
Nieto et al. Journal of Cloud Computing (2024) 13:94
https://doi.org/10.1186/s13677-024-00658-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Deep Reinforcement Learning techniques
for dynamic task offloading in the 5G
edge-cloud continuum
Gorka Nieto1,2*, Idoia de la Iglesia1, Unai Lopez‑Novoa2 and Cristina Perfecto2

Abstract

The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external
devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC)
paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters,
so Multi‑access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement
Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to
execute each computing task, depending on many factors. The optimization goal in this work is to maximize
the Quality‑of‑Experience (QoE) when performing tasks, which is defined as a metric related to the battery level
of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor‑
Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct
scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic
environments, also demonstrating that decisions need to be adapted to the environment’s evolution.

Keywords Task offloading, Performance evaluation, Energy consumption, Reinforcement Learning (RL), Quality‑of‑
Experience (QoE), Multi‑access Edge Computing (MEC), Internet of Things (IoT), Edge‑Cloud‑Continuum

Introduction
As a key enabler of a new industrial and social revolu-
tion, Internet of Things (IoT) drives a wide range of
possibilities, facilitating the generation and utilization
of previously nonexistent data. In fact, IoT is becom-
ing more popular in many industries, such as manufac-
turing, healthcare, retail, or vehicle industry [26]. IoT
and its connectivity capabilities, combined with data
analytics, open up new possibilities not only to develop

cutting-edge goods and services but also to improve
operational efficiency.

However, in many scenarios, these applications are
limited by the constrained resources of IoT devices,
involving both computation capabilities and battery
constraints, among others [19]. That is why, often, these
devices need to rely on external resources in order to
offload some of their computational tasks, such as get-
ting insights from the data caught by themselves. Even
if the task could be run in the device itself, the energy
usage may be too high, which would result in the need
to recharge batteries more frequently or even replacing
them.

To avoid this high battery consumption and to ensure
the service, Cloud Computing (CC), or in the con-
text of mobile communications, Mobile Cloud Com-
puting (MCC) paradigm, emerged as a promising
solution for tasks where latency is not critical, above all.

*Correspondence:
Gorka Nieto
gnieto@ikerlan.es
1 Ikerlan Technology Research Centre, Basque Research and Technology
Alliance (BRTA), Pº. J. M. Arizmendiarrieta, 2, Arrasate‑Mondragón 20500,
Spain
2 University of the Basque Country (UPV/EHU). School of Engineering
in Bilbao, Alameda Urquijo s/n, Bilbao 48013, Spain

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00658-0&domain=pdf

Page 2 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Unfortunately, when the completion time must be very
short, this solution may not be adequate because the
Round-Trip Time (RTT) from the device to the cloud
server might be too high.

To solve both local issues and the problems derived
from reaching remote cloud servers, European Telecom-
munications Standards Institute (ETSI) developed a new
paradigm called Multi-access Edge Computing (MEC),
formerly Mobile Edge Computing, but which became
updated to enable the communications through different
technologies, such as 5G-New Radio (NR) or Wireless-
Fidelity (Wi-Fi). MEC, as stated by ETSI, is “a natural
development in the evolution of mobile Base Station (BS)
and the convergence of IT and telecommunications net-
working” and “offers application developers and content
providers cloud-computing capabilities and an IT service
environment at the edge of the network” [18]. In short,
it brings the benefits of the CC paradigm closer to the
User Equipment (UE). 5G was the communication tech-
nology that enabled MEC paradigm for the first time, and
is also expected to enable more connected devices. It is
also supposed to bring improved energy-saving capabili-
ties for IoT devices, leading to reduced energy use and
increased battery life [25].

In this context, it is important to consider the draw-
backs of local execution, but also the implications task
offloading may have. Many works in the literature have
presented tools that optimize the decision of where to
execute the computing tasks, depending on many factors.
Apart from classical mathematical optimization meth-
ods, with the recent advancements in Artificial Intelli-
gence (AI), many different approaches have been set up,
including Machine Learning (ML) or Deep Learning (DL)
approaches, techniques that learn from data and improve
their performance over time. However, a significant limi-
tation of this approach is the need of dataset that repre-
sents every possible state of the environment, so the ML
algorithm learns how to act each time. Having the proper
datasets containing every situation to learn from may be
unrealistic [9], so there is a need to have a tool that can
learn without needing a dataset. Here is where Reinforce-
ment Learning (RL) can be of use as, instead of relying
on an existing dataset, it learns by continuously inter-
acting with the environment and assessing the effects of
its actions.. Deep Reinforcement Learning (DRL) is an
improved version of RL that uses Deep Neural Network
(DNN) to optimize a specific metric, through the estima-
tion of the value or policy function for high-dimensional
state and action spaces.

Another important matter is where to take this deci-
sion. On the one hand, running such algorithms can be
time- and computing-costly for a resource-constrained
device [17]. On the other, if one of the outputs of the

algorithm is to decide not to offload any information
because the communications are not guaranteed or the
server is not available, it would not make sense for the
decision to be taken by an external agent, as it would
have a communication problem with the device. This
would also add more information or noise to a channel
that could already be saturated [32], apart from the fact
that no decision would be taken.

As commented earlier, the main goals to be optimized
in an IoT computation offloading problem may be to
reduce the energy consumption of the device and ful-
fil the latency requirements of the application, although
there can be different approaches, like optimizing the
bandwidth or accomplishing computation tasks while
maintaining a certain level of privacy. Taking all this into
account, this work presents a DRL-based technique to
maximize the User Experience (UX) of IoT services, this
is, guaranteeing a level of Quality-of-Experience (QoE)
in the decision-making so the tasks’, and therefore, the
users’ requirements are fulfilled.

Thus, the contributions of this work are:

• A novel system model that considers devices’ and
servers’ occupation, the network status and different
task types, rather than focusing solely on tasks’ char-
acteristics.

• A QoE calculation based on the energy performance,
conditional on meeting the latency requirements of
the tasks and trying to maximize their success.

• A distributed DRL approach, with which each UE
aims to maximize the QoE value in a time-varying
environment.

• An empirical evaluation of the algorithm in two dis-
tinct scenarios that shows the performance of the
proposed solution, along with other baselines, prov-
ing the need for a dynamic and adaptive approach.

The performance of the algorithm is demonstrated
through the experiment outcomes in terms of QoE val-
ues, energy consumption, and the evolution in the deci-
sions of the algorithms for each independent task. These
results not only show that solutions like ML-based ones
are necessary in dynamic environments, as the decisions
need to be adapted to its evolution, but they also show
that the proposed algorithm outperforms other studied
baselines.

The remainder of this paper is structured as follows:
some recent proposals from the literature that tackle
the task offloading problem are reviewed in Related
work section. System model section presents the scenario
raised in this studio, for which Problem formulation and
proposed approach section presents its problem formula-
tion and the optimization goal, along with the suggested

Page 3 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

DRL-based approach to solve it. After that, Simulation
environment section provides a detailed exposition of the
experimental environment configuration and the base-
lines that will be compared in Discussion section, which
presents a comprehensive discussion of the obtained
experimental results, highlighting the advantages of the
proposed solution. In Conclusions and future work sec-
tion, we conclude this work and outline some directions
for further research.

Related work
Being computation offloading such a trending problem,
a diverse range of approaches has emerged to address
this challenge, each with its own optimization goals and
employing distinct techniques or perspectives. In this
section, a dual taxonomy has been established, classify-
ing the employed techniques into two distinct groups:
works based on the principles of ML and those utiliz-
ing alternative AI methodologies such as heuristics or
metaheuristics.

Non ML‑based solutions
These solutions are designed to solve specific problems
through a set of predefined rules or algorithms that do
not involve learning from data or ML, for instance, heu-
ristics (“rules of thumb”) and metaheuristics (higher-level
strategies used to find optimal solutions in complex prob-
lems). These solutions are designed and implemented
based on problem-specific knowledge and do not adapt
over time.

First, [42] model apps as application graphs and the
physical computing system as a physical graph, with
resource demands or availability annotated on these
graphs. They propose a heuristic algorithm to find where
to place an application and then generalize the formula-
tion and obtain online approximation algorithms with a
polynomial-logarithmic (poly-log) competitive ratio for
tree application graph placement, trying to minimize
the maximum resource utilization at physical nodes
and links. They consider node and link assignments and
incorporate multiple types of computational resources
at nodes. However, they do not consider devices’ battery
and channel status, nor delay requirements of the tasks.

The work in [6] proposes a joint and adaptive optimi-
zation of resource and task allocation in mobile stream
applications in 5G-supported mobile-fog-cloud virtual-
ized ecosystems. The objective is to minimize the energy
of the overall ecosystem while meeting hard constraints
on the minimum streaming rate and maximum comput-
ing-plus-networking resources. The authors model the
energy of the target ecosystem and develop an optimal-
ity-preserving decomposition into a continuous resource
allocation sub-problem and a discrete task allocation

sub-problem. They propose a set of gradient-based adap-
tive iterations for the resource allocation sub-problem,
and an ad-hoc-developed Genetic Algorithm (GA) for
the task allocation sub-problem. All the reported numer-
ical results are carried out by the VirtFogSim toolbox
developed in [36], which allows for dynamic joint opti-
mization of energy and delay performance by optimizing
the placement of application tasks and allocation of com-
puting-networking resources. This framework also allows
customizable simulation of the energy-delay perfor-
mance of the overall system. The limitations of this work
are the scalability challenges when the size and complex-
ity of the application Dynamic Acyclic Graph (DAG) and
system parameters increase and/or introduce overhead.
Besides, despite VirtFogSim supports dynamic tracking
of resource allocation under time-varying operational
environments, the ability to adapt in real-time to rapidly
changing operational environments is limited. DAG and
other parameters related to the computing and network-
ing aspects of the Mobile-Fog-Cloud platforms are used
as inputs to make decisions.

In contrast with the previous works, the authors in [28]
resort to Lyapunov optimization to model energy con-
sumption in mobile cloud systems, so no edge server is
considered. This approach considers real-time network
conditions, workload types, and various workload arriv-
als as inputs; and decisions on where to execute and task
scheduling as outputs, among others, along with the sta-
bility of the queues. The main limitations of this approach
are the sensitivity to network variability and the com-
plexity of the joint optimization, along with its potential
issues with scalability and performance in large-scale
real-world mobile cloud systems.

Works like [15] present task offloading as an enabler
for different real applications. In this case, the real-time
object detection for mobile Augmented Reality (AR)
is presented, which would require too much energy if
made fully in the device. A task placement and offload-
ing framework is developed and used to extract DL tasks
from the AR application, which are the most consuming
tasks in this scenario, so they can be offloaded to nearby
Graphics Processing Unit (GPU)-powered edge devices.
With the developed infrastructure simulator, they carry
an empirical analysis of both centralized and distrib-
uted execution of the task placement algorithm, evalu-
ating their Nimbus algorithm performance against other
related solutions. They consider latency, battery con-
sumption, and task coordination as the constraints of the
apps and choose a server to which to offload considering
the battery consumption and the time required to get to
it. However, they do not consider the status of the server.

Instead of choosing a specific kind of application
as an example, [4] shows real measurements using

Page 4 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Raspberry Pi devices as evidence of real implementa-
tion of offloading algorithms in actual devices, aiming
to reduce the energy consumption and execution time
measurements of different IoT apps running on physi-
cal IoT sensor nodes. They propose adaptive schemes
that consider the resources available at the IoT nodes
and available Edge servers. Nevertheless, the adap-
tive algorithms proposed in this work are not tested in
dynamic environments when server unavailability or
channel degradation may occur, so they may not fit in
time-changing environments.

Regarding environments with multiple servers, [46]
presents a joint optimization problem where the objec-
tive is to minimize the cost of collaboration or informa-
tion interchange among edge servers while maximizing
the offloading ratio of sensing data and satisfying the
limitations of system energy consumption and network
latency. UX is enhanced when many edge servers col-
laboratively offload all or part of the sensory data that
was originally provided to a cloud centre, but there is
a cost of cooperation due to the system resources used
for the exchange of information amongst edge servers,
so the goal is to find the balance. The problem is solved
using Heuristics techniques, specifically, Alternating
Direction Method of Multipliers (ADMM), but they
do not consider fluctuations in the transmission time
between IoT and edge servers, between edge servers,
nor between edge and cloud servers.

In [45], the goal is to minimize the maximum long-
term execution delay while ensuring that the long-term
energy consumption of each UE in the network does
not exceed the maximum energy consumption. They
propose a centralized solution, where the edge server
makes the task offloading decision based on the system
state of all UEs, gathering the data from each of them.
The pros of the proposed solution are that it provides
an optimal solution to the task offloading problem,
and it achieves the lowest execution delay compared
to some baseline algorithms. Anyway, more complex
scenarios are missing, where communication and com-
putation resources are affected by the actions taken by
many UEs and some factors like the channel quality are
dynamic

Aiming to minimize network resource usage and maxi-
mize requests admissions with Heuristics, [27] formu-
late the simultaneous optimization of communication
and computational resource allocation in response to
requests for computation offloading with strict bound-
ing constraints, modelled as a two-tier computational
offloading problem. In this case, as some differences with
our work, UEs are not considered as a computing entity
and always try to fill the MEC servers, before sending
to the cloud server, instead of considering tasks with no

latency requirements that can be directly offloaded to the
cloud server.

A distributed multi-hop task offloading decision model
for task execution efficiency is proposed in [10], with a
vehicle selection mechanism and a task offloading deci-
sion algorithm. The optimization model is established to
increase the task execution efficiency. It is solved by the
greedy algorithm and the discrete bat algorithm, respec-
tively, under the scenarios set in this article. The random
selection and the completely local computing schemes
were used as compared baselines. In this work, they do
not consider the dynamics of computing resources and
network channels, which can be a consequence of the off-
loading decisions from multiple vehicles.

Despite their diverse approaches, these proposals
share the same shortcomings. They heavily depend on
the specific characteristics of the problem they have
been designed for, without the ability to adapt and learn
from past experiences, so they are not capable of han-
dling dynamic and evolving environments, which are
not considered in many of them. These limitations could
be solved using ML-based techniques, as they can learn
from past experiences. Other limitations are the scalabil-
ity challenges, above all, for the centralized solutions, as
they might become unfeasible when they have to con-
sider the information of an increasing number of nodes.

ML‑based solutions
In contrast with the previous solutions, AI-based solu-
tions can learn from data and make decisions based on
patterns that are not explicitly created and introduced
into them, but rather discovered through their training.

First, [24] evolves the DROO algorithm from [22] to
address the task offloading problem, along with data from
EUA dataset [29]. Different from our work, this solution
is centralized, so decision-making might be challenging
mainly because of the overhead produced in both the
network and the MEC server by sending much informa-
tion, apart from the privacy concerns this could raise [13]
and the scalability limitation of RL-based algorithms due
to the huge decision space, increasing network conges-
tion and, consequently, latencies [12].LyDROO [7], as
another proposal emanated from DROO, applies Lyapu-
nov optimization to decouple the multi-stage stochastic
Mixed-Integer Nonlinear Programming (MINLP) and
solves each resulting subproblem via DROO algorithm.

The work from [5] proposes an approach whose goal is
to minimize this sum-cost of the system, this is, minimiz-
ing the end-to-end delay and energy consumption while
complying with the application requirements by offload-
ing to available edge servers. They use a two-stage RL-
based mechanism to optimize where the transmission
from UEs to servers and also from one server to another

Page 5 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

one, in a second stage. Thus, the first stage, the offloading
decision stage, is performed in a decentralized way, while
the second stage is performed in the servers.

Many works combine ML-based solutions with other
tools like meta-heuristics. For example, [3] uses DL with
Seagull Optimization (TORA-DLSGO) algorithm aiming
to minimize energy consumption subject to the latency
requirements and restricted resources, using SGO
algorithm for the parameter tuning of the Deep Belief
Network (DBN) model, which is used for optimum off-
loading decision-making purposes. An objective function
is derived based on minimizing energy consumption sub-
ject to the latency requirements and restricted resources.
Despite the results being promising and different net-
work parameters being tested, there is no evidence of
their results in time-changing scenarios.

Also mixing many techniques and trying to optimize
many objectives at the same time, [43] shows a joint
optimization problem, which tries to optimize both the
delay and energy consumption based on queuing theory,
obtaining the optimal offloading strategy in dynamic and
random multi-user offloading environments through
MA-Deep Reinforcement Learning based on Queuing
theory (QDRL). Many indicators are used, such as task
arrival rate, bandwidth, energy consumption, or latency.
The problem is defined as an Partially Observable
Markov Decision Process (PO-MDP) and actors and crit-
ics share most of the network except for the output layer.
Also, it seems to be feasible to implement in a real-world
scenario because the training is centralized but the exe-
cution is performed in a decentralized way. Nevertheless,
due to the dynamic nature of real environments, MA-
QDRL may suffer the problem of high complexity when
the number of nodes increases.

Different environments are also considered in [11],
which tackle single- and multi-MEC systems, aiming to
minimize the energy consumption of each UE while sat-
isfying the delay requirement. They use the amount of
energy consumed by the UE as the reward, along with the
reward for the fact of completing the task and fulfilling
its delay constraints. Other works like [33] that consider
dependencies among different tasks. This work uses an
Improved Policy Loss Clip (IPLC)-based Proximal Policy
Optimization (PPO) algorithm to achieve lower latency,
reduce energy consumption, and improve Quality-of-
Service (QoS). Though, no cloud computation is consid-
ered for big tasks or non-delay critical tasks.

[48] uses a centralized Double Deep Q-Learning Net-
work (DDQN) to determine the joint policy of com-
putation offloading and resource allocation. The state
space comprises the available computation resources
of the MEC, the percentage of the available spectrum
resources at present, and the energy consumption at each

time slot is observed to compare whether the optimal
state is reached. For the long-term consideration, a state
value function is defined by the cumulative discounted
reward value for agents in the state. Despite the promis-
ing results of this work, it is not compared to other DRL
proposals, nor consider more complex scenarios, where
cloud servers are considered and where other phenom-
ena can affect the wireless channel gain, such as shadow
fading or fast fading phenomena.

The convergence with technologies such as Digital
Twins or caching is also considered in many works. For
instance, an offloading decision problem based on Digi-
tal Twins Edge Networks is planned in [38] to reduce
overall system overhead and improve the cache hit rate.
The DRL method Deep Deterministic Policy Gradi-
ent (DDPG) exports the compute offloading choice and
the DTCC algorithm increases the cache hit percentage,
respectively. These promising results should be checked
in more complex environments, considering different
task requirements and also leaning on cloud servers.

Also, [44] converts the problem into a per-frame
deterministic problem through the Lyapunov optimi-
zation technique. Thus, it results in 2 sub-problems,
resource allocation, and computation offloading, which
are strongly coupled and difficult to solve directly. The
authors design a queue-aware computation offloading
scheme based on AC to address both sub-problems sepa-
rately. The Actor module is implemented based on a DL
model and quantization strategy COGA for generating
computation offloading actions. In the critic module, on
the other hand, they integrate mathematical reasoning
and learning-based methods for resource allocation. The
proposed model should also support cloud-edge-device
collaboration architecture.

Considering that directly deploying RL in edge com-
puting implies a bad experience due to an initial arbi-
trary exploration in real online environments, in [47]
a static offline dataset is used, so the exploration is
reduced, which, in RL, is expensive or even dangerous in
online environments. Thus, they model the problem as a
repeated game between 2 agents and apply model-based
offline RL (specifically, Soft Actor-Critic (SAC)) to opti-
mize the offloading decisions. The online environment
and the simulated offline environmental model may not
be so similar, though, as the environment dynamics can
only be inferred implicitly.

As a paradigm shift, reverse offloading is proposed
is presented in [35]. Concretely, the authors present a
framework for reverse offloading that carefully balances
the relationship between task completion time and UE
energy consumption. The sensory data from every device
is transferred to the MEC server for data fusion. Reverse
offloading is the process of returning tasks, data, and

Page 6 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

sensory information from the MEC to the mobile that
initiated them for computing. Tasks can either be fin-
ished on the MEC server or reverse-offloaded to the orig-
inating device. Sending so much information to the MEC
server may cause overhead in the network.

Additionally, [31] aims to optimize sub-channel assign-
ment and task offloading decisions together to guarantee
the QoS that delay-sensitive workloads require, modify-
ing the original problem through DRL. Furthermore, a
distributed DRL approach is presented to minimize sig-
nificant signalling overhead for each Industrial Internet
of Things (IIoT) device to acquire explicit knowledge on
full system states, which turns the problem into a PO-
MDP. In order to address this issue, Long short-term
memory (LSTM) is additionally utilized to forecast the
current load status of every sub-channel and MEC server,
which is utilized to inform RL agents’ decisions. Anyway,
this work aims to maximize the number of tasks with sat-
isfied delay requirements without due consideration to
consumption, but considering channel gain and queue
length.

Next, [16] work’s goal is to reduce the overall latency
of the MEC system while ensuring that each task is com-
pleted within its deadline and resource constraints. It
handles both partial and complete offloading tasks and
uses energy consumption as a factor in the offloading
decision. It also adapts to changing network conditions
and resource availability by using a DDQN to learn the
optimal offloading policy, using Karush-Kuhn-Tucker
(KKT) to minimize the total latency and DQN to reduce
the energy consumption. The proposed MEC distrib-
uted scheduling algorithm must consider not only the
individual state information of each agent but also the
global interrelationships between the nodes. [39] propose
a semantic-driven computation offloading and resource
allocation scheme. For the offloading decision, they use
a Convolutional Neural Network (CNN) segmentation
scheme, and for the allocation problem, they use a MA-
DQN algorithm, aiming to optimize latency, energy con-
sumption, and task performance.

Also focusing on energy and latency, this time through
a QoE calculation, [21] propose Gated Recurrent Unit
Fictitious Self-Play Dueling Double Deep Recurrent Q
Network. It adopts a Recurrent Neural Network (RNN)
structure to learn from the history of observations and
Neural Fictitious Self-Play (NFSP), which is essentially an
extension of Fictitious Self-Play (FSP) and addresses the
non-stationary issue. It is also a PO-MDP due to its dis-
tributed nature.

In the case of [30], the authors tackle the joint opti-
mization problem of the task offloading and resource
allocation in small cell MEC networks, where mul-
tiple small-cell BSs integrating MEC servers provide

computing services for the served UEs. The proposed
reward function for the Proximal Policy Optimization
(PPO) agent used is composed of two parts: the total
energy consumption and the delay constraint satisfaction
probability.

Finally, the scenario considered in [37] consists of a
heterogeneous network of UEs that can offload to a net-
work of MEC servers through an agent that orchestrates
a group of 5G Small Cells enhanced with computation
and storage capabilities to optimize resource utilization
and minimize latency. This agent is an Advantage Actor-
Critic (A2C) agent, which takes into account computa-
tion, battery, latency, and communication constraints,
some of which are often overlooked in traditional
approaches. The solution is also shown to be scalable,
data-efficient, robust, stable, and adaptable, ensuring
optimal system performance even under worst-case
scenarios.

Summary
Table 1 summarizes all of these works, both ML and non-
ML-based, showing briefly the technique used; if it solves
a Task Offloading (TO) or Resource Allocation (RA)
problem; if it is a centralized (C) or a Decentralized (D)
proposal; where the tasks can be executed (locally (L),
MEC/Fog server (M/F) or Cloud server (C)), also mark-
ing with an * where the decision is taken; and which the
optimization goal (or goals) is.

Among all these works, our work is the only ML-based
distributed one that considers different task classes,
based on some of their characteristics, such as a range
in delay requirement, to make a decision offloading to a
MEC or a cloud server, along with dynamic behaviour of
the different elements composing the network, such as
the channel gain or the computing resources availability.

System model
This section presents the way the scenario of our pro-
posal is modeled, which shows the entities that form part
of it; the modeling of the computational tasks used to
configure the simulations; and the modeling of the energy
consumption and elapsed timed, according to where the
tasks are executed.

System architecture
The considered system in this work is shown in Fig. 1:
A three-tier architecture encompassing a cloud layer, a
MEC layer and a device layer. The system is considered
to represent a Base Station (BS) located within the facil-
ity with an adjacent MEC server. This scenario acknowl-
edges the presence of various entities that may potentially
obstruct the signal propagation between devices and the
BS.

Page 7 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Ta
bl

e
1

Re
la

te
d

w
or

k

Re
f

N
on

‑M
L

M
L

Te
ch

ni
qu

e
TO

RA
C/

D
L

M
/F

CC
G

oa
l(s

)

W
an

g
et

 a
l.

[4
2]

X
H

eu
ris

tic
s

X
C

X
X*

X*
M

in
im

iz
e

re
so

ur
ce

 u
til

iz
at

io
n

Ba
cc

ar
el

li
et

 a
l.

[6
]

X
M

et
a‑

H
eu

ris
tic

s
X

C
X

X*
X*

M
in

im
iz

e
th

e
en

er
gy

 o
f t

he
 o

ve
ra

ll
ec

os
ys

te
m

Sc
ar

pi
ni

ti
et

 a
l.

[3
6]

Kw
ak

 e
t a

l.
[2

8]
X

Co
nt

ro
l T

he
or

y
X

C
X

X*
M

in
im

iz
e

en
er

gy
 in

 m
ob

ile
 c

lo
ud

 s
ys

te
m

s

Co
zz

ol
in

o
et

 a
l.

[1
5]

X
H

eu
ris

tic
s

X
X

D
X

X*
X

‑ R
ed

uc
e

en
er

gy
 c

on
su

m
pt

io
n

‑ R
ed

uc
e

ex
ec

ut
io

n
tim

e

A
l A

id
ar

os
 e

t a
l.

[4
]

X
Co

nt
ro

l T
he

or
y

X
X

D
‑C

X*
X*

‑ R
ed

uc
e

en
er

gy
 c

on
su

m
pt

io
n

‑ R
ed

uc
e

ex
ec

ut
io

n
tim

e

Yu
an

 e
t a

l.
[4

6]
X

H
eu

ris
tic

s
X

D
X*

X
‑ M

ax
im

iz
e

offl
oa

di
ng

 ra
tio

‑ R
ed

uc
e

co
lla

bo
ra

tio
n

co
st

‑ S
at

is
fy

 e
ne

rg
y

an
d

la
te

nc
y

co
ns

tr
ai

nt
s

Xu
 a

nd
 Y

an
g

[4
5]

X
D

et
er

m
in

is
tic

X
C

X
X*

M
in

im
iz

e
lo

ng
‑t

er
m

 d
el

ay
 (e

ne
rg

y
co

ns
tr

ai
nt

s
fo

r U
E)

Ko
va

ce
vi

c
et

 a
l.

[2
7]

X
H

eu
ris

tic
s

X
X

C
X*

X
‑ M

in
im

iz
e

ov
er

al
l u

sa
ge

 o
f n

et
w

or
k

‑ M
ax

im
iz

e
la

te
nc

y
ac

co
m

pl
is

hm
en

t

C
he

n
et

 a
l.

[1
0]

X
M

et
a‑

H
eu

ris
tic

s
X

D
X*

X
M

in
im

iz
e

th
e

de
la

y

Jia
o

et
 a

l.
[2

4]
X

X
M

et
a‑

H
eu

ris
tic

s
&

D
RL

X
C

X
X*

O
pt

im
iz

e
tim

e‑
en

er
gy

 tr
ad

e‑
off

 (w
ei

gh
te

d
su

m
 o

f t
im

e
an

d
en

er
gy

)

H
ua

ng
 e

t a
l.

[2
2]

X
D

RL
X

X
C

X
X*

M
ax

im
iz

e
co

m
pu

ta
tio

n
ra

te

Bi
 e

t a
l.

[7
]

X
X

D
RL

 &
 C

on
tr

ol
 T

he
or

y
X

X
C

X
X*

M
ax

im
iz

e
co

m
pu

ta
tio

n
ra

te

A
vg

er
is

 e
t a

l.
[5

]
X

RL
X

X
C

X*
X*

M
ax

im
iz

e
co

m
pu

ta
tio

n
ra

te

Pa
n

et
 a

l.
[3

3]
X

D
RL

X
C

X
X*

Im
pr

ov
e

Q
oS

 (e
ne

rg
y

an
d

la
te

nc
y)

W
u

et
 a

l.
[4

3]
X

X
Q

ue
ui

ng
 T

he
or

y
&

D
RL

X
D

X*
X

‑ R
ed

uc
e

en
er

gy
 c

on
su

m
pt

io
n

‑ R
ed

uc
e

ex
ec

ut
io

n
tim

e

C
he

n
an

d
Li

u
[1

1]
X

D
RL

X
X

D
X*

X
‑ M

in
im

iz
e

en
er

gy
 c

on
su

m
pt

io
n

‑ S
at

is
fy

in
g

de
la

y
re

qu
ire

m
en

t

Zh
ou

 e
t a

l.
[4

8]
X

D
RL

X
X

C
X

X*
M

in
im

iz
e

en
er

gy
 c

on
su

m
pt

io
n

of
 th

e
sy

st
em

So
ng

 a
nd

 S
he

n
[3

8]
X

D
RL

X
C

X
X*

‑ R
ed

uc
e

en
er

gy
 c

on
su

m
pt

io
n

in
 th

e
sy

st
em

‑ R
ed

uc
e

ex
ec

ut
io

n
tim

e
in

 th
e

sy
st

em

A
bd

ul
la

ev
 e

t a
l.

[3
]

X
X

M
et

a‑
H

eu
ris

tic
s

&
D

RL
X

X
C

X
X*

X
‑ M

in
im

iz
e

en
er

gy
 c

on
su

m
pt

io
n

‑ S
at

is
fy

in
g

de
la

y
re

qu
ire

m
en

t

Xu
 e

t a
l.

[4
4]

X
X

Co
nt

ro
l T

he
or

y
&

D
RL

X
X

D
X*

X
M

ax
im

iz
e

th
e

to
ta

l r
ea

l C
om

pu
tin

g
Ra

te

Zh
an

g
et

 a
l.

[4
7]

X
D

RL
X

D
X*

X
M

ax
im

iz
e

th
e

lo
ng

‑t
er

m
 u

til
ity

 (q
ua

lit
y

an
d

la
te

nc
y)

Sa
ee

d
et

 a
l.

[3
5]

X
D

RL
X

C
X

X*
‑ R

ed
uc

e
en

er
gy

 c
on

su
m

pt
io

n

‑ R
ed

uc
e

ex
ec

ut
io

n
tim

e

Li
n

et
 a

l.
[3

1]
X

D
RL

X
X

D
X*

X
M

ax
im

iz
e

ta
sk

s
w

ith
 s

at
is

fie
d

de
la

y

D
on

g
et

 a
l.

[1
6]

X
X

M
at

h.
 O

pt
. &

 D
RL

X
X

D
X

X*
M

in
im

iz
e

la
te

nc
y

Page 8 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Ta
bl

e
1

(c
on

tin
ue

d)

Re
f

N
on

‑M
L

M
L

Te
ch

ni
qu

e
TO

RA
C/

D
L

M
/F

CC
G

oa
l(s

)

Su
n

et
 a

l.
[3

9]
X

D
RL

X
X

D
X

X*
X

‑ M
in

im
iz

e
en

er
gy

 c
os

t

‑ M
in

im
iz

e
de

la
y

co
st

‑ O
pt

im
iz

e
ta

sk
 P

er
fo

rm
an

ce

H
ou

 e
t a

l.
[2

1]
X

D
RL

X
D

X*
X

Q
oE

 (e
ne

rg
y‑

 a
nd

 la
te

nc
y‑

 d
ep

en
da

nt
)

Li
 e

t a
l.

[3
0]

X
D

RL
X

X
C

X
X*

M
in

im
iz

e
de

vi
ce

s’
en

er
gy

 c
on

su
m

pt
io

n
(d

el
ay

 c
on

st
ra

in
ts

)

Si
lv

a
et

 a
l.

[3
7]

X
D

RL
X

X
C

X
X*

‑ M
in

im
iz

e
en

er
gy

 c
os

t

‑ M
in

im
iz

e
de

la
y

co
st

O
ur

s
X

D
RL

X
D

X*
X

X
‑ R

ed
uc

e
de

vi
ce

 e
ne

rg
y

‑ S
at

is
fy

 la
te

nc
y

co
ns

tr
ai

nt
s

Page 9 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

The device layer is composed of every UE in the environ-
ment, which must decide what to do with the incoming
tasks, making use of their own distributed decision-making
algorithm instances and considering many conditions, such
as their current battery, as it will be explained later in Prob-
lem formulation and proposed approach section.

Regarding the MEC layer, each MEC server in this layer
is located next to a Base Station (BS), so the distance
between them is 0. Here, when a device decides to offload
a task to its attached server in the MEC layer, it must
send the task through a wireless link and wait for the task
to reach back once the MEC server has processed it with
its remaining available resources.

Finally, the cloud layer is reached from any BS in the
MEC layer through a modelled fibre link, in case the
decision is to offload the task to the cloud server. Thus,
it is important to note that every task that needs to be
processed in the cloud server needs to go first through a
BS, so 2 steps are needed: the wireless transmission from
the UE to the BS and the transmission through an optical
fibre from the BS to the cloud server.

Task model
Computation tasks are denoted by An

i (1 ≤ i ≤ I), where
i indicates the timestep where the task arrives at the
n-th UE, considering I is the total number of tasks or
timesteps, and n indicates the identification of the UE

among the total number of UEs N. Ai is characterized by
3 parameters, An

i (Di,φi,T
req
i) , where Di is the data size of

An
i in bits, φi is the number of computation cycles needed

to complete An
i , and Treq

i is the maximum delay for the
task to be completed in seconds.

With this information, each task is classified into one of
the following classes (Ci):

• Class 1 ‑ Delay‑sensitive tasks (Ci = 1): Tasks with
strict latency requirements and small size and com-
putational requirements, which must be executed
quickly. An example application with theses tasks
could be a smart sensor, which monitors and adjusts
environment parameters, such as temperature ,quickly.

• Class 2 ‑ Energy‑sensitive tasks (Ci = 2): Tasks with
larger computational demands than the previous
ones and some latency requirements to be fulfilled
- but not as restrictive. An AR app could be one of
these tasks, needing to process data, render graphics,
and respond to interactions on time.

• Class 3 ‑ Insensitive tasks (Ci = 3): Tasks with larger
limits of both size (and the consequent computa-
tion requirements) and latency. For example, a Smart
Grid IoT application could have tasks like these.
Massive amounts of data may be collected, implying
a very large data size that does not need to be pro-
cessed instantaneously.

Fig. 1 System model

Page 10 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

As a note, our system does not model a partial offload-
ing problem, which means dividing a particular task
into subtasks that can scheduled individually. Instead,
we consider non-partitionable independent tasks, i.e.,
the tasks cannot be further reduced and they contain
sufficient information to be treated separately. Inter-
dependence relationships between tasks have not been
considered.

Local computation model
When a UE decides to execute one task locally, there is
no intervention by external entities, so the energy and
latency calculations are made using An

i task data and n
UE conditions, explained in more detail as follows.

Local latency
The time or latency experienced when executing a task
locally (tcLi) can be represented as in Eq. 1

, where φi is the computation consumption of task
Ai as stated previously and f ni represents the avail-
able resources in the n UE in timestep i. Other delays
such as the queuing delays in the nodes have not been
considered.

Energy consumption in local computation
Regarding the energy consumption when the decision is
to execute a task locally, ecLi , and based on works like [11],
can be represented as in Eq. 2

, where κn represents the energy coefficient determined
by the chip structure of the UE.

MEC communication and computation model
Latency when offloading to the MEC server
Regarding the wireless environment characteristics,
[23] has been used as a reference. As stated there, for
an indoor environment with Sparse clutter High Base
Station (SH), the 3GPP TR 38.901 [1] uses Alpha-Betta-
Gamma (ABG) model to specify the Path Loss (PL)
model as in Eq. 3.

Shadow Fading (SF) is calculated assuming a normal
distribution with zero mean and a standard deviation of
5.9dB, as suggested by the 3GPP model for indoor fac-
tory environments [1].

(1)t
cL
i =

φi

f ni

(2)e
cL
i = κn(f ni)

2φi

(3)
PLnSH ,i(fc, d) = 32.4 + 23 log10(d

nm
i)+ 20 log10(fc)

For the channel gain calculation, the path loss and the
shadow fading effects are considered, so the channel
gain hnmi is obtained by subtracting the PL and the SF
instantaneous values. Thus, the channel gain is calcu-
lated as in Eq. 4:

The Fast Fading (FF) phenomena, which is usu-
ally modelled as a zero-mean Rayleigh distribution in
mobile NLOS environment, is considered to be aver-
aged out during the offloading process, so the varia-
tions in the channel gain due to fast fading are ignored
during the offloading process, as explained in [41].

In this scenario, Orthogonal Frequency-Division
Multiple Access (OFDMA) is implemented in the
uplink to avoid conflicts between different UEs in the
access to the m base station. Thus, the total frequency
bandwidth W is divided into N equal sub-bands (one
for each UE), Wnm = W /N . This way, according to
Shannon’s formula, the uplink transmission rate (rnmi)
can be stated as:

The upload transmission delay (ttxmi) is then calculated
dividing the task size Di by the result of the previous
Eq. 5,

As in the calculation of the local processing delay
(Eq. 1), the processing latency experienced when execut-
ing a task in a MEC server (tcmi) is calculated as in Eq. 7:

, being f mi the available resources in the m MEC server in
timestep i.

The total offload delay includes the upload transmis-
sion delay (ttxmi) , the time the MEC server takes to pro-
cess the task Ai (tcmi) and the downlink transmission delay
(t

rxm
i) . However, as the transmission power of the MEC

server (pmi) is considerably higher than the UE’s pni and
the resulting data of the processed task is much lower
than the task data size (Di) , the downlink transmission
delay (trxmi) can be neglected. Both transmission queues
and computation queues operate as FIFO (First-In-First-
Out) queues, ensuring that the current task completes
within the current timeslot, and the subsequent task
begins processing at the start of the next time slot. Thus,
the total offload delay is:

(4)hnmi = −PLnSH ,i − SF

(5)rnmi = Wnm log2 1+
pni h

nm
i

N0

(6)t
txm
i =

Di

rnmi
=

Di

Wnm log2

(

1+ pni h
nm
i

N0

)

(7)t
cm
i =

φi

f mi

Page 11 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Energy consumption when offloading to the MEC server
The energy consumption for the UE to offload a task to
the MEC server (emi) can be easily calculated as the prod-
uct of the UE transmission power (pni) and the transmis-
sion time of the task to the MEC server (tmi) . Therefore,
using the previously stated upload transmission delay
(Eq. 6), the energy consumed when offloading a task is set
as in Eq. 9:

Cloud communication and computation model
Latency when offloading to the cloud server
In the same way as in local computation (Eq. 1) and MEC
computation (Eq. 7), the processing latency experienced
when executing a task in the cloud server (tcCi) is calcu-
lated as in Eq. 10:

Regarding the transmission delay to the cloud server,
both the propagation time from the BS to the cloud
server in the uplink and the downlink and the trans-
mission delay must be considered, as well as the upload
transmission delay from the UE to the MEC server
(Eq. 6).

The propagation delay is defined in Eq. 11:

, where LmC is the distance between the BS where the
server m is located and the cloud server, and v is the
fibre propagation speed, and is calculated as the division
between the speed of light in vacuum c and the refractive
index of the fibre ρ (v = c/ρ).

The transmission delay follows the statement of divid-
ing the task size Di by the transmission rate of the fibre
(rf) , which is simplified and calculated in the next
Equation:

, being Chf the channel capacity, (which depends on the
fibre capacity Cf and the fibre modulation Wavelength
Division Multiplexing (WDM)), Of the fibre overhead
and Ff the fibre Forward Error Correction (FEC)

(8)tmi = t
txm
i + t

cm
i + t

rxm
i =

Di

Wnm log2

(

1+
pni h

nm
i

N0

) +
φi

f mi

(9)emi = pni · t
txm
i = pni ·

Di

rnmi
= pni ·

Di

Wnm log2

(

1+
pni h

nm
i

N0

)

(10)t
cC
i =

φi

f Ci

(11)t
pC
i =

LmC

v

(12)

rf = Chf · (1− Of) · (1− Ff) =
Cf

√
WDM

· (1− Of) · (1− Ff)

Then, the cloud transmission rate can be calculated as
in Eq. 13

Thus, the total transmission delay to the cloud server
is given by the sum of the processing time of the cloud
server, twice the propagation delay (uplink and down-
link), and the fibre transmission delay:

Therefore, the total experienced delay when offloading
to the cloud server, considering that transmission queu-
ing delays have not been taken into account, is given by
Eq. 15:

Energy consumption when offloading to the cloud server
The energy consumption when the decision is to offload
to the cloud is the same as when the decision is to offload
to the MEC server (Eq. 9). This is because a task must
first go through the BS where the MEC server is located
in order to get to the cloud server, which is reached
through a fibre link and does not imply more energy con-
sumption from the UE:

Problem formulation and proposed approach
This section formally delves into the problem formula-
tion and the optimization goal, also presenting the pro-
posed DRL-based approach implemented as its solution.

Problem formulation
The problem described in this paper is modelled as a
Markov Decision Process (MDP) model, employed to
depict the decision-making process of a dynamic system
where the environment may evolve randomly, leading to
diverse decisions being made over time. At each stage,
a thorough analysis of the current state Si is conducted
by each of the UEs, each of which has an instance of the
developed decision algorithm, in order to determine
the appropriate course of action. Thus, each agent tries

(13)t
tC
i =

Di

rf
=

Di

Cf
√
WDM

· (1− Of) · (1− Ff)

(14)

t
txC
i = t

txm
i + t

tC
i + 2 · tpCi =

=
Di

Wnm log2

(

1+ pni h
nm
i

N0

) +
Di

Cf
√
WDM

(1− Of)(1− Ff)
+ 2

LmC

v

(15)

tci = t
cC
i + t

txC
i =

=
φi

f Ci
+

Di

Wnm log2

(

1+ pni h
nm
i

N0

) +
Di

Cf
√
WDM

(1−Of)(1− Ff)
+ 2

LmC

v

(16)

eci = emi = pni · t
txm
i = pni ·

Di

rnmi
= pni ·

Di

Wnm log2

(

1+
pni h

nm
i

N0

)

Page 12 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

to learn to optimize their decisions in a shared environ-
ment, so each agent’s actions could affect the state of
the environment and consequently the rewards of other
agents.

Given that each device is running its own DRL algo-
rithm and that they do not interact with each other, this
can be considered an Multi-Agent Deep Reinforcement
Learning (MA-DRL) scenario: agents do not coordinate
their actions with each other, but they can influence one
another’s outcomes as they are part of a Multi-Agent
(MA) system, resulting in a non-cooperative and non-
competitive MA system.

State space
The defined state refers to the current information about
the environment. In this case, the agents located in the
UEs can see a full observation of it (except other UEs’
status, which is not relevant), that is, they can see the
whole information that defines the status of the environ-
ment. This information is likewise composed of the sta-
tus of themselves (UE state), the status of their assigned
MEC and cloud servers, the channel conditions, and the
task class. Thereby, the state is denoted as the following
6-tuple vector space (Eq. 17):

Action space
The action represents how an incoming task shall be exe-
cuted. This can be expressed as αi ∈ {0, 1, 2} , with αi = 0
meaning local execution, αi = 1 meaning the offload to
the m MEC server and αi = 2 meaning the offload to the
cloud server C.

Reward function
The reward function used for this problem is equal to
the Quality-of-Experience (QoE) value, which is defined
as in Eq. 18. This calculation is based on the energy con-
sumption experienced by an UE (ecli , emi or eci), taking into
account its remaining battery.

In case a task does not see its requirements fulfilled,
QoE value is equal to η , which corresponds to the task
punishment applied in the case a task fails. As a remark,
in our environment, we consider tasks with firm dead-
lines, i.e., the result of a task would not be of use any-
more, but no catastrophic consequences would happen.
That is why we used a penalty value η of the QoE when

(17)si = {bni ,R
n
i ,R

m
i ,R

C
i , h

nm
i ,Ci}

(18)QoEi =

−ecli /B
n , if success and α = 0

−emi /B
n , if success and α = 1

−eci /B
n , if success and α = 2

η , if fail

the deadlines were not met, regardless of the type of task
involved, as seen in Eq. 18.

As told earlier, the final optimization problem is to
maximize the total QoE (Eq. 18), resulting in the problem
stated as in Eq. 19:

Where C1 is an action constraint that states that each
task can only be executed locally or offloaded to the m
MEC server; C2− C4 resource constraints mean that the
dedicated computation resources to execute task i cannot
be higher than the total computation resources of the UE,
the MEC and the cloud server respectively.

DRL‑based proposed solution
Figure 2 shows the configuration of the proposed solu-
tion, an Actor-Critic (AC) model, which combines both
policy gradient and value function methods, for what
is composed of two separate Artificial Neural Network
(ANN) structures: the actor-network and the critic-net-
work, each of which is in turn composed of two Deep
Neural Network (DNN)s.

The goal of value-based methods is to find an optimal
value function, which is the expected return for each action
in each state. The policy is obtained through the value func-
tion and determines the action to take in each state. These
methods are efficient and guaranteed to converge, although
they may not behave well with large or continuous action
spaces. Policy-based methods, on the other hand, try to
optimize the policy function without a value function,
which can be useful if the action space is high-dimensional
or continuous; however, these methods can suffer from
high variance, leading to slower convergence. AC method
combines the strengths of both approaches through its two
components: the actor is responsible for deciding which
action to take in each state, while the critic evaluates these
actions and provides feedback to the actor [34].

Regarding the actor network, the one responsible for
selecting actions based on the current state of the envi-
ronment, it is composed of 2 hidden layers, each of which
consists of 256 neurons. In both hidden layers, the Acti-
vation Function used to transform the summed weighted
input from the node into the output value that will be

(19)

max
i

T−1
∑

i=0

QoEi

s.t.
C1 : αi ∈ {0, 1, 2} , ∀i ∈ I

C2 :
I
∑

i

f ni ≤ Fn
i , ∀i ∈ I ,α = 0

C3 :
I
∑

i

f mi ≤ Fm
i , ∀i ∈ I ,α = 1

C4 :
I
∑

i

f Ci ≤ FC
i ,∀i ∈ I ,α = 2

Page 13 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

fed to their respective output is the Hyperbolic tangent
(TanH) activation function. Also, in order to prevent
undesirable behaviours because of a bigger influence of
any Deep Neural Network (DNN) weights at the start,
these values are initialized using LeCun normalization.
Finally, the employed activation function of the output
layers is the softmax function, in order to compress the
real values of a K-dimensional vector into the range [0, 1].
The learning rate for the actor network is set to 10−5.

In respect of the Critic network, which estimates the
value function or the expected future reward for taking
a particular action in a given state, it is also composed
of 2 hidden layers composed of 256 neurons that use
the TanH activation function and Lecun initialization.
Finally, in the output layer, a linear activation is used. The
learning rate for the critic network is set to 10−4.

This Actor-Critic agent uses the Temporal Difference
(TD) error, the difference between the expected reward
and the actual reward, to update both the actor and critic
networks. This TD error is used to update the actor and
critic networks using the Adam optimizer. Finally, the
discount factor employed in this actor-critic algorithm is
set to 0.99.

Simulation environment
This section shows the configuration of the experimen-
tal environment and the baselines that have been imple-
mented to be compared with the proposal explained in
DRL-based proposed solution section.

Simulation setup
The experiments are implemented in Python 3.10.13 and
the simulations are carried out in a Ubuntu 20.04.3 LTS
platform with a 4th Gen IntelCore i7 CPU 2.00 GHz and
32 GB of RAM.

The algorithm presented in DRL-based proposed solu-
tion section has been implemented using Tensorflow
2.14.0 ([2]), along with Keras 2.14.0 ([14]). The environ-
ment has been modelled using Gymnasium library ([40])
version 0.29.1, which is a maintained fork of OpenAI’s
deprecated Gym library ([8]).

Simulation parameters
First, the parameters of the environment are defined. As
told earlier, the system consists of 3 layers: the cloud layer,
composed of 1 cloud server C; the MEC layer, composed
of 1 MEC server M; and the device layer, composed of
multiple n UE devices (n ∈ N). Figures 3 and 4 show how
each of these entities is located.

Table 2 shows every environment-related parameter,
that is: UE-related, such as battery; MEC-related, such
as BS transmission power; cloud-related, such as cloud
computation resources; and communications-related
parameters, such as the Additive White Gaussian noise
(AWGN). Also, QoE-related parameters, such as the fail
punish (η) in case a task is not correctly performed, are
defined.

As mentioned in System model section, each compu-
tation task for which the associated UE needs to make

Fig. 2 Implemented AC model

Page 14 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Fig. 3 UEs and MEC server distribution

Fig. 4 UEs, MEC & cloud server distribution

Page 15 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

a decision is classified into one of 3 classes (delay-sensi-
tive, energy-sensitive, and insensitive). According to task
size, latency requirements, and computational require-
ments, the tasks are included in one of the classes above,
which are defined according to the parameters shown in
Table 3. The task class, along with the UE, MEC server,
cloud server, and channel conditions, will be the param-
eters the model will use to make the decision and maxi-
mize the QoE value defined in Problem formulation and
proposed approach section.

Compared baselines
The method proposed in this paper, the AC approach
explained in DRL-based proposed solution section, is
compared against static and dynamic methods.

The static methods entail making the same decision
over time, regardless of the environmental conditions.
These methods are local, which means running every
task locally (for each UE n); MEC, offloading every task
to the MEC server M; and cloud, which implies offload-
ing every task to the cloud server C.

Regarding the dynamic methods, first, a random algo-
rithm is proposed, choosing random actions without
regard to the environment. All other methods presented
in this paper are AI-based algorithms, and more specifi-
cally, DRL-based algorithms. Two different configurations
of AC are presented, one of them being a single network
approach, Join-Networks AC, where both the actor and
the critic share their hidden layers; and the other one, the
one proposed in this article and explained in DRL-based
proposed solution section, in which the actor and the
critic have their own distinct networks, Separated-Net-
works AC. Finally, a Double Dueling DQN (DDDQN)
algorithm is presented, which combines Double Deep
Q-Learning Network (DDQN) and Dueling Deep Q-Net-
work (DQN), with the objectives of solving over-estima-
tion, instability and convergence problems of DQN.

Discussion
This section presents the results of the evaluation.
Three different metrics are used to compare the perfor-
mance of each algorithm: the evolution of the QoE val-
ues; the remaining battery each timestep, so the battery
consumption evolution can be tracked; and the deci-
sion evolution of the agents of the Separated Networks
AC algorithm, so it is relatively easy to see the decisions
made depending on the environment conditions.

Therefore, in the results figures included in this sec-
tion (Figs. 7 & 10), these metrics are shown in different
columns. Thus, the first column shows the QoE evolu-
tion. Actually, and in order to make the figures more
easily interpretable, the average of the last 10 samples
has been plotted every 10 steps. It is also important to
note that the lines represent the average of the values
obtained by every n UE. The second column shows the
remaining battery each timestep, and, as the battery
from every UE is considered, it also shows the aver-
age value of the remaining battery of each of them. The
third column shows the evolution of the agents of the
Separated Networks AC algorithm.

In order to check the performance of the Separated
Networks AC algorithm, two different scenarios have
been modelled, which will be explained in the following
subsections.

Scenario 1: MEC unavailable for a certain time
In this scenario, the MEC server is available during a
big part of the execution time, considering it is available

Table 2 Environment parameters

Parameter Symbol Value

MEC Number of Servers M 1

Transmission power Pmtx 100 dBm

Max. computation resources Fmi 1 GHz

UE Number of UEs N 20

X distance to MEC x 0− 100 m

Y distance to MEC y 0− 100 m

Transmission power Pntx 30 dBm

Max. computation resources Fni 40 MHz

Energy coefficient κn 10
−21

Residual consumption each t bnr 0.1 J

Maximum battery Bn 4000 J

Cloud Number of Servers S 1

Max. computation resources FSi 10 GHz

Wireless link Total channel bandwidth W 100 MHz

AWGN N0 −100 dBm

Optical fiber Capacity Cf 100 Gbps

Modulation WDM 16‑QAM

Overhead Of 10%

FEC Ff 20%

Propagation speed v 2 · 108

Refractive index ρ 1.5

Environment Fail punishment η −0.1

Table 3 Task parameters

Parameter Symbol Ci = 1 Ci = 2 Ci = 3

Task data size Di 10− 40KB 20− 50KB 200− 400KB

Required CPU φi Di 8 · Di 8 · Di

Latency constraints T
req
i 0.5 · 10−3Di 10

−3Di 2 · 10−3Di

Page 16 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

when 80%− 100% of its computing resources are free to
use.

As seen in Fig. 5, it is available between timesteps
0− 500 , 750− 1250 and 1500− 2000 . However, there is
an important service drop between timesteps 500− 750
and 1250− 1500 , resulting in an unavailable MEC server.

Figure 6 shows the channel gain experienced between
each UE (each UE with a different color) and the serv-
ing BS evolves normally considering it is a stable wireless
communication, according to the explanation of its mod-
elling in System model section.

For the results analysis in this scenario, which are
shown in Fig. 7, the number of tasks for each class has
been distributed in the following way:

In the first distribution (first row), 90% of incoming
tasks are class 1 tasks, being the rest of the tasks of class
2 or 3. Here, cloud computation is giving the worst QoE
results, as, according to the definition of Class 1 tasks,
the latency experienced by these tasks when offloading
to the cloud is bigger than the affordable values. Looking
at Fig. 7a, regarding local computation, the QoE results
seem to be near 0, which would be the ideal QoE value,
but not as close to 0 as the results when offloading to the
MEC server when it is available. However, in the second
figure, it can be seen that the UE runs out of battery ear-
lier when the tasks are executed locally (Fig. 7b). With

respect to the dynamic approaches, both AC configura-
tions and the DDDQN algorithm start with similar values
to the random proposal, as in the early phases of the exe-
cution they are still exploring their options. Anyway, both
AC algorithms seem to identify the bad results of cloud
computation earlier, being the Separated-Networks-AC
is the one that has the best results. Also, these AI-based
algorithms get bad results when the MEC server becomes
unavailable, although they identify it and change the
decision after a few steps. This is reflected in Fig. 7c,
where most of the UEs decide to offload the tasks to the
MEC server or execute them locally until the MEC is not
available, the moment from when they decide to execute
almost every task locally. In the last part of the QoE fig-
ure, the values are lower because many UEs run out of
battery, so the QoE associated with each task turns η.

In the next case, where 90% of incoming tasks are
Class 2 tasks, Fig. 7d shows that the worst QoE results
are obtained when they are executed locally. Besides, the
battery runs out earlier than when performing an offload
(Fig. 7e). Concerning the offloading options, offloading to
the MEC server seems to be a better decision, due to the
existence of some Class 1 tasks. The battery consump-
tion in both cases is the same, as there is no extra energy
consumption in the UE when the task is sent from the
entities in the MEC layer to the one in the cloud layer.

Fig. 5 MEC status in Scenario 1

Page 17 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

As in the previous case, the DRL-based solutions have
similar QoE values to random in the beginning, but they
improve over time. Both AC configurations get similar
QoE values, being the Separated-Networks-AC slightly
better. The DDDQN algorithm, learns slower but has bet-
ter values in certain periods (steps 1000− 1250). When
the MEC server fails the first time, the AI-based algo-
rithms get their results negatively affected, as they have
not experienced that casuistry before. The second time,
in contrast, they have already learnt that QoE degrada-
tion is not that bad regarding the AC algorithms. The
explanation for this can easily be seen in the proposed
AC algorithm’s decisions figure, Fig. 7f, where the algo-
rithms decide to send the tasks to the cloud server in
order to be performed. Finally, in the Figure correspond-
ing to the battery, it can also be seen that the battery con-
sumption is not very big in AI proposals, similar to the
offloading options.

Regarding the 90%-Class 3 tasks distribution, as they
do not have strict latency requirements, every static
proposal achieves high QoE values as seen in Fig. 7g,
although local computation gets the worst QoE values
mainly because of two reasons, which are the existence
of Class-2 tasks and the fact that the energy consump-
tion is bigger in this case (which affects the obtained QoE
value). Besides, after very few steps, there is no battery
left in the UEs (Fig. 7h). Both cloud and MEC proposals
get QoE values near to 0, except MEC offloading when
the MEC server is not available. The fact of computing a
Class 3 task locally, implies lowering the remaining bat-
tery level considerably, so, on the one hand, random pro-
posal also gets UEs’ battery drained quickly, and, on the
other hand, the first part of the DRL algorithms (where

exploration is bigger) make some UEs lose their batter,
as it can be seen in Fig. 7h and i). In fact, in DDDQN
algorithm curve, as with this proposal, the agents do not
learn as fast as with its AC competitors, and there is no
UE with battery left around step 600. Finally, it can be
seen that QoE values are better in the separated AC algo-
rithm, as there are more UEs with remaining battery. It
can also be seen that more agents choose MEC offload-
ing with this configuration as it has better results until
the time the MEC server is unavailable, the moment from
which every agent decides to offload nearly everything to
the cloud server during the simulation.

Finally, in the case where the distribution of tasks is
random, MEC offloading decision seems to be the best
decision among the static decisions, as local computing
fails with Class 2 tasks and Cloud computing fails with
Class 1 tasks, resulting in bad QoE values, according to
Fig. 7j. The random proposal also experiences these prob-
lems, along with the early battery consumption (Fig. 7k)
consequence of running tasks locally. Focusing on the AI
based solutions, DDDQN proposal gets the worst values,
in terms of battery and QoE. The AC proposal with the
separated networks gets the best QoE results in general.
This can be understood with Fig. 7l, which clearly shows
that the agents begin to send the maximum number of
tasks to the MEC server, which is the configuration
that gives the best QoE values, except in the moments
the MEC server is not available. In those moments, the
agents gradually decide not to send tasks to the MEC
server, but to run these tasks locally or send them to the
cloud server. Anyway, these local execution decisions
imply more energy consumption than the offloading, as
can be seen in the second figure.

Fig. 6 Channel gains in Scenario 1

Page 18 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

Scenario 2: Communications failure
This scenario is characterized by a stable MEC server
availability, which has always between 80% and 100%
of its computational resources available. However, the
wireless communication link disappears between tasks
500 and 1000, making it impossible for the UEs to reach

both the MEC server and the cloud server, which are
only reachable through the BS with which there is con-
nectivity. This situation is represented in Figs. 8 and 9
respectively.

As in the previous scenario, Fig. 10 shows the 4 class
distributions that have been considered (90% Class 1

Fig. 7 Scenario 1 results

Page 19 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

tasks, 90% Class 2 tasks, 90% Class 3 tasks, and random
distribution).

When there is a majority of Class 1 tasks, as seen ear-
lier, offloading to the cloud server gives the worst QoE
results, as the experienced latency is too big for these
tasks. Local computation and offloading to the MEC
server return high QoE values (Fig. 10a). Also, the UE

consumes more battery when the tasks are executed
locally (Fig. 10b). AC algorithms behave similarly and
the DDDQN algorithm makes more erratic decisions,
but each of them identifies the bad results of cloud
computation and minimizes this decision. When the
communications fail, offloading to the MEC server
is not a good decision, as it will not reach it, so the

Fig. 8 MEC status in Scenario 2

Fig. 9 Channel gains in Scenario 2

Page 20 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

separated-network AC algorithm decides to execute
locally from that moment on, as seen in Fig. 10c.

Regarding the case where 90% of the incoming tasks
are Class 2 tasks, and according to their definition, QoE
results when executed locally are bad (Fig. 10d), as no
Class 2 task fulfils its requirements, while the battery

runs out before the 1000-th timestep (Fig. 10e). Offload-
ing to the MEC server, in general, returns better results
than cloud computation. However, when there is no con-
nectivity, the offloading options will not return a good
QoE value, as every task will fail. In this case, there is no
good choice for the algorithm for Class 2 tasks, as they

Fig. 10 Scenario 2 results

Page 21 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

will fail with any of the 3 possible options. The proposed
algorithm, as seen in Fig. 10f, will keep choosing MEC
and cloud offloading decisions because local computa-
tion will fail too, but the offloading will not require so
much battery. When the connectivity comes back, this
figure also shows that the decisions gradually become
MEC server offloading, as the QoE values that way are
slightly better than offloading to the cloud.

In the “majority of class 3 tasks” case, in the begin-
ning, every proposal gets high QoE values due to their
lax requirements. However, local computation gets the
worst values as explained in the first scenario and seen
in Fig. 10g. TheAC proposals begin to decide to prior-
itize MEC and cloud offloading (Fig. 10i), but DDDQN
needs more time for this, so the UEs run out of battery
earlier. Anyway, when communications get unavailable
in timestep 500 (and until timestep 1000), the proposed
AC algorithm starts to decide to execute the tasks locally,
as it is the only way they can be correctly executed. This
implies a big battery consumption, as can be seen in
Fig. 10h, but does fulfil tasks’ requirements.

Last, when there is a 33% of occurrences of each Class
of tasks, offloading to the MEC is the best decision
among the static decisions in terms of QoE (Fig. 10j),
as local computing fails with Class 2 tasks and Cloud
computing fails with Class 1 tasks. The proposed AC
algorithm determines to send data to the MEC server
progressively until there is no possible communication
with the BS. When this happens, and even though the
response is not quick due to the lack of sufficient expe-
rience, the algorithms decide to run the tasks locally as
soon as there are no communications (Fig. 10l), resulting
in battery depletion for many of the UEs (Fig. 10k).

Conclusions and future work
The MEC paradigm offers the advantage of having com-
putational capacity close to where tasks originated (in
case latency is critical), as well as the capabilities of an
external server as in CC paradigm, to overcome local
resources limitation. However, due to the dynamic nature
of channel and servers’ availability, offloading to the MEC
server may not always be the best option. To overcome
this, this work has presented an AI-based algorithm, spe-
cifically an AC algorithm, which adapts to the varying
scenarios.

In order to test the performance of this algorithm,
two different scenarios have been analyzed. In the first
one, the MEC server is temporally unavailable, so every
task sent to the MEC server fails. The algorithm is able
to identify when this happens and decides to change its
decision to improve the QoE. The algorithm is also able
to decide to send it to a cloud server if the tasks can be

processed before their deadline, or it decides to execute
the tasks locally if the latency constraints are critical,
trying to maximize the QoE value, which is related to
the UE’s remaining battery level. The second scenario,
unlike the first one, is characterized by a stable MEC
server availability, but in which the wireless commu-
nication link disappears, so the UEs cannot reach MEC
nor cloud servers. In this case, the algorithm decides to
run the tasks locally, although it implies a bigger battery
consumption and lower QoE values than it would get by
offloading to an external working entity. The algorithm
can also see that trying to execute big tasks with strong
latency requirements locally will also mean failed tasks,
along with big battery consumption, so it decides to keep
the offloading decision, in order not to consume energy.

Thereby, AC algorithms have been proven to choose
the proper action and stabilize their learning quickly, as a
consequence of combining value-based and policy-based
methods, reducing the variance in policy gradient esti-
mation with the value estimation, this is, leveraging the
strengths of both policy-based and value-based methods.
That is why the present study demonstrates the suitability
of DRL-based algorithms for task offloading optimization
in environments characterized by real-time variability.

As future work, the proposed algorithms could be
improved by adding adaptive hyperparameters, so they
react earlier and more effectively to the changes in the
environment. For example, the learning performance
with a constant discount factor can be limited when
uncertainties are involved in the training. Thus, having
an adaptive Discount Factor could lead to better learning
performance and adapt itself when results (in our case,
QoE value) are wrong. In the same way as the discount
factor, with an adaptive learning rate such as a cyclical
learning rate, which consists of varying the learning rate
cyclically between two boundary values [20], there would
be no need to find the best values and schedule for the
global learning rates, so accuracy could be improved in
fewer iterations.

Also, in the proposed framework, the algorithms must
choose between 3 options, being local execution, off-
loading to the attached MEC server, or offloading to the
cloud server. Thus, in this scenario, there is no possibil-
ity of sending to another MEC server, which could also
be a good option in case the nearest MEC server is over-
flown. Another possibility would be to make other kinds
of decisions, such as regulating the transmission power
of the UE or selecting the quantity of their computational
resources, to improve their battery life while fulfilling
tasks’ requirements.

A partial offloading scenario could also be consid-
ered, where computing tasks could be partitioned, so
the agents choose an action for each of these parts,

Page 22 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

considering a task-related dependency, as the functional
progress of a task may depend on the completion of one
or more subtasks. For this, each UE’s incoming apps
should be defined as a composition of several depend-
ent computing tasks, being modelled as DAGs that would
represent the tasks and the dependency constraints
between them.

Another case study could be the real implementation of
this algorithm in a resource-constrained device, such as a
Jetson nano. There are two key aspects to consider to run
this kind of algorithm in resource-constrained devices:
the time the device needs to run the algorithm and the
consumption it implies. Thus, depending on the results
of implementing this algorithm, different techniques
such as pruning shall be studied to reduce the algorithms
while keeping allowable results. This actual implementa-
tion could also present another dilemma to be studied,
being the training-inference trade-off, or, more specifi-
cally in RL, the exploration-exploitation trade-off, which
can be critical in terms of execution time.

Abbreviations
ABG Alpha‑Betta‑Gamma
AC Actor‑Critic
A2C Advantage Actor‑Critic
ADMM Alternating Direction Method of Multipliers
AI Artificial Intelligence
ANN Artificial Neural Network
AR Augmented Reality
AWGN Additive White Gaussian noise
BS Base Station
CC Cloud Computing
CNN Convolutional Neural Network
DAG Dynamic Acyclic Graph
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q‑Learning Network
DDDQN Double Dueling DQN
DL Deep Learning
DQN Deep Q‑Network
FEC Forward Error Correction
DBN Deep Belief Network
DNN Deep Neural Network
DRL Deep Reinforcement Learning
ETSI European Telecommunications Standards Institute
FF Fast Fading
GA Genetic Algorithm
GPU Graphics Processing Unit
IIoT Industrial Internet of Things
IoT Internet of Things
IPLC Improved Policy Loss Clip
LSTM Long short‑term memory
MA Multi‑Agent
MA‑DRL Multi‑Agent Deep Reinforcement Learning
MCC Mobile Cloud Computing
MDP Markov Decision Process
MEC Multi‑access Edge Computing
MINLP Mixed‑Integer Nonlinear Programming
ML Machine Learning
NR New Radio
OFDMA Orthogonal Frequency‑Division Multiple Access
PL Path Loss
PO‑MDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
QDRL Deep Reinforcement Learning based on Queuing theory

QoE Quality‑of‑Experience
QoS Quality‑of‑Service
RA Resource Allocation
RL Reinforcement Learning
RNN Recurrent Neural Network
RTT Round‑Trip Time
SAC Soft Actor‑Critic
SF Shadow Fading
SH Sparse clutter High Base Station
TanH Hyperbolic tangent
TD Temporal Difference
TO Task Offloading
UE User Equipment
UX User Experience
Wi‑Fi Wireless‑Fidelity
WDM Wavelength Division Multiplexing

Acknowledgements
Authors would like to thank anonymous reviewers for their insightful com‑
ments that have enriched the manuscript.

Authors’ contributions
GN: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Investigation, Data Curation, Writing ‑ Original Draft, Visualization. II: Conceptu‑
alization, Supervision, Validation, Writing ‑ Review & Editing. UL: Conceptualiza‑
tion, Supervision, Validation, Writing ‑ Review & Editing. CP: Conceptualization,
Supervision, Validation, Writing ‑ Review & Editing.

Funding
This work was partially supported by the Basque Government under the
Elkartek funding program through the project SONETO: La red social de
los Activos (grant KK‑2023/00038) and the Spanish Ministerio de Asuntos
Económicos y Transformación Digital and the European Union NextGenera‑
tionEU through the project LocoForge: Mimbres instantiation for railways and
Industry 5.0 vertical sectors (grant TSI‑063000‑ 2021‑47), funded by the Plan
for Recovery, ransformation and Resilience.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 7 February 2024 Accepted: 24 April 2024

References
 1. 3GPP (2020) Study on channel model for frequencies from 0.5 to 100 ghz.

Technical report (tr), 3rd Generation Partnership Project (3GPP). version
16.1.0. https:// www. etsi. org/ deliv er/ etsi_ tr/ 138900_ 138999/ 138901/ 16.
01. 00_ 60/ tr_ 13890 1v160 100p. pdf

 2. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals
O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow:
Large‑scale machine learning on heterogeneous systems. https:// www.
tenso rflow. org/. Accessed 26 Mar 2024

 3. Abdullaev I, Prodanova N, Bhaskar KA, Lydia EL, Kadry S, Kim J (2023) Task
offloading and resource allocation in iot based mobile edge computing
using deep learning. Comput Mater Continua 76(2). https:// doi. org/ 10.
32604/ cmc. 2023. 038417

 4. Al Aidaros O, Kardjadja Y, Bouida Z, Ibnkahla M (2023) Energy and
time‑effective computation offloading for edge computing‑enabled iot

https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.32604/cmc.2023.038417
https://doi.org/10.32604/cmc.2023.038417

Page 23 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

networks. In: 2023 IEEE Sensors Applications Symposium (SAS), pp 1–6.
https:// doi. org/ 10. 1109/ SAS58 821. 2023. 10254 051

 5. Avgeris M, Mechennef M, Leivadeas A, Lambadaris I (2023) A two‑stage
cooperative reinforcement learning scheme for energy‑aware compu‑
tational offloading. In: 2023 IEEE 24th International Conference on High
Performance Switching and Routing (HPSR), pp 179–184. https:// doi. org/
10. 1109/ HPSR5 7248. 2023. 10147 932

 6. Baccarelli E, Scarpiniti M, Momenzadeh A (2019) Ecomobifog‑design and
dynamic optimization of a 5g mobile‑fog‑cloud multi‑tier ecosystem for
the real‑time distributed execution of stream applications. IEEE Access
7:55565–55608. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29135 64

 7. Bi S, Huang L, Wang H, Zhang YJA (2021) Stable online computation
offloading via lyapunov‑guided deep reinforcement learning. In: IEEE ICC,
pp 1–7. https:// doi. org/ 10. 1109/ ICC42 927. 2021. 95005 20

 8. Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J,
Zaremba W (2016) OpenAI Gym. arXiv:1606.01540

 9. Carbone MR (2022) When not to use machine learning: A perspective
on potential and limitations. MRS Bull 47(9):968–974. https:// doi. org/ 10.
1557/ s43577‑ 022‑ 00417‑z

 10. Chen C, Zeng Y, Li H, Liu Y, Wan S (2023) A multihop task offloading deci‑
sion model in mec‑enabled internet of vehicles. IEEE Internet Things J
10(4):3215–3230. https:// doi. org/ 10. 1109/ JIOT. 2022. 31435 29

 11. Chen X, Liu G (2021) Energy‑efficient task offloading and resource alloca‑
tion via deep reinforcement learning for augmented reality in mobile
edge networks. IEEE Internet Things J 8(13):10843–10856. https:// doi. org/
10. 1109/ JIOT. 2021. 30508 04

 12. Chen X, Wu C, Liu Z, Zhang N, Ji Y (2021) Computation offloading in
beyond 5g networks: A distributed learning framework and applications.
IEEE Wirel Commun 28(2):56–62. https:// doi. org/ 10. 1109/ MWC. 001. 20002
96

 13. Cho B, Xiao Y (2021) Learning‑based decentralized offloading deci‑
sion making in an adversarial environment. IEEE Trans Veh Technol
70(11):11308–11323. https:// doi. org/ 10. 1109/ TVT. 2021. 31158 99

 14. Chollet F, et al (2015) Keras. https:// keras. io. Accessed 26 Mar 2024
 15. Cozzolino V, Tonetto L, Mohan N, Ding AY, Ott J (2023) Nimbus: Towards

latency‑energy efficient task offloading for ar services. IEEE Trans Cloud
Comput 11(2):1530–1545. https:// doi. org/ 10. 1109/ TCC. 2022. 31466 15

 16. Dong Y, Alwakeel AM, Alwakeel MM, Alharbi LA, Althubiti SA (2023) A
heuristic deep q learning for offloading in edge devices in 5 g networks. J
Grid Comput 21(3):37. https:// doi. org/ 10. 1007/ s10723‑ 023‑ 09667‑w

 17. Dulac‑Arnold G, Levine N, Mankowitz DJ, Li J, Paduraru C, Gowal S, Hester
T (2021) Challenges of real‑world reinforcement learning: definitions,
benchmarks and analysis. Mach Learn 110(9):2419–2468. https:// doi. org/
10. 1007/ s10994‑ 021‑ 05961‑4

 18. ETSI (2024) Multi‑access edge computing (mec). https:// www. etsi. org/
techn ologi es/ multi‑ access‑ edge‑ compu ting. Accessed 26 Jan 2024

 19. Farhan L, Kharel R, Kaiwartya O, Quiroz‑Castellanos M, Alissa A, Abdul‑
salam M (2018) A concise review on internet of things (iot) ‑problems,
challenges and opportunities. In: 2018 11th International Symposium on
Communication Systems, Networks & Digital Signal Processing (CSNDSP),
pp 1–6. https:// doi. org/ 10. 1109/ CSNDSP. 2018. 84717 62

 20. Gulde R, Tuscher M, Csiszar A, Riedel O, Verl A (2020) Deep reinforcement
learning using cyclical learning rates. In: 2020 Third International Confer‑
ence on Artificial Intelligence for Industries (AI4I), IEEE, pp 32–35. https://
doi. org/ 10. 1109/ AI4I4 9448. 2020. 00014

 21. Hou J, Wu Y, Cai J, Zhou Z (2023) Qoe‑guaranteed distributed offloading
decision via partially observable deep reinforcement learning for edge‑
enabled internet of things. Neural Comput Applic 35(29):21603–21619.
https:// doi. org/ 10. 1007/ s00521‑ 023‑ 08905‑2

 22. Huang L, Bi S, Zhang YJA (2020) Deep reinforcement learning for online
computation offloading in wireless powered mobile‑edge computing
networks. IEEE Trans Mob Comput 19(11):2581–2593. https:// doi. org/ 10.
1109/ TMC. 2019. 29288 11

 23. Jiang T, Zhang J, Tang P, Tian L, Zheng Y, Dou J, Asplund H, Raschkowski
L, D’Errico R, Jämsä T (2021) 3g pp standardized 5g channel model for
IIOT scenarios: A survey. IEEE Internet Things J 8(11):8799–8815. https://
doi. org/ 10. 1109/ JIOT. 2020. 30489 92

 24. Jiao X, Ou H, Chen S, Guo S, Qu Y, Xiang C, Shang J (2023) Deep
reinforcement learning for time‑energy tradeoff online offloading in
mec‑enabled industrial internet of things. IEEE Trans Netw Sci Eng
1–14. https:// doi. org/ 10. 1109/ TNSE. 2023. 32631 69

 25. Khan BS, Jangsher S, Ahmed A, Al‑Dweik A (2022) Urllc and embb in 5g
industrial iot: A survey. IEEE Open J Commun Soc 3:1134–1163. https://
doi. org/ 10. 1109/ OJCOMS. 2022. 31890 13

 26. Khanna A, Kaur S (2020) Internet of things (iot), applications and
challenges: A comprehensive review. Wirel Pers Commun 114(2):1687–
1762. https:// doi. org/ 10. 1007/ s11277‑ 020‑ 07446‑4

 27. Kovacevic I, Harjula E, Glisic S, Lorenzo B, Ylianttila M (2021) Cloud and
edge computation offloading for latency limited services. IEEE Access
9:55764–55776. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30718 48

 28. Kwak J, Kim Y, Lee J, Chong S (2015) Dream: Dynamic resource and task
allocation for energy minimization in mobile cloud systems. IEEE J Sel
Areas Commun 33(12):2510–2523. https:// doi. org/ 10. 1109/ JSAC. 2015.
24787 18

 29. Lai P, He Q, Abdelrazek M, Chen F, Hosking J, Grundy J, Yang Y (2018)
Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl C, Vukovic M, Yin J, Yu Q (eds) Service‑
Oriented Computing. Springer International Publishing, Cham, pp
230–245. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 03596‑9_ 15

 30. Li H, Xiong K, Fan P, Letaief KB (2023) Deep reinforcement learning
based task offloading and resource allocation in small cell mec. In:
2023 IEEE International Performance, Computing, and Communica‑
tions Conference (IPCCC), pp 475–480. https:// doi. org/ 10. 1109/ IPCCC
59175. 2023. 10253 839

 31. Lin L, Zhou W, Yang Z, Liu J (2023) Deep reinforcement learning‑based
task scheduling and resource allocation for noma‑mec in industrial
internet of things. Peer‑to‑Peer Netw Appl 16(1):170–188. https:// doi.
org/ 10. 1007/ s12083‑ 022‑ 01348‑x

 32. Mitsis G, Tsiropoulou EE, Papavassiliou S (2022) Price and risk awareness
for data offloading decision‑making in edge computing systems. IEEE
Syst J 16(4):6546–6557. https:// doi. org/ 10. 1109/ JSYST. 2022. 31889 97

 33. Pan M, Li Z, Qian J (2023) Energy‑efficient multiuser and multitask
computation offloading optimization method. Intell Converged Netw
4(1):76–92. https:// doi. org/ 10. 23919/ ICN. 2023. 0007

 34. Plaat A (2022) Deep reinforcement learning, vol 10. Springer. https://
link. sprin ger. com/ conte nt/ pdf/ 10. 1007/ 978‑ 981‑ 19‑ 0638‑1. pdf

 35. Saeed MM, Saeed RA, Mokhtar RA, Khalifa OO, Ahmed ZE, Barakat M,
Elnaim AA (2023) Task reverse offloading with deep reinforcement
learning in multi‑access edge computing. In: 2023 9th International
Conference on Computer and Communication Engineering (ICCCE),
IEEE, pp 322–327. https:// doi. org/ 10. 1109/ ICCCE 58854. 2023. 10246 081

 36. Scarpiniti M, Baccarelli E, Momenzadeh A (2019) Virtfogsim: A parallel
toolbox for dynamic energy‑delay performance testing and optimiza‑
tion of 5g mobile‑fog‑cloud virtualized platforms. Appl Sci 9(6). https://
doi. org/ 10. 3390/ app90 61160

 37. Silva C, Magaia N, Grilo A (2023) Task offloading optimization in mobile
edge computing based on deep reinforcement learning. In: Proceed‑
ings of the Int’l ACM Conference on Modeling Analysis and Simulation
of Wireless and Mobile Systems, Association for Computing Machinery,
pp 109–118. https:// doi. org/ 10. 1145/ 36163 88. 36175 39

 38. Song Y, Shen Y (2023) Computing offloading based on deep reinforce‑
ment learning for virtual reality scene. In: 2023 IEEE International Sym‑
posium on Broadband Multimedia Systems and Broadcasting (BMSB),
pp 1–5. https:// doi. org/ 10. 1109/ BMSB5 8369. 2023. 10211 194

 39. Sun X, Chen J, Guo C (2022) Semantic‑driven computation offloading
and resource allocation for uav‑assisted monitoring system in vehicular
networks. In: IECON 2022‑48th Annual Conference of the IEEE Indus‑
trial Electronics Society, IEEE, pp 1–6. https:// doi. org/ 10. 1109/ IECON
49645. 2022. 99690 83

 40. Towers M, Terry JK, Kwiatkowski A, Balis JU, Cola Gd, Deleu T, Goulão
M, Kallinteris A, KG A, Krimmel M, Perez‑Vicente R, Pierré A, Schulhoff S,
Tai JJ, Shen ATJ, Younis OG (2023) Gymnasium. https:// doi. org/ 10. 5281/
zenodo. 81270 26

 41. Tran TX, Pompili D (2019) Joint task offloading and resource allocation for
multi‑server mobile‑edge computing networks. IEEE Trans Veh Technol
68(1):856–868. https:// doi. org/ 10. 1109/ TVT. 2018. 28811 91

 42. Wang S, Zafer M, Leung KK (2017) Online placement of multi‑component
applications in edge computing environments. IEEE Access 5:2514–2533.
https:// doi. org/ 10. 1109/ ACCESS. 2017. 26659 71

 43. Wu G, Xu Z, Zhang H, Shen S, Yu S (2023) Multi‑agent drl for joint comple‑
tion delay and energy consumption with queuing theory in mec‑based

https://doi.org/10.1109/SAS58821.2023.10254051
https://doi.org/10.1109/HPSR57248.2023.10147932
https://doi.org/10.1109/HPSR57248.2023.10147932
https://doi.org/10.1109/ACCESS.2019.2913564
https://doi.org/10.1109/ICC42927.2021.9500520
https://doi.org/10.1557/s43577-022-00417-z
https://doi.org/10.1557/s43577-022-00417-z
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.1109/JIOT.2021.3050804
https://doi.org/10.1109/JIOT.2021.3050804
https://doi.org/10.1109/MWC.001.2000296
https://doi.org/10.1109/MWC.001.2000296
https://doi.org/10.1109/TVT.2021.3115899
https://keras.io
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1007/s10723-023-09667-w
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://doi.org/10.1109/CSNDSP.2018.8471762
https://doi.org/10.1109/AI4I49448.2020.00014
https://doi.org/10.1109/AI4I49448.2020.00014
https://doi.org/10.1007/s00521-023-08905-2
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/JIOT.2020.3048992
https://doi.org/10.1109/JIOT.2020.3048992
https://doi.org/10.1109/TNSE.2023.3263169
https://doi.org/10.1109/OJCOMS.2022.3189013
https://doi.org/10.1109/OJCOMS.2022.3189013
https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1109/ACCESS.2021.3071848
https://doi.org/10.1109/JSAC.2015.2478718
https://doi.org/10.1109/JSAC.2015.2478718
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1109/IPCCC59175.2023.10253839
https://doi.org/10.1109/IPCCC59175.2023.10253839
https://doi.org/10.1007/s12083-022-01348-x
https://doi.org/10.1007/s12083-022-01348-x
https://doi.org/10.1109/JSYST.2022.3188997
https://doi.org/10.23919/ICN.2023.0007
https://link.springer.com/content/pdf/10.1007/978-981-19-0638-1.pdf
https://link.springer.com/content/pdf/10.1007/978-981-19-0638-1.pdf
https://doi.org/10.1109/ICCCE58854.2023.10246081
https://doi.org/10.3390/app9061160
https://doi.org/10.3390/app9061160
https://doi.org/10.1145/3616388.3617539
https://doi.org/10.1109/BMSB58369.2023.10211194
https://doi.org/10.1109/IECON49645.2022.9969083
https://doi.org/10.1109/IECON49645.2022.9969083
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.1109/TVT.2018.2881191
https://doi.org/10.1109/ACCESS.2017.2665971

Page 24 of 24Nieto et al. Journal of Cloud Computing (2024) 13:94

iiot. J Parallel Distrib Comput 176:80–94. https:// doi. org/ 10. 1016/j. jpdc.
2023. 02. 008

 44. Xu A, Hu Z, Zhang X, Xiao H, Zheng H, Chen B, Zheng M, Zhong P, Kang
Y, Li K (2023) Qdrl: Queue‑aware online drl for computation offloading
in industrial internet of things. IEEE Internet Things J. https:// doi. org/ 10.
1109/ JIOT. 2023. 33161 39

 45. Xu J, Yang D (2023) Optimal task offloading for edge computing with
stochastic task arrivals. In: 2023 IEEE International Performance, Comput‑
ing, and Communications Conference (IPCCC), pp 24–31. https:// doi. org/
10. 1109/ IPCCC 59175. 2023. 10253 860

 46. Yuan P, Shao S, Zhang J, Zhao X (2023) Cooperative edge offloading
strategy for sensory data with delay and energy constraints. Wirel Netw
29(8):3469–3478. https:// doi. org/ 10. 1007/ s11276‑ 023‑ 03404‑7

 47. Zhang B, Xiao F, Wu L (2023) Offline reinforcement learning for asynchro‑
nous task offloading in mobile edge computing. IEEE Trans Netw Serv
Manag. https:// doi. org/ 10. 1109/ TNSM. 2023. 33166 26

 48. Zhou H, Jiang K, Liu X, Li X, Leung VC (2021) Deep reinforcement learning
for energy‑efficient computation offloading in mobile‑edge computing.
IEEE Internet Things J 9(2):1517–1530. https:// doi. org/ 10. 1109/ JIOT. 2021.
30911 42

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jpdc.2023.02.008
https://doi.org/10.1016/j.jpdc.2023.02.008
https://doi.org/10.1109/JIOT.2023.3316139
https://doi.org/10.1109/JIOT.2023.3316139
https://doi.org/10.1109/IPCCC59175.2023.10253860
https://doi.org/10.1109/IPCCC59175.2023.10253860
https://doi.org/10.1007/s11276-023-03404-7
https://doi.org/10.1109/TNSM.2023.3316626
https://doi.org/10.1109/JIOT.2021.3091142
https://doi.org/10.1109/JIOT.2021.3091142

	Deep Reinforcement Learning techniques for dynamic task offloading in the 5G edge-cloud continuum
	Abstract
	Introduction
	Related work
	Non ML-based solutions
	ML-based solutions
	Summary

	System model
	System architecture
	Task model
	Local computation model
	Local latency
	Energy consumption in local computation

	MEC communication and computation model
	Latency when offloading to the MEC server
	Energy consumption when offloading to the MEC server

	Cloud communication and computation model
	Latency when offloading to the cloud server
	Energy consumption when offloading to the cloud server

	Problem formulation and proposed approach
	Problem formulation
	State space
	Action space
	Reward function

	DRL-based proposed solution

	Simulation environment
	Simulation setup
	Simulation parameters
	Compared baselines

	Discussion
	Scenario 1: MEC unavailable for a certain time
	Scenario 2: Communications failure

	Conclusions and future work
	Acknowledgements
	References

