
Różańska and Horn ﻿
Journal of Cloud Computing (2024) 13:99
https://doi.org/10.1186/s13677-024-00653-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Constrained optimal grouping of cloud
application components
Marta Różańska1* and Geir Horn1* 

Abstract 

Cloud applications are built from a set of components often deployed as containers, which can be deployed
individually on separate Virtual Machines (VMs) or grouped on a smaller set of VMs. Additionally, the application
owner may have inhibition constraints regarding the co-location of components. Finding the best way to deploy
an application means finding the best groups of components and the best VMs, and it is not trivial because of the
complexity coming from the number of possible options. The problem can be mapped onto may known com-
binatorial problems as binpacking and knapsack formulations. However, these approaches often assume homo-
geneus resources and fail to incorporate the inhibition constraints. The main contribution of this paper are firstly
a novel formulation of the grouping problem as constrained Coalition Structure Generation (CSG) problem, includ-
ing the specification of the value function which fulfills the criteria of a Characteristic Function Game (CFG). The
CSG problem aims to determine stable and disjoint groups of players collaborating to optimize the joint outcome
of the game, and a CFG is a common representation of a CSG, where each group is assigned a value and where the
value of the game is the sum of the groups’ contributions. Secondly, the Integer-Partition (IP) CSG algorithm has been
modified and extended to handle constraints. The proposed approach is evaluated with the extended IP algorithm,
and a novel exhaustive search algorithm establishing the optimum grouping for comparison. The evaluation shows
that our approach with the modified algorithm evaluates on average significantly less combinations than the CSG
state-of-the-art algorithm. The proposed approach is promising for optimized constrained Cloud application manage-
ment as the modified IP algorithm can optimally solve constrained grouping problems of attainable sizes.

Introduction
Cloud applications are by definition distributed appli-
cations consisting of multiple, communicating compo-
nents often deployed as containers [1]. More and more
applications are hybrid Cloud applications meaning that
the application components are deployed to different
Cloud infrastructures, private infrastructures, and on
heterogeneous hardware provided by dedicated comput-
ing devices close to the sensors for applications collect-
ing and processing data from sensors. Furthermore, each

application component has resource requirements and
dependencies on the data location. Also, an application
component may depend on a timely data flow with other
components or external data sources. Cloud application
components can be deployed individually on separate
Virtual Machines (VMs) or grouped on a smaller set of
Virtual Machines (VMs), “Edge”, and “Fog” nodes in the
computing continuum [2].

Finding the best way to deploy and manage distributed
Cloud applications over multiple Cloud providers is a
complex optimization problem [3]. Solving this optimi-
zation problem means finding the best application con-
figuration so that the application utility is maximized
by the deployment and subject to the operational con-
straints set for the application. It is well known that the
utility of an application is essential to guide autonomic
decisions related to the application configuration or its

*Correspondence:
Marta Różańska
martaroz@ifi.uio.no
Geir Horn
Geir.Horn@mn.uio.no
1 University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00653-5&domain=pdf

Page 2 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

deployment [4], and rational economical agents should
maximize their utility [5].

This optimization problem can be decomposed into a
two-stage approach. One first decides on the constrained
attribute values of the components to be deployed, and
then uses these values to filter the available VMs selecting
only the VMs that can be used to instantiate each compo-
nent type [3]. The grouping can of benefit be combined
with the selection step. The problem is then to parti-
tion the set of components into a set of non-overlapping
groups and then for each group (subset) select one of the
available VMs that gives the highest utility for the appli-
cation owner.

There could be several reasons for grouping to be
beneficial. An application with temporal workflow
dependencies among the application components will
benefit from grouping components from various stages
of a workflow path into one execution group. This one
execution group can use and re-use a single VM for
executing the chain of components one after the other
thereby avoid data communication delays. It is particu-
larly important for time-sensitive workflows, where the
workflow must be executed as fast as possible, like work-
flows processing medical data [6]. Secondly, a group-
ing of application components can be beneficial where
a set of components processes data from the same data
source. Grouping will then minimize data traffic outside
the VM and minimize latency in the data access and the
communication between the application components,
and hence improve the application performance. It is
beneficial for latency-sensitive applications, like stream-
ing or gaming applications, which are becoming more
and more popular. Thirdly, deploying only one applica-
tion component per VM may inherently waste resources.
Consider the case where a component requires 5 cores to
run, but there are only VMs available with 4 or 8 cores.
Hence, only the larger VM can be used, and one will
save cost by deploying also a smaller application compo-
nent requiring only two or three cores to the same VM,
if such a component type exists in the application. All
these aspects are relevant for the applications deployed
in the computing continuum, where the efficient use of
resources is crucial [7].

The grouping of application components can be
approached in two ways:

1.	 One may first select the VMs to use, and then deploy
the components in an optimal way over the selected
machines; or

2.	 One may first group the components and then select
the appropriate VMs providing enough resources to
host the various groups of components.

From a datacentre point of view the machines are not
virtual, and therefore datacentre management must be
based on the first approach, which has then been carried
over to Cloud resource management solutions [8], such
as Kubernetes1. The second approach gives more free-
dom to the optimization process. It allows for situations
where the application will be deployed to many different
Cloud providers offering different VM types, or where
the available VM types may change over the application
lifetime. The second approach will better support appli-
cation management from the application owner perspec-
tive where the number of Cloud provider deployment
offers is almost countless. Furthermore, according to the
authors’ knowledge, the second approach was not inves-
tigated before. The second approach is aligned with the
modern Cloud application optimization approaches like
the Multi-cloud Execution ware for Large scale Optimised
Data Intensive Computing2 (MELODIC), which are used
to manage Cloud applications deployed in hybrid Cloud
settings where hardware accelerators and Cloud platform
services are included as application component deploy-
ment options [3]. The second approach to the grouping is
therefore the main focus in this paper.

The main contribution of this paper is a new approach
for solving the constrained grouping problem for Cloud
application deployment and optimization. It is a two-
stage process where not only the best placement of com-
ponents into VMs is found, but also the best set of VMs.
The grouping problem is then formulated as Coalition
Structure Generation (CSG) problem. According to the
authors’ knowledge, the algorithms from the CSG field
have not been used for Cloud application components
management before. To solve this grouping problem,
the authors propose a novel cost-saving function which
allows the use of algorithms defined for Characteristic
Function Game (CFG) type of CSG.

Finally, we have extended the CSG Integer-Partition
(IP) [9] algorithm to include inhibition constraints. We
also present a novel restricted growth function exhaus-
tive search algorithm, which is guaranteed to gener-
ate all possible combinations of component groups and
provides the baseline for evaluation our CSG IP algo-
rithm . A thorough and realistic evaluation shows that
our modified IP outperforms the state-of-the-art vanilla
algorithms for a larger number of grouping restrictions
among the application components, and for some experi-
ments for all of the tested cases. The number of con-
structed groupings by the modified IP algorithm is much
lower than by the state-of-the-art CSG algorithm, and
thousands of times lower than by the exhaustive search.

1  https://​kuber​netes.​io/
2  https://​melod​ic.​cloud/

https://kubernetes.io/
https://melodic.cloud/

Page 3 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

It means that the decision on the constrained grouping of
Cloud application components can be optimal for appli-
cations composed of more components. The constrained
grouping gives more optimal deployments in terms of
both cost and performance, hence a better overall opti-
mization of Cloud applications.

Since the application component grouping problem
can be mapped onto multiple well studied combina-
torial optimization problems, this paper starts with a
formal definition of the grouping problem and its com-
plexity in “Grouping background” section and gives an
overview of relevant approaches and results from the
literature. This section makes the paper comprehen-
sive and self-contained, but can be omitted on a first
reading as it is only a background for understanding
the optimization problem defined in “Cloud application
optimization” section and the grouping approach in
“Grouping approach” section. “Exhaustive search” sec-
tion derives our exhaustive search algorithm and pro-
vides an analysis of the complexity leading to a method
for computing the complexity of a given grouping
problem with inhibition constraints among the appli-
cation components. This section provides the baseline
for the evaluation, and may be omitted on a first read-
ing if one is only interested in the evaluation of our
approach. “Constraint aware CSG” section provides a
detailed exposition of our constraint aware CSG algo-
rithm, and this quite technical section is a reference for
anyone interested in replicating our thorough evalua-
tion results presented in “Evaluation” section. Finally,
the discussion of the results and the future work are
presented “Discussion” and “Conclusion and future
work” sections.

Grouping background
In this section, we present the related problems and algo-
rithms for the set partitioning problem that can possibly
be used for the constrained optimal grouping of Cloud
application components. Also, existing algorithms and
approaches to optimize the Cloud application compo-
nents with inhibition constraints and possible limited
VM offering are discussed. We note that the majority of
approaches are focused on scheduling or management on
the given fixed set of resources or on the given cluster of
VMs while the approach presented in this paper aims to
decide on both the application components placement
and the best VMs to host them. The approach presented
in this paper makes the problem more complex, but also
more realistic because both decisions must be made to
perform the optimal deployment of Cloud applications.
We present a few papers we managed to find in this area
as well as the Cloud application management approaches
we found.

Grouping model
The Cloud application components can be deployed
individually on separate VMs or grouped together on a
smaller set of VMs. The grouping G is a partitioning of
the set of component types into exhaustive and disjoint
groups, G = {G1, . . . ,G|G|} In other words, for an index
set I ⊂ N

+ where inf(I) = 1 , the goal is to find a group-
ing G = G1, . . . ,G|I| so that T = ∪i∈IGi with disjoint
groups, i.e. Gi ∩Gj = ∅ for i = j , maximizing the total
value of the groups

The least number of groups in the grouping is the single
group identical to T , and the most groups that can parti-
tion the application component type set T is the group-
ing where each group has one single component type as
a member. Hence, the number of groups in the partition
must fulfil 1 ≤ |I| ≤ |T|.

Once the requirement attributes of the various applica-
tion components have been decided, the components can
potentially be grouped together on the best fitted VMs, if
there is at least one VM that is capable to host each group.

The selection of the VM to host the group is defined by
the combined attributes of the application components in
the group: An allocation of a group to a VM is feasible if the
combined resource requirements of the assigned attribute
values of the components in the group do not exceed the
resource capacity of the VM in any resource dimension.

The requirement attributes for components are decided
at the type level, so it is sufficient to know the component
types of the components in a group to decide on the VM
capable of hosting the group. Hence, the grouping done
at the type level has the consequence that the size of a
grouping |G| must be less or equal the number of types,
i.e. |Gi| ≤ |T| . Furthermore, one can note that the differ-
ent groups possible is the power set of the set of compo-
nent types less the empty set, G ∈ 2T\∅ , and the number
of different groups is therefore one less than the size of
the power set: 2|T| − 1 . It is therefore theoretically possi-
ble to enumerate a priori all the different groups that can
be formed for an application having less than around fifty
different component types T.

Worst case complexity
The complexity of finding the optimal grouping depends
on the search strategy used, and it is therefore impossi-
ble to state the complexity in generality. However, in the
worst case, an exhaustive search is needed to evaluate all
possible ways to partition the set of application compo-
nent types as the optimal partition can only be found by
assigning a value to each partition and then ranking the
values of the partitions.

(1)maxV (G)

Page 4 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

Let the number of groups in the partition be fixed as |I| ,
then the number of ways the |T| application component
types can be grouped into |I| groups is given by the Stir-
ling number of the second kind ([10], p. 73-76):

where

is the binomial coefficient with the recursive form (2)
better supporting computation with integer arithmetic.
Adding the Stirling number of the second kind together
for all the possible number of groups there can be in the
partition, or the grouping, gives the total number of par-
titions one can create from the set T . This is known as
the Bell number B (|T|) from being discussed by E. T.
Bell [11]:

where the recursive formula (4) was proven by Rota [12];
the form (5) was given by Dobinski [13]; the finite series
expansion (6) was given by Comtet [14], and the upper
bound (7) was recently established by Berend and
Tassa [15]. If the size of the application component type
set |T| is not too large, the Bell numbers can be com-
puted3 with polynomial complexity by combining the

S2(|T|, |I|) = |I|S2(|T| − 1, |I|)+S2(|T| − 1, |I| − 1)

=
1

|I|!

|I|
∑

i=0

(−1)|I|−1

(

|I|

i

)

i
|T|

(2)

(

|I|

i

)

=
|I|!

i!(|I| − i)!

=

[

(|I| + 1− i)

(

|I|

i − 1

)]

/

|I|

(3)B (|T|) =

|T|
∑

k=1

S2(|T|, k)

(4)=

|T|−1
∑

k=1

(

|T| − 1

k

)

B (k)

(5)=
1

e

∞
∑

k=1

k |T|

k!

(6)=

⌈

1

e

2|T|
∑

k=1

k |T|

k!

⌉

(7)<

(

0.792 · |T|

ln (|T| + 1)

)|T|

recursive binomial coefficient (2) with the recursive for-
mula (4).

It is useful to obtain the Bell number for a particular set
of application components to ensure the time feasibility
of solving directly the grouping problem by an exhaus-
tive search since the number of possible groupings grows
exponentially as the Bell number with the size of the set
of application components |T|.

Group Technology
A similar problem to the one described in this paper
existed for many years and it was known in the man-
ufacturing industry as Group Technology [16]. It is a
manufacturing technique where there are machines
and there are parts that should be prepared with the
use of these machines. The goal is similar to the group-
ing of VMs which means to find the set of groups called
families and a set of parts called cells that should be
executed together. One can map cells to component
groups and families to VMs. However, the machines in
Group Technology are physical hence they have limited
cardinality whereas the infinite elasticity promised by
Cloud providers lifts this limitation. The solutions to
these problems such as Production Flow Analysis [17]
were firstly designed to be solved manually, without
computers. Then some computer techniques were also
applied, and the problem was formulated as the Set
Partition Problem.

Allocation
Given the first approach mentioned in “Introduc-
tion” section to optimization where one first will select
the VMs to be used by the application, one may con-
sider the optimized grouping problem as an allocation
problem [18]. In this case the application component
instances are allocated to a predefined subset of the avail-
able VMs since the number of available VMs offered by
the available Cloud providers make the optimization
problem prohibitively large. However, if one would like to
optimize the allocation, it will be better to use bin pack-
ing algorithms.

Bin packing
Bin packing minimizes the number of VMs used for
hosting the given set of components, i.e. minimize the
bins to pack. There are many algorithms that can be
used to approximate the optimal packing [19]. Bansal
et al. have derived the currently best algorithm for
homogeneous VMs where the aim is to pack the com-
ponents on as few VMs as possible [20]. To the authors’
knowledge, the best algorithm for heterogeneous VMs

3  The authors have a C++ implementation available on request.

Page 5 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

that also allows associating a cost to the various bin
types available, i.e. the VMs, with the goal of mini-
mising the total cost of the bins is the approximation
scheme due to Patt-Shamir and Rawitz [21].

Multidimensional Knapsack Problem
One may alternatively consider the optimization as a
knapsack problem [22], or more specifically as a mul-
tidimensional knapsack problem given that the com-
ponents to be grouped have resource requirements in
multiple dimensions. There are many heuristics pro-
posed for this kind of problems [23]. However, the
problem at hand is known as a Multiple Multidimen-
sional Knapsack Problem (MMKP) since it is necessary
to pack all the VMs at the same time. This variant of
the knapsack problem has received little attention, but
Yi and Cai have proposed a polynomial time approxi-
mation [24], and Song et al. have, to our knowledge,
developed the only exact algorithm available [25]. The
use of MMKP for data centre management has been
demonstrated by Camati et al. who evaluated several
MMKP heuristics for allocating VMs to homogeneous
servers [26]. The problem can be relaxed by consider-
ing each VM as an individual knapsack that is assigned
component instances, and only one of each type. This
corresponds to the Multiple-Choice Multidimensional
Knapsack Problem (MCMKP), and the best polynomial
time approximation scheme is due to He et al. [27]. The
issue with using MCMKP in this way is that there is no
global optimization of the goodness of the assignment
and trying to maximise all the packings at the same
time leads to a Multiobjective Multidimensional Knap-
sack Problem (MOMKP) [28]. However, only problems
with at most three objectives have been considered for
which heuristic approaches exist and finding a solution
is closely related to the Pareto front of the utility opti-
mization problem [29].

From a Cloud application management perspective,
it will be desirable to group the components first and
then select the VMs that optimizes the global applica-
tion utility which is the second approach mentioned
in “Introduction” section. For instance, the MELODIC
platform provides utility optimized autonomic cross-
Cloud application deployment and management, and
acquires the needed application resources from the
wide variety of VMs offered by multiple Cloud pro-
viders [3]. Hence, the number of possible ‘bins’ avail-
able would render the bin packing infeasible. However,
there is an alternative to bin packing as Voß and Lalla-
Ruiz have shown that the MCMKP can be reformu-
lated as a set partitioning problem [30]. This approach
is followed in this paper.

Game theory: Coalition Structure Generation
The set partitioning problem is well studied in the field
of game theory where is it known as coalitional games
or Coalition Structure Generation (CSG). One of the
most common types of CSG is the Characteristic Func-
tion Game (CFG). It is a type of CSG where the value
of each group is the same independently from other
groups in the grouping, and the value of the group-
ing is the sum of group values. There are many algo-
rithms for the optimal CSG in CFG. A survey provided
by Rahwan et al. [31] describes the various approaches
in this area and states that algorithms for the optimal
CSG in CFG are the fastest in this field. However, for
a larger number of component types, it may be not
possible to run an optimal algorithm because of its
exponential complexity. This was the motivation for
anytime CSG in CFG algorithms, such as the Integer-
Partition (IP) [9] proposed by Rahwan et al.. They are
searching the space in a specific order to provide a
solution with the expected quality for a given deadline.
Michalak et al. proposed a distributed version of this
algorithm [32], so the performance can be improved
when running in parallel mode, and then Michalak et
al. improved further by adding the optimal dynamic
programming aspects with the Optimal Dynamic Pro-
gramming - Integer-Partition (ODP-IP) [33] algorithm
as the result. Currently, the fastest optimal algorithm
is called ODP-IP with complexity O(3|T|).

Rahwan et al. defined a constrained coalition for-
mation problem [34]. It can be seen as similar to then
problem presented in this paper, but the definition of
the problem is different. Firstly, Rahwan et al. consid-
ered general constraints on the grouping (i.e. the size of
groups in the grouping), which is not directly applicable
to the Cloud application components grouping problem
defined in “Cloud application optimization” section. Sec-
ondly, Rahwan et al. introduced a set of possible groups
from which at least one of the groups has to be present
in the optimal grouping. This kind of constraint is also
not a part of the constrained Cloud application group-
ing problem. Even though the inhibition constraints were
also introduced in that paper, the overall approach was
designed to solve a specific problem with various types
of constraints that are not applicable to the problem pre-
sented in this paper. Therefore, it is not possible to com-
pare our approach with the one of Rahwan et al..

We formulate a constrained grouping of Cloud appli-
cation components as a coalition formation problem in
“Constraint aware CSG” section, and we modify IP algo-
rithm to be able to solve the constrained CSG problem.
We use ODP-IP and modified IP in “Evaluation” section
to evaluate the approach. Applying these algorithms
imposes the CFG requirement on the objective value

Page 6 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

function. In other words, this approach is only feasible if
a value of grouping is the sum of the individual values of
each of the groups that are partitioning the set of compo-
nents. The CFG also requires that the placement of the
components outside the group Gi does not change the
value of this group.

Optimization based approaches
It may be be complicated to assume specific values of
each possible grouping, and Ueda et al. proposed to
use a generic utility objective function for all possible
groups [35]. The utility value of a particular group of com-
ponents would then be found by solving an optimization
problem for finding the best assignment of the require-
ment attribute values for all the components in the group.
Since the groups partition the set of component types, a
component type can belong to one and only one of the
groups, and the optimization is performed independently
for each group and in parallel. Ueda et al. developed an
approximation algorithm that considers the incomplete
power set with set sizes up to a maximum size, and gives a
limit for how close this approximation is to the optimum.
This approach can be used as an alternative to the tradi-
tional CFG formulation, for cases where formulation of a
characteristic function is not natural, or the evaluation of
the function is computationally expensive.

Cloud application management
The application component placement problem is often
considered a resource management problem [8]. Therefore,
it is being solved from the data centre perspective so how
to allocate a VM on physical machines. One may consider
open source Kubernetes4 framework as a similar approach.
Kubernetes optimizes the placement of application compo-
nents within the given cluster of nodes. It schedules pods
(components) on nodes that are a part of cluster based on
the component requirements. The process can look simi-
lar, but it is significantly different from the complexity per-
spective. Kubernetes operates within the given cluster, so
it is possible to enumerate and score the best node (VM)
to host the component while in the grouping problem, the
VMs are unlimited. Even though Kubernetes has a Hori-
zontal Pod Autoscaler5, it provides only the possibility to
scale the cluster according to simple policies, and it does
not consider the heterogenous set of VMs.

A more flexible open source framework that oper-
ates with Kubernetes is KEDA6. It provides event-
driven autoscalers which can utilize custom metrics

from various sources. However, it still follows the same
approach so to firstly create or choose a set of VMs, and
then place the components on them, without considering
inhibition constraints.

Paraskevoulakou et al. proposed recently the Rein-
forcement Learning (RL)-based approach for Cloud
application component placement [36]. The proposed
algorithm is aligned with the approach proposed in this
paper. Even though it does not consider inhibition con-
straints explictely, it will be evaluated and compared to
our approach as a part of the future work.

Task scheduling and workflow applications in the Cloud
An algorithm for scheduling the workload and mini-
mizing the makespan has been proposed by Chitgat et
al. [37]. One of the algorithm’s goals is to increase the uti-
lization of VMs, which is a similar goal as we considered
in this paper. However, the algorithm assumes that all
VMs are split into three groups of VMs that are arranged
based on the processing power, which makes the group-
ing and scheduling problem simpler. Selvarani et al.,
proposed another scheduling algorithm that consid-
ers both performance, measured as makespan, and cost
aspects [38], but it also operates on the given and fixed
set of resources.

Another related approach was presented by Nishio et
al. for a mobile cloud, where resource-sharing and out-
sourcing of the work is necessary [39]. This approach
could be transformed into a Cloud environment as it is
based on utility functions defined for the most important
deployment aspects such as latency and power. How-
ever, it is not as flexible as the approach presented in this
paper because it does not consider inhibition constraints
as well as the dynamic VM provisioning.

Multi‑Cloud management platforms
According to the authors’ knowledge, only MELODIC7
offers both optimisation of resources needed by Cloud
applications, and grouping of application components,
and is open source. There are some commercial solutions
developed by big tech companies. Even though Google
Anthos8 can be considered one of the most advanced
Multi-Cloud and it offers the constrained grouping of
Docker containers, it is based on Kubernetes and simi-
lar simple autoscaling policies9. Furtermore, it does not
consider an abstract Cloud application components, and
it is not open source. Also, IBM Multicloud Management
Platform10 has wide resources optimisation capabilities,

4  https://​kuber​netes.​io/
5  https://​kuber​netes.​io/​docs/​tasks/​run-​appli​cation/​horiz​ontal-​pod-​autos​
cale/
6  https://​keda.​sh/

7  https://​melod​ic.​cloud
8  https://​cloud.​google.​com/​anthos
9  https://​cloud.​google.​com/​anthos/​clust​ers/​docs/​on-​prem/​latest/​conce​pts/​
clust​er-​autos​caler
10  https://​www.​ibm.​com/​servi​ces/​cloud/​multi​cloud/​manag​ement

https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/
https://melodic.cloud
https://cloud.google.com/anthos
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/concepts/cluster-autoscaler
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/concepts/cluster-autoscaler
https://www.ibm.com/services/cloud/multicloud/management

Page 7 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

but it is not able to consider the possibility of co-allocate
components under inhibition constraints.

Cloud application optimization
Variability and search space
Modern applications developed for Cloud deployment
consist of a set of communicating components [7]. They
can be containerized microservices [40]. The application
components have different types T = {T1, . . . ,T|T|}.

Each component type T ∈ T has a set of attributes AT .
Examples of attributes can be the number of cores the
component requires, the amount of memory it requires,
or the Cloud providers capable of hosting instances of
this component type, or the number of instances neces-
sary to satisfy non-functional application requirements.
Each attribute aT ,i ∈ AT has a domain VT ,i defining the
possible values for this attribute. For instance, a compo-
nent type may need a certain minimum number of cores
to run, and cannot benefit from more than some maxi-
mum number of cores.

The variability space VT for the component type T
is the Cartesian product space of all the domains of its
attributes: VT = VT ,1 × VT ,2 × · · · × VT ,|AT | . In order
to find the best deployment of the application, the opti-
mal application configuration, one must assign val-
ues to all attributes of all component types from their
respective domains. The search space to find the opti-
mal configuration is therefore the application’s vari-
ability space given as the Cartesian product space of the
variability of all the component types of the application:
V = V1 × V2 × · · · × V|T|.

The benefit of finding the optimal configuration at the
type level is that even though the search space V can be
large, it is independent of the number of instances of each
component type and the number of VMs offered by the
usable Cloud providers. Furthermore, constraints among
the component type attributes will reduce the effective
search space.

Optimization
We consider the set of utility dimensions defined by
We et al. with business users [41] and also utility func-
tions presented by Rozanska et al. by surveying
MELODIC and MORPHEMIC project business use case
application providers [42]. The goal of the deployment
optimization is to find the application configuration
c∗ ∈ V that maximizes the application’s utility for the
application owner given a vector of measurements, θ(tk) ,
characterizing the application’s execution context at the
current time tk [3], and the performance indicators,
ψ(c, θ(tk)) , which are the functional dependency between
the configuration and the execution context [43]. It must

be noted that even though the variability space V may
contain both the number of instances needed for a par-
ticular component type and the available Cloud providers
as component attributes, it ignores the available VMs. It
is often possible that not all combinations of variables
from the variability space are feasible to be deployed on
the available VMs. For instance, one may not find a VM
with one core and huge amount of memory. Therefore,
we introduce the feasible space, F

(

θ(tk), ψ̂[c, θ(tk)]
)

 ,
which depends on the current execution context θ(tk)
and performance indicators ψ(c, θ(tk)) . It is assumed that
it is possible to capture the utility of the application
owner for the deployment of this application as a func-
tional expression, U(c) : V �→ [0, 1] , that can be maxi-
mized as a standard non-linear programme [44].

subject to

Combining resource requirement attributes
Combining resource requirement attributes for the com-
ponent types grouped in a group Gi means adding them
together by some resource function given the feasible
configuration c consisting of all attribute value assign-
ments, aT ,j , for all components types,

for the attribute dimension j defined for any of the com-
ponent types that are in the group Gi . This combination
must be strictly additive for resources that cannot be
shared, like memory. However, for other resources, the
requirement can be a peak requirement and then the
sum of the combination does not need to equal the sum
of the individual requirement attributes, but can be the
maximum. Examples of this can be that two components
may still work acceptably well if they get less network
bandwidth than their combined peak bandwidth require-
ments, and two components may be able to multitask on
a smaller number of cores than the sum of their individu-
ally required cores. Therefore, the attribute function for
the cores can be the maximum resource requirement
attributes of the components in the group:

(8)c∗(tk) = argmax
c∈F

U
(

c,ψ(c, θ(tk))
∣

∣ θ(tk)
)

g(c | θ(tk)) ≤ 0

h(c | θ(tk)) = 0

c ∈ F

(

θ(tk), ψ̂[c, θ(tk)]
)

(9)rj(Gi|c) =
∑

T∈Gi

aT ,j

(10)rj(Gi|c) = max
T∈Gi

aT ,j

Page 8 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

It should be noted that some attributes may not be
available for all component types in a group so in this
case the function should consider only the available
resource attributes requirements aT ,j , because the set of
combined attributes is the union of the attribute sets of
the group types. Consequently, the resource function for
all resource requirements attributes in a group is a vector,
r(Gi|c).

The requirement attributes of an application compo-
nent represents the resources needed for maximizing
the application utility for the given execution context.
A benefit of this approach is that the application opti-
mization will not need to consider a large number of
VMs offered by many Cloud providers. The available
resources in the Cloud are plentiful and come in many
different configurations, and separating the optimiza-
tion into two steps will allow the optimization problem
of each step to be smaller. Given that combinatorial
optimization algorithms have exponential complexity,
solving two smaller optimization problems may enable
the management of applications that would otherwise
be intractable [45]. Furthermore, a multi-stage optimi-
zation approach allows different utility objectives to be
optimized in each stage.

Inhibition constraints
The application owner can define which component
types to be placed on the same VM, and which compo-
nent types cannot be placed on the same VM. For the
components that have to be placed on the same VM,
it is possible to create a super-component and treat
them as one component in the optimization process.
However, the inhibition constraints have to be handled
in the grouping step of the optimization process. The
inhibition constraints are used to validate the feasible
groups. We introduce an index function I(T |G) ∈ |T|
for a given grouping G that takes a component and
returns the index of the group that this component is
assigned to. Thus, the constraint that states that com-
ponent Ti and component Tj cannot be in the same
group can be defined as

(11)I(Ti|G) �= I(Tj|G)

Example
The following example aims to give an intuition why
grouping can be beneficial. Assume that there are four
components: A, B, C, and D with maximal require-
ment attribute values described in Table 1. Furthermore,
assume that there is a limited set of available VMs pre-
sented in Table 2. The available VMs are limited but their
parameters are similar to offers available in the majority
of Cloud Providers11.

The prices of possible groups are presented in Table 3.
These prices where calculated as by taking the price
of the cheapest VM capable of hosting the group. One
may consider two cases: when cores re-use is allowed or
where it is not possible to use the same core by two or
more components. Table 4 presents the prices for all pos-
sible groupings for the two cases of core sharing. It can be
easily seen that the best grouping for the case with cores
sharing is {ABD,C} so to have components {ABD} in one
group on a VM4 and C on a separate VM2 , or {ACD,B} so

Table 1  Component requirements

Component Name CPU RAM

A 6 10

B 2 4

C 1 3

D 1 2

Table 2  Available Virtual Machines (VMs). The price is given in €
and is an estimated price for weekly use of the VM

VM Name CPU RAM Price

VM1 1 2 2

VM2 2 4 4

VM3 4 8 8

VM4 8 16 16

VM5 16 32 32

Table 3  Groups values when cores re-use is allowed (I) and
when cores re-use is not possible (II)

Group I: VM Name I: Cost II: VM Name II: Cost

A VM4 16 VM4 16

B VM2 4 VM2 4

C VM2 4 VM2 4

D VM1 2 VM1 2

AB VM4 16 VM4 16

AC VM4 16 VM4 16

AD VM4 16 VM4 16

BC VM3 8 VM3 8

BD VM3 8 VM3 8

CD VM3 8 VM3 8

ABC VM5 32 VM5 32

ABD VM4 16 VM5 32

ACD VM4 16 VM4 16

BCD VM4 16 VM4 16

ABCD VM5 32 VM5 32

11  https://​aws.​amazon.​com/​ec2/​prici​ng/

https://aws.amazon.com/ec2/pricing/

Page 9 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

to have {ACD} in one group on a VM4 and B on a separate
VM2 . The cost in both cases is 20. Furthermore, if a user
does not allow for core-sharing, the best grouping is still
{ACD,B} , but {ABD,C} has a significantly higher cost,
because {ABD} has to be hosted on the bigger VM5.

Grouping approach
This section presents our approach to the grouping
problem, defined as a multi-step optimization where the
grouping is a separate step.

Price calculation
Cost is one of the main reasons for companies to move
applications to the Cloud [46], and the used VMs are
deciding the cost. For each of the completely enumerated
groups Gi one must first filter the available VMs to select
the VMs that are feasible for the combined resource
requirements of the group r(Gi|c) , and then choose the
VM with the lowest cost. We define P(Gi) as the price
of the cheapest VM capable of hosting the components
in Gi , so fulfilling the requirements of the group r(Gi|c) .
Consequently, the price of the grouping, P(G) is the sum
of the prices of the groups of the grouping.

Value function
To formulate the problem as a CFG the value function (1)
should be calculated as the sum of the group. It allows us
to use and extend the algorithms for CSG in CFG which
are the fastest class of algorithms solving of CSG prob-
lem. The value function for CFG requires that the value
of each group should not depend on the other groups in

the grouping. The goal of solving the grouping problem is
to find the grouping that maximizes the total value of the
grouping, i.e. minimizes the total price of deployment.

As a consequence, if the cost of deploying compo-
nents on separate VMs P({Ti})+ P({Tj})+ · · · + P({Tn})
is higher than the cost of deploying these compo-
nents on a single VM P({Ti ,Tj , . . . ,Tn}) , then the value
of a group with two or more components deployed
together v({Ti,Tj , . . . ,Tn}) on a single VM is greater than
v({Ti})+ v({Tj})+ · · · + v({Tn}) , the sum of values of
these components deployed separately.

We propose a normalization approach for the charac-
teristic value function for the cost.

Let P+ be the cost of the most expensive available VM.
The value of the group v(Gi) is defined as the savings made
compared to the most expensive deployment which is when
all components from the group are deployed separately and
using the most expensive VM. In other words, one can cal-
culate the most expensive deployment as a multiplication of
the most expensive VM and the number of components in
the group, and then subtract the actual price of the group.

The grouping problem therefore translates into selecting
the groups that maximize the total savings for all groups in
the grouping, which is the sum of the saving values asso-
ciated with the groups in the grouping. The value of the
grouping V (G) is therefore the sum of its group values

and the best grouping G∗ should maximize V (G).
We note that the value function is not contradicting

with any reasonable utility function for Cloud application
optimization [41]. According to the approach proposed
in this paper and the resource function (9), deploying two
or more components into the single VM is allowed only
if the VM fulfills the resource requirements of all com-
ponents so they all can be hosted without any loss on the
performance. Communication latency is the only other
utility dimension besides cost that may be influenced by
the grouping of Cloud components. When component-
based software applications are deployed using VMs,
each component may be deployed on a separate VM. This
can lead to an increased number of inter-service com-
munications, which can negatively impact latency, as it
was shown by Gribaudo et al. [47]. However, the latency
dimension can easily be defined in a way to be included
in the value function as an additional reward l(Gi) or a
penalty.

(12)v(Gi) = |Gi| · P
+ − P(Gi)

(13)V (G) =
∑

Gi∈G

v(Gi)

(14)v(Gi) = |Gi| · P
+ − P(Gi)+ l(Gi)

Table 4  Grouping values when cores re-use is allowed (I) and
when it is not possible (II)

Grouping I: Cost II: Cost

{ABCD} 32 32

{ABC ,D} 34 34

{ABD, C} 20 36

{ACD, B} 20 20

{BCD, A} 32 32

{AB, CD} 34 34

{AC , BD} 34 34

{AD, BC} 34 34

{AB, C ,D} 22 22

{AC , B,D} 22 22

{AD, B, C} 24 24

{BC , A,D} 26 26

{BD, A, C} 28 28

{CD, A, B} 28 28

{A, B, C ,D} 26 26

Page 10 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

A function that considers both cost and latency should
be constructed to have values reflecting the importance
of the latency aspect in relation to the cost. The latency
function value that considers inter-component commu-
nication can naturally be calculated for a group and its
value does not depend on the rest of the groups in the
grouping. Therefore, a value function with the latency
aspect will still be a characteristic function.

Table 5 presents the Example from “Cloud applica-
tion optimization” section with V (G) calculated using
formula (13) for the cases when core re-use is, or is
not, possible. The grouping values are consistent with
the condition on the relation between group prices and
group values. It is easy to notice that the cheapest option
also gives the highest value so the proposed function (12)
can be used to solve the grouping problem.

Grouping process
We propose two-step optimization, where the resource
attribute values for all components are proposed dur-
ing the first step, and then the grouping of compo-
nents is combined with the selection of the best VM
to host the components in the second step. The pro-
posed approach is presented as a high-level sequence
of actions in Fig. 1.

The optimization problem solver solves the Constraint
Problem (8) and assigns values to all the requirements
attributes aTi for all Ti ∈ T . Then, for every feasible group
Gi in terms of inhibition constraints, the cheapest avail-
able VM is found. The selection step is performed with
the use of resource function r(Gi|c) . If there is no VM

that is capable of hosting a group, the group is consid-
ered infeasible and it is deleted from the set of feasible
groups. For all the feasible groups, the value function (12)
is evaluated and the grouping algorithm proceeds to find
optimal grouping G of groups. One can note that this
multi-stage optimization approach allows different utility
objectives to be optimized in each stage, hence, the CFG
requirement that the total grouping value is a sum of the
individual values of the component groups will only be
necessary for the grouping stage.

We consider the grouping on the component type level,
so every instance of the same component must belong to
the same group and it is not possible to host two instances
of the same component in the same group. This follows
from the observation that putting the same component
types instances multiple times into the same group is equiv-
alent to setting the resource attributes requirements for this
component proportionally higher. Furthermore, if some
groups should be deployed in multiple copies, the group
assignment of a component type will remain the same.

For some deployment configurations, the cardinalities
of each component type in a group may differ. The deploy-
ment process will complete the groups as far as there are
component instances available to populate each group fully.
When another copy of a group cannot be deployed because
all the instances for one or more component type(s) in the
group have already been deployed, it is necessary to solve
the grouping problem excluding the object type(s) whose
instances have all been deployed. In this way, the deploy-
ment and the grouping successively smaller component
type sets alternate until all required instances are deployed.

Exhaustive search
Variables and constraints
Solving the partitioning problem means assigning a
group to every application component type. In other
words, assign a value to a group variable gk(Tk) ∈ I for
all Tk ∈ T , and so 1 ≤ k ≤ |T| . This assignment can be
done sequentially for each of the types: The first type will
always start the first group, g1(T1) = 1 . Then, the second
type can either be assigned to the same group as the first
type or create a new group. Continuing this way, the next
type to be grouped can either join one of the already cre-
ated groups or start a new group. This leads to the follow-
ing constraints for 2 ≤ k ≤ |T|

Thus, any kind of combinatorial solver can be used to
maximize the objective function (13) for the |T| integral
variables gk(Tk) subject to the set of constraints (15).
The vector g |T| of all the group assignments satisfying
(15) and with the initial value g1(T1) = 1 is known as a

(15)
1 ≤ gk(Tk) ≤ max

{

g1(T1), . . . , gk−1(Tk−1)
}

+ 1

Table 5  Grouping cost, P(G) , and grouping value, V(G) , when
cores re-use is allowed (I) and when cores re-use is not possible
(II)

Grouping G I:P(G) I: V(G) II:P(G) II: V(G)

{ABCD} 32 96 32 94

{ABC ,D} 34 94 34 94

{ABD, C} 20 108 36 92

{ACD, B} 20 108 20 108

{BCD, A} 32 96 32 96

{AB, CD} 34 104 34 104

{AC , BD} 34 104 34 104

{AD, BC} 34 104 34 104

{AB, C ,D} 22 106 22 106

{AC , B,D} 22 106 22 106

{AD, B, C} 24 104 24 104

{BC , A,D} 26 102 26 102

{BD, A, C} 28 100 28 100

{CD, A, B} 28 100 28 100

{A, B, C ,D} 26 102 26 102

Page 11 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

restricted growth function, and Stanton and White have
established the bijection between the set of partitions and
the set of restricted growth functions ([48], p.18-19). This
has allowed efficient algorithms based on Gray codes to
list all partitions of a set [49]. However, to our knowledge,
there is no algorithm enlisting the partitions under pair-
wise inhibitions constraints (11), and so a recursive depth
first algorithm will be developed in the following.

Recursive search under inhibition constraints
The inhibition constraint (11) translates directly to a con-
straint on the group indices for the two application com-
ponent types: gi(Ti) = gj(Tj) . Thus, despite the negative
conclusion regarding complexity in “Cloud application

optimization” section, it can be possible to search larger
application component type sets exhaustively provided
that there are sufficient inhibition constraints available to
limit the search to a space of tractable size.

An algorithm can be devised by considering the
constraint (15) as defining the domain gk ⊆ I of val-
ues of the constrained group variable gk(Tk) . Thus,
g1(T1) ∈ g1 = {1} , g2(T2) ∈ g2 = {1, 2} , and so
forth. Let gm = [g1(T1), . . . , gm(Tm)]

T be the vec-
tor of the partial group variable value assign-
ments with m < |T| , then one has in general that
gm+1(Tm+1) ∈ gm+1 =

{

1, . . . , 1+ sup
(

gm
)}

 , i.e. the
upper bound of the group variable domain equal the
upper bound of (15). A recursive depth-first search readily

Fig. 1  The high-level schema of the reasoning process for the constrained grouping of Cloud application components

Page 12 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

follows by assigning values to the group variables gk(Tk)
one by one, and for each assignment select the values of
the next group variable from its domain one by one. The
search will recursively descend a path through the search
tree until the full grouping G is decided by the group value
assignments g |T| for all the application component types T
allowing the evaluation of the objective function (13).

The inhibition constraints are simply removing options
from the value domains of the group variables based on the
decisions taken by the group variables already fixed. As an
example, consider the constraint gi(Ti) = gj(Tj) with i < j
and, from the sequential assignment of the group variables,
gi(Ti) will have a value when the values for gj(Tj) will be
assigned. The domain for gj(Tj) can then be reduced by
removing the group index assigned to gi(Ti) leaving the
domain as

{

1, . . . , 1+ sup
(

g j−1

)}

\
{

gi(Ti)
}

 . The depth-
first recursion is given in Algorithm 1 and this algorithm is
started from the second type, i = 2 with g1 = [1]T since
g1(T1) = 1 always.

Algorithm 1 ExSearch

Grouping complexity with inhibition constraints
It is obvious that if there are no constraints, the num-
ber of groupings evaluated by the exhastive search will
equal the Bell number, B (|T|) , as defined in “Worst case
complexity” section. The constraints will reduce the size
of the search space, but how beneficial the constraints
will be depends on how the constraints are distrib-
uted among the application component types. Con-
sider for instance the situation where there are |T| − 1
constraints and one component type is involved with
all constraints forcing it to be allocated as a singleton,

while the other component types can be freely grouped.
In this case the number of groupings to search will be
reduced to B (|T| − 1) . However, if the same number of
constraints are distributed over almost all the compo-
nent types, the search space is not reduced that much
because there are still plenty of legal groups that can be
included in the grouping.

To compute the search space complexity, it is necessary
to consider the constraint graph with the component types
as vertices and the constraints defined as edges. The com-
plete graph, K|T| , will have |T|(|T| − 1)/2 edges, and so this
is an upper bound on the number of inhibition constraints
a given component set T can have. It also follows that for a
problem with m constraints, the number of ways they can
be chosen is given by the binomial coefficient,

This confirms that the same number of constraints can
give many different reductions in the search space size.

An independent partition of the vertex set of a graph is a
partition whose subsets do not contain adjacent vertices.
This fits well with the constraint graph where the inhibi-
tion constraints define adjacent vertices, and two adjacent
vertices should not be in the same subset, i.e., group. The
number of independent partitions of a graph, G , is know as
the Bell number of the graph, B (G) [50]. Since the adja-
cent vertices have to go to different subsets, there is a clear
relation to graph coloring. Berceanu established the Bell
number of a graph as a weighted sum of the Bell numbers
of the possible subset sizes weighted by the coefficients χi
of the chromatic polynomial of the graph, χG (k) , giving
the number of ways the graph G can be coloured with k
colors [51]:

where the last expression was proven by Kereskényi-
Balogh and Nyul [50]. Pemmaraju and Skiena have given
a recursive algorithm for computing the needed chro-
matic polynomial [52].

This means that even though there is no simple for-
mula for computing the effect of a number of inhibition
constraints on the search space size of the exhaustive
search, the search space size can be computed for a par-
ticular set of inhibition constraints. This will be done for
the inhibition constraints of the “Evaluation” section.

(16)
(

|T|(|T| − 1)/2
m

)

(17)B (G) =

|T|
∑

i=0

χiB (i)

(18)=
1

e

∞
∑

i=0

χG (i)

i!

Page 13 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

Constraint aware CSG
Grouping using CSG algorithms
The set partitioning problem can be considered as a
Characteristic Function Game problem, as discussed
in “Game theory: Coalition Structure Generation” sec-
tion. A CFG consists of a set of component types and a
value function, typically called the characteristic func-
tion, v, that assigns a real number to every group Gi ⊆ T
representing the group’s value [31]. The characteristic
function is therefore a mapping v : 2|T| �→ R . It is nor-
mally assumed that the value of the empty group is zero,
v(∅) = 0 . The value function (12) fulfils the criteria to be
a characteristic function. We have modified the CSG IP-
algorithm by Rahwan et al. [9] to handle constraints, and
the resulting algorithm is presented in this section.

Constraints
According to the description in “Cloud Application Opti-
mization” section, there are two aspects that can be seen
as constraints from the CSG point of view: The first one
is related to the inhibition constraints (11). Inhibition
constraints are used to validate the possible groups dur-
ing the initialization phase which means that they allow
the algorithm to prune groups that are not legal. The sec-
ond aspect is connected with the deployment feasibility
of the group. Resource requirement attributes r(Gi | c)
are used during assessing feasibility of the group Gi to
determine if there is available VM to host this group.

For some CSG algorithms, like Optimal Dynamic Pro-
gramming – Integer-Partition (ODPIP) [33], the assump-
tion that all groups are feasible is needed, because ODP-IP
uses dynamic programming. In this case, during the valida-
tion of constraints in the initialization phase, the negative
infinity or zero value can be used to code the infeasibility of
some groups. The fact that infeasible groups are not deleted
obviously influences the performance of the algorithm. It
might even be possible that the fact that one group gives a
negative infinity value does not exclude it from being cho-
sen for the grouping so the constraints have to be validated
when the proposed grouping is constructed. An algorithm
that can work without having all groups feasible should be
faster and, most importantly, correct. This is the case of IP
algorithm and our modifications presented in this paper.

The introduction of infeasible groups does not influ-
ence the correctness of the IP algorithm because there
is no assumption in the original IP algorithm that all
groups have to be feasible. The search space representa-
tion is based on the possible integer partitions and the
recursive search of dynamic group lists. The approach
used in the IP algorithm is based on pruning the
unpromising integer partitions according to pre-calcu-
lated statistics. Constraints simply create more unprom-
ising integer partitions which can be pruned in the same

way. Consequently, the fact that some groupings are not
feasible is not the reason for not finding the best group-
ing provided that at least one feasible grouping exists. In
the grouping of Cloud application components, at least
one feasible grouping always exists because every com-
ponent can be deployed on a single separate VM.

Complexity
The currently best known CSG Algorithm is the ODP-IP
algorithm and it achieves the worst complexity O(3|T|) . The
original IP algorithm has the worst complexity O(|T||T|) ,
but it does not need to consider all groups even if they are
infeasible, which can be a reason for it to show better per-
formance when solving the grouping of Cloud application
components problem. It is hard to asses the expected com-
plexity as it heavily depends on the number of constraints
and available VMs (see “Grouping complexity with inhibi-
tion constraints” section for more details). Both ODP-IP
and IP do not store a significant amount of data. There is
a need to store the input data, which is estimated by the
number of groups, 2|T| and all integer partitions of |T| . The
number of integer partitions grows polynomially with the
size of the component set; and currently the best group-
ing. Therefore, the space complexity is not significant com-
pared to the computational complexity.

Preprocessing: groups and bounds
The main recursion of the IP-algorithm is based on
the Integer Partition of the number of components |T|
to be grouped. The parts in an integer partition define
the length of the groups in the grouping, i.e., how many
components each group contains. The groups are there-
fore represented for this algorithm with two indices,
Gs,i , where the s is the size of the group, s = |Gs,i| and
i is an index. The pre-processing steps for our modified
IP algorithm are presented in Algorithm 2.

The first step of the algorithm in line 1 is to define the set
E containing inhibition index pairs based on the inhibition
constraints (11). Then the set S of all possible groups in the
power set of the application component types are generated
in line 2 retaining only the groups that do not contain two
inhibited component types. Recall that this algorithm runs
after the first step of the optimization process, see Fig. 1,
when there is a feasible configuration, c ∈ F , assigning val-
ues to all requirement attributes for all the components in
T . The next step in line 3 is therefore to validate that there
is a VM capable of hosting the group using a VM selec-
tion function on the combined resources required by the
group, VM(r(Gs,i | c)) , and filter out the groups for which
there is no corresponding VM. The maximum value bound
for each group size is computed next. It is also necessary to
list all the integer partitions of the number |T| , and then the

Page 14 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

absolute best possible grouping value, V+ is found for the
partition whose sum of maximum group values by size is
the largest possible. It should be noted that it may not actu-
ally be possible to achieve the upper bound grouping value
V+ because one or more of the best valued groups of dif-
ferent sizes may contain the same component type. These
quantities will later be used to bound the search process.

Algorithm 2 Preprocessing

Recursion on an integer partition
An integer partition is a vector of integral numbers whose
sum of elements equal the number to be partitioned,

Note that the parts of the partition is assumed to
be in increasing order. The IP-algorithm constructs
a grouping whose groups have sizes according to the
elements of the integer partition, and with as many
groups as there are parts in the integer partition,
G = {Gp1,1, . . . ,GpR ,R, . . . ,Gp|p|,|p|} with all GpR ,R ∈ S
from Algorithm 2. The grouping is constructed via a sim-
ple recursion starting from the first taking a feasible group
of size p1 , and then take a group of size p2 , and so forth.

For each recursion level R = 1, . . . , |p| one must ensure
that the group taken with size pR has no common component
types with the already taken groups. This is done by consider-
ing the reduced set of components for the grouping at recur-
sion level R, that is TR = T\

(

⋃R
i=1Gpi ,i

)

 , so by deleting the

p = {pi ∈ N+ : 1 ≤ pi ≤ |T|,
∑

pi = |T|, p1 ≤ · · · ≤ p|p|}

groups that contain already used component types, with

T1 = T . Let CR(|TR|, pR) be the
(

|TR|

pR

)

 combinations or

k-subsets cR,k consisting of the unique integers
mR,k ,j ∈ {1, . . . , |TR|} ⊂ N

+ taking exactly pR integers at the
time. Each index combination set is taken to be enumerated
and ordered, cR,k = {mR,k ,1,mR,k ,2, . . . ,mR,k ,pR} , with
mR,k ,1 < mR,k ,2 < · · · < mR,k ,pR.

The recursion at level R will then form successively the

groups GpR ,R = {Ti ∈ TR : i ∈ cR,k} for k = 1, . . . ,

(

|TR|

pR

)

 .

For each group it will invoke the next recursion level R+ 1 with
the new set of component types to be grouped being the
current set of component types less the ones taken by the
current group, TR+1 = TR\GpR ,R . At the deepest recursion
level, R = |p| the full grouping will be known, and the value
of the full grouping can be computed as the sum of the val-
ues of its constituting groups according to Eq. (13). This
basic recursion is given in Algorithm 3, which also includes
some enhancements to be discussed next.

Algorithm 3 Search recursively an integer partition (IPRec)

Aborting the recursion
There are two main reasons for terminating early the
recursion. One is related to the feasibility of the found

Page 15 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

group with respect to the inhibition constraints and the
group’s combined resource requirements. This is handled
in the line 11 of Algorithm 3.

The second termination criteria is related to the value
of the grouping. The grouping is complete if this recur-
sion level adds the last group of the grouping, and this
new grouping has a higher value than the currently best
group. This condition is tested in line 13. Still, for the
grouping to be optimal for the integer partition p it must
be within a certain distance from the theoretical optimal
value, or it must be the best possible grouping for this
integer partition. This is tested in line 15. If the grouping
is not accepted as optimal, it will remain as the baseline
group when searching further index combinations, and
can eventually be returned as the best grouping when all
index combinations have been searched.

Given the value of the groups in the partially con-
structed grouping, the new groups to add in the following
recursion steps should allow the completed grouping to
have a value higher than the currently best grouping. This
can be assessed by the maximum group values v+ com-
puted in Algorithm 2. Since the size of the groups to be
added by further recursion is given by the integer parti-
tion, p , the corresponding maximum group values can be
taken from v+ , then the sum of these maximum values
is the maximum value that can be added to the value of
the current grouping. Thus, if the grouping value plus the
maximum value that can be added is still less than the
value of the best grouping, there is no need to do further
recursions. This is tested in line 17.

The fact that the number of groupings possible grows
like the Bell number, B (|T|) of (3), makes it impossi-
ble to search all groupings if the number of component
types is large. Sandholm et al. proved that the ratio of
the best solution to the optimal solution is bounded, so
V+/V (G+) ≤ β∗ , where β∗ ≥ 1 is the bound on this ratio
depending on the number of groupings searched [53]. This
user defined bound is used in Algorithm 3 line 15 to abort
the recursion if the found grouping is acceptably close to
the optimal value. It should be noted that setting β∗ too
close to unity will inevitably cause all the groupings to be
evaluated and the returned G+ to be the optimal grouping.

Equal integer partition parts
Rahwan et al. realized that the recursive search for the
best grouping based on the integer partition can be
improved for the case when there are multiple equal
parts in the integer partition [9]. Assuming that the
index combinations are generated in lexicographical
order, the first combinations cR,α for α = 1, ... will all
have one as the first element, mR,α,1 = 1 . These combi-
nations will then be followed by another block of com-
binations having two as the first element, mR,β ,1 = 2 ,

and so forth. For each combination, a complete group-
ing may be formed by the following recursion if the
groups are feasible and give a better value for the group-
ing. This means that if pR+1 = pR , then one will gener-
ate groups of the same size as in the previous recursion
level, and if mR,β ,1 = 2 one knows that all groups of size
pR involving the first element of TR have already been
constructed and searched. One also knows that since
TR+1\GpR ,R the set of objects to be grouped at recur-
sion level R+ 1 will contain the first element of TR
since mR,β ,1 = 2 so the grouping at recursion level R
can start from the second element of TR since the group
GpR+1,R+1 = {(TR)2, (TR)1, . . .} should never be gen-
erated since it is equivalent to the already tried group
GpR ,R = {(TR)1, (TR)2, . . .} assuming that the rest of the
components in the two groups are the same. This means
that one can, at recursion level R+ 1 , ignore the first
element of TR+1 if mR,β ,1 = 2 . It is therefore sufficient to
consider only the last elements of TR+1 , and by extend-
ing the above argument one may establish the lower
bound on the first element of the index combination
sets searched at the next recursion level, and Rawhan
et al. proved the following relation ([9], Appendix E)

The notation is adopted to the notation of this paper
and the combination index k was generalized to α and β
to indicate that this index is only valid for each recur-
sion level and the result is independent of the rank of
the combinations at each level.

More surprisingly, it is also possible to establish an
upper bound on the pivot element, mR,k ,1 of an index
combination. The number of component types grouped
at recursion level R is |TR| , and all the groups at this
level has length pR . This means that at the next recur-
sion level, R+ 1 , there are |TR+1| = |TR| − pR compo-
nent types to be grouped. The component types in a
group are supposed to be in lexicographical order, and
so the last group of pR+1 component types will start
at component type index |TR+1| − (pR+1 − 1) in the
ordered set TR+1 . This means that the largest pivot ele-
ment of any index combination at recursion level R+ 1
is maxmR+1,β ,1 = |TR+1| − (pR+1 − 1) . Note that by
assumption pR+1 = pR , and so by (19)

The upper and lower bound on the pivot element of
the index combination is defined in Algorithm 3 in the
lines 1-8.

(19)mR+1,β ,1 ≥ mR,α,1

(20)

maxmR+1,β ,1 = |TR+1| − (pR+1 − 1)

= |TR+1| − (pR − 1)

= |TR| − pR − (pR − 1)

= |TR| + 1− 2pR ≥ mR,α,1 ≥ mR−1,k ,1

Page 16 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

Constraint aware IP‑algorithm
Given that the recursion will only be continued in Algo-
rithm 3 line 17 if the following groups have the potential
to make the value of the grouping larger than the cur-
rently best group, it will be beneficial to search the group-
ings whose group sizes are given by an integer partition of
|T| , according to the order of the largest theoretical group-
ing value based on the upper bounds on each of the group
values calculated in Algorithm 2 line 5. This is the main
loop of the Algorithm 4 in line 3 scanning the sorted set P
of all possible integer partitions of |T| . The groups whose
lengths are given by an integer partition will be recursively
searched only if the partition has the potential to return
a larger grouping value than the currently best grouping.

Algorithm 4 Constraint aware integer partition search

Evaluation
The optimization algorithm must be able to handle con-
straints and generate valid groupings that satisfy these
constraints. Efficient handling of constraints can signif-
icantly reduce the search space, making it easier to find
an optimal solution in a reasonable time. Therefore, the
ability to handle grouping constraints is crucial and it is
the main focus of this evaluation.

Methodology and setting
The experiments were conducted on various sizes of
applications in terms of the number of component types
and requirements attributes representing different con-
figurations c . All tested configurations are presented in
Table 7. The experiments were conducted on two sets
of available Node Candidates presented in Tables 2 and
Table 6. The details of the setup and the summary of
the results are presented in Table 8. All tests were per-
formed assuming that sharing cores and ram sharing is
not allowed to make the problem more difficult. Fur-
thermore, various numbers of constraints were used to

assess the performance, starting from zero constraints
and up to the maximum possible number of constraints,
calculated as (|T| · (|T| − 1))/2 . There are a maximum
of 20 possible constraints for an application with seven
components, 44 for an application with ten components,
and 104 for an application with fifteen component types.

Three algorithms were used to solve the grouping
problem:

1.	 the modified IP algorithm presented in “Constraint
aware CSG” section as Algorithm 4,

2.	 the state-of-the-art Optimal Dynamic Programming
– Integer-Partition (ODP-IP) [33] algorithm,

3.	 the exhaustive search of Algorithm 1 treated as the
baseline and a complexity marker.

The focus of the evaluation was on assessing the perfor-
mance in terms of handling constraints and the unavail-
ability of certain groups. To assess the performance and
account for the inhibition constraints, the algorithms
were tested on different numbers of randomly generated
inhibition constraints. To ensure a broader scope of cases,
100 sets of randomly generated constraints for each possi-
ble number of constraints were evaluated for experiments
with seven and ten components, and 10 sets of randomly
generated constraints were evaluated for the experi-
ments with a 15-component application. The constraints
were generated by first creating a list of all possible pairs
of numbers from zero to |T| , then shuffling the pairs in a
random order using Java method Collections.shuffle12, and
after that picking the first k pairs, where k is the desired
number of constraints. This approach with various sets
of randomly generated constraints allows us to obtain

Table 6  Available Virtual Machines (VMs) (bigger set)

VM Name CPU RAM Price

VM1 1 1 1

VM2 1 2 2

VM3 2 2 3

VM4 2 4 4

VM5 4 4 6

VM6 4 8 8

VM7 8 8 12

VM8 8 16 16

VM9 16 16 24

VM10 16 32 32

VM11 32 32 48

VM12 32 64 64

12  https://​docs.​oracle.​com/​javase/​6/​docs/​api/​java/​util/​Colle​ctions.​html

https://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

Page 17 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

a better understanding of the impact of inhibition con-
straints on the available groups and the resulting optimal
grouping. Therefore, the results presented in this section
are based on a comprehensive evaluation of multiple con-
straint sets, rather than a single set, which increases the
confidence in the findings.

To account for the second factor that influences the
number of feasible groups, the algorithms were tested
on different application configurations c , presented in
Table 7. Figure 2 shows how the inhibition constraints
limit the available groups. It presents a box-and-whisker
plot for all possible constraints where each vertical line
is for a given number of constraints, starting from zero
constraints. For zero constraints, the only infeasibility
comes from the limited VM offers. For more constraints,
the number of available groups decreases eventually
down to |T| groups so only singletons are available for the
maximum possible number of constraints.

Figure 2a presents the available groups for the same
configuration c1 of the seven-component application
calculated for a smaller set of available VMs presented
in Table 2 (red boxes), and a larger set of available VMs
presented in Table 6 (orange boxes). The difference in
the feasibility of the groups comes only from the availa-
ble Node Candidates. For the case with zero constraints,
all groups are feasible for the larger set of Node Can-
didates and only 72% of the groups are feasible for the
smaller set of Node Candidates. However, when some
constraints are introduced, the available Node Candi-
dates have a much lower impact on the number of avail-
able groups.

Figure 2b presents the available groups for two con-
figurations of the ten-component application, c2, c3 , and
the set of Node Candidates from Table 2. For 10 com-
ponents, there are 210 = 1024 groups if there is always
a VM capable of hosting the group. The first configura-
tion, c2 , marked by red boxes, involved various resource
requirement attributes to imitate bigger and smaller
components and it aims to be more realistic. For this
configuration, for zero constraints, there are around 320
available groups. It means that almost two-thirds of the
groups are not available only because of the VM resource
limitation and no inhibition constraints. The second con-
figuration, c3 , marked by orange boxes, involved smaller
components. It represents a case when resource con-
straints on available VMs are not an important factor and
almost all groups are available when no inhibition con-
straints are applied. This example highlights the impact
of resource requirements attributes. Also, one can note
that only one inhibition constraint reduces the number of
available groups by 30%.

Best grouping value
As for the value function, we used (12) that was presented
in “Grouping approach” section. The available groups and
hence the best grouping are influenced by the resource
attribute requirements, available offers, and inhibition
constraints. The available offers and resource attribute
requirements do not change for the first experiment case,
so only the introduction of inhibition constraints limits
the available groups and changes the optimal grouping.

Table 7  Tested configurations c with various component requirements for applications with seven ( c1 ), ten ( c2 and c3 ), and fifteen ( c4 )
component types

7 components: c1 10 components: c2 10 components: c3 15 components: c4

 Component Name CPU RAM CPU RAM CPU RAM CPU RAM

A 1 4 6 10 1 1 6 10

B 2 2 2 4 1 2 2 4

C 2 8 1 3 1 2 1 3

D 3 6 1 2 1 3 1 2

E 3 12 3 2 2 2 3 2

F 4 8 7 18 2 3 7 18

G 6 12 1 2 2 4 1 2

H - - 12 20 3 3 12 20

I - - 6 14 3 4 6 14

J - - 2 2 3 6 2 2

K - - - - - - 3 18

L - - - - - - 1 1

M - - - - - - 12 24

N - - - - - - 16 14

O - - - - - - 2 8

Page 18 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

Figure 3 shows the grouping value, calculated as (13), for
the configuration c2 of a ten-component application, for
cases with zero inhibition constraints up to the maximum
available number of inhibition constraints. It is a box-
and-whisker plot where one box represents all cases with
the same number of constraints. For zero constraints,

there are plenty of available groupings, resulting in the
highest possible grouping value of 238. As the number of
constraints increased, the grouping value decreased. This
is a natural consequence of some groups becoming infea-
sible, leading to limited potential cost savings. It should
be noted that the optimal grouping without inhibition

Fig. 2  The total number of available groups for the various numbers of randomly generated constraints for two sets of available Node Candidates
for a seven-component application (a) for the same configuration c1 of a seven-component application for a smaller (red boxes) and larger (orange
boxes) set of available Node Candidates. The infeasibility of the groups comes only from the limited offers, and for the smaller set of available Node
Candidates, the number of feasible groups is lower; and for two different configurations of a ten-component application (b) for two configurations
of a ten-component application: configuration c2 (red) and c3 (orange). The difference in the infeasibility of the groups comes from the resource
requirement attributes, which are smaller for c3, so there are more feasible groups for this configuration. Each vertical line is for a given number
of constraints, starting from zero up to the maximum number of possible constraints

Page 19 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

constraints gives 19% higher value than the deployment
of all components into individual VMs, which highlights
the benefits of grouping. The improvement of the utility
achieved by the optimal grouping is presented in Table 8
in the last column of the summary of experiments results.

Experiments
For all algorithms, different environments were used to
perform experiments. In particular:

•	 the modified IP algorithm was implemented as a part
of the MORPHEMIC project13,

•	 ODP-IP algorithm [33] with the implementation pro-
vided by authors on Github14. The algorithm expects
to have all groups available so we encoded infeasible
groups as groups with zero value,

•	 and exhaustive search algorithm presented in
“Exhaustive search” section which was run on the
Mathematica implementation provided by the
authors of this paper.

To objectively measure the algorithms’ performance
across various implementation environments, a specific
metric was utilized: the number of evaluated grouping
propositions. It is important to note that this metric is appli-
cable even when different implementation environments
are used. If an algorithm needs to enumerate all possible
groupings, the value of the counter should be equivalent to

the Bell number. This is the case for the exhaustive search
algorithm with no VM limitations applied.

Due to the space limit, we present only two Figures
with detailed results, and we summarize the overall
results in Table 8. We performed seven experiments on
various resource requirements, number of components,
sets of available VMs, and all possible numbers of inhi-
bition constraints. In each experiment, there were 10 or
100 randomly generated sets of constraints for each pos-
sible number of constraints, which resulted in a range
from 14000 to 45000 test cases conducted for one experi-
ment. We note that both CSG algorithms were able to
find the optimal grouping for all cases. The column Best
IP in Table 8 was calculated by counting the number of
groupings constructed for each case by all algorithms,
then taking the mean and comparing the means of all
three algorithms. The percentage indicates for how many
cases the modified IP algorithm constructed the lowest
number of groupings from all three algorithms. It can be
seen that the modified IP algorithm constructed a lower
number of groupings at least for 58% cases, but for exper-
iments on a seven-component application, the modified
IP algorithm was always outperforming the state-of-
the-art ODP-IP algorithm and the exhaustive search
algorithm.

Values of the IP speedup column was calculated by tak-
ing means of the numbers of constructed groupings for
each number of constraints and taking the ratio between
the modified IP algorithm and ODP-IP algorithm. For
all experiments, the modified IP algorithm on average
created at least 9.0 fewer groupings, but for the biggest

Fig. 3  The utility value of the best grouping for the configuration c2 , for the randomly generated constraints from zero to 44. The more constraints
are introduced, the value of the best grouping is decreased

13  https://​gitlab.​ow2.​org/​melod​ic/​group​ing/-/​tree/​main
14  https://​github.​com/​trahw​an/​ODP-​IP

https://gitlab.ow2.org/melodic/grouping/-/tree/main
https://github.com/trahwan/ODP-IP

Page 20 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

experiment, the modified IP algorithm was on average a
couple of thousands of times faster than ODP-IP algo-
rithm. Finally, the Utility improvement column presents
the benefits of the grouping itself. For all experiments,
the optimal grouping gives higher utility than the deploy-
ment of each component on a single VM. This improve-
ment, calculated in percentage, is presented in the last
column of Table 8.

Figure 4 shows the results of the experiment (3) and
Fig. 5 shows the results of the experiment (5), where two
different configurations of a ten-component applica-
tion were tested. Figures show the number of groupings
checked during the search for the best grouping for all

evaluated algorithms and problems with from zero to 44
randomly generated constraints. It is a box and whisker
plot where the blue boxes are results of ODP-IP algo-
rithm, red boxes are results of the modified IP algorithm,
and green results are results of the exhaustive search
algorithm. It should be noted that the number of group-
ings checked is presented on a logarithmic scale. It is
important to note that the exhaustive search algorithm
evaluates significantly more groupings than both the
modified IP and ODP-IP for cases with the lower number
of constraints, and for the fifteen-component application,
obtaining the result took prohibitively long. This leads to
the conclusion that presenting the grouping problem as

Fig. 4  The number of groupings evaluated by ODP-IP, modified IP, and the exhaustive search algorithms for the experiment (3), where there are
many infeasible groups due to limited VM offers, with the increasing number of randomly generated grouping constraints, starting from zero
up to 44 constraints. The number of groupings created is presented on a logarithmic scale

Table 8  The summary of conducted experiments. There were seven experiments performed on various configurations and available
VMs. Results present for how many cases the modified IP algorithm performed better than the state-of-the-art ODP-IP algorithm (Best
IP), and how much faster the modified IP algorithm was on average (IP speedup). The last column (Utility improvement) presents
the benefits of grouping as the percentage difference between the best-achieved utility compared to the situation where each
component is hosted on a separate VM

Experiment setup Results

 ID |T| c VMs Table Repetitions Best IP IP speedup Utility
improvement

1 7 c1 2 100 100% 11.58 7.5%

2 7 c1 6 100 100% 9.00 2.9%

3 10 c2 2 100 78% 74.18 19%

4 10 c2 6 100 71% 27.84 6.5%

5 10 c3 2 100 73% 24.24 2.9%

6 10 c3 6 100 58% 17.63 0.8%

7 15 c4 2 10 64% 3641.22 2.9%

Page 21 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

a CSG problem and using the best algorithms from this
field can yield good results and make the grouping prob-
lem solvable for a larger number of components. Also,
the ODP-IP algorithm has a bigger variance for larger
problems in terms of the number of available groups, like
for the experiment presented in Fig. 5. It makes it less
predictable in terms of the final complexity.

The results indicate that the ODP-IP algorithm may
be faster for cases with a small number of constraints.
It means that it may be better to use ODP-IP for almost
unconstrained cases, which confirms the fact that it is a
state-of-the-art algorithm. However, for cases with 10 or
more constraints, the modified IP evaluates on average
a lower number of groupings, making it more efficient
as the number of constraints increases. For the extreme
case, when each component has to be placed on a sepa-
rate VM, the modified IP algorithm evaluates only this
one possible grouping while ODP-IP algorithm evaluates
more than 500 possible groupings, and for fifteen-com-
ponent applications, ODP-IP algorithm evaluates more
than 16000 possible groupings while only one grouping is
actually feasible.

Discussion
The results of experiments presented in “Evaluation” sec-
tion lead us to the conclusion that the proposed approach
for solving the constrained grouping problem is efficient
and is able to find the best Cloud application component
placement. Furthermore, the presented modifications

of IP algorithm lead to better performance of this algo-
rithm comparing to the ODP-IP algorithm. Even though
the ODP-IP algorithm can be up to eight times more
efficient for cases with a small number of constraints
and hence many available groups, the modified IP algo-
rithm constructs fewer groupings for the majority of the
cases. One can note that for more complex experiments,
the superiority of the modified IP algorithm is lower, but
still the modified IP algorithm evaluated up to 3000 less
groupings than the ODP-IP algorithm. Another inter-
esting result is the observation that even one constraint
can reduce the number of available groups by 30%. This
observation can suggest to the application owner an easy
way to limit the complexity of optimization of the Cloud
application.

It is important to note the novel value function for cost
minimization introduced in this paper. It is not trivial
how to define a value function over a group that is a char-
acteristic function, and that will consider cost minimiza-
tion and for which the value for the grouping should be
maximized. One can think about the simplest function,
the negated price −P(Gi) . However, not all algorithms
allow for having negative group values. Many algorithms
can handle negative values in the theory, but the existing
implementations are assumed to work only on positive
values. Therefore, the introduced value function can be
seen as a significant contribution. We did not consider
the performance or latency consequences of the grouping
since it heavily depends on the application characteristics

Fig. 5  The number of groupings evaluated by ODP-IP, modified IP, and the exhaustive search algorithms for the experiment (5), where almost all
groups are feasible, with the increasing number of randomly generated grouping constraints, starting from zero up to 44 constraints. The number
of groupings created is presented on a logarithmic scale

Page 22 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

and communication network while cost minimization is
the common goal of all Cloud deployments.

One must be aware that the complexity of the con-
strained optimization problem is NP-complete in
general so adding the additional step of solving the
grouping problem just increases the overall complex-
ity. However, the two-step optimization approach pre-
sented in this paper keeps the overall complexity small
enough to be able to solve the problems for a reasona-
ble number of components. The experiments presented
in this paper were conducted for applications with
seven, ten, and fifteen component types, but we esti-
mate that it should be possible to solve this problem for
an application with up to fifty component types, which
is more than the number of component types for a typi-
cal Cloud application15.

This paper has not considered the outer optimiza-
tion to assign the optimal resource requirements for
the application components. The presented approach
expects that the resource requirements attributes are
given as input, and that they are correct and accurate.
In this work, authors designed the process of finding
the best VMs for Cloud application deployment to be
integrated with the MORPHEMIC platform. MOR-
PHEMIC aims on finding the best resource configura-
tion for Cloud application components under varying
execution context [3], so this limitation is mitigated by
this integration.

Conclusion and future work
This paper has proposed a novel approach for solving
the constrained grouping problem for Cloud applica-
tion components deployment and optimization. The
approach involved a two-step optimization process,
where the first step involved finding the best resource
requirements for the application component types, and
the second step involved finding the best possible set
of VMs and grouping the components to minimize the
overall cost. This approach is the first representation of
the Cloud application components grouping problem
as CSG problem.

Furthermore, a novel cost saving value function was
introduced. It is used for representing the cost mini-
mization goal using only positive values that can be
summed up to calculate the overall grouping value (13).
This function enables the cost benefits from the group-
ing of Cloud application components, and it does not
contradict a utility function used to find the applica-
tion components’ optimal resource requirements.
The value function satisfies the criteria of being a

characteristic function, allowing the CSG algorithms
to solve the grouping problem. Finally, this paper
developed a modified IP algorithm that is able to han-
dle collocation constraints. The modified IP algorithm
was evaluated and it outperformed the state-of-the-art
algorithm by dozens of times for most of the cases. The
proposed approach was able to find the best compo-
nent grouping efficiently, Overall, these results dem-
onstrate the effectiveness of the modified IP algorithm
in solving the Cloud application optimization problem,
particularly for cases with a large number of inhibition
constraints where it can be even thousand times more
efficient in terms of constructed groupings than state-
of-the-art ODP-IP algorithm.

The presented approach is being implemented as a part
of the MORPHEMIC Cloud application management
and optimization platform, which will allow for further
evaluation and experimentation with real-world business
applications, which may help assessing the signifance
of limitations related to the complexity of the grouping
problem.

The limited sets of VMs used in the experiments
serve the purpose of assessing the usability of this
approach to solve the grouping problems in the Cloud
continuum, which is one of the open resource optimi-
zation problems, as it was stated by Bittencourt et al.
[7]. Authors will be integrating the presented approach
with the NebulOus platform16, which is a meta-oper-
ating system for applications deployed in the Cloud
continuum [54]. Further experiments are planned to
be conducted after this integration, involving users of
the platform.

Furthermore, there are many ideas about how to pro-
gress the research in the area of grouping. For instance,
a constrained CSG problem can possibly be seen as a
combinatorial auction, where it is possible to bid on the
combinations of items, i.e., the groups Gi , to find the
best package, G . A combinatorial auction can be solved
in polynomial time in terms of the number of feasible
groups [55], and so if the number of feasible component
groups is smaller than around 10% of all possible groups,
the combinatorial auction algorithms may have better
complexity than CSG algorithms. It might be possible to
develop a hybrid meta-algorithm that will decide which
algorithm should be used to solve a particular grouping
problem: ODP-IP, modified IP, or possibly also a combi-
natorial auction algorithm.

To conclude, the proposed approach is promising for
optimized constrained Cloud application management,
and future research and development in this area may

15  https://​www.​jrebel.​com/​blog/​2021-​micro​servi​ces-​devel​oper-​report 16  https://​nebul​ouscl​oud.​eu/

https://www.jrebel.com/blog/2021-microservices-developer-report
https://nebulouscloud.eu/

Page 23 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

further improve the efficiency and effectiveness of Cloud
applications.

Appendix A Summary of the notation
Table 9 provides the summary of the notation used in the
paper.

Table 9  The summary of the notation used in the paper, including
the notation used in the modified IP algorithm

Symbol Description

T The set of application components.

Ti A component.

|T| The number of components.

Gi A group.

G A grouping.

G
∗ An optimal grouping.

AT The set of component’s T resource
requirements attributes.

aT ,i ∈ AT A resource requirements attribute
for component T.

VT ,i A domain of attribute aT ,i.

VT The variability space for component
T.

V The configuration search space.

c ∈ V An application configuration.

c∗ ∈ V The optimal configuration.

tk The point in time.

θ(tk) An execution context vector.

F

(

θ(tk), ψ̂ [c, θ(tk)]

)

A feasible space.

U
(

c,ψ(c, θ(tk))
∣

∣ θ(tk)
)

The utility function.

gk A group variable (exhaustive search
algorithm).

I(T |G) An index function.

E The set of exclusions.

r(Gi |c) A resource function.

VM(r(Gi |c)) The VM capable of hosting
the group Gi.

P(G) The price of the grouping G.

P(Gi) The price of the cheapest VM capa-
ble of hosting the group Gi.

P+ The cost of the most expensive
available VM.

|Gi | The cardinality of Gi.

v(Gi) The value of Gi.

S The set of groups.

V(G) The value of G.

V∗ The upper bound on V(G∗).

V− The lower bound on V(G∗).

G
+ The best grouping found so far.

β∗ The bound within which any solu-
tion is acceptable.

Symbol Description

v+ A vector of maximum group values
by group size.

v̄ A vector of average group values
by group size.

p An integer partition of |T|.

R A recursion depth of search in modi-
fied IP algorithm.

TR The component types that are
yet to be grouped.

mR−1,k ,1 The first pivot element of R − 1
combination.

CR(|TR|, pR) The binom combina-
tions of the unique integers
mR,k,j ∈ {1, . . . , |TR|} ⊂ N

+.

Acknowledgements
This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871643 MOR-
PHEMIC Modelling and Orchestrating heterogeneous Resources and Polymorphic
applications for Holistic Execution and adaptation of Models In the Cloud and
from the EU’s Horizon research and innovation programme under grant agree-
ment No. 101070516 NebulOuS project.

Authors’ contributions
The main manuscript was a collaborative joint effort between MR and
GH. MR took overall responsibility for the paper and the implementation
and the experiments. GH supervised the work, made a specific contribu-
tion to “Exhaustive search” section, and the presentation of algorithms, and
the description of the modified IP algorithm. Both authors reviewed the
manuscript.

Funding
Open access funding provided by University of Oslo (incl Oslo University
Hospital) This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871643
MORPHEMIC Modelling and Orchestrating heterogeneous Resources and Poly-
morphic applications for Holistic Execution and adaptation of Models In the Cloud
and from the EU’s Horizon research and innovation programme under grant
agreement No. 101070516 NebulOuS project.

Availability of data and materials
The implementation of the modified Integer-Partition (IP) algorithm and the
data used for experiments can be found in the GitLab repository (https://​
gitlab.​ow2.​org/​melod​ic/​group​ing/-/​tree/​main). For additional data supporting
the results presented in this publication, interested readers may request it
from the corresponding author.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 23 June 2023 Accepted: 12 April 2024

https://gitlab.ow2.org/melodic/grouping/-/tree/main
https://gitlab.ow2.org/melodic/grouping/-/tree/main

Page 24 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99

References
	1.	 Marinescu DC (2022) Cloud Computing: Theory and Practice. Mor-

gan Kaufmann, p 674. Google-Books-ID: XOBWEAAAQBAJ. ISBN:
978-0-323-91047-7

	2.	 Apostolou D, Verginadis Y, Mentzas G (2021) In the fog: Application
deployment for the cloud continuum. In: 2021 12th International Confer-
ence on Information, Intelligence, Systems & Applications (IISA), IEEE, pp
1–7

	3.	 Horn G, Skrzypek P (2018) MELODIC: Utility based cross cloud deploy-
ment optimisation. In: Proceedings of the 32nd International Conference
on Advanced Information Networking and Applications Workshops
(WAINA), IEEE Computer Society, Krakow, pp 360–367. https://​doi.​org/​10.​
1109/​WAINA.​2018.​00112

	4.	 Kephart JO, Das R (2007) Achieving self-management via utility functions.
IEEE Internet Comput 11(1):40–48. https://​doi.​org/​10.​1109/​MIC.​2007.2

	5.	 Onozaki T (2018) Nonlinearity, Bounded Rationality, and Heterogeneity.
Springer, Tokyo. https://​doi.​org/​10.​1007/​978-4-​431-​54971-0

	6.	 Ahmad Z, Jehangiri AI, Ala’anzy MA, Othman M, Latip R, Zaman SKU,
Umar AI (2021) Scientific workflows management and scheduling in
cloud computing: Taxonomy, prospects, and challenges. IEEE Access
9:53491–53508. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30707​85. IEEE
Access, ISSN: 2169-3536

	7.	 Bittencourt L, Immich R, Sakellariou R, Fonseca N, Madeira E, Curado M,
Villas L, DaSilva L, Lee C, Rana O (2018) The internet of things, fog and
cloud continuum: Integration and challenges. Internet Things 3-4:134-
155. https://​doi.​org/​10.​1016/j.​iot.​2018.​09.​005. ISSN: 25426605.

	8.	 Manvi SS, Krishna Shyam G (2014) Resource management for infrastruc-
ture as a service (IaaS) in cloud computing: a survey. J Netw Comput Appl
41:424–440. https://​doi.​org/​10.​1016/j.​jnca.​2013.​10.​004. ISSN: 1084-8045

	9.	 Rahwan T, Ramchurn SD, Jennings NR, Giovannucci A (2009) An anytime
algorithm for optimal coalition structure generation.J Artif Intell Res
34:521–567. https://​doi.​org/​10.​1613/​jair.​2695. ISSN: 1076-9757

	10.	 Stanley RP (2011) Enumerative Combinatorics, Cambridge Studies in
Advanced Mathematics, vol 1, 2nd edn. Cambridge University Press,
Cambridge, p 640. https://​doi.​org/​10.​1017/​CBO97​81139​058520. ISBN:
978-1-107-01542-5

	11.	 Bell ET (1938) The iterated exponential integers. Ann Math 39(3):539–557.
https://​doi.​org/​10.​2307/​19686​33. ISSN: 0003-486X

	12.	 Rota G-C (1964) The number of partitions of a set. Am Math Mon
71(5):498–504. https://​doi.​org/​10.​2307/​23125​85. ISSN: 0002-9890

	13.	 Dobiński G (1877) Summirung der reihe sum (nm/n!) für m = 1, 2, 3, 4, 5, ...
Grunert Arch Math Phys 6:333–336

	14.	 Comtet L (1974) Advanced Combinatorics: The Art of Finite and Infinite
Expansions. D. Reidel, Dordrecht. ISBN: 90-277-0380-9.

	15.	 Berend D, Tassa T (2010) Improved bounds on bell numbers and on
moments of sums of random variables. Probab Math Stat-Pol 30(2):185–
205. ISSN: 0208-4147

	16.	 King JR, Nakornchai V (1982) Machine-component group formation in
group technology: review and extension. Int J Prod Res 20(2):117–133.
https://​doi.​org/​10.​1080/​00207​54820​89477​54. Taylor & Francis

	17.	 Burbidge JL (1985) Production flow analysis. In: Bullinger HJ, Warnecke HJ
(eds) Toward the Factory of the Future, Springer, Berlin, pp 34–42. https://​
doi.​org/​10.​1007/​978-3-​642-​82580-4_7. ISBN: 978-3-642-82580-4

	18.	 Pentico DW (2007) Assignment problems: A golden anniversary survey.
Eur J Oper Res 176(2):774–793. https://​doi.​org/​10.​1016/j.​ejor.​2005.​09.​014.
ISSN: 0377-2217

	19.	 Christensen HI, Khan A, Pokutta S, Tetali P (2017) Approximation and
online algorithms for multidimensional bin packing: A survey. Comput
Sci Rev. 24:63–79. https://​doi.​org/​10.​1016/j.​cosrev.​2016.​12.​001. ISSN:
1574-0137

	20.	 Bansal N, Eliás M, Khan A (2016) Improved approximation for vector
bin packing. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’15), Society for Industrial
and Applied Mathematics, Arlington, pp 1561–1579. https://​doi.​org/​10.​
1137/1.​97816​11974​331.​ch106

	21.	 Patt-Shamir B, Rawitz D (2012) Vector bin packing with multiple-choice.
Discret Appl Math 160(10):1591–1600. https://​doi.​org/​10.​1016/j.​dam.​
2012.​02.​020. ISSN: 0166-218X

	22.	 Kellerer H, Pferschy U, Pisinger D (2004) Knapsack Problems. Springer, p
566. ISBN: 3-540-40286-1

	23.	 Laabadi S, Naimi M, El Amri H, Achchab B (2018) The 0/1 multidimen-
sional knapsack problem and its variants: A survey of practical models
and heuristic approaches. Am J Oper Res 8(5):365–439. https://​doi.​org/​
10.​4236/​ajor.​2018.​85023

	24.	 Yi C, Cai J (2014) Combinatorial spectrum auction with multiple hetero-
geneous sellers in cognitive radio networks. In: Proceedings of the IEEE
International Conference on Communications (ICC), ISSN: 1938-1883.
IEEE, Sydney, pp 1626–1631. https://​doi.​org/​10.​1109/​ICC.​2014.​68835​55.
ISBN: 978-1-4799-2003-7

	25.	 Song Y, Zhang C, Fang Y (2008) Multiple multidimensional knapsack
problem and its applications in cognitive radio networks. In: Proceedings
of the 2008 IEEE Military Communications Conference (MILCOM), ISSN:
2155-7586. San Diego, pp 1–7. https://​doi.​org/​10.​1109/​MILCOM.​2008.​
47536​29

	26.	 Camati RS, Calsavara A, Lima Jr L (2014) Solving the virtual machine
placement problem as a multiple multidimensional knapsack problem.
In: Proceedings of the The Thirteenth International Conference on Net-
works (ICN’14), IARIA, Nice, pp 253–260. ISBN: 978-1-61208-318-6

	27.	 He C, Leung JY-T, Lee K, Pinedo ML (2016) An improved binary search
algorithm for the multiple-choice knapsack problem. RAIRO Oper Res
50(4):995–1001. https://​doi.​org/​10.​1051/​ro/​20150​61. ISSN: 0399-0559,
1290-3868

	28.	 Lust T, Teghem J (2012) The multiobjective multidimensional knapsack
problem: a survey and a new approach. Int Trans Oper Res 19(4):495–520.
https://​doi.​org/​10.​1111/j.​1475-​3995.​2011.​00840.x. ISSN: 1475-3995

	29.	 Horn G, Różańska M (2019) Affine scalarization of two-dimensional utility
using the pareto front. In: Proceedings of the IEEE International Confer-
ence on Autonomic Computing (ICAC 2019), ISSN: 2474-0756, 2474-0764.
IEEE, Umeå, pp 147–156. https://​doi.​org/​10.​1109/​ICAC.​2019.​00026

	30.	 Voß S, Lalla-Ruiz E (2016) A set partitioning reformulation for the multi-
ple-choice multidimensional knapsack problem. Eng Optim 48(5):831–
850. https://​doi.​org/​10.​1080/​03052​15X.​2015.​10620​94. ISSN: 0305-215X

	31.	 Rahwan T, Michalak TP, Wooldridge M, Jennings NR (2015) Coalition
structure generation: A survey. Artif Intell 229:139–174. https://​doi.​org/​10.​
1016/j.​artint.​2015.​08.​004. ISSN: 0004-3702

	32.	 Michalak T, Sroka J, Rahwan T, Wooldridge M, McBurney P, Jennings NR
(2010) A distributed algorithm for anytime coalition structure generation.
In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
Toronto, pp 1007–1014. ISBN: 978-0-9826571-1-9

	33.	 Michalak T, Rahwan T, Elkind E, Wooldridge M, Jennings NR (2016)
A hybrid exact algorithm for complete set partitioning. Artif Intell
230:14–50. https://​doi.​org/​10.​1016/j.​artint.​2015.​09.​006. ISSN: 0004-3702

	34.	 Rahwan T, Michalak T, Elkind E, Faliszewski P, Sroka J, Wooldridge M,
Jennings N (2011) Constrained coalition formation. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 25, no. 1. pp 719–725.
https://​doi.​org/​10.​1609/​aaai.​v25i1.​7888. ISSN: 2374-3468

	35.	 Ueda S, Iwasaki A, Yokoo M, Silaghi MC, Hirayama K, Matsui T (2010) Coali-
tion structure generation based on distributed constraint optimization.
In: Proceedings of the 24th AAAI Conference on Artificial Intelligence and
the 22nd Innovative Applications of Artificial Intelligence Conference
(AAAI-10 / IAAI-10), vol 1. Atlanta, pp 197–203. ISBN: 978-1-57735-464-2

	36.	 Paraskevoulakou E, Tom-Ata JDT, Symvoulidis C, Kyriazis D (2024) Enhanc-
ing cloud-based application component placement with ai-driven
operations. In: 2024 IEEE 14th Annual Computing and Communication
Workshop and Conference (CCWC), pp 0687–0694. https://​doi.​org/​10.​
1109/​CCWC6​0891.​2024.​10427​694

	37.	 Chitgar N, Jazayeriy H, Rabiei M (2019) Improving Cloud Computing
Performance Using Task Scheduling Method Based on VMs Grouping.
In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), iSSN:
2642-9527. pp 2095–2099. https://​doi.​org/​10.​1109/​Irani​anCEE.​2019.​
87863​91

	38.	 Selvarani S, Sadhasivam GS (2010) Improved cost-based algorithm for
task scheduling in cloud computing. In: 2010 IEEE International Confer-
ence on Computational Intelligence and Computing Research, pp 1–5.
https://​doi.​org/​10.​1109/​ICCIC.​2010.​57058​47

	39.	 Nishio T, Shinkuma R, Takahashi T, Mandayam NB (2013) Service-oriented
heterogeneous resource sharing for optimizing service latency in mobile
cloud. In: Proceedings of the first international workshop on Mobile
cloud computing & networking, ser. MobileCloud ’13. Association for

https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.1109/MIC.2007.2
https://doi.org/10.1007/978-4-431-54971-0
https://doi.org/10.1109/ACCESS.2021.3070785
https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1613/jair.2695
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.2307/1968633
https://doi.org/10.2307/2312585
https://doi.org/10.1080/00207548208947754
https://doi.org/10.1007/978-3-642-82580-4_7
https://doi.org/10.1007/978-3-642-82580-4_7
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1016/j.dam.2012.02.020
https://doi.org/10.1016/j.dam.2012.02.020
https://doi.org/10.4236/ajor.2018.85023
https://doi.org/10.4236/ajor.2018.85023
https://doi.org/10.1109/ICC.2014.6883555
https://doi.org/10.1109/MILCOM.2008.4753629
https://doi.org/10.1109/MILCOM.2008.4753629
https://doi.org/10.1051/ro/2015061
https://doi.org/10.1111/j.1475-3995.2011.00840.x
https://doi.org/10.1109/ICAC.2019.00026
https://doi.org/10.1080/0305215X.2015.1062094
https://doi.org/10.1016/j.artint.2015.08.004
https://doi.org/10.1016/j.artint.2015.08.004
https://doi.org/10.1016/j.artint.2015.09.006
https://doi.org/10.1609/aaai.v25i1.7888
https://doi.org/10.1109/CCWC60891.2024.10427694
https://doi.org/10.1109/CCWC60891.2024.10427694
https://doi.org/10.1109/IranianCEE.2019.8786391
https://doi.org/10.1109/IranianCEE.2019.8786391
https://doi.org/10.1109/ICCIC.2010.5705847

Page 25 of 25Różańska and Horn ﻿Journal of Cloud Computing (2024) 13:99 	

Computing Machinery, New York, pp 19–26. https://​doi.​org/​10.​1145/​
24923​48.​24923​54. ISBN: 978-1-4503-2206-5

	40.	 Santos J, Wauters T, Volckaert B, De Turck F (2021) Towards end-to-end
resource provisioning in fog computing over low power wide area net-
works. J Netw Comput Appl 175:102915. https://​doi.​org/​10.​1016/j.​jnca.​
2020.​102915. ISSN: 1084-8045

	41.	 Wu C, Buyya R, Ramamohanarao K (2020) Modeling cloud business cus-
tomers’ utility functions. Futur Gener Comput Syst 105:737–753. https://​
doi.​org/​10.​1016/j.​future.​2019.​12.​044. ISSN: 0167-739X

	42.	 Różańska M, Kritikos K, Marchel J, Folga D, Horn G (2023) Utility function
creator for cloud application optimization. In: Barolli L (ed) Advanced
Information Networking and Applications, Lecture Notes in Networks
and Systems. Springer International Publishing, Cham, pp 619–630.
https://​doi.​org/​10.​1007/​978-3-​031-​28694-0_​58. ISBN: 978-3-031-28694-0

	43.	 Różańska M, Horn G (2022) Proactive autonomic cloud application
management. In: Proceedings of the 15th IEEE/ACM International Confer-
ence on Utility and Cloud Computing (UCC2022). IEEE/ACM, Vancouver,
pp 102–111. https://​doi.​org/​10.​1109/​UCC56​403.​2022.​00021. ISBN:
978-1-66546-087-3

	44.	 Luenberger DG, Ye Y (2008) Linear and Nonlinear Programming, 3rd edn.
Springer. ISBN: 978-0-387-74502-2

	45.	 Korte B, Vygen J (2018) Combinatorial Optimization: Theory and Algo-
rithms, Algorithms and Combinatorics, vol 21, 6th edn. Springer, Berlin
Heidelberg, p 627. ISBN: 978-3-540-71843-7

	46.	 Soewito B, Gaol FL, Abdurachman E (2022) A systematic literature
review: Risk analysis in cloud migration. J King Saud Univ Comput Inf
Sci 34(6):3111–3120. https://​doi.​org/​10.​1016/j.​jksuci.​2021.​01.​008. ISSN:
1319-1578

	47.	 Gribaudo M, Iacono M, Manini D (2017) Performance evaluation of
massively distributed microservices based applications. In: ECMS 2017
Proceedings edited by Zita Zoltay Paprika, Péter Horák, Kata Váradi, Péter
Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics, ECMS, pp
598–604. https://​doi.​org/​10.​7148/​2017-​0598. ISBN: 978-0-9932440-4-9

	48.	 Stanton D, White D (1986) Constructive Combinatorics (Undergradu-
ate Texts in Mathematics). In: Gehring FW, Halmos PR (eds), 1st edn.
Springer, New York. https://​doi.​org/​10.​1007/​978-1-​4612-​4968-9. ISBN:
978-1-4612-4968-9

	49.	 Mansour T, Nassar G (2008) Gray codes, loopless algorithm and partitions.
J Math Model Algoritm 7(3):291–310. https://​doi.​org/​10.​1007/​s10852-​
008-​9086-9. ISSN: 1572-9214

	50.	 Kereskényi-Balogh Z, Nyul G (2014) Stirling numbers of the second
kind and bell numbers for graphs. Aust J Comb 58(2):264–274. ISSN:
1034-4942

	51.	 Berceanu C (2001) Chromatic polynomials and k-trees. Demonstratio
Math 34(4):743–748. https://​doi.​org/​10.​1515/​dema-​2001-​0402. ISSN:
2391-4661

	52.	 Pemmaraju S, Skiena S (2003) Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Cambridge Univer-
sity Press, Cambridge. https://​doi.​org/​10.​1017/​CBO97​81139​164849. ISBN:
978-0-521-12146-0

	53.	 Sandholm T, Larson K, Andersson M, Shehory O, Tohmé F (1999) Coalition
structure generation with worst case guarantees. Artif Intell 111(1):209–
238. https://​doi.​org/​10.​1016/​S0004-​3702(99)​00036-3. ISSN: 0004-3702

	54.	 Verginadis Y, Sarros CA, de Los Mozos MR, Veloudis S, Piliszek R, Kourtellis
N, Horn G (2023) NebulOuS: A meta-operating system with cloud con-
tinuum brokerage capabilities. In: 2023 Eighth International Conference
on Fog and Mobile Edge Computing (FMEC), pp 254–261. https://​doi.​
org/​10.​1109/​FMEC5​9375.​2023.​10306​090

	55.	 de Vries S, Vohra RV (2003) Combinatorial auctions: a survey. INFORMS
J Comput 15(3):284–309. https://​doi.​org/​10.​1287/​ijoc.​15.3.​284.​16077.
INFORMS, ISSN: 1091-9856

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/2492348.2492354
https://doi.org/10.1145/2492348.2492354
https://doi.org/10.1016/j.jnca.2020.102915
https://doi.org/10.1016/j.jnca.2020.102915
https://doi.org/10.1016/j.future.2019.12.044
https://doi.org/10.1016/j.future.2019.12.044
https://doi.org/10.1007/978-3-031-28694-0_58
https://doi.org/10.1109/UCC56403.2022.00021
https://doi.org/10.1016/j.jksuci.2021.01.008
https://doi.org/10.7148/2017-0598
https://doi.org/10.1007/978-1-4612-4968-9
https://doi.org/10.1007/s10852-008-9086-9
https://doi.org/10.1007/s10852-008-9086-9
https://doi.org/10.1515/dema-2001-0402
https://doi.org/10.1017/CBO9781139164849
https://doi.org/10.1016/S0004-3702(99)00036-3
https://doi.org/10.1109/FMEC59375.2023.10306090
https://doi.org/10.1109/FMEC59375.2023.10306090
https://doi.org/10.1287/ijoc.15.3.284.16077

	Constrained optimal grouping of cloud application components
	Abstract
	Introduction
	Grouping background
	Grouping model
	Worst case complexity
	Group Technology
	Allocation
	Bin packing
	Multidimensional Knapsack Problem
	Game theory: Coalition Structure Generation
	Optimization based approaches
	Cloud application management
	Task scheduling and workflow applications in the Cloud
	Multi-Cloud management platforms

	Cloud application optimization
	Variability and search space
	Optimization
	Combining resource requirement attributes
	Inhibition constraints
	Example

	Grouping approach
	Price calculation
	Value function
	Grouping process

	Exhaustive search
	Variables and constraints
	Recursive search under inhibition constraints
	Grouping complexity with inhibition constraints

	Constraint aware CSG
	Grouping using CSG algorithms
	Constraints
	Complexity
	Preprocessing: groups and bounds
	Recursion on an integer partition
	Aborting the recursion
	Equal integer partition parts
	Constraint aware IP-algorithm

	Evaluation
	Methodology and setting
	Best grouping value
	Experiments

	Discussion
	Conclusion and future work
	Appendix A Summary of the notation
	Acknowledgements
	References

