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Abstract 

The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external 
devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) 
paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters, 
so Multi‑access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement 
Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to 
execute each computing task, depending on many factors. The optimization goal in this work is to maximize 
the Quality‑of‑Experience (QoE) when performing tasks, which is defined as a metric related to the battery level 
of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor‑
Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct 
scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic 
environments, also demonstrating that decisions need to be adapted to the environment’s evolution.

Keywords Task offloading, Performance evaluation, Energy consumption, Reinforcement Learning (RL), Quality‑of‑
Experience (QoE), Multi‑access Edge Computing (MEC), Internet of Things (IoT), Edge‑Cloud‑Continuum

Introduction
As a key enabler of a new industrial and social revolu-
tion, Internet of Things (IoT) drives a wide range of 
possibilities, facilitating the generation and utilization 
of previously nonexistent data. In fact, IoT is becom-
ing more popular in many industries, such as manufac-
turing, healthcare, retail, or vehicle industry [26]. IoT 
and its connectivity capabilities, combined with data 
analytics, open up new possibilities not only to develop 

cutting-edge goods and services but also to improve 
operational efficiency.

However, in many scenarios, these applications are 
limited by the constrained resources of IoT devices, 
involving both computation capabilities and battery 
constraints, among others [19]. That is why, often, these 
devices need to rely on external resources in order to 
offload some of their computational tasks, such as get-
ting insights from the data caught by themselves. Even 
if the task could be run in the device itself, the energy 
usage may be too high, which would result in the need 
to recharge batteries more frequently or even replacing 
them.

To avoid this high battery consumption and to ensure 
the service, Cloud Computing (CC), or in the con-
text of mobile communications, Mobile Cloud Com-
puting (MCC) paradigm, emerged as a promising 
solution for tasks where latency is not critical, above all. 

*Correspondence:
Gorka Nieto
gnieto@ikerlan.es
1 Ikerlan Technology Research Centre, Basque Research and Technology 
Alliance (BRTA), Pº. J. M. Arizmendiarrieta, 2, Arrasate‑Mondragón 20500, 
Spain
2 University of the Basque Country (UPV/EHU). School of Engineering 
in Bilbao, Alameda Urquijo s/n, Bilbao 48013, Spain

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00658-0&domain=pdf


Page 2 of 24Nieto et al. Journal of Cloud Computing           (2024) 13:94 

Unfortunately, when the completion time must be very 
short, this solution may not be adequate because the 
Round-Trip Time (RTT) from the device to the cloud 
server might be too high.

To solve both local issues and the problems derived 
from reaching remote cloud servers, European Telecom-
munications Standards Institute (ETSI) developed a new 
paradigm called Multi-access Edge Computing (MEC), 
formerly Mobile Edge Computing, but which became 
updated to enable the communications through different 
technologies, such as 5G-New Radio (NR) or Wireless-
Fidelity (Wi-Fi). MEC, as stated by ETSI, is “a natural 
development in the evolution of mobile Base Station (BS) 
and the convergence of IT and telecommunications net-
working” and “offers application developers and content 
providers cloud-computing capabilities and an IT service 
environment at the edge of the network” [18]. In short, 
it brings the benefits of the CC paradigm closer to the 
User Equipment (UE). 5G was the communication tech-
nology that enabled MEC paradigm for the first time, and 
is also expected to enable more connected devices. It is 
also supposed to bring improved energy-saving capabili-
ties for IoT devices, leading to reduced energy use and 
increased battery life [25].

In this context, it is important to consider the draw-
backs of local execution, but also the implications task 
offloading may have. Many works in the literature have 
presented tools that optimize the decision of where to 
execute the computing tasks, depending on many factors. 
Apart from classical mathematical optimization meth-
ods, with the recent advancements in Artificial Intelli-
gence (AI), many different approaches have been set up, 
including Machine Learning (ML) or Deep Learning (DL) 
approaches, techniques that learn from data and improve 
their performance over time. However, a significant limi-
tation of this approach is the need of dataset that repre-
sents every possible state of the environment, so the ML 
algorithm learns how to act each time. Having the proper 
datasets containing every situation to learn from may be 
unrealistic [9], so there is a need to have a tool that can 
learn without needing a dataset. Here is where Reinforce-
ment Learning (RL) can be of use as, instead of relying 
on an existing dataset, it learns by continuously inter-
acting with the environment and assessing the effects of 
its actions.. Deep Reinforcement Learning (DRL) is an 
improved version of RL that uses Deep Neural Network 
(DNN) to optimize a specific metric, through the estima-
tion of the value or policy function for high-dimensional 
state and action spaces.

Another important matter is where to take this deci-
sion. On the one hand, running such algorithms can be 
time- and computing-costly for a resource-constrained 
device [17]. On the other, if one of the outputs of the 

algorithm is to decide not to offload any information 
because the communications are not guaranteed or the 
server is not available, it would not make sense for the 
decision to be taken by an external agent, as it would 
have a communication problem with the device. This 
would also add more information or noise to a channel 
that could already be saturated [32], apart from the fact 
that no decision would be taken.

As commented earlier, the main goals to be optimized 
in an IoT computation offloading problem may be to 
reduce the energy consumption of the device and ful-
fil the latency requirements of the application, although 
there can be different approaches, like optimizing the 
bandwidth or accomplishing computation tasks while 
maintaining a certain level of privacy. Taking all this into 
account, this work presents a DRL-based technique to 
maximize the User Experience (UX) of IoT services, this 
is, guaranteeing a level of Quality-of-Experience (QoE) 
in the decision-making so the tasks’, and therefore, the 
users’ requirements are fulfilled.

Thus, the contributions of this work are:

• A novel system model that considers devices’ and 
servers’ occupation, the network status and different 
task types, rather than focusing solely on tasks’ char-
acteristics.

• A QoE calculation based on the energy performance, 
conditional on meeting the latency requirements of 
the tasks and trying to maximize their success.

• A distributed DRL approach, with which each UE 
aims to maximize the QoE value in a time-varying 
environment.

• An empirical evaluation of the algorithm in two dis-
tinct scenarios that shows the performance of the 
proposed solution, along with other baselines, prov-
ing the need for a dynamic and adaptive approach.

The performance of the algorithm is demonstrated 
through the experiment outcomes in terms of QoE val-
ues, energy consumption, and the evolution in the deci-
sions of the algorithms for each independent task. These 
results not only show that solutions like ML-based ones 
are necessary in dynamic environments, as the decisions 
need to be adapted to its evolution, but they also show 
that the proposed algorithm outperforms other studied 
baselines.

The remainder of this paper is structured as follows: 
some recent proposals from the literature that tackle 
the task offloading problem are reviewed in Related 
work section. System model section presents the scenario 
raised in this studio, for which Problem formulation and 
proposed approach section presents its problem formula-
tion and the optimization goal, along with the suggested 
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DRL-based approach to solve it. After that, Simulation 
environment section provides a detailed exposition of the 
experimental environment configuration and the base-
lines that will be compared in Discussion section, which 
presents a comprehensive discussion of the obtained 
experimental results, highlighting the advantages of the 
proposed solution. In Conclusions and future work sec-
tion, we conclude this work and outline some directions 
for further research.

Related work
Being computation offloading such a trending problem, 
a diverse range of approaches has emerged to address 
this challenge, each with its own optimization goals and 
employing distinct techniques or perspectives. In this 
section, a dual taxonomy has been established, classify-
ing the employed techniques into two distinct groups: 
works based on the principles of ML and those utiliz-
ing alternative AI methodologies such as heuristics or 
metaheuristics.

Non ML‑based solutions
These solutions are designed to solve specific problems 
through a set of predefined rules or algorithms that do 
not involve learning from data or ML, for instance, heu-
ristics (“rules of thumb”) and metaheuristics (higher-level 
strategies used to find optimal solutions in complex prob-
lems). These solutions are designed and implemented 
based on problem-specific knowledge and do not adapt 
over time.

First, [42] model apps as application graphs and the 
physical computing system as a physical graph, with 
resource demands or availability annotated on these 
graphs. They propose a heuristic algorithm to find where 
to place an application and then generalize the formula-
tion and obtain online approximation algorithms with a 
polynomial-logarithmic (poly-log) competitive ratio for 
tree application graph placement, trying to minimize 
the maximum resource utilization at physical nodes 
and links. They consider node and link assignments and 
incorporate multiple types of computational resources 
at nodes. However, they do not consider devices’ battery 
and channel status, nor delay requirements of the tasks.

The work in [6] proposes a joint and adaptive optimi-
zation of resource and task allocation in mobile stream 
applications in 5G-supported mobile-fog-cloud virtual-
ized ecosystems. The objective is to minimize the energy 
of the overall ecosystem while meeting hard constraints 
on the minimum streaming rate and maximum comput-
ing-plus-networking resources. The authors model the 
energy of the target ecosystem and develop an optimal-
ity-preserving decomposition into a continuous resource 
allocation sub-problem and a discrete task allocation 

sub-problem. They propose a set of gradient-based adap-
tive iterations for the resource allocation sub-problem, 
and an ad-hoc-developed Genetic Algorithm (GA) for 
the task allocation sub-problem. All the reported numer-
ical results are carried out by the VirtFogSim toolbox 
developed in [36], which allows for dynamic joint opti-
mization of energy and delay performance by optimizing 
the placement of application tasks and allocation of com-
puting-networking resources. This framework also allows 
customizable simulation of the energy-delay perfor-
mance of the overall system. The limitations of this work 
are the scalability challenges when the size and complex-
ity of the application Dynamic Acyclic Graph (DAG) and 
system parameters increase and/or introduce overhead. 
Besides, despite VirtFogSim supports dynamic tracking 
of resource allocation under time-varying operational 
environments, the ability to adapt in real-time to rapidly 
changing operational environments is limited. DAG and 
other parameters related to the computing and network-
ing aspects of the Mobile-Fog-Cloud platforms are used 
as inputs to make decisions.

In contrast with the previous works, the authors in [28] 
resort to Lyapunov optimization to model energy con-
sumption in mobile cloud systems, so no edge server is 
considered. This approach considers real-time network 
conditions, workload types, and various workload arriv-
als as inputs; and decisions on where to execute and task 
scheduling as outputs, among others, along with the sta-
bility of the queues. The main limitations of this approach 
are the sensitivity to network variability and the com-
plexity of the joint optimization, along with its potential 
issues with scalability and performance in large-scale 
real-world mobile cloud systems.

Works like [15] present task offloading as an enabler 
for different real applications. In this case, the real-time 
object detection for mobile Augmented Reality (AR) 
is presented, which would require too much energy if 
made fully in the device. A task placement and offload-
ing framework is developed and used to extract DL tasks 
from the AR application, which are the most consuming 
tasks in this scenario, so they can be offloaded to nearby 
Graphics Processing Unit (GPU)-powered edge devices. 
With the developed infrastructure simulator, they carry 
an empirical analysis of both centralized and distrib-
uted execution of the task placement algorithm, evalu-
ating their Nimbus algorithm performance against other 
related solutions. They consider latency, battery con-
sumption, and task coordination as the constraints of the 
apps and choose a server to which to offload considering 
the battery consumption and the time required to get to 
it. However, they do not consider the status of the server.

Instead of choosing a specific kind of application 
as an example, [4] shows real measurements using 
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Raspberry Pi devices as evidence of real implementa-
tion of offloading algorithms in actual devices, aiming 
to reduce the energy consumption and execution time 
measurements of different IoT apps running on physi-
cal IoT sensor nodes. They propose adaptive schemes 
that consider the resources available at the IoT nodes 
and available Edge servers. Nevertheless, the adap-
tive algorithms proposed in this work are not tested in 
dynamic environments when server unavailability or 
channel degradation may occur, so they may not fit in 
time-changing environments.

Regarding environments with multiple servers, [46] 
presents a joint optimization problem where the objec-
tive is to minimize the cost of collaboration or informa-
tion interchange among edge servers while maximizing 
the offloading ratio of sensing data and satisfying the 
limitations of system energy consumption and network 
latency. UX is enhanced when many edge servers col-
laboratively offload all or part of the sensory data that 
was originally provided to a cloud centre, but there is 
a cost of cooperation due to the system resources used 
for the exchange of information amongst edge servers, 
so the goal is to find the balance. The problem is solved 
using Heuristics techniques, specifically, Alternating 
Direction Method of Multipliers (ADMM), but they 
do not consider fluctuations in the transmission time 
between IoT and edge servers, between edge servers, 
nor between edge and cloud servers.

In [45], the goal is to minimize the maximum long-
term execution delay while ensuring that the long-term 
energy consumption of each UE in the network does 
not exceed the maximum energy consumption. They 
propose a centralized solution, where the edge server 
makes the task offloading decision based on the system 
state of all UEs, gathering the data from each of them. 
The pros of the proposed solution are that it provides 
an optimal solution to the task offloading problem, 
and it achieves the lowest execution delay compared 
to some baseline algorithms. Anyway, more complex 
scenarios are missing, where communication and com-
putation resources are affected by the actions taken by 
many UEs and some factors like the channel quality are 
dynamic

Aiming to minimize network resource usage and maxi-
mize requests admissions with Heuristics, [27] formu-
late the simultaneous optimization of communication 
and computational resource allocation in response to 
requests for computation offloading with strict bound-
ing constraints, modelled as a two-tier computational 
offloading problem. In this case, as some differences with 
our work, UEs are not considered as a computing entity 
and always try to fill the MEC servers, before sending 
to the cloud server, instead of considering tasks with no 

latency requirements that can be directly offloaded to the 
cloud server.

A distributed multi-hop task offloading decision model 
for task execution efficiency is proposed in [10], with a 
vehicle selection mechanism and a task offloading deci-
sion algorithm. The optimization model is established to 
increase the task execution efficiency. It is solved by the 
greedy algorithm and the discrete bat algorithm, respec-
tively, under the scenarios set in this article. The random 
selection and the completely local computing schemes 
were used as compared baselines. In this work, they do 
not consider the dynamics of computing resources and 
network channels, which can be a consequence of the off-
loading decisions from multiple vehicles.

Despite their diverse approaches, these proposals 
share the same shortcomings. They heavily depend on 
the specific characteristics of the problem they have 
been designed for, without the ability to adapt and learn 
from past experiences, so they are not capable of han-
dling dynamic and evolving environments, which are 
not considered in many of them. These limitations could 
be solved using ML-based techniques, as they can learn 
from past experiences. Other limitations are the scalabil-
ity challenges, above all, for the centralized solutions, as 
they might become unfeasible when they have to con-
sider the information of an increasing number of nodes.

ML‑based solutions
In contrast with the previous solutions, AI-based solu-
tions can learn from data and make decisions based on 
patterns that are not explicitly created and introduced 
into them, but rather discovered through their training.

First, [24] evolves the DROO algorithm from [22] to 
address the task offloading problem, along with data from 
EUA dataset [29]. Different from our work, this solution 
is centralized, so decision-making might be challenging 
mainly because of the overhead produced in both the 
network and the MEC server by sending much informa-
tion, apart from the privacy concerns this could raise [13] 
and the scalability limitation of RL-based algorithms due 
to the huge decision space, increasing network conges-
tion and, consequently, latencies [12].LyDROO [7], as 
another proposal emanated from DROO, applies Lyapu-
nov optimization to decouple the multi-stage stochastic 
Mixed-Integer Nonlinear Programming (MINLP) and 
solves each resulting subproblem via DROO algorithm.

The work from [5] proposes an approach whose goal is 
to minimize this sum-cost of the system, this is, minimiz-
ing the end-to-end delay and energy consumption while 
complying with the application requirements by offload-
ing to available edge servers. They use a two-stage RL-
based mechanism to optimize where the transmission 
from UEs to servers and also from one server to another 
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one, in a second stage. Thus, the first stage, the offloading 
decision stage, is performed in a decentralized way, while 
the second stage is performed in the servers.

Many works combine ML-based solutions with other 
tools like meta-heuristics. For example, [3] uses DL with 
Seagull Optimization (TORA-DLSGO) algorithm aiming 
to minimize energy consumption subject to the latency 
requirements and restricted resources, using SGO 
algorithm for the parameter tuning of the Deep Belief 
Network (DBN) model, which is used for optimum off-
loading decision-making purposes. An objective function 
is derived based on minimizing energy consumption sub-
ject to the latency requirements and restricted resources. 
Despite the results being promising and different net-
work parameters being tested, there is no evidence of 
their results in time-changing scenarios.

Also mixing many techniques and trying to optimize 
many objectives at the same time, [43] shows a joint 
optimization problem, which tries to optimize both the 
delay and energy consumption based on queuing theory, 
obtaining the optimal offloading strategy in dynamic and 
random multi-user offloading environments through 
MA-Deep Reinforcement Learning based on Queuing 
theory (QDRL). Many indicators are used, such as task 
arrival rate, bandwidth, energy consumption, or latency. 
The problem is defined as an Partially Observable 
Markov Decision Process (PO-MDP) and actors and crit-
ics share most of the network except for the output layer. 
Also, it seems to be feasible to implement in a real-world 
scenario because the training is centralized but the exe-
cution is performed in a decentralized way. Nevertheless, 
due to the dynamic nature of real environments, MA-
QDRL may suffer the problem of high complexity when 
the number of nodes increases.

Different environments are also considered in [11], 
which tackle single- and multi-MEC systems, aiming to 
minimize the energy consumption of each UE while sat-
isfying the delay requirement. They use the amount of 
energy consumed by the UE as the reward, along with the 
reward for the fact of completing the task and fulfilling 
its delay constraints. Other works like [33] that consider 
dependencies among different tasks. This work uses an 
Improved Policy Loss Clip (IPLC)-based Proximal Policy 
Optimization (PPO) algorithm to achieve lower latency, 
reduce energy consumption, and improve Quality-of-
Service (QoS). Though, no cloud computation is consid-
ered for big tasks or non-delay critical tasks.

[48] uses a centralized Double Deep Q-Learning Net-
work (DDQN) to determine the joint policy of com-
putation offloading and resource allocation. The state 
space comprises the available computation resources 
of the MEC, the percentage of the available spectrum 
resources at present, and the energy consumption at each 

time slot is observed to compare whether the optimal 
state is reached. For the long-term consideration, a state 
value function is defined by the cumulative discounted 
reward value for agents in the state. Despite the promis-
ing results of this work, it is not compared to other DRL 
proposals, nor consider more complex scenarios, where 
cloud servers are considered and where other phenom-
ena can affect the wireless channel gain, such as shadow 
fading or fast fading phenomena.

The convergence with technologies such as Digital 
Twins or caching is also considered in many works. For 
instance, an offloading decision problem based on Digi-
tal Twins Edge Networks is planned in [38] to reduce 
overall system overhead and improve the cache hit rate. 
The DRL method Deep Deterministic Policy Gradi-
ent (DDPG) exports the compute offloading choice and 
the DTCC algorithm increases the cache hit percentage, 
respectively. These promising results should be checked 
in more complex environments, considering different 
task requirements and also leaning on cloud servers.

Also, [44] converts the problem into a per-frame 
deterministic problem through the Lyapunov optimi-
zation technique. Thus, it results in 2 sub-problems, 
resource allocation, and computation offloading, which 
are strongly coupled and difficult to solve directly. The 
authors design a queue-aware computation offloading 
scheme based on AC to address both sub-problems sepa-
rately. The Actor module is implemented based on a DL 
model and quantization strategy COGA for generating 
computation offloading actions. In the critic module, on 
the other hand, they integrate mathematical reasoning 
and learning-based methods for resource allocation. The 
proposed model should also support cloud-edge-device 
collaboration architecture.

Considering that directly deploying RL in edge com-
puting implies a bad experience due to an initial arbi-
trary exploration in real online environments, in [47] 
a static offline dataset is used, so the exploration is 
reduced, which, in RL, is expensive or even dangerous in 
online environments. Thus, they model the problem as a 
repeated game between 2 agents and apply model-based 
offline RL (specifically, Soft Actor-Critic (SAC)) to opti-
mize the offloading decisions. The online environment 
and the simulated offline environmental model may not 
be so similar, though, as the environment dynamics can 
only be inferred implicitly.

As a paradigm shift, reverse offloading is proposed 
is presented in [35]. Concretely, the authors present a 
framework for reverse offloading that carefully balances 
the relationship between task completion time and UE 
energy consumption. The sensory data from every device 
is transferred to the MEC server for data fusion. Reverse 
offloading is the process of returning tasks, data, and 
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sensory information from the MEC to the mobile that 
initiated them for computing. Tasks can either be fin-
ished on the MEC server or reverse-offloaded to the orig-
inating device. Sending so much information to the MEC 
server may cause overhead in the network.

Additionally, [31] aims to optimize sub-channel assign-
ment and task offloading decisions together to guarantee 
the QoS that delay-sensitive workloads require, modify-
ing the original problem through DRL. Furthermore, a 
distributed DRL approach is presented to minimize sig-
nificant signalling overhead for each Industrial Internet 
of Things (IIoT) device to acquire explicit knowledge on 
full system states, which turns the problem into a PO-
MDP. In order to address this issue, Long short-term 
memory (LSTM) is additionally utilized to forecast the 
current load status of every sub-channel and MEC server, 
which is utilized to inform RL agents’ decisions. Anyway, 
this work aims to maximize the number of tasks with sat-
isfied delay requirements without due consideration to 
consumption, but considering channel gain and queue 
length.

Next, [16] work’s goal is to reduce the overall latency 
of the MEC system while ensuring that each task is com-
pleted within its deadline and resource constraints. It 
handles both partial and complete offloading tasks and 
uses energy consumption as a factor in the offloading 
decision. It also adapts to changing network conditions 
and resource availability by using a DDQN to learn the 
optimal offloading policy, using Karush-Kuhn-Tucker 
(KKT) to minimize the total latency and DQN to reduce 
the energy consumption. The proposed MEC distrib-
uted scheduling algorithm must consider not only the 
individual state information of each agent but also the 
global interrelationships between the nodes. [39] propose 
a semantic-driven computation offloading and resource 
allocation scheme. For the offloading decision, they use 
a Convolutional Neural Network (CNN) segmentation 
scheme, and for the allocation problem, they use a MA-
DQN algorithm, aiming to optimize latency, energy con-
sumption, and task performance.

Also focusing on energy and latency, this time through 
a QoE calculation, [21] propose Gated Recurrent Unit 
Fictitious Self-Play Dueling Double Deep Recurrent Q 
Network. It adopts a Recurrent Neural Network (RNN) 
structure to learn from the history of observations and 
Neural Fictitious Self-Play (NFSP), which is essentially an 
extension of Fictitious Self-Play (FSP) and addresses the 
non-stationary issue. It is also a PO-MDP due to its dis-
tributed nature.

In the case of [30], the authors tackle the joint opti-
mization problem of the task offloading and resource 
allocation in small cell MEC networks, where mul-
tiple small-cell BSs integrating MEC servers provide 

computing services for the served UEs. The proposed 
reward function for the Proximal Policy Optimization 
(PPO) agent used is composed of two parts: the total 
energy consumption and the delay constraint satisfaction 
probability.

Finally, the scenario considered in [37] consists of a 
heterogeneous network of UEs that can offload to a net-
work of MEC servers through an agent that orchestrates 
a group of 5G Small Cells enhanced with computation 
and storage capabilities to optimize resource utilization 
and minimize latency. This agent is an Advantage Actor-
Critic (A2C) agent, which takes into account computa-
tion, battery, latency, and communication constraints, 
some of which are often overlooked in traditional 
approaches. The solution is also shown to be scalable, 
data-efficient, robust, stable, and adaptable, ensuring 
optimal system performance even under worst-case 
scenarios.

Summary
Table 1 summarizes all of these works, both ML and non-
ML-based, showing briefly the technique used; if it solves 
a Task Offloading (TO) or Resource Allocation (RA) 
problem; if it is a centralized (C) or a Decentralized (D) 
proposal; where the tasks can be executed (locally (L), 
MEC/Fog server (M/F) or Cloud server (C)), also mark-
ing with an * where the decision is taken; and which the 
optimization goal (or goals) is.

Among all these works, our work is the only ML-based 
distributed one that considers different task classes, 
based on some of their characteristics, such as a range 
in delay requirement, to make a decision offloading to a 
MEC or a cloud server, along with dynamic behaviour of 
the different elements composing the network, such as 
the channel gain or the computing resources availability.

System model
This section presents the way the scenario of our pro-
posal is modeled, which shows the entities that form part 
of it; the modeling of the computational tasks used to 
configure the simulations; and the modeling of the energy 
consumption and elapsed timed, according to where the 
tasks are executed.

System architecture
The considered system in this work is shown in Fig.  1: 
A three-tier architecture encompassing a cloud layer, a 
MEC layer and a device layer. The system is considered 
to represent a Base Station (BS) located within the facil-
ity with an adjacent MEC server. This scenario acknowl-
edges the presence of various entities that may potentially 
obstruct the signal propagation between devices and the 
BS.
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The device layer is composed of every UE in the environ-
ment, which must decide what to do with the incoming 
tasks, making use of their own distributed decision-making 
algorithm instances and considering many conditions, such 
as their current battery, as it will be explained later in Prob-
lem formulation and proposed approach section.

Regarding the MEC layer, each MEC server in this layer 
is located next to a Base Station (BS), so the distance 
between them is 0. Here, when a device decides to offload 
a task to its attached server in the MEC layer, it must 
send the task through a wireless link and wait for the task 
to reach back once the MEC server has processed it with 
its remaining available resources.

Finally, the cloud layer is reached from any BS in the 
MEC layer through a modelled fibre link, in case the 
decision is to offload the task to the cloud server. Thus, 
it is important to note that every task that needs to be 
processed in the cloud server needs to go first through a 
BS, so 2 steps are needed: the wireless transmission from 
the UE to the BS and the transmission through an optical 
fibre from the BS to the cloud server.

Task model
Computation tasks are denoted by An

i  ( 1 ≤ i ≤ I ), where 
i indicates the timestep where the task arrives at the 
n-th UE, considering I is the total number of tasks or 
timesteps, and n indicates the identification of the UE 

among the total number of UEs N. Ai is characterized by 
3 parameters, An

i (Di,φi,T
req
i ) , where Di is the data size of 

An
i  in bits, φi is the number of computation cycles needed 

to complete An
i  , and Treq

i  is the maximum delay for the 
task to be completed in seconds.

With this information, each task is classified into one of 
the following classes (Ci):

• Class 1 ‑ Delay‑sensitive tasks (Ci = 1): Tasks with 
strict latency requirements and small size and com-
putational requirements, which must be executed 
quickly. An example application with theses tasks 
could be a smart sensor, which monitors and adjusts 
environment parameters, such as temperature ,quickly.

• Class 2 ‑ Energy‑sensitive tasks (Ci = 2): Tasks with 
larger computational demands than the previous 
ones and some latency requirements to be fulfilled 
- but not as restrictive. An AR app could be one of 
these tasks, needing to process data, render graphics, 
and respond to interactions on time.

• Class 3 ‑ Insensitive tasks (Ci = 3): Tasks with larger 
limits of both size (and the consequent computa-
tion requirements) and latency. For example, a Smart 
Grid IoT application could have tasks like these. 
Massive amounts of data may be collected, implying 
a very large data size that does not need to be pro-
cessed instantaneously.

Fig. 1 System model
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As a note, our system does not model a partial offload-
ing problem, which means dividing a particular task 
into subtasks that can scheduled individually. Instead, 
we consider non-partitionable independent tasks, i.e., 
the tasks cannot be further reduced and they contain 
sufficient information to be treated separately. Inter-
dependence relationships between tasks have not been 
considered.

Local computation model
When a UE decides to execute one task locally, there is 
no intervention by external entities, so the energy and 
latency calculations are made using An

i  task data and n 
UE conditions, explained in more detail as follows.

Local latency
The time or latency experienced when executing a task 
locally (tcLi ) can be represented as in Eq. 1

, where φi is the computation consumption of task 
Ai as stated previously and f ni  represents the avail-
able resources in the n UE in timestep i. Other delays 
such as the queuing delays in the nodes have not been 
considered.

Energy consumption in local computation
Regarding the energy consumption when the decision is 
to execute a task locally, ecLi  , and based on works like [11], 
can be represented as in Eq. 2

, where κn represents the energy coefficient determined 
by the chip structure of the UE.

MEC communication and computation model
Latency when offloading to the MEC server
Regarding the wireless environment characteristics, 
[23] has been used as a reference. As stated there, for 
an indoor environment with Sparse clutter High Base 
Station (SH), the 3GPP TR 38.901 [1] uses Alpha-Betta-
Gamma (ABG) model to specify the Path Loss (PL) 
model as in Eq. 3.

Shadow Fading (SF) is calculated assuming a normal 
distribution with zero mean and a standard deviation of 
5.9dB, as suggested by the 3GPP model for indoor fac-
tory environments [1].

(1)t
cL
i =

φi

f ni

(2)e
cL
i = κn(f ni )

2φi

(3)
PLnSH ,i(fc, d) = 32.4 + 23 log10(d

nm
i )+ 20 log10(fc)

For the channel gain calculation, the path loss and the 
shadow fading effects are considered, so the channel 
gain hnmi  is obtained by subtracting the PL and the SF 
instantaneous values. Thus, the channel gain is calcu-
lated as in Eq. 4:

The Fast Fading (FF) phenomena, which is usu-
ally modelled as a zero-mean Rayleigh distribution in 
mobile NLOS environment, is considered to be aver-
aged out during the offloading process, so the varia-
tions in the channel gain due to fast fading are ignored 
during the offloading process, as explained in [41].

In this scenario, Orthogonal Frequency-Division 
Multiple Access (OFDMA) is implemented in the 
uplink to avoid conflicts between different UEs in the 
access to the m base station. Thus, the total frequency 
bandwidth W is divided into N equal sub-bands (one 
for each UE), Wnm = W /N  . This way, according to 
Shannon’s formula, the uplink transmission rate (rnmi ) 
can be stated as:

The upload transmission delay (ttxmi ) is then calculated 
dividing the task size Di by the result of the previous 
Eq. 5,

As in the calculation of the local processing delay 
(Eq. 1), the processing latency experienced when execut-
ing a task in a MEC server (tcmi ) is calculated as in Eq. 7:

, being f mi  the available resources in the m MEC server in 
timestep i.

The total offload delay includes the upload transmis-
sion delay (ttxmi ) , the time the MEC server takes to pro-
cess the task Ai (tcmi ) and the downlink transmission delay 
(t

rxm
i ) . However, as the transmission power of the MEC 

server (pmi ) is considerably higher than the UE’s pni  and 
the resulting data of the processed task is much lower 
than the task data size (Di) , the downlink transmission 
delay (trxmi ) can be neglected. Both transmission queues 
and computation queues operate as FIFO (First-In-First-
Out) queues, ensuring that the current task completes 
within the current timeslot, and the subsequent task 
begins processing at the start of the next time slot. Thus, 
the total offload delay is:

(4)hnmi = −PLnSH ,i − SF

(5)rnmi = Wnm log2 1+
pni h

nm
i

N0

(6)t
txm
i =

Di

rnmi
=

Di

Wnm log2

(

1+ pni h
nm
i

N0

)

(7)t
cm
i =

φi

f mi
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Energy consumption when offloading to the MEC server
The energy consumption for the UE to offload a task to 
the MEC server (emi ) can be easily calculated as the prod-
uct of the UE transmission power (pni ) and the transmis-
sion time of the task to the MEC server (tmi ) . Therefore, 
using the previously stated upload transmission delay 
(Eq. 6), the energy consumed when offloading a task is set 
as in Eq. 9:

Cloud communication and computation model
Latency when offloading to the cloud server
In the same way as in local computation (Eq. 1) and MEC 
computation (Eq. 7), the processing latency experienced 
when executing a task in the cloud server (tcCi ) is calcu-
lated as in Eq. 10:

Regarding the transmission delay to the cloud server, 
both the propagation time from the BS to the cloud 
server in the uplink and the downlink and the trans-
mission delay must be considered, as well as the upload 
transmission delay from the UE to the MEC server 
(Eq. 6).

The propagation delay is defined in Eq. 11:

, where LmC is the distance between the BS where the 
server m is located and the cloud server, and v is the 
fibre propagation speed, and is calculated as the division 
between the speed of light in vacuum c and the refractive 
index of the fibre ρ (v = c/ρ).

The transmission delay follows the statement of divid-
ing the task size Di by the transmission rate of the fibre 
(rf ) , which is simplified and calculated in the next 
Equation:

, being Chf  the channel capacity, (which depends on the 
fibre capacity Cf  and the fibre modulation Wavelength 
Division Multiplexing (WDM)), Of  the fibre overhead 
and Ff  the fibre Forward Error Correction (FEC)

(8)tmi = t
txm
i + t

cm
i + t

rxm
i =

Di

Wnm log2

(

1+
pni h

nm
i

N0

) +
φi

f mi

(9)emi = pni · t
txm
i = pni ·

Di

rnmi
= pni ·

Di

Wnm log2

(

1+
pni h

nm
i

N0

)

(10)t
cC
i =

φi

f Ci

(11)t
pC
i =

LmC

v

(12)

rf = Chf · (1− Of ) · (1− Ff ) =
Cf

√
WDM

· (1− Of ) · (1− Ff )

Then, the cloud transmission rate can be calculated as 
in Eq. 13

Thus, the total transmission delay to the cloud server 
is given by the sum of the processing time of the cloud 
server, twice the propagation delay (uplink and down-
link), and the fibre transmission delay:

Therefore, the total experienced delay when offloading 
to the cloud server, considering that transmission queu-
ing delays have not been taken into account, is given by 
Eq. 15:

Energy consumption when offloading to the cloud server
The energy consumption when the decision is to offload 
to the cloud is the same as when the decision is to offload 
to the MEC server (Eq.  9). This is because a task must 
first go through the BS where the MEC server is located 
in order to get to the cloud server, which is reached 
through a fibre link and does not imply more energy con-
sumption from the UE:

Problem formulation and proposed approach
This section formally delves into the problem formula-
tion and the optimization goal, also presenting the pro-
posed DRL-based approach implemented as its solution.

Problem formulation
The problem described in this paper is modelled as a 
Markov Decision Process (MDP) model, employed to 
depict the decision-making process of a dynamic system 
where the environment may evolve randomly, leading to 
diverse decisions being made over time. At each stage, 
a thorough analysis of the current state Si is conducted 
by each of the UEs, each of which has an instance of the 
developed decision algorithm, in order to determine 
the appropriate course of action. Thus, each agent tries 

(13)t
tC
i =

Di

rf
=

Di

Cf
√
WDM

· (1− Of ) · (1− Ff )

(14)

t
txC
i = t

txm
i + t

tC
i + 2 · tpCi =

=
Di

Wnm log2

(

1+ pni h
nm
i

N0

) +
Di

Cf
√
WDM

(1− Of )(1− Ff )
+ 2

LmC

v

(15)

tci = t
cC
i + t

txC
i =

=
φi

f Ci
+

Di

Wnm log2

(

1+ pni h
nm
i

N0

) +
Di

Cf
√
WDM

(1−Of )(1− Ff )
+ 2

LmC

v

(16)

eci = emi = pni · t
txm
i = pni ·

Di

rnmi
= pni ·

Di

Wnm log2

(

1+
pni h

nm
i

N0

)
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to learn to optimize their decisions in a shared environ-
ment, so each agent’s actions could affect the state of 
the environment and consequently the rewards of other 
agents.

Given that each device is running its own DRL algo-
rithm and that they do not interact with each other, this 
can be considered an Multi-Agent Deep Reinforcement 
Learning (MA-DRL) scenario: agents do not coordinate 
their actions with each other, but they can influence one 
another’s outcomes as they are part of a Multi-Agent 
(MA) system, resulting in a non-cooperative and non-
competitive MA system.

State space
The defined state refers to the current information about 
the environment. In this case, the agents located in the 
UEs can see a full observation of it (except other UEs’ 
status, which is not relevant), that is, they can see the 
whole information that defines the status of the environ-
ment. This information is likewise composed of the sta-
tus of themselves (UE state), the status of their assigned 
MEC and cloud servers, the channel conditions, and the 
task class. Thereby, the state is denoted as the following 
6-tuple vector space (Eq. 17):

Action space
The action represents how an incoming task shall be exe-
cuted. This can be expressed as αi ∈ {0, 1, 2} , with αi = 0 
meaning local execution, αi = 1 meaning the offload to 
the m MEC server and αi = 2 meaning the offload to the 
cloud server C.

Reward function
The reward function used for this problem is equal to 
the Quality-of-Experience (QoE) value, which is defined 
as in Eq. 18. This calculation is based on the energy con-
sumption experienced by an UE ( ecli  , emi  or eci  ), taking into 
account its remaining battery.

In case a task does not see its requirements fulfilled, 
QoE value is equal to η , which corresponds to the task 
punishment applied in the case a task fails. As a remark, 
in our environment, we consider tasks with firm dead-
lines, i.e., the result of a task would not be of use any-
more, but no catastrophic consequences would happen. 
That is why we used a penalty value η of the QoE when 

(17)si = {bni ,R
n
i ,R

m
i ,R

C
i , h

nm
i ,Ci}

(18)QoEi =











−ecli /B
n , if success and α = 0

−emi /B
n , if success and α = 1

−eci /B
n , if success and α = 2

η , if fail

the deadlines were not met, regardless of the type of task 
involved, as seen in Eq. 18.

As told earlier, the final optimization problem is to 
maximize the total QoE (Eq. 18), resulting in the problem 
stated as in Eq. 19:

Where C1 is an action constraint that states that each 
task can only be executed locally or offloaded to the m 
MEC server; C2− C4 resource constraints mean that the 
dedicated computation resources to execute task i cannot 
be higher than the total computation resources of the UE, 
the MEC and the cloud server respectively.

DRL‑based proposed solution
Figure  2 shows the configuration of the proposed solu-
tion, an Actor-Critic (AC) model, which combines both 
policy gradient and value function methods, for what 
is composed of two separate Artificial Neural Network 
(ANN) structures: the actor-network and the critic-net-
work, each of which is in turn composed of two Deep 
Neural Network (DNN)s.

The goal of value-based methods is to find an optimal 
value function, which is the expected return for each action 
in each state. The policy is obtained through the value func-
tion and determines the action to take in each state. These 
methods are efficient and guaranteed to converge, although 
they may not behave well with large or continuous action 
spaces. Policy-based methods, on the other hand, try to 
optimize the policy function without a value function, 
which can be useful if the action space is high-dimensional 
or continuous; however, these methods can suffer from 
high variance, leading to slower convergence. AC method 
combines the strengths of both approaches through its two 
components: the actor is responsible for deciding which 
action to take in each state, while the critic evaluates these 
actions and provides feedback to the actor [34].

Regarding the actor network, the one responsible for 
selecting actions based on the current state of the envi-
ronment, it is composed of 2 hidden layers, each of which 
consists of 256 neurons. In both hidden layers, the Acti-
vation Function used to transform the summed weighted 
input from the node into the output value that will be 

(19)

max
i

T−1
∑

i=0

QoEi

s.t.
C1 : αi ∈ {0, 1, 2} , ∀i ∈ I

C2 :
I
∑

i

f ni ≤ Fn
i , ∀i ∈ I ,α = 0

C3 :
I
∑

i

f mi ≤ Fm
i , ∀i ∈ I ,α = 1

C4 :
I
∑

i

f Ci ≤ FC
i ,∀i ∈ I ,α = 2
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fed to their respective output is the Hyperbolic tangent 
(TanH) activation function. Also, in order to prevent 
undesirable behaviours because of a bigger influence of 
any Deep Neural Network (DNN) weights at the start, 
these values are initialized using LeCun normalization. 
Finally, the employed activation function of the output 
layers is the softmax function, in order to compress the 
real values of a K-dimensional vector into the range [0, 1]. 
The learning rate for the actor network is set to 10−5.

In respect of the Critic network, which estimates the 
value function or the expected future reward for taking 
a particular action in a given state, it is also composed 
of 2 hidden layers composed of 256 neurons that use 
the TanH activation function and Lecun initialization. 
Finally, in the output layer, a linear activation is used. The 
learning rate for the critic network is set to 10−4.

This Actor-Critic agent uses the Temporal Difference 
(TD) error, the difference between the expected reward 
and the actual reward, to update both the actor and critic 
networks. This TD error is used to update the actor and 
critic networks using the Adam optimizer. Finally, the 
discount factor employed in this actor-critic algorithm is 
set to 0.99.

Simulation environment
This section shows the configuration of the experimen-
tal environment and the baselines that have been imple-
mented to be compared with the proposal explained in 
DRL-based proposed solution section.

Simulation setup
The experiments are implemented in Python 3.10.13 and 
the simulations are carried out in a Ubuntu 20.04.3 LTS 
platform with a 4th Gen IntelCore i7 CPU 2.00 GHz and 
32 GB of RAM.

The algorithm presented in DRL-based proposed solu-
tion  section has been implemented using Tensorflow 
2.14.0 ([2]), along with Keras 2.14.0 ([14]). The environ-
ment has been modelled using Gymnasium library ([40]) 
version 0.29.1, which is a maintained fork of OpenAI’s 
deprecated Gym library ([8]).

Simulation parameters
First, the parameters of the environment are defined. As 
told earlier, the system consists of 3 layers: the cloud layer, 
composed of 1 cloud server C; the MEC layer, composed 
of 1 MEC server M; and the device layer, composed of 
multiple n UE devices ( n ∈ N  ). Figures 3 and 4 show how 
each of these entities is located.

Table  2 shows every environment-related parameter, 
that is: UE-related, such as battery; MEC-related, such 
as BS transmission power; cloud-related, such as cloud 
computation resources; and communications-related 
parameters, such as the Additive White Gaussian noise 
(AWGN). Also, QoE-related parameters, such as the fail 
punish (η) in case a task is not correctly performed, are 
defined.

As mentioned in System model  section, each compu-
tation task for which the associated UE needs to make 

Fig. 2 Implemented AC model
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Fig. 3 UEs and MEC server distribution

Fig. 4 UEs, MEC & cloud server distribution
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a decision is classified into one of 3 classes (delay-sensi-
tive, energy-sensitive, and insensitive). According to task 
size, latency requirements, and computational require-
ments, the tasks are included in one of the classes above, 
which are defined according to the parameters shown in 
Table 3. The task class, along with the UE, MEC server, 
cloud server, and channel conditions, will be the param-
eters the model will use to make the decision and maxi-
mize the QoE value defined in Problem formulation and 
proposed approach section.

Compared baselines
The method proposed in this paper, the AC approach 
explained in DRL-based proposed solution  section, is 
compared against static and dynamic methods.

The static methods entail making the same decision 
over time, regardless of the environmental conditions. 
These methods are local, which means running every 
task locally (for each UE n); MEC, offloading every task 
to the MEC server M; and cloud, which implies offload-
ing every task to the cloud server C.

Regarding the dynamic methods, first, a random algo-
rithm is proposed, choosing random actions without 
regard to the environment. All other methods presented 
in this paper are AI-based algorithms, and more specifi-
cally, DRL-based algorithms. Two different configurations 
of AC are presented, one of them being a single network 
approach, Join-Networks AC, where both the actor and 
the critic share their hidden layers; and the other one, the 
one proposed in this article and explained in DRL-based 
proposed solution  section, in which the actor and the 
critic have their own distinct networks, Separated-Net-
works AC. Finally, a Double Dueling DQN (DDDQN) 
algorithm is presented, which combines Double Deep 
Q-Learning Network (DDQN) and Dueling Deep Q-Net-
work (DQN), with the objectives of solving over-estima-
tion, instability and convergence problems of DQN.

Discussion
This section presents the results of the evaluation. 
Three different metrics are used to compare the perfor-
mance of each algorithm: the evolution of the QoE val-
ues; the remaining battery each timestep, so the battery 
consumption evolution can be tracked; and the deci-
sion evolution of the agents of the Separated Networks 
AC algorithm, so it is relatively easy to see the decisions 
made depending on the environment conditions.

Therefore, in the results figures included in this sec-
tion (Figs. 7 & 10), these metrics are shown in different 
columns. Thus, the first column shows the QoE evolu-
tion. Actually, and in order to make the figures more 
easily interpretable, the average of the last 10 samples 
has been plotted every 10 steps. It is also important to 
note that the lines represent the average of the values 
obtained by every n UE. The second column shows the 
remaining battery each timestep, and, as the battery 
from every UE is considered, it also shows the aver-
age value of the remaining battery of each of them. The 
third column shows the evolution of the agents of the 
Separated Networks AC algorithm.

In order to check the performance of the Separated 
Networks AC algorithm, two different scenarios have 
been modelled, which will be explained in the following 
subsections.

Scenario 1: MEC unavailable for a certain time
In this scenario, the MEC server is available during a 
big part of the execution time, considering it is available 

Table 2 Environment parameters

Parameter Symbol Value

MEC Number of Servers M 1

Transmission power Pmtx 100 dBm

Max. computation resources Fmi 1 GHz

UE Number of UEs N 20

X distance to MEC x 0− 100 m

Y distance to MEC y 0− 100 m

Transmission power Pntx 30 dBm

Max. computation resources Fni 40 MHz

Energy coefficient κn 10
−21

Residual consumption each t bnr 0.1 J

Maximum battery Bn 4000 J

Cloud Number of Servers S 1

Max. computation resources FSi 10 GHz

Wireless link Total channel bandwidth W 100 MHz

AWGN N0 −100 dBm

Optical fiber Capacity Cf 100 Gbps

Modulation WDM 16‑QAM

Overhead Of 10%

FEC Ff 20%

Propagation speed v 2 · 108

Refractive index ρ 1.5

Environment Fail punishment η −0.1

Table 3 Task parameters

Parameter Symbol Ci = 1   Ci = 2 Ci = 3

Task data size Di 10− 40KB 20− 50KB 200− 400KB

Required CPU φi Di 8 · Di 8 · Di

Latency constraints T
req
i 0.5 · 10−3Di 10

−3Di 2 · 10−3Di
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when 80%− 100% of its computing resources are free to 
use.

As seen in Fig.  5, it is available between timesteps 
0− 500 , 750− 1250 and 1500− 2000 . However, there is 
an important service drop between timesteps 500− 750 
and 1250− 1500 , resulting in an unavailable MEC server.

Figure 6 shows the channel gain experienced between 
each UE (each UE with a different color) and the serv-
ing BS evolves normally considering it is a stable wireless 
communication, according to the explanation of its mod-
elling in System model section.

For the results analysis in this scenario, which are 
shown in Fig.  7, the number of tasks for each class has 
been distributed in the following way:

In the first distribution (first row), 90% of incoming 
tasks are class 1 tasks, being the rest of the tasks of class 
2 or 3. Here, cloud computation is giving the worst QoE 
results, as, according to the definition of Class 1 tasks, 
the latency experienced by these tasks when offloading 
to the cloud is bigger than the affordable values. Looking 
at Fig.  7a, regarding local computation, the QoE results 
seem to be near 0, which would be the ideal QoE value, 
but not as close to 0 as the results when offloading to the 
MEC server when it is available. However, in the second 
figure, it can be seen that the UE runs out of battery ear-
lier when the tasks are executed locally (Fig.  7b). With 

respect to the dynamic approaches, both AC configura-
tions and the DDDQN algorithm start with similar values 
to the random proposal, as in the early phases of the exe-
cution they are still exploring their options. Anyway, both 
AC algorithms seem to identify the bad results of cloud 
computation earlier, being the Separated-Networks-AC 
is the one that has the best results. Also, these AI-based 
algorithms get bad results when the MEC server becomes 
unavailable, although they identify it and change the 
decision after a few steps. This is reflected in Fig.  7c, 
where most of the UEs decide to offload the tasks to the 
MEC server or execute them locally until the MEC is not 
available, the moment from when they decide to execute 
almost every task locally. In the last part of the QoE fig-
ure, the values are lower because many UEs run out of 
battery, so the QoE associated with each task turns η.

In the next case, where 90% of incoming tasks are 
Class 2 tasks, Fig.  7d shows that the worst QoE results 
are obtained when they are executed locally. Besides, the 
battery runs out earlier than when performing an offload 
(Fig. 7e). Concerning the offloading options, offloading to 
the MEC server seems to be a better decision, due to the 
existence of some Class 1 tasks. The battery consump-
tion in both cases is the same, as there is no extra energy 
consumption in the UE when the task is sent from the 
entities in the MEC layer to the one in the cloud layer. 

Fig. 5 MEC status in Scenario 1
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As in the previous case, the DRL-based solutions have 
similar QoE values to random in the beginning, but they 
improve over time. Both AC configurations get similar 
QoE values, being the Separated-Networks-AC slightly 
better. The DDDQN algorithm, learns slower but has bet-
ter values in certain periods (steps 1000− 1250 ). When 
the MEC server fails the first time, the AI-based algo-
rithms get their results negatively affected, as they have 
not experienced that casuistry before. The second time, 
in contrast, they have already learnt that QoE degrada-
tion is not that bad regarding the AC algorithms. The 
explanation for this can easily be seen in the proposed 
AC algorithm’s decisions figure, Fig.  7f, where the algo-
rithms decide to send the tasks to the cloud server in 
order to be performed. Finally, in the Figure correspond-
ing to the battery, it can also be seen that the battery con-
sumption is not very big in AI proposals, similar to the 
offloading options.

Regarding the 90%-Class 3 tasks distribution, as they 
do not have strict latency requirements, every static 
proposal achieves high QoE values as seen in Fig.  7g, 
although local computation gets the worst QoE values 
mainly because of two reasons, which are the existence 
of Class-2 tasks and the fact that the energy consump-
tion is bigger in this case (which affects the obtained QoE 
value). Besides, after very few steps, there is no battery 
left in the UEs (Fig. 7h). Both cloud and MEC proposals 
get QoE values near to 0, except MEC offloading when 
the MEC server is not available. The fact of computing a 
Class 3 task locally, implies lowering the remaining bat-
tery level considerably, so, on the one hand, random pro-
posal also gets UEs’ battery drained quickly, and, on the 
other hand, the first part of the DRL algorithms (where 

exploration is bigger) make some UEs lose their batter, 
as it can be seen in Fig.  7h and i). In fact, in DDDQN 
algorithm curve, as with this proposal, the agents do not 
learn as fast as with its AC competitors, and there is no 
UE with battery left around step 600. Finally, it can be 
seen that QoE values are better in the separated AC algo-
rithm, as there are more UEs with remaining battery. It 
can also be seen that more agents choose MEC offload-
ing with this configuration as it has better results until 
the time the MEC server is unavailable, the moment from 
which every agent decides to offload nearly everything to 
the cloud server during the simulation.

Finally, in the case where the distribution of tasks is 
random, MEC offloading decision seems to be the best 
decision among the static decisions, as local computing 
fails with Class 2 tasks and Cloud computing fails with 
Class 1 tasks, resulting in bad QoE values, according to 
Fig. 7j. The random proposal also experiences these prob-
lems, along with the early battery consumption (Fig. 7k) 
consequence of running tasks locally. Focusing on the AI 
based solutions, DDDQN proposal gets the worst values, 
in terms of battery and QoE. The AC proposal with the 
separated networks gets the best QoE results in general. 
This can be understood with Fig. 7l, which clearly shows 
that the agents begin to send the maximum number of 
tasks to the MEC server, which is the configuration 
that gives the best QoE values, except in the moments 
the MEC server is not available. In those moments, the 
agents gradually decide not to send tasks to the MEC 
server, but to run these tasks locally or send them to the 
cloud server. Anyway, these local execution decisions 
imply more energy consumption than the offloading, as 
can be seen in the second figure.

Fig. 6 Channel gains in Scenario 1
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Scenario 2: Communications failure
This scenario is characterized by a stable MEC server 
availability, which has always between 80% and 100% 
of its computational resources available. However, the 
wireless communication link disappears between tasks 
500 and 1000, making it impossible for the UEs to reach 

both the MEC server and the cloud server, which are 
only reachable through the BS with which there is con-
nectivity. This situation is represented in Figs. 8 and 9 
respectively.

As in the previous scenario, Fig.  10 shows the 4 class 
distributions that have been considered (90% Class 1 

Fig. 7 Scenario 1 results
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tasks, 90% Class 2 tasks, 90% Class 3 tasks, and random 
distribution).

When there is a majority of Class 1 tasks, as seen ear-
lier, offloading to the cloud server gives the worst QoE 
results, as the experienced latency is too big for these 
tasks. Local computation and offloading to the MEC 
server return high QoE values (Fig.  10a). Also, the UE 

consumes more battery when the tasks are executed 
locally (Fig.  10b). AC algorithms behave similarly and 
the DDDQN algorithm makes more erratic decisions, 
but each of them identifies the bad results of cloud 
computation and minimizes this decision. When the 
communications fail, offloading to the MEC server 
is not a good decision, as it will not reach it, so the 

Fig. 8 MEC status in Scenario 2

Fig. 9 Channel gains in Scenario 2
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separated-network AC algorithm decides to execute 
locally from that moment on, as seen in Fig. 10c.

Regarding the case where 90% of the incoming tasks 
are Class 2 tasks, and according to their definition, QoE 
results when executed locally are bad (Fig.  10d), as no 
Class 2 task fulfils its requirements, while the battery 

runs out before the 1000-th timestep (Fig. 10e). Offload-
ing to the MEC server, in general, returns better results 
than cloud computation. However, when there is no con-
nectivity, the offloading options will not return a good 
QoE value, as every task will fail. In this case, there is no 
good choice for the algorithm for Class 2 tasks, as they 

Fig. 10 Scenario 2 results
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will fail with any of the 3 possible options. The proposed 
algorithm, as seen in Fig.  10f, will keep choosing MEC 
and cloud offloading decisions because local computa-
tion will fail too, but the offloading will not require so 
much battery. When the connectivity comes back, this 
figure also shows that the decisions gradually become 
MEC server offloading, as the QoE values that way are 
slightly better than offloading to the cloud.

In the “majority of class 3 tasks” case, in the begin-
ning, every proposal gets high QoE values due to their 
lax requirements. However, local computation gets the 
worst values as explained in the first scenario and seen 
in Fig.  10g. TheAC proposals begin to decide to prior-
itize MEC and cloud offloading (Fig.  10i), but DDDQN 
needs more time for this, so the UEs run out of battery 
earlier. Anyway, when communications get unavailable 
in timestep 500 (and until timestep 1000), the proposed 
AC algorithm starts to decide to execute the tasks locally, 
as it is the only way they can be correctly executed. This 
implies a big battery consumption, as can be seen in 
Fig. 10h, but does fulfil tasks’ requirements.

Last, when there is a 33% of occurrences of each Class 
of tasks, offloading to the MEC is the best decision 
among the static decisions in terms of QoE (Fig.  10j), 
as local computing fails with Class 2 tasks and Cloud 
computing fails with Class 1 tasks. The proposed AC 
algorithm determines to send data to the MEC server 
progressively until there is no possible communication 
with the BS. When this happens, and even though the 
response is not quick due to the lack of sufficient expe-
rience, the algorithms decide to run the tasks locally as 
soon as there are no communications (Fig. 10l), resulting 
in battery depletion for many of the UEs (Fig. 10k).

Conclusions and future work
The MEC paradigm offers the advantage of having com-
putational capacity close to where tasks originated (in 
case latency is critical), as well as the capabilities of an 
external server as in CC paradigm, to overcome local 
resources limitation. However, due to the dynamic nature 
of channel and servers’ availability, offloading to the MEC 
server may not always be the best option. To overcome 
this, this work has presented an AI-based algorithm, spe-
cifically an AC algorithm, which adapts to the varying 
scenarios.

In order to test the performance of this algorithm, 
two different scenarios have been analyzed. In the first 
one, the MEC server is temporally unavailable, so every 
task sent to the MEC server fails. The algorithm is able 
to identify when this happens and decides to change its 
decision to improve the QoE. The algorithm is also able 
to decide to send it to a cloud server if the tasks can be 

processed before their deadline, or it decides to execute 
the tasks locally if the latency constraints are critical, 
trying to maximize the QoE value, which is related to 
the UE’s remaining battery level. The second scenario, 
unlike the first one, is characterized by a stable MEC 
server availability, but in which the wireless commu-
nication link disappears, so the UEs cannot reach MEC 
nor cloud servers. In this case, the algorithm decides to 
run the tasks locally, although it implies a bigger battery 
consumption and lower QoE values than it would get by 
offloading to an external working entity. The algorithm 
can also see that trying to execute big tasks with strong 
latency requirements locally will also mean failed tasks, 
along with big battery consumption, so it decides to keep 
the offloading decision, in order not to consume energy.

Thereby, AC algorithms have been proven to choose 
the proper action and stabilize their learning quickly, as a 
consequence of combining value-based and policy-based 
methods, reducing the variance in policy gradient esti-
mation with the value estimation, this is, leveraging the 
strengths of both policy-based and value-based methods. 
That is why the present study demonstrates the suitability 
of DRL-based algorithms for task offloading optimization 
in environments characterized by real-time variability.

As future work, the proposed algorithms could be 
improved by adding adaptive hyperparameters, so they 
react earlier and more effectively to the changes in the 
environment. For example, the learning performance 
with a constant discount factor can be limited when 
uncertainties are involved in the training. Thus, having 
an adaptive Discount Factor could lead to better learning 
performance and adapt itself when results (in our case, 
QoE value) are wrong. In the same way as the discount 
factor, with an adaptive learning rate such as a cyclical 
learning rate, which consists of varying the learning rate 
cyclically between two boundary values [20], there would 
be no need to find the best values and schedule for the 
global learning rates, so accuracy could be improved in 
fewer iterations.

Also, in the proposed framework, the algorithms must 
choose between 3 options, being local execution, off-
loading to the attached MEC server, or offloading to the 
cloud server. Thus, in this scenario, there is no possibil-
ity of sending to another MEC server, which could also 
be a good option in case the nearest MEC server is over-
flown. Another possibility would be to make other kinds 
of decisions, such as regulating the transmission power 
of the UE or selecting the quantity of their computational 
resources, to improve their battery life while fulfilling 
tasks’ requirements.

A partial offloading scenario could also be consid-
ered, where computing tasks could be partitioned, so 
the agents choose an action for each of these parts, 
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considering a task-related dependency, as the functional 
progress of a task may depend on the completion of one 
or more subtasks. For this, each UE’s incoming apps 
should be defined as a composition of several depend-
ent computing tasks, being modelled as DAGs that would 
represent the tasks and the dependency constraints 
between them.

Another case study could be the real implementation of 
this algorithm in a resource-constrained device, such as a 
Jetson nano. There are two key aspects to consider to run 
this kind of algorithm in resource-constrained devices: 
the time the device needs to run the algorithm and the 
consumption it implies. Thus, depending on the results 
of implementing this algorithm, different techniques 
such as pruning shall be studied to reduce the algorithms 
while keeping allowable results. This actual implementa-
tion could also present another dilemma to be studied, 
being the training-inference trade-off, or, more specifi-
cally in RL, the exploration-exploitation trade-off, which 
can be critical in terms of execution time.
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