space in a specific order to provide a 
solution with the expected quality for a given deadline. 
Michalak  et al. proposed a distributed version of this 
algorithm  [32], so the performance can be improved 
when running in parallel mode, and then Michalak et 
al. improved further by adding the optimal dynamic 
programming aspects with the Optimal Dynamic Pro-
gramming - Integer-Partition (ODP-IP) [33] algorithm 
as the result. Currently, the fastest optimal algorithm 
is called ODP-IP with complexity O(3|T|).

Rahwan  et al. defined a constrained coalition for-
mation problem  [34]. It can be seen as similar to then 
problem presented in this paper, but the definition of 
the problem is different. Firstly, Rahwan et  al. consid-
ered general constraints on the grouping (i.e. the size of 
groups in the grouping), which is not directly applicable 
to the Cloud application components grouping problem 
defined in “Cloud application optimization” section. Sec-
ondly, Rahwan et al. introduced a set of possible groups 
from which at least one of the groups has to be present 
in the optimal grouping. This kind of constraint is also 
not a part of the constrained Cloud application group-
ing problem. Even though the inhibition constraints were 
also introduced in that paper, the overall approach was 
designed to solve a specific problem with various types 
of constraints that are not applicable to the problem pre-
sented in this paper. Therefore, it is not possible to com-
pare our approach with the one of Rahwan et al..

We formulate a constrained grouping of Cloud appli-
cation components as a coalition formation problem in 
“Constraint aware CSG” section, and we modify IP algo-
rithm to be able to solve the constrained CSG problem. 
We use ODP-IP and modified IP in “Evaluation” section 
to evaluate the approach. Applying these algorithms 
imposes the CFG requirement on the objective value 
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function. In other words, this approach is only feasible if 
a value of grouping is the sum of the individual values of 
each of the groups that are partitioning the set of compo-
nents. The CFG also requires that the placement of the 
components outside the group Gi does not change the 
value of this group.

Optimization based approaches
It may be be complicated to assume specific values of 
each possible grouping, and Ueda  et al. proposed to 
use a generic utility objective function for all possible 
groups [35]. The utility value of a particular group of com-
ponents would then be found by solving an optimization 
problem for finding the best assignment of the require-
ment attribute values for all the components in the group. 
Since the groups partition the set of component types, a 
component type can belong to one and only one of the 
groups, and the optimization is performed independently 
for each group and in parallel. Ueda  et al. developed an 
approximation algorithm that considers the incomplete 
power set with set sizes up to a maximum size, and gives a 
limit for how close this approximation is to the optimum. 
This approach can be used as an alternative to the tradi-
tional CFG formulation, for cases where formulation of a 
characteristic function is not natural, or the evaluation of 
the function is computationally expensive.

Cloud application management
The application component placement problem is often 
considered a resource management problem [8]. Therefore, 
it is being solved from the data centre perspective so how 
to allocate a VM on physical machines. One may consider 
open source Kubernetes4 framework as a similar approach. 
Kubernetes optimizes the placement of application compo-
nents within the given cluster of nodes. It schedules pods 
(components) on nodes that are a part of cluster based on 
the component requirements. The process can look simi-
lar, but it is significantly different from the complexity per-
spective. Kubernetes operates within the given cluster, so 
it is possible to enumerate and score the best node (VM) 
to host the component while in the grouping problem, the 
VMs are unlimited. Even though Kubernetes has a Hori-
zontal Pod Autoscaler5, it provides only the possibility to 
scale the cluster according to simple policies, and it does 
not consider the heterogenous set of VMs.

A more flexible open source framework that oper-
ates with Kubernetes is KEDA6. It provides event-
driven autoscalers which can utilize custom metrics 

from various sources. However, it still follows the same 
approach so to firstly create or choose a set of VMs, and 
then place the components on them, without considering 
inhibition constraints.

Paraskevoulakou  et al. proposed recently the Rein-
forcement Learning (RL)-based approach for Cloud 
application component placement  [36]. The proposed 
algorithm is aligned with the approach proposed in this 
paper. Even though it does not consider inhibition con-
straints explictely, it will be evaluated and compared to 
our approach as a part of the future work.

Task scheduling and workflow applications in the Cloud
An algorithm for scheduling the workload and mini-
mizing the makespan has been proposed by Chitgat  et 
al. [37]. One of the algorithm’s goals is to increase the uti-
lization of VMs, which is a similar goal as we considered 
in this paper. However, the algorithm assumes that all 
VMs are split into three groups of VMs that are arranged 
based on the processing power, which makes the group-
ing and scheduling problem simpler. Selvarani  et al., 
proposed another scheduling algorithm that consid-
ers both performance, measured as makespan, and cost 
aspects  [38], but it also operates on the given and fixed 
set of resources.

Another related approach was presented by Nishio  et 
al. for a mobile cloud, where resource-sharing and out-
sourcing of the work is necessary  [39]. This approach 
could be transformed into a Cloud environment as it is 
based on utility functions defined for the most important 
deployment aspects such as latency and power. How-
ever, it is not as flexible as the approach presented in this 
paper because it does not consider inhibition constraints 
as well as the dynamic VM provisioning.

Multi‑Cloud management platforms
According to the authors’ knowledge, only MELODIC7 
offers both optimisation of resources needed by Cloud 
applications, and grouping of application components, 
and is open source. There are some commercial solutions 
developed by big tech companies. Even though Google 
Anthos8 can be considered one of the most advanced 
Multi-Cloud and it offers the constrained grouping of 
Docker containers, it is based on Kubernetes and simi-
lar simple autoscaling policies9. Furtermore, it does not 
consider an abstract Cloud application components, and 
it is not open source. Also, IBM Multicloud Management 
Platform10 has wide resources optimisation capabilities, 

4  https://​kuber​netes.​io/
5  https://​kuber​netes.​io/​docs/​tasks/​run-​appli​cation/​horiz​ontal-​pod-​autos​
cale/
6  https://​keda.​sh/

7  https://​melod​ic.​cloud
8  https://​cloud.​google.​com/​anthos
9  https://​cloud.​google.​com/​anthos/​clust​ers/​docs/​on-​prem/​latest/​conce​pts/​
clust​er-​autos​caler
10  https://​www.​ibm.​com/​servi​ces/​cloud/​multi​cloud/​manag​ement

https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/
https://melodic.cloud
https://cloud.google.com/anthos
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/concepts/cluster-autoscaler
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/concepts/cluster-autoscaler
https://www.ibm.com/services/cloud/multicloud/management
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but it is not able to consider the possibility of co-allocate 
components under inhibition constraints.

Cloud application optimization
Variability and search space
Modern applications developed for Cloud deployment 
consist of a set of communicating components [7]. They 
can be containerized microservices  [40]. The application 
components have different types T = {T1, . . . ,T|T|}.

Each component type T ∈ T has a set of attributes AT . 
Examples of attributes can be the number of cores the 
component requires, the amount of memory it requires, 
or the Cloud providers capable of hosting instances of 
this component type, or the number of instances neces-
sary to satisfy non-functional application requirements. 
Each attribute aT ,i ∈ AT has a domain VT ,i defining the 
possible values for this attribute. For instance, a compo-
nent type may need a certain minimum number of cores 
to run, and cannot benefit from more than some maxi-
mum number of cores.

The variability space VT for the component type T 
is the Cartesian product space of all the domains of its 
attributes: VT = VT ,1 × VT ,2 × · · · × VT ,|AT | . In order 
to find the best deployment of the application, the opti-
mal application configuration, one must assign val-
ues to all attributes of all component types from their 
respective domains. The search space to find the opti-
mal configuration is therefore the application’s vari-
ability space given as the Cartesian product space of the 
variability of all the component types of the application: 
V = V1 × V2 × · · · × V|T|.

The benefit of finding the optimal configuration at the 
type level is that even though the search space V can be 
large, it is independent of the number of instances of each 
component type and the number of VMs offered by the 
usable Cloud providers. Furthermore, constraints among 
the component type attributes will reduce the effective 
search space.

Optimization
We consider the set of utility dimensions defined by 
We  et al. with business users  [41] and also utility func-
tions presented by Rozanska  et al. by surveying 
MELODIC and MORPHEMIC project business use case 
application providers  [42]. The goal of the deployment 
optimization is to find the application configuration 
c∗ ∈ V that maximizes the application’s utility for the 
application owner given a vector of measurements, θ(tk) , 
characterizing the application’s execution context at the 
current time tk  [3], and the performance indicators, 
ψ(c, θ(tk)) , which are the functional dependency between 
the configuration and the execution context [43]. It must 

be noted that even though the variability space V may 
contain both the number of instances needed for a par-
ticular component type and the available Cloud providers 
as component attributes, it ignores the available VMs. It 
is often possible that not all combinations of variables 
from the variability space are feasible to be deployed on 
the available VMs. For instance, one may not find a VM 
with one core and huge amount of memory. Therefore, 
we introduce the feasible space, F

(

θ(tk), ψ̂[c, θ(tk)]
)

 , 
which depends on the current execution context θ(tk) 
and performance indicators ψ(c, θ(tk)) . It is assumed that 
it is possible to capture the utility of the application 
owner for the deployment of this application as a func-
tional expression, U(c) : V �→ [0, 1] , that can be maxi-
mized as a standard non-linear programme [44].

subject to

Combining resource requirement attributes
Combining resource requirement attributes for the com-
ponent types grouped in a group Gi means adding them 
together by some resource function given the feasible 
configuration c consisting of all attribute value assign-
ments, aT ,j , for all components types,

for the attribute dimension j defined for any of the com-
ponent types that are in the group Gi . This combination 
must be strictly additive for resources that cannot be 
shared, like memory. However, for other resources, the 
requirement can be a peak requirement and then the 
sum of the combination does not need to equal the sum 
of the individual requirement attributes, but can be the 
maximum. Examples of this can be that two components 
may still work acceptably well if they get less network 
bandwidth than their combined peak bandwidth require-
ments, and two components may be able to multitask on 
a smaller number of cores than the sum of their individu-
ally required cores. Therefore, the attribute function for 
the cores can be the maximum resource requirement 
attributes of the components in the group:

(8)c∗(tk) = argmax
c∈F

U
(

c,ψ(c, θ(tk))
∣

∣ θ(tk)
)

g(c | θ(tk)) ≤ 0

h(c | θ(tk)) = 0

c ∈ F

(

θ(tk), ψ̂[c, θ(tk)]
)

(9)rj(Gi|c) =
∑

T∈Gi

aT ,j

(10)rj(Gi|c) = max
T∈Gi

aT ,j
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It should be noted that some attributes may not be 
available for all component types in a group so in this 
case the function should consider only the available 
resource attributes requirements aT ,j , because the set of 
combined attributes is the union of the attribute sets of 
the group types. Consequently, the resource function for 
all resource requirements attributes in a group is a vector, 
r(Gi|c).

The requirement attributes of an application compo-
nent represents the resources needed for maximizing 
the application utility for the given execution context. 
A benefit of this approach is that the application opti-
mization will not need to consider a large number of 
VMs offered by many Cloud providers. The available 
resources in the Cloud are plentiful and come in many 
different configurations, and separating the optimiza-
tion into two steps will allow the optimization problem 
of each step to be smaller. Given that combinatorial 
optimization algorithms have exponential complexity, 
solving two smaller optimization problems may enable 
the management of applications that would otherwise 
be intractable [45]. Furthermore, a multi-stage optimi-
zation approach allows different utility objectives to be 
optimized in each stage.

Inhibition constraints
The application owner can define which component 
types to be placed on the same VM, and which compo-
nent types cannot be placed on the same VM. For the 
components that have to be placed on the same VM, 
it is possible to create a super-component and treat 
them as one component in the optimization process. 
However, the inhibition constraints have to be handled 
in the grouping step of the optimization process. The 
inhibition constraints are used to validate the feasible 
groups. We introduce an index function I(T |G) ∈ |T| 
for a given grouping G that takes a component and 
returns the index of the group that this component is 
assigned to. Thus, the constraint that states that com-
ponent Ti and component Tj cannot be in the same 
group can be defined as

(11)I(Ti|G) �= I(Tj|G)

Example
The following example aims to give an intuition why 
grouping can be beneficial. Assume that there are four 
components: A, B, C, and D with maximal require-
ment attribute values described in Table 1. Furthermore, 
assume that there is a limited set of available VMs pre-
sented in Table 2. The available VMs are limited but their 
parameters are similar to offers available in the majority 
of Cloud Providers11.

The prices of possible groups are presented in Table 3. 
These prices where calculated as by taking the price 
of the cheapest VM capable of hosting the group. One 
may consider two cases: when cores re-use is allowed or 
where it is not possible to use the same core by two or 
more components. Table 4 presents the prices for all pos-
sible groupings for the two cases of core sharing. It can be 
easily seen that the best grouping for the case with cores 
sharing is {ABD,C} so to have components {ABD} in one 
group on a VM4 and C on a separate VM2 , or {ACD,B} so 

Table 1  Component requirements

Component Name CPU RAM

A 6 10

B 2 4

C 1 3

D 1 2

Table 2  Available Virtual Machines (VMs). The price is given in € 
and is an estimated price for weekly use of the VM

VM Name CPU RAM Price

VM1 1 2 2

VM2 2 4 4

VM3 4 8 8

VM4 8 16 16

VM5 16 32 32

Table 3  Groups values when cores re-use is allowed (I) and 
when cores re-use is not possible (II)

Group I: VM Name I: Cost II: VM Name II: Cost

A VM4 16 VM4 16

B VM2 4 VM2 4

C VM2 4 VM2 4

D VM1 2 VM1 2

AB VM4 16 VM4 16

AC VM4 16 VM4 16

AD VM4 16 VM4 16

BC VM3 8 VM3 8

BD VM3 8 VM3 8

CD VM3 8 VM3 8

ABC VM5 32 VM5 32

ABD VM4 16 VM5 32

ACD VM4 16 VM4 16

BCD VM4 16 VM4 16

ABCD VM5 32 VM5 32

11  https://​aws.​amazon.​com/​ec2/​prici​ng/

https://aws.amazon.com/ec2/pricing/
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to have {ACD} in one group on a VM4 and B on a separate 
VM2 . The cost in both cases is 20. Furthermore, if a user 
does not allow for core-sharing, the best grouping is still 
{ACD,B} , but {ABD,C} has a significantly higher cost, 
because {ABD} has to be hosted on the bigger VM5.

Grouping approach
This section presents our approach to the grouping 
problem, defined as a multi-step optimization where the 
grouping is a separate step.

Price calculation
Cost is one of the main reasons for companies to move 
applications to the Cloud  [46], and the used VMs are 
deciding the cost. For each of the completely enumerated 
groups Gi one must first filter the available VMs to select 
the VMs that are feasible for the combined resource 
requirements of the group r(Gi|c) , and then choose the 
VM with the lowest cost. We define P(Gi) as the price 
of the cheapest VM capable of hosting the components 
in Gi , so fulfilling the requirements of the group r(Gi|c) . 
Consequently, the price of the grouping, P(G) is the sum 
of the prices of the groups of the grouping.

Value function
To formulate the problem as a CFG the value function (1) 
should be calculated as the sum of the group. It allows us 
to use and extend the algorithms for CSG in CFG which 
are the fastest class of algorithms solving of CSG prob-
lem. The value function for CFG requires that the value 
of each group should not depend on the other groups in 

the grouping. The goal of solving the grouping problem is 
to find the grouping that maximizes the total value of the 
grouping, i.e. minimizes the total price of deployment.

As a consequence, if the cost of deploying compo-
nents on separate VMs P({Ti})+ P({Tj})+ · · · + P({Tn}) 
is higher than the cost of deploying these compo-
nents on a single VM P({Ti ,Tj , . . . ,Tn}) , then the value 
of a group with two or more components deployed 
together v({Ti,Tj , . . . ,Tn}) on a single VM is greater than 
v({Ti})+ v({Tj})+ · · · + v({Tn}) , the sum of values of 
these components deployed separately.

We propose a normalization approach for the charac-
teristic value function for the cost.

Let P+ be the cost of the most expensive available VM. 
The value of the group v(Gi) is defined as the savings made 
compared to the most expensive deployment which is when 
all components from the group are deployed separately and 
using the most expensive VM. In other words, one can cal-
culate the most expensive deployment as a multiplication of 
the most expensive VM and the number of components in 
the group, and then subtract the actual price of the group.

The grouping problem therefore translates into selecting 
the groups that maximize the total savings for all groups in 
the grouping, which is the sum of the saving values asso-
ciated with the groups in the grouping. The value of the 
grouping V (G) is therefore the sum of its group values

and the best grouping G∗ should maximize V (G).
We note that the value function is not contradicting 

with any reasonable utility function for Cloud application 
optimization  [41]. According to the approach proposed 
in this paper and the resource function (9), deploying two 
or more components into the single VM is allowed only 
if the VM fulfills the resource requirements of all com-
ponents so they all can be hosted without any loss on the 
performance. Communication latency is the only other 
utility dimension besides cost that may be influenced by 
the grouping of Cloud components. When component-
based software applications are deployed using VMs, 
each component may be deployed on a separate VM. This 
can lead to an increased number of inter-service com-
munications, which can negatively impact latency, as it 
was shown by Gribaudo et al. [47]. However, the latency 
dimension can easily be defined in a way to be included 
in the value function as an additional reward l(Gi) or a 
penalty.

(12)v(Gi) = |Gi| · P
+ − P(Gi)

(13)V (G) =
∑

Gi∈G

v(Gi)

(14)v(Gi) = |Gi| · P
+ − P(Gi)+ l(Gi)

Table 4  Grouping values when cores re-use is allowed (I) and 
when it is not possible (II)

Grouping I: Cost II: Cost

{ABCD} 32 32

{ABC ,D} 34 34

{ABD, C} 20 36

{ACD, B} 20 20

{BCD, A} 32 32

{AB, CD} 34 34

{AC , BD} 34 34

{AD, BC} 34 34

{AB, C ,D} 22 22

{AC , B,D} 22 22

{AD, B, C} 24 24

{BC , A,D} 26 26

{BD, A, C} 28 28

{CD, A, B} 28 28

{A, B, C ,D} 26 26
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A function that considers both cost and latency should 
be constructed to have values reflecting the importance 
of the latency aspect in relation to the cost. The latency 
function value that considers inter-component commu-
nication can naturally be calculated for a group and its 
value does not depend on the rest of the groups in the 
grouping. Therefore, a value function with the latency 
aspect will still be a characteristic function.

Table  5 presents the Example from “Cloud applica-
tion optimization”  section with V (G) calculated using 
formula  (13) for the cases when core re-use is, or is 
not, possible. The grouping values are consistent with 
the condition on the relation between group prices and 
group values. It is easy to notice that the cheapest option 
also gives the highest value so the proposed function (12) 
can be used to solve the grouping problem.

Grouping process
We propose two-step optimization, where the resource 
attribute values for all components are proposed dur-
ing the first step, and then the grouping of compo-
nents is combined with the selection of the best VM 
to host the components in the second step. The pro-
posed approach is presented as a high-level sequence 
of actions in Fig. 1.

The optimization problem solver solves the Constraint 
Problem  (8) and assigns values to all the requirements 
attributes aTi for all Ti ∈ T . Then, for every feasible group 
Gi in terms of inhibition constraints, the cheapest avail-
able VM is found. The selection step is performed with 
the use of resource function r(Gi|c) . If there is no VM 

that is capable of hosting a group, the group is consid-
ered infeasible and it is deleted from the set of feasible 
groups. For all the feasible groups, the value function (12) 
is evaluated and the grouping algorithm proceeds to find 
optimal grouping G of groups. One can note that this 
multi-stage optimization approach allows different utility 
objectives to be optimized in each stage, hence, the CFG 
requirement that the total grouping value is a sum of the 
individual values of the component groups will only be 
necessary for the grouping stage.

We consider the grouping on the component type level, 
so every instance of the same component must belong to 
the same group and it is not possible to host two instances 
of the same component in the same group. This follows 
from the observation that putting the same component 
types instances multiple times into the same group is equiv-
alent to setting the resource attributes requirements for this 
component proportionally higher. Furthermore, if some 
groups should be deployed in multiple copies, the group 
assignment of a component type will remain the same.

For some deployment configurations, the cardinalities 
of each component type in a group may differ. The deploy-
ment process will complete the groups as far as there are 
component instances available to populate each group fully. 
When another copy of a group cannot be deployed because 
all the instances for one or more component type(s) in the 
group have already been deployed, it is necessary to solve 
the grouping problem excluding the object type(s) whose 
instances have all been deployed. In this way, the deploy-
ment and the grouping successively smaller component 
type sets alternate until all required instances are deployed.

Exhaustive search
Variables and constraints
Solving the partitioning problem means assigning a 
group to every application component type. In other 
words, assign a value to a group variable gk(Tk) ∈ I for 
all Tk ∈ T , and so 1 ≤ k ≤ |T| . This assignment can be 
done sequentially for each of the types: The first type will 
always start the first group, g1(T1) = 1 . Then, the second 
type can either be assigned to the same group as the first 
type or create a new group. Continuing this way, the next 
type to be grouped can either join one of the already cre-
ated groups or start a new group. This leads to the follow-
ing constraints for 2 ≤ k ≤ |T|

Thus, any kind of combinatorial solver can be used to 
maximize the objective function (13) for the |T| integral 
variables gk(Tk) subject to the set of constraints (15). 
The vector g |T| of all the group assignments satisfying 
(15) and with the initial value g1(T1) = 1 is known as a 

(15)
1 ≤ gk(Tk) ≤ max

{

g1(T1), . . . , gk−1(Tk−1)
}

+ 1

Table 5  Grouping cost, P(G) , and grouping value, V(G) , when 
cores re-use is allowed (I) and when cores re-use is not possible 
(II)

Grouping G I:P(G) I: V(G) II:P(G) II: V(G)

{ABCD} 32 96 32 94

{ABC ,D} 34 94 34 94

{ABD, C} 20 108 36 92

{ACD, B} 20 108 20 108

{BCD, A} 32 96 32 96

{AB, CD} 34 104 34 104

{AC , BD} 34 104 34 104

{AD, BC} 34 104 34 104

{AB, C ,D} 22 106 22 106

{AC , B,D} 22 106 22 106

{AD, B, C} 24 104 24 104

{BC , A,D} 26 102 26 102

{BD, A, C} 28 100 28 100

{CD, A, B} 28 100 28 100

{A, B, C ,D} 26 102 26 102
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restricted growth function, and Stanton and White have 
established the bijection between the set of partitions and 
the set of restricted growth functions ([48], p.18-19). This 
has allowed efficient algorithms based on Gray codes to 
list all partitions of a set [49]. However, to our knowledge, 
there is no algorithm enlisting the partitions under pair-
wise inhibitions constraints (11), and so a recursive depth 
first algorithm will be developed in the following.

Recursive search under inhibition constraints
The inhibition constraint (11) translates directly to a con-
straint on the group indices for the two application com-
ponent types: gi(Ti)  = gj(Tj) . Thus, despite the negative 
conclusion regarding complexity in “Cloud application 

optimization” section, it can be possible to search larger 
application component type sets exhaustively provided 
that there are sufficient inhibition constraints available to 
limit the search to a space of tractable size.

An algorithm can be devised by considering the 
constraint (15) as defining the domain gk ⊆ I of val-
ues of the constrained group variable gk(Tk) . Thus, 
g1(T1) ∈ g1 = {1} , g2(T2) ∈ g2 = {1, 2} , and so 
forth. Let gm = [g1(T1), . . . , gm(Tm)]

T be the vec-
tor of the partial group variable value assign-
ments with m < |T| , then one has in general that 
gm+1(Tm+1) ∈ gm+1 =

{

1, . . . , 1+ sup
(

gm
)}

 , i.e. the 
upper bound of the group variable domain equal the 
upper bound of (15). A recursive depth-first search readily 

Fig. 1  The high-level schema of the reasoning process for the constrained grouping of Cloud application components
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follows by assigning values to the group variables gk(Tk) 
one by one, and for each assignment select the values of 
the next group variable from its domain one by one. The 
search will recursively descend a path through the search 
tree until the full grouping G is decided by the group value 
assignments g |T| for all the application component types T 
allowing the evaluation of the objective function (13).

The inhibition constraints are simply removing options 
from the value domains of the group variables based on the 
decisions taken by the group variables already fixed. As an 
example, consider the constraint gi(Ti)  = gj(Tj) with i < j 
and, from the sequential assignment of the group variables, 
gi(Ti) will have a value when the values for gj(Tj) will be 
assigned. The domain for gj(Tj) can then be reduced by 
removing the group index assigned to gi(Ti) leaving the 
domain as 

{

1, . . . , 1+ sup
(

g j−1

)}

\
{

gi(Ti)
}

 . The depth-
first recursion is given in Algorithm 1 and this algorithm is 
started from the second type, i = 2 with g1 = [1]T since 
g1(T1) = 1 always.

Algorithm 1 ExSearch

Grouping complexity with inhibition constraints
It is obvious that if there are no constraints, the num-
ber of groupings evaluated by the exhastive search will 
equal the Bell number, B (|T|) , as defined in “Worst case 
complexity” section. The constraints will reduce the size 
of the search space, but how beneficial the constraints 
will be depends on how the constraints are distrib-
uted among the application component types. Con-
sider for instance the situation where there are |T| − 1 
constraints and one component type is involved with 
all constraints forcing it to be allocated as a singleton, 

while the other component types can be freely grouped. 
In this case the number of groupings to search will be 
reduced to B (|T| − 1) . However, if the same number of 
constraints are distributed over almost all the compo-
nent types, the search space is not reduced that much 
because there are still plenty of legal groups that can be 
included in the grouping.

To compute the search space complexity, it is necessary 
to consider the constraint graph with the component types 
as vertices and the constraints defined as edges. The com-
plete graph, K|T| , will have |T|(|T| − 1)/2 edges, and so this 
is an upper bound on the number of inhibition constraints 
a given component set T can have. It also follows that for a 
problem with m constraints, the number of ways they can 
be chosen is given by the binomial coefficient,

This confirms that the same number of constraints can 
give many different reductions in the search space size.

An independent partition of the vertex set of a graph is a 
partition whose subsets do not contain adjacent vertices. 
This fits well with the constraint graph where the inhibi-
tion constraints define adjacent vertices, and two adjacent 
vertices should not be in the same subset, i.e., group. The 
number of independent partitions of a graph, G , is know as 
the Bell number of the graph, B (G ) [50]. Since the adja-
cent vertices have to go to different subsets, there is a clear 
relation to graph coloring. Berceanu established the Bell 
number of a graph as a weighted sum of the Bell numbers 
of the possible subset sizes weighted by the coefficients χi 
of the chromatic polynomial of the graph, χG (k) , giving 
the number of ways the graph G can be coloured with k 
colors [51]:

where the last expression was proven by Kereskényi-
Balogh and Nyul [50]. Pemmaraju and Skiena have given 
a recursive algorithm for computing the needed chro-
matic polynomial [52].

This means that even though there is no simple for-
mula for computing the effect of a number of inhibition 
constraints on the search space size of the exhaustive 
search, the search space size can be computed for a par-
ticular set of inhibition constraints. This will be done for 
the inhibition constraints of the “Evaluation” section.

(16)
(

|T|(|T| − 1)/2
m

)

(17)B (G ) =

|T|
∑

i=0

χiB (i)

(18)=
1

e

∞
∑

i=0

χG (i)

i!
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Constraint aware CSG
Grouping using CSG algorithms
The set partitioning problem can be considered as a 
Characteristic Function Game problem, as discussed 
in “Game theory: Coalition Structure Generation”  sec-
tion. A CFG consists of a set of component types and a 
value function, typically called the characteristic func-
tion, v, that assigns a real number to every group Gi ⊆ T 
representing the group’s value  [31]. The characteristic 
function is therefore a mapping v : 2|T| �→ R . It is nor-
mally assumed that the value of the empty group is zero, 
v(∅) = 0 . The value function (12) fulfils the criteria to be 
a characteristic function. We have modified the CSG IP-
algorithm by Rahwan et al. [9] to handle constraints, and 
the resulting algorithm is presented in this section.

Constraints
According to the description in “Cloud Application Opti-
mization” section, there are two aspects that can be seen 
as constraints from the CSG point of view: The first one 
is related to the inhibition constraints  (11). Inhibition 
constraints are used to validate the possible groups dur-
ing the initialization phase which means that they allow 
the algorithm to prune groups that are not legal. The sec-
ond aspect is connected with the deployment feasibility 
of the group. Resource requirement attributes r(Gi | c) 
are used during assessing feasibility of the group Gi to 
determine if there is available VM to host this group.

For some CSG algorithms, like Optimal Dynamic Pro-
gramming – Integer-Partition (ODPIP) [33], the assump-
tion that all groups are feasible is needed, because ODP-IP 
uses dynamic programming. In this case, during the valida-
tion of constraints in the initialization phase, the negative 
infinity or zero value can be used to code the infeasibility of 
some groups. The fact that infeasible groups are not deleted 
obviously influences the performance of the algorithm. It 
might even be possible that the fact that one group gives a 
negative infinity value does not exclude it from being cho-
sen for the grouping so the constraints have to be validated 
when the proposed grouping is constructed. An algorithm 
that can work without having all groups feasible should be 
faster and, most importantly, correct. This is the case of IP 
algorithm and our modifications presented in this paper.

The introduction of infeasible groups does not influ-
ence the correctness of the IP algorithm because there 
is no assumption in the original IP algorithm that all 
groups have to be feasible. The search space representa-
tion is based on the possible integer partitions and the 
recursive search of dynamic group lists. The approach 
used in the IP algorithm is based on pruning the 
unpromising integer partitions according to pre-calcu-
lated statistics. Constraints simply create more unprom-
ising integer partitions which can be pruned in the same 

way. Consequently, the fact that some groupings are not 
feasible is not the reason for not finding the best group-
ing provided that at least one feasible grouping exists. In 
the grouping of Cloud application components, at least 
one feasible grouping always exists because every com-
ponent can be deployed on a single separate VM.

Complexity
The currently best known CSG Algorithm is the ODP-IP 
algorithm and it achieves the worst complexity O(3|T|) . The 
original IP algorithm has the worst complexity O(|T||T|) , 
but it does not need to consider all groups even if they are 
infeasible, which can be a reason for it to show better per-
formance when solving the grouping of Cloud application 
components problem. It is hard to asses the expected com-
plexity as it heavily depends on the number of constraints 
and available VMs (see “Grouping complexity with inhibi-
tion constraints”  section for more details). Both ODP-IP 
and IP do not store a significant amount of data. There is 
a need to store the input data, which is estimated by the 
number of groups, 2|T| and all integer partitions of |T| . The 
number of integer partitions grows polynomially with the 
size of the component set; and currently the best group-
ing. Therefore, the space complexity is not significant com-
pared to the computational complexity.

Preprocessing: groups and bounds
The main recursion of the IP-algorithm is based on 
the Integer Partition of the number of components |T| 
to be grouped. The parts in an integer partition define 
the length of the groups in the grouping, i.e., how many 
components each group contains. The groups are there-
fore represented for this algorithm with two indices, 
Gs,i , where the s is the size of the group, s = |Gs,i| and 
i is an index. The pre-processing steps for our modified 
IP algorithm are presented in Algorithm 2.

The first step of the algorithm in line 1 is to define the set 
E containing inhibition index pairs based on the inhibition 
constraints (11). Then the set S of all possible groups in the 
power set of the application component types are generated 
in line 2 retaining only the groups that do not contain two 
inhibited component types. Recall that this algorithm runs 
after the first step of the optimization process, see Fig. 1, 
when there is a feasible configuration, c ∈ F , assigning val-
ues to all requirement attributes for all the components in 
T . The next step in line 3 is therefore to validate that there 
is a VM capable of hosting the group using a VM selec-
tion function on the combined resources required by the 
group, VM(r(Gs,i | c)) , and filter out the groups for which 
there is no corresponding VM. The maximum value bound 
for each group size is computed next. It is also necessary to 
list all the integer partitions of the number |T| , and then the 
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absolute best possible grouping value, V+ is found for the 
partition whose sum of maximum group values by size is 
the largest possible. It should be noted that it may not actu-
ally be possible to achieve the upper bound grouping value 
V+ because one or more of the best valued groups of dif-
ferent sizes may contain the same component type. These 
quantities will later be used to bound the search process.

Algorithm 2 Preprocessing

Recursion on an integer partition
An integer partition is a vector of integral numbers whose 
sum of elements equal the number to be partitioned,

Note that the parts of the partition is assumed to 
be in increasing order. The IP-algorithm constructs 
a grouping whose groups have sizes according to the 
elements of the integer partition, and with as many 
groups as there are parts in the integer partition, 
G = {Gp1,1, . . . ,GpR ,R, . . . ,Gp|p|,|p|} with all GpR ,R ∈ S 
from Algorithm 2. The grouping is constructed via a sim-
ple recursion starting from the first taking a feasible group 
of size p1 , and then take a group of size p2 , and so forth.

For each recursion level R = 1, . . . , |p| one must ensure 
that the group taken with size pR has no common component 
types with the already taken groups. This is done by consider-
ing the reduced set of components for the grouping at recur-
sion level R, that is TR = T\

(

⋃R
i=1Gpi ,i

)

 , so by deleting the 

p = {pi ∈ N+ : 1 ≤ pi ≤ |T|,
∑

pi = |T|, p1 ≤ · · · ≤ p|p|}

groups that contain already used component types, with 

T1 = T . Let CR(|TR|, pR) be the 
(

|TR|

pR

)

 combinations or 

k-subsets cR,k consisting of the unique integers 
mR,k ,j ∈ {1, . . . , |TR|} ⊂ N

+ taking exactly pR integers at the 
time. Each index combination set is taken to be enumerated 
and ordered, cR,k = {mR,k ,1,mR,k ,2, . . . ,mR,k ,pR} , with 
mR,k ,1 < mR,k ,2 < · · · < mR,k ,pR.

The recursion at level R will then form successively the 

groups GpR ,R = {Ti ∈ TR : i ∈ cR,k} for k = 1, . . . ,

(

|TR|

pR

)

 . 

For each group it will invoke the next recursion level R+ 1 with 
the new set of component types to be grouped being the 
current set of component types less the ones taken by the 
current group, TR+1 = TR\GpR ,R . At the deepest recursion 
level, R = |p| the full grouping will be known, and the value 
of the full grouping can be computed as the sum of the val-
ues of its constituting groups according to Eq.  (13). This 
basic recursion is given in Algorithm 3, which also includes 
some enhancements to be discussed next.

Algorithm 3 Search recursively an integer partition (IPRec)

Aborting the recursion
There are two main reasons for terminating early the 
recursion. One is related to the feasibility of the found 
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group with respect to the inhibition constraints and the 
group’s combined resource requirements. This is handled 
in the line 11 of Algorithm 3.

The second termination criteria is related to the value 
of the grouping. The grouping is complete if this recur-
sion level adds the last group of the grouping, and this 
new grouping has a higher value than the currently best 
group. This condition is tested in line  13. Still, for the 
grouping to be optimal for the integer partition p it must 
be within a certain distance from the theoretical optimal 
value, or it must be the best possible grouping for this 
integer partition. This is tested in line 15. If the grouping 
is not accepted as optimal, it will remain as the baseline 
group when searching further index combinations, and 
can eventually be returned as the best grouping when all 
index combinations have been searched.

Given the value of the groups in the partially con-
structed grouping, the new groups to add in the following 
recursion steps should allow the completed grouping to 
have a value higher than the currently best grouping. This 
can be assessed by the maximum group values v+ com-
puted in Algorithm 2. Since the size of the groups to be 
added by further recursion is given by the integer parti-
tion, p , the corresponding maximum group values can be 
taken from v+ , then the sum of these maximum values 
is the maximum value that can be added to the value of 
the current grouping. Thus, if the grouping value plus the 
maximum value that can be added is still less than the 
value of the best grouping, there is no need to do further 
recursions. This is tested in line 17.

The fact that the number of groupings possible grows 
like the Bell number, B (|T|) of (3), makes it impossi-
ble to search all groupings if the number of component 
types is large. Sandholm et  al. proved that the ratio of 
the best solution to the optimal solution is bounded, so 
V+/V (G+) ≤ β∗ , where β∗ ≥ 1 is the bound on this ratio 
depending on the number of groupings searched [53]. This 
user defined bound is used in Algorithm 3 line 15 to abort 
the recursion if the found grouping is acceptably close to 
the optimal value. It should be noted that setting β∗ too 
close to unity will inevitably cause all the groupings to be 
evaluated and the returned G+ to be the optimal grouping.

Equal integer partition parts
Rahwan et al. realized that the recursive search for the 
best grouping based on the integer partition can be 
improved for the case when there are multiple equal 
parts in the integer partition  [9]. Assuming that the 
index combinations are generated in lexicographical 
order, the first combinations cR,α for α = 1, ... will all 
have one as the first element, mR,α,1 = 1 . These combi-
nations will then be followed by another block of com-
binations having two as the first element, mR,β ,1 = 2 , 

and so forth. For each combination, a complete group-
ing may be formed by the following recursion if the 
groups are feasible and give a better value for the group-
ing. This means that if pR+1 = pR , then one will gener-
ate groups of the same size as in the previous recursion 
level, and if mR,β ,1 = 2 one knows that all groups of size 
pR involving the first element of TR have already been 
constructed and searched. One also knows that since 
TR+1\GpR ,R the set of objects to be grouped at recur-
sion level R+ 1 will contain the first element of TR 
since mR,β ,1 = 2 so the grouping at recursion level R 
can start from the second element of TR since the group 
GpR+1,R+1 = {(TR)2, (TR)1, . . .} should never be gen-
erated since it is equivalent to the already tried group 
GpR ,R = {(TR)1, (TR)2, . . .} assuming that the rest of the 
components in the two groups are the same. This means 
that one can, at recursion level R+ 1 , ignore the first 
element of TR+1 if mR,β ,1 = 2 . It is therefore sufficient to 
consider only the last elements of TR+1 , and by extend-
ing the above argument one may establish the lower 
bound on the first element of the index combination 
sets searched at the next recursion level, and Rawhan 
et al. proved the following relation ([9], Appendix E)

The notation is adopted to the notation of this paper 
and the combination index k was generalized to α and β 
to indicate that this index is only valid for each recur-
sion level and the result is independent of the rank of 
the combinations at each level.

More surprisingly, it is also possible to establish an 
upper bound on the pivot element, mR,k ,1 of an index 
combination. The number of component types grouped 
at recursion level R is |TR| , and all the groups at this 
level has length pR . This means that at the next recur-
sion level, R+ 1 , there are |TR+1| = |TR| − pR compo-
nent types to be grouped. The component types in a 
group are supposed to be in lexicographical order, and 
so the last group of pR+1 component types will start 
at component type index |TR+1| − (pR+1 − 1) in the 
ordered set TR+1 . This means that the largest pivot ele-
ment of any index combination at recursion level R+ 1 
is maxmR+1,β ,1 = |TR+1| − (pR+1 − 1) . Note that by 
assumption pR+1 = pR , and so by (19)

The upper and lower bound on the pivot element of 
the index combination is defined in Algorithm  3 in the 
lines 1-8.

(19)mR+1,β ,1 ≥ mR,α,1

(20)

maxmR+1,β ,1 = |TR+1| − (pR+1 − 1)

= |TR+1| − (pR − 1)

= |TR| − pR − (pR − 1)

= |TR| + 1− 2pR ≥ mR,α,1 ≥ mR−1,k ,1
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Constraint aware IP‑algorithm
Given that the recursion will only be continued in Algo-
rithm 3 line 17 if the following groups have the potential 
to make the value of the grouping larger than the cur-
rently best group, it will be beneficial to search the group-
ings whose group sizes are given by an integer partition of 
|T| , according to the order of the largest theoretical group-
ing value based on the upper bounds on each of the group 
values calculated in Algorithm 2 line 5. This is the main 
loop of the Algorithm 4 in line 3 scanning the sorted set P 
of all possible integer partitions of |T| . The groups whose 
lengths are given by an integer partition will be recursively 
searched only if the partition has the potential to return 
a larger grouping value than the currently best grouping.

Algorithm 4 Constraint aware integer partition search

Evaluation
The optimization algorithm must be able to handle con-
straints and generate valid groupings that satisfy these 
constraints. Efficient handling of constraints can signif-
icantly reduce the search space, making it easier to find 
an optimal solution in a reasonable time. Therefore, the 
ability to handle grouping constraints is crucial and it is 
the main focus of this evaluation.

Methodology and setting
The experiments were conducted on various sizes of 
applications in terms of the number of component types 
and requirements attributes representing different con-
figurations c . All tested configurations are presented in 
Table  7. The experiments were conducted on two sets 
of available Node Candidates presented in Tables 2 and 
Table  6. The details of the setup and the summary of 
the results are presented in Table 8. All tests were per-
formed assuming that sharing cores and ram sharing is 
not allowed to make the problem more difficult. Fur-
thermore, various numbers of constraints were used to 

assess the performance, starting from zero constraints 
and up to the maximum possible number of constraints, 
calculated as (|T| · (|T| − 1))/2 . There are a maximum 
of 20 possible constraints for an application with seven 
components, 44 for an application with ten components, 
and 104 for an application with fifteen component types.

Three algorithms were used to solve the grouping 
problem: 

1.	 the modified IP algorithm presented in “Constraint 
aware CSG” section as Algorithm 4,

2.	 the state-of-the-art Optimal Dynamic Programming 
– Integer-Partition (ODP-IP) [33] algorithm,

3.	 the exhaustive search of Algorithm  1 treated as the 
baseline and a complexity marker.

The focus of the evaluation was on assessing the perfor-
mance in terms of handling constraints and the unavail-
ability of certain groups. To assess the performance and 
account for the inhibition constraints, the algorithms 
were tested on different numbers of randomly generated 
inhibition constraints. To ensure a broader scope of cases, 
100 sets of randomly generated constraints for each possi-
ble number of constraints were evaluated for experiments 
with seven and ten components, and 10 sets of randomly 
generated constraints were evaluated for the experi-
ments with a 15-component application. The constraints 
were generated by first creating a list of all possible pairs 
of numbers from zero to |T| , then shuffling the pairs in a 
random order using Java method Collections.shuffle12, and 
after that picking the first k pairs, where k is the desired 
number of constraints. This approach with various sets 
of randomly generated constraints allows us to obtain 

Table 6  Available Virtual Machines (VMs) (bigger set)

VM Name CPU RAM Price

VM1 1 1 1

VM2 1 2 2

VM3 2 2 3

VM4 2 4 4

VM5 4 4 6

VM6 4 8 8

VM7 8 8 12

VM8 8 16 16

VM9 16 16 24

VM10 16 32 32

VM11 32 32 48

VM12 32 64 64

12  https://​docs.​oracle.​com/​javase/​6/​docs/​api/​java/​util/​Colle​ctions.​html

https://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
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a better understanding of the impact of inhibition con-
straints on the available groups and the resulting optimal 
grouping. Therefore, the results presented in this section 
are based on a comprehensive evaluation of multiple con-
straint sets, rather than a single set, which increases the 
confidence in the findings.

To account for the second factor that influences the 
number of feasible groups, the algorithms were tested 
on different application configurations c , presented in 
Table  7. Figure  2 shows how the inhibition constraints 
limit the available groups. It presents a box-and-whisker 
plot for all possible constraints where each vertical line 
is for a given number of constraints, starting from zero 
constraints. For zero constraints, the only infeasibility 
comes from the limited VM offers. For more constraints, 
the number of available groups decreases eventually 
down to |T| groups so only singletons are available for the 
maximum possible number of constraints.

Figure  2a presents the available groups for the same 
configuration c1 of the seven-component application 
calculated for a smaller set of available VMs presented 
in Table 2 (red boxes), and a larger set of available VMs 
presented in Table  6 (orange boxes). The difference in 
the feasibility of the groups comes only from the availa-
ble Node Candidates. For the case with zero constraints, 
all groups are feasible for the larger set of Node Can-
didates and only 72% of the groups are feasible for the 
smaller set of Node Candidates. However, when some 
constraints are introduced, the available Node Candi-
dates have a much lower impact on the number of avail-
able groups.

Figure  2b presents the available groups for two con-
figurations of the ten-component application, c2, c3 , and 
the set of Node Candidates from Table  2. For 10 com-
ponents, there are 210 = 1024 groups if there is always 
a VM capable of hosting the group. The first configura-
tion, c2 , marked by red boxes, involved various resource 
requirement attributes to imitate bigger and smaller 
components and it aims to be more realistic. For this 
configuration, for zero constraints, there are around 320 
available groups. It means that almost two-thirds of the 
groups are not available only because of the VM resource 
limitation and no inhibition constraints. The second con-
figuration, c3 , marked by orange boxes, involved smaller 
components. It represents a case when resource con-
straints on available VMs are not an important factor and 
almost all groups are available when no inhibition con-
straints are applied. This example highlights the impact 
of resource requirements attributes. Also, one can note 
that only one inhibition constraint reduces the number of 
available groups by 30%.

Best grouping value
As for the value function, we used (12) that was presented 
in “Grouping approach” section. The available groups and 
hence the best grouping are influenced by the resource 
attribute requirements, available offers, and inhibition 
constraints. The available offers and resource attribute 
requirements do not change for the first experiment case, 
so only the introduction of inhibition constraints limits 
the available groups and changes the optimal grouping. 

Table 7  Tested configurations c with various component requirements for applications with seven ( c1 ), ten ( c2 and c3 ), and fifteen ( c4 ) 
component types

7 components: c1 10 components: c2 10 components: c3 15 components: c4

 Component Name CPU RAM CPU RAM CPU RAM CPU RAM

A 1 4 6 10 1 1 6 10

B 2 2 2 4 1 2 2 4

C 2 8 1 3 1 2 1 3

D 3 6 1 2 1 3 1 2

E 3 12 3 2 2 2 3 2

F 4 8 7 18 2 3 7 18

G 6 12 1 2 2 4 1 2

H - - 12 20 3 3 12 20

I - - 6 14 3 4 6 14

J - - 2 2 3 6 2 2

K - - - - - - 3 18

L - - - - - - 1 1

M - - - - - - 12 24

N - - - - - - 16 14

O - - - - - - 2 8
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Figure 3 shows the grouping value, calculated as (13), for 
the configuration c2 of a ten-component application, for 
cases with zero inhibition constraints up to the maximum 
available number of inhibition constraints. It is a box-
and-whisker plot where one box represents all cases with 
the same number of constraints. For zero constraints, 

there are plenty of available groupings, resulting in the 
highest possible grouping value of 238. As the number of 
constraints increased, the grouping value decreased. This 
is a natural consequence of some groups becoming infea-
sible, leading to limited potential cost savings. It should 
be noted that the optimal grouping without inhibition 

Fig. 2  The total number of available groups for the various numbers of randomly generated constraints for two sets of available Node Candidates 
for a seven-component application (a) for the same configuration c1 of a seven-component application for a smaller (red boxes) and larger (orange 
boxes) set of available Node Candidates. The infeasibility of the groups comes only from the limited offers, and for the smaller set of available Node 
Candidates, the number of feasible groups is lower; and for two different configurations of a ten-component application (b) for two configurations 
of a ten-component application: configuration c2 (red) and c3 (orange). The difference in the infeasibility of the groups comes from the resource 
requirement attributes, which are smaller for c3, so there are more feasible groups for this configuration. Each vertical line is for a given number 
of constraints, starting from zero up to the maximum number of possible constraints
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constraints gives 19% higher value than the deployment 
of all components into individual VMs, which highlights 
the benefits of grouping. The improvement of the utility 
achieved by the optimal grouping is presented in Table 8 
in the last column of the summary of experiments results.

Experiments
For all algorithms, different environments were used to 
perform experiments. In particular:

•	 the modified IP algorithm was implemented as a part 
of the MORPHEMIC project13,

•	 ODP-IP algorithm [33] with the implementation pro-
vided by authors on Github14. The algorithm expects 
to have all groups available so we encoded infeasible 
groups as groups with zero value,

•	 and exhaustive search algorithm presented in 
“Exhaustive search”  section which was run on the 
Mathematica implementation provided by the 
authors of this paper.

To objectively measure the algorithms’ performance 
across various implementation environments, a specific 
metric was utilized: the number of evaluated grouping 
propositions. It is important to note that this metric is appli-
cable even when different implementation environments 
are used. If an algorithm needs to enumerate all possible 
groupings, the value of the counter should be equivalent to 

the Bell number. This is the case for the exhaustive search 
algorithm with no VM limitations applied.

Due to the space limit, we present only two Figures 
with detailed results, and we summarize the overall 
results in Table  8. We performed seven experiments on 
various resource requirements, number of components, 
sets of available VMs, and all possible numbers of inhi-
bition constraints. In each experiment, there were 10 or 
100 randomly generated sets of constraints for each pos-
sible number of constraints, which resulted in a range 
from 14000 to 45000 test cases conducted for one experi-
ment. We note that both CSG algorithms were able to 
find the optimal grouping for all cases. The column Best 
IP in Table 8 was calculated by counting the number of 
groupings constructed for each case by all algorithms, 
then taking the mean and comparing the means of all 
three algorithms. The percentage indicates for how many 
cases the modified IP algorithm constructed the lowest 
number of groupings from all three algorithms. It can be 
seen that the modified IP algorithm constructed a lower 
number of groupings at least for 58% cases, but for exper-
iments on a seven-component application, the modified 
IP algorithm was always outperforming the state-of-
the-art ODP-IP algorithm and the exhaustive search 
algorithm.

Values of the IP speedup column was calculated by tak-
ing means of the numbers of constructed groupings for 
each number of constraints and taking the ratio between 
the modified IP algorithm and ODP-IP algorithm. For 
all experiments, the modified IP algorithm on average 
created at least 9.0 fewer groupings, but for the biggest 

Fig. 3  The utility value of the best grouping for the configuration c2 , for the randomly generated constraints from zero to 44. The more constraints 
are introduced, the value of the best grouping is decreased

13  https://​gitlab.​ow2.​org/​melod​ic/​group​ing/-/​tree/​main
14  https://​github.​com/​trahw​an/​ODP-​IP

https://gitlab.ow2.org/melodic/grouping/-/tree/main
https://github.com/trahwan/ODP-IP
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experiment, the modified IP algorithm was on average a 
couple of thousands of times faster than ODP-IP algo-
rithm. Finally, the Utility improvement column presents 
the benefits of the grouping itself. For all experiments, 
the optimal grouping gives higher utility than the deploy-
ment of each component on a single VM. This improve-
ment, calculated in percentage, is presented in the last 
column of Table 8.

Figure  4 shows the results of the experiment (3) and 
Fig. 5 shows the results of the experiment (5), where two 
different configurations of a ten-component applica-
tion were tested. Figures show the number of groupings 
checked during the search for the best grouping for all 

evaluated algorithms and problems with from zero to 44 
randomly generated constraints. It is a box and whisker 
plot where the blue boxes are results of ODP-IP algo-
rithm, red boxes are results of the modified IP algorithm, 
and green results are results of the exhaustive search 
algorithm. It should be noted that the number of group-
ings checked is presented on a logarithmic scale. It is 
important to note that the exhaustive search algorithm 
evaluates significantly more groupings than both the 
modified IP and ODP-IP for cases with the lower number 
of constraints, and for the fifteen-component application, 
obtaining the result took prohibitively long. This leads to 
the conclusion that presenting the grouping problem as 

Fig. 4  The number of groupings evaluated by ODP-IP, modified IP, and the exhaustive search algorithms for the experiment (3), where there are 
many infeasible groups due to limited VM offers, with the increasing number of randomly generated grouping constraints, starting from zero 
up to 44 constraints. The number of groupings created is presented on a logarithmic scale

Table 8  The summary of conducted experiments. There were seven experiments performed on various configurations and available 
VMs. Results present for how many cases the modified IP algorithm performed better than the state-of-the-art ODP-IP algorithm (Best 
IP), and how much faster the modified IP algorithm was on average (IP speedup). The last column (Utility improvement) presents 
the benefits of grouping as the percentage difference between the best-achieved utility compared to the situation where each 
component is hosted on a separate VM

Experiment setup Results

 ID |T| c VMs Table Repetitions Best IP IP speedup Utility 
improvement

1 7 c1  2 100 100% 11.58 7.5%

2 7 c1  6 100 100% 9.00 2.9%

3 10 c2  2 100 78% 74.18 19%

4 10 c2  6 100 71% 27.84 6.5%

5 10 c3  2 100 73% 24.24 2.9%

6 10 c3  6 100 58% 17.63 0.8%

7 15 c4  2 10 64% 3641.22 2.9%
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a CSG problem and using the best algorithms from this 
field can yield good results and make the grouping prob-
lem solvable for a larger number of components. Also, 
the ODP-IP algorithm has a bigger variance for larger 
problems in terms of the number of available groups, like 
for the experiment presented in Fig.  5. It makes it less 
predictable in terms of the final complexity.

The results indicate that the ODP-IP algorithm may 
be faster for cases with a small number of constraints. 
It means that it may be better to use ODP-IP for almost 
unconstrained cases, which confirms the fact that it is a 
state-of-the-art algorithm. However, for cases with 10 or 
more constraints, the modified IP evaluates on average 
a lower number of groupings, making it more efficient 
as the number of constraints increases. For the extreme 
case, when each component has to be placed on a sepa-
rate VM, the modified IP algorithm evaluates only this 
one possible grouping while ODP-IP algorithm evaluates 
more than 500 possible groupings, and for fifteen-com-
ponent applications, ODP-IP algorithm evaluates more 
than 16000 possible groupings while only one grouping is 
actually feasible.

Discussion
The results of experiments presented in “Evaluation” sec-
tion lead us to the conclusion that the proposed approach 
for solving the constrained grouping problem is efficient 
and is able to find the best Cloud application component 
placement. Furthermore, the presented modifications 

of IP algorithm lead to better performance of this algo-
rithm comparing to the ODP-IP algorithm. Even though 
the ODP-IP algorithm can be up to eight times more 
efficient for cases with a small number of constraints 
and hence many available groups, the modified IP algo-
rithm constructs fewer groupings for the majority of the 
cases. One can note that for more complex experiments, 
the superiority of the modified IP algorithm is lower, but 
still the modified IP algorithm evaluated up to 3000 less 
groupings than the ODP-IP algorithm. Another inter-
esting result is the observation that even one constraint 
can reduce the number of available groups by 30%. This 
observation can suggest to the application owner an easy 
way to limit the complexity of optimization of the Cloud 
application.

It is important to note the novel value function for cost 
minimization introduced in this paper. It is not trivial 
how to define a value function over a group that is a char-
acteristic function, and that will consider cost minimiza-
tion and for which the value for the grouping should be 
maximized. One can think about the simplest function, 
the negated price −P(Gi) . However, not all algorithms 
allow for having negative group values. Many algorithms 
can handle negative values in the theory, but the existing 
implementations are assumed to work only on positive 
values. Therefore, the introduced value function can be 
seen as a significant contribution. We did not consider 
the performance or latency consequences of the grouping 
since it heavily depends on the application characteristics 

Fig. 5  The number of groupings evaluated by ODP-IP, modified IP, and the exhaustive search algorithms for the experiment (5), where almost all 
groups are feasible, with the increasing number of randomly generated grouping constraints, starting from zero up to 44 constraints. The number 
of groupings created is presented on a logarithmic scale
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and communication network while cost minimization is 
the common goal of all Cloud deployments.

One must be aware that the complexity of the con-
strained optimization problem is NP-complete in 
general so adding the additional step of solving the 
grouping problem just increases the overall complex-
ity. However, the two-step optimization approach pre-
sented in this paper keeps the overall complexity small 
enough to be able to solve the problems for a reasona-
ble number of components. The experiments presented 
in this paper were conducted for applications with 
seven, ten, and fifteen component types, but we esti-
mate that it should be possible to solve this problem for 
an application with up to fifty component types, which 
is more than the number of component types for a typi-
cal Cloud application15.

This paper has not considered the outer optimiza-
tion to assign the optimal resource requirements for 
the application components. The presented approach 
expects that the resource requirements attributes are 
given as input, and that they are correct and accurate. 
In this work, authors designed the process of finding 
the best VMs for Cloud application deployment to be 
integrated with the MORPHEMIC platform. MOR-
PHEMIC aims on finding the best resource configura-
tion for Cloud application components under varying 
execution context  [3], so this limitation is mitigated by 
this integration.

Conclusion and future work
This paper has proposed a novel approach for solving 
the constrained grouping problem for Cloud applica-
tion components deployment and optimization. The 
approach involved a two-step optimization process, 
where the first step involved finding the best resource 
requirements for the application component types, and 
the second step involved finding the best possible set 
of VMs and grouping the components to minimize the 
overall cost. This approach is the first representation of 
the Cloud application components grouping problem 
as CSG problem.

Furthermore, a novel cost saving value function was 
introduced. It is used for representing the cost mini-
mization goal using only positive values that can be 
summed up to calculate the overall grouping value (13). 
This function enables the cost benefits from the group-
ing of Cloud application components, and it does not 
contradict a utility function used to find the applica-
tion components’ optimal resource requirements. 
The value function satisfies the criteria of being a 

characteristic function, allowing the CSG algorithms 
to solve the grouping problem. Finally, this paper 
developed a modified IP algorithm that is able to han-
dle collocation constraints. The modified IP algorithm 
was evaluated and it outperformed the state-of-the-art 
algorithm by dozens of times for most of the cases. The 
proposed approach was able to find the best compo-
nent grouping efficiently, Overall, these results dem-
onstrate the effectiveness of the modified IP algorithm 
in solving the Cloud application optimization problem, 
particularly for cases with a large number of inhibition 
constraints where it can be even thousand times more 
efficient in terms of constructed groupings than state-
of-the-art ODP-IP algorithm.

The presented approach is being implemented as a part 
of the MORPHEMIC Cloud application management 
and optimization platform, which will allow for further 
evaluation and experimentation with real-world business 
applications, which may help assessing the signifance 
of limitations related to the complexity of the grouping 
problem.

The limited sets of VMs used in the experiments 
serve the purpose of assessing the usability of this 
approach to solve the grouping problems in the Cloud 
continuum, which is one of the open resource optimi-
zation problems, as it was stated by Bittencourt  et al. 
[7]. Authors will be integrating the presented approach 
with the NebulOus platform16, which is a meta-oper-
ating system for applications deployed in the Cloud 
continuum  [54]. Further experiments are planned to 
be conducted after this integration, involving users of 
the platform.

Furthermore, there are many ideas about how to pro-
gress the research in the area of grouping. For instance, 
a constrained CSG problem can possibly be seen as a 
combinatorial auction, where it is possible to bid on the 
combinations of items, i.e., the groups Gi , to find the 
best package, G . A combinatorial auction can be solved 
in polynomial time in terms of the number of feasible 
groups [55], and so if the number of feasible component 
groups is smaller than around 10% of all possible groups, 
the combinatorial auction algorithms may have better 
complexity than CSG algorithms. It might be possible to 
develop a hybrid meta-algorithm that will decide which 
algorithm should be used to solve a particular grouping 
problem: ODP-IP, modified IP, or possibly also a combi-
natorial auction algorithm.

To conclude, the proposed approach is promising for 
optimized constrained Cloud application management, 
and future research and development in this area may 

15  https://​www.​jrebel.​com/​blog/​2021-​micro​servi​ces-​devel​oper-​report 16  https://​nebul​ouscl​oud.​eu/

https://www.jrebel.com/blog/2021-microservices-developer-report
https://nebulouscloud.eu/
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further improve the efficiency and effectiveness of Cloud 
applications.

Appendix A Summary of the notation
Table 9 provides the summary of the notation used in the 
paper.

Table 9  The summary of the notation used in the paper, including 
the notation used in the modified IP algorithm

Symbol Description

T The set of application components.

Ti A component.

|T| The number of components.

Gi A group.

G A grouping.

G
∗ An optimal grouping.

AT The set of component’s T resource 
requirements attributes.

aT ,i ∈ AT A resource requirements attribute 
for component T.

VT ,i A domain of attribute aT ,i.

VT The variability space for component 
T.

V The configuration search space.

c ∈ V An application configuration.

c∗ ∈ V The optimal configuration.

tk The point in time.

θ(tk) An execution context vector.

F

(

θ(tk), ψ̂ [c, θ(tk)]

)

A feasible space.

U
(

c,ψ(c, θ(tk))
∣

∣ θ(tk)
)

The utility function.

gk A group variable (exhaustive search 
algorithm).

I(T |G) An index function.

E The set of exclusions.

r(Gi |c) A resource function.

VM(r(Gi |c)) The VM capable of hosting 
the group Gi.

P(G) The price of the grouping G.

P(Gi) The price of the cheapest VM capa-
ble of hosting the group Gi.

P+ The cost of the most expensive 
available VM.

|Gi | The cardinality of Gi.

v(Gi) The value of Gi.

S The set of groups.

V(G) The value of G.

V∗ The upper bound on V(G∗).

V− The lower bound on V(G∗).

G
+ The best grouping found so far.

β∗ The bound within which any solu-
tion is acceptable.

Symbol Description

v+ A vector of maximum group values 
by group size.

v̄ A vector of average group values 
by group size.

p An integer partition of |T|.

R A recursion depth of search in modi-
fied IP algorithm.

TR The component types that are 
yet to be grouped.

mR−1,k ,1 The first pivot element of R − 1 
combination.

CR(|TR|, pR) The binom combina-
tions of the unique integers 
mR,k,j ∈ {1, . . . , |TR|} ⊂ N

+.
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