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Abstract 

With the advent of Mobile Edge Computing (MEC), shifting data processing from cloud centers to the network edge 
presents an advanced computational paradigm for addressing latency-sensitive applications. Specifically, in radar sys-
tems, the real-time processing and prediction of radar echo data pose significant challenges in dynamic and resource-
constrained environments. MEC, by processing data near its source, not only significantly reduces communication 
latency and enhances bandwidth utilization but also diminishes the necessity of transmitting large volumes of data 
to the cloud, which is crucial for improving the timeliness and efficiency of radar data processing. To meet this 
demand, this paper proposes a model that integrates a spatiotemporal Attention Module (STAM) with a Long Short-
Term Memory Gated Recurrent Unit (ST-ConvLSGRU) to enhance the accuracy of radar echo prediction while leverag-
ing the advantages of MEC. STAM, by extending the spatiotemporal receptive field of the prediction units, effectively 
captures key inter-frame motion information, while optimizations to the convolutional structure and loss function 
further boost the model’s predictive performance. Experimental results demonstrate that our approach significantly 
improves the accuracy of short-term weather forecasting in a mobile edge computing environment, showcasing 
an efficient and practical solution for processing radar echo data under dynamic, resource-limited conditions.
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Introduction
The precision and timeliness of weather forecasting are 
crucial for addressing extreme weather events, agri-
cultural production, aviation safety, and many other 
domains. Radar echo extrapolation, as a vital weather 
prediction technique, provides essential information 
on short-term weather changes. However, the effective-
ness of this method greatly depends on the accurate 
capture and analysis of spatiotemporal features in radar 
data [1, 2].

Traditional radar extrapolation methods primarily 
rely on linear or simple mathematical models to predict 
weather patterns, which often perform poorly in handling 
complex weather systems [3]. With the advancement of 
MEC and Artificial Intelligence (AI) technologies, new 
solutions have emerged for radar echo extrapolation. The 
low-latency characteristic of MEC allows for rapid pro-
cessing of data near its point of origin, while AI, particu-
larly deep learning technologies, demonstrate immense 
potential in analyzing large-scale, complex datasets [4, 5].

Firstly, MEC plays a pivotal role in processing radar 
data. Traditionally, radar data required transmission to 
remote servers for processing and analysis, which was 
not only time-consuming but could also lead to data 
delays [6]. MEC significantly reduces data transmission 
time by providing computational resources near the data 
source, thus accelerating data processing [7]. This type 
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of near-source processing is particularly well-suited for 
weather forecasting, as it necessitates rapid response and 
real-time analysis [8]. Secondly, AI technologies, espe-
cially machine learning and deep learning, have proven 
highly effective in interpreting radar data and enhancing 
forecast accuracy. Deep learning models can learn from 
historical weather data and predict future changes in 
weather patterns [9]. These models are particularly adept 
at handling large volumes of radar data and extracting 
meaningful insights, aiding meteorologists in making 
more accurate predictions [10].

In recent years, there has been growing interest in 
developing algorithms to infer radar echoes beyond 
the instrument range and to forecast the evolution of 
echoes over time [11–14]. Currently, weather forecast-
ing methods can be broadly categorized into two main 
approaches: numerical weather prediction (NWP) meth-
ods and radar echo extrapolation. NWP methods utilize 
fluid dynamics and thermodynamic laws to simulate the 
physical processes of the lower atmosphere, providing 
predictions based on complex physical state equations 
and supercomputers [15]. While NWP methods offer 
valuable insights, they face challenges such as predic-
tion delays, low resolution, and limitations in forecast-
ing sudden severe weather events [16, 17]. On the other 
hand, radar echo extrapolation methods, such as artifi-
cial neural networks [18], support vector machines [19], 
and decision trees [20], leverage radar data to understand 
the relationship between radar echoes and other vari-
ables, enabling the prediction of future weather condi-
tions. These data-driven methods have gained attention 
in recent years due to the availability of large amounts of 
historical data and have shown superior performance in 
various fields [21, 22].

The purpose of radar echo extrapolation is to pre-
dict future radar echo maps for a specific area based on 
previously observed radar echoes. This prediction task 
poses significant challenges as it requires spatiotempo-
ral modeling of radar data to accommodate high resolu-
tion, thereby rendering it a spatiotemporal forecasting 
problem. Convolutional Neural Networks and Recur-
rent Neural Networks have been extensively utilized in 
such spatiotemporal forecasting tasks [23, 24]. However, 
existing models still confront challenges in handling high 
spatiotemporal resolution and complex non-stationary 
information, particularly in the context of convection 
formation and dissipation. Moreover, theoretical models 
for radar echo extrapolation are capable of generating 
prediction sequences of any length. Yet, as the prediction 
length increases, error accumulation can lead to image 
blurriness and loss of details.

In this context, the integration of MEC and AI offers a 
new perspective for radar echo extrapolation. The core 

advantage of MEC lies in its low-latency characteristics, 
enabling rapid processing near the data generation point, 
which is particularly crucial for real-time radar data 
analysis. This capability for rapid response, coupled with 
advanced abilities in handling and analyzing large-scale 
complex datasets, provides robust support for enhanc-
ing the efficiency and accuracy of radar data processing. 
Therefore, this paper proposes a STAM-LSGRU network 
to address key challenges in radar echo extrapolation, 
including error accumulation and effective extraction of 
high-order non-stationary information. The main contri-
butions of this paper can be summarized as follows:

•	 By designing STAM, this model achieves long-term 
prediction in MEC environments and effectively cap-
tures global spatiotemporal dependencies, signifi-
cantly reducing error accumulation during the pre-
diction process.

•	 A predictive RNN unit is devised, integrating the 
Inception network structure, which effectively cap-
tures high-order non-stationary information by 
employing multi-scale layers and receptive fields, 
thereby enhancing the model’s prediction accuracy.

•	 By incorporating Critical Success Index (CSI) 
and Heidke Skill Score (HSS) evaluation metrics, 
improvements are made to the loss function, reduc-
ing the ambiguity and distortion of the prediction 
results, and enhancing predictive performance in 
heavy rainfall regions.

The remainder of this article is organized as follows: 
Related Work, Methodology, Experiments, and Conclu-
sion. The Related Work section provides an overview of 
previous studies, highlighting existing methods and find-
ings in the field. The Methodology section details the the-
oretical frameworks and techniques used in the research, 
outlining the design of the proposed model. The Experi-
ments section introduces the experimental setup, dataset 
description, and obtained results, offering empirical vali-
dation and comparison. Finally, the Conclusion section 
summarizes the contributions and proposes directions 
for future research.

Related work
The MEC with AI technologies demonstrates significant 
potential in fields such as radar echo extrapolation and 
weather forecasting. As an emerging computational para-
digm, MEC shifts computational tasks from the cloud 
to the network edge, achieving low-latency and high-
efficiency data processing. For instance, zhou [25] noted 
that ‘Edge Intelligence’ is a product of the convergence of 
MEC and AI. This concept aims to provide superior solu-
tions for key issues in edge computing. It also explores 
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how to establish AI models on edge devices, including 
model training and inference processes. This approach 
exemplifies the innovative strides being made in combin-
ing AI with edge computing, to optimize computational 
efficiency and enhance the capabilities of edge devices in 
processing complex tasks.

MEC technology enhances data processing efficiency 
by providing computational resources at the network 
edge, thereby significantly reducing latency and bring-
ing processing closer to the data source. The integration 
of AI technologies further elevates MEC’s data process-
ing capabilities. AI algorithms, particularly deep learning 
models, have demonstrated exceptional performance in 
areas like image recognition, pattern detection, and pre-
dictive analytics. Al-Habob and Dobre [26] explored the 
symbiotic relationship between MEC and AI, highlight-
ing AI’s critical role in the MEC offloading process, such 
as resource management and scheduling. Huang [27] 
proposed an infrastructure for executing machine learn-
ing tasks on MEC servers, assisted by Reconfigurable 
Intelligent Surfaces. Deng [28] discussed the role of AI 
with software orchestration and hardware acceleration 
in reducing edge computing latency. Yazid [29] provided 
a comprehensive review of Unmanned Aerial Vehicles 
(UAVs) in the application of MEC and AI, exploring their 
role in enhancing the efficiency of IoT applications. Dah-
mane [30] introduced a blockchain-based AI paradigm 
for secure implementation of UAVs in MEC. Wang [31] 
surveyed the convergence of MEC, Metaverse, 6G wire-
less communications, AI, and blockchain, and their 
impact on modern applications. Chakraborty and Suka-
puram [32] examined the application of MEC in urban 
informatics, emphasizing its contribution to the develop-
ment of smart cities.

Recently, deep learning-based radar echo extrapola-
tion models have been proposed that are more accurate 
than traditional methods. In 2015, Shi [21] introduced 
the Convolutional Long-Short Term Memory (ConvL-
STM) model for precipitation nowcasting. This model 
is designed to handle time series data with spatial struc-
tures and uses convolutional operations instead of the 
Hadamard product in the FC-LSTM [33]. In 2016, Shi 
[34] improved the ConvGRU model and proposed the 
TrajGRU model, which can dynamically learn the net-
work recursive structure. Wang [35, 36] proposed Pre-
dRNN and PredRNN++ models based on ConvLSTM. 
The LSTM unit was rebuilt by the team, and the Spati-
otemporal LSTM (ST-LSTM) unit was created, allowing 
memory state to propagate in both vertical and horizon-
tal directions and no longer being restricted to each indi-
vidual LSTM unit. They developed the Gradient Highway 
Units (GHU), which were added between the first and 
second layers of the model at each time step, and the 

Causal LSTM unit in subsequent research. This greatly 
shortened the gradient propagation path and solved the 
issue of information loss in long-term predictions. Due 
to the relatively simple state transition function and the 
ineffective differential signal processing in the majority of 
RNNs used for spatiotemporal prediction, it is challeng-
ing for the model to learn complicated spatiotemporal 
changes. They proposed the MIM structure [37], which 
is used to extract stationary features and non-stationary 
features (MIM-S layer and MIM-N layer, respectively). 
The model achieved better performance on radar data-
sets. Lin [38] proposed the Sa-ConvLSTM, which added 
a self-attention mechanism at the output end of ConvL-
STM. By using an additional memory unit M and a self-
attentive feature aggregation mechanism, it computed 
pairwise similarity scores to fuse the previous features 
that contain the global spatial receptive field. Wu [39] has 
made further advances in the utilization of spatiotempo-
ral information by proposing the MotionRNN architec-
ture and designing the MotionGRU unit. This unit can 
model transient changes and motion trends in a unified 
manner, and a new motion highway has been introduced, 
which significantly enhances the ability to predict vari-
able motion and avoids the issue of vanishing motion 
when stacking multiple prediction models. Chang [40] 
proposed a spatial-temporal residual prediction model 
applicable for high-resolution video prediction. The 
model employs a spatial-temporal encoding-decoding 
scheme to capture complex motion information in high-
resolution videos. Jin [41] proposed a novel spatiotem-
poral graph neural network model called BGGRU, which 
integrates spatial and temporal information to explore 
the temporal patterns and spatial propagation effects 
of time series, aiming to enhance prediction accuracy. 
However, in the above methods, the global spatiotem-
poral dependencies of radar echoes have not been fully 
explored. This paper analyzes existing spatiotemporal 
prediction models and proposes an STAM module that 
addresses the issue of error accumulation. Additionally, 
the convolutional structure and loss function of the basic 
unit are improved, resulting in more accurate predictions 
of high-echo regions at different scales.

Methodology
The task of radar echo extrapolation aims to learn the 
mapping from input sequences to a latent space. To 
achieve this objective, we constructed a convolutional 
recurrent neural network, STAM-LSGRU. As shown in 
Fig. 1, its recurrent connections bestow it with memory 
functionality, enabling the capture and storage of pre-
viously inputted information. This memory capabil-
ity allows the network to consider the information of 
the entire sequence comprehensively, rather than being 
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limited to the inputs at the current timestep. Within 
STAM-LSGRU, this memory mechanism is crucial, 
allowing the network to effectively learn patterns and 
regularities within sequence data, thereby achieving the 
mapping from input sequences to latent space. By stack-
ing three ST-ConvLSGRUs and one STAM-LSGRU, an 
encoder-decoder network is formed, which is currently 
the mainstream method for spatiotemporal sequence 
prediction. The ST-ConvLSGRU integrates the tempo-
ral information flow processing capabilities of the con-
ventional GRU with a newly added spatial memory flow 
propagation mechanism, achieving simultaneous cap-
ture of temporal and spatial dependencies. The STAM-
LSGRU predicts the next time step’s radar echo image, 
not solely relying on the output of the previous time step, 
allowing for better handling of long sequence inputs and 
outputs. At a single time step, the vertical arrows repre-
sent the direction of memory and state updates along the 
spatial dimension, while the horizontal arrows represent 
the direction of updates along the time dimension. The 
spatiotemporal memory M is transferred from the low-
est layer of the recurrent unit to the highest layer within 
a single time step, and is then transferred to the lowest 
layer of the following time step in a “Z”-shaped direc-
tion, first along the spatial dimension and then along the 
time dimension. The input radar data is downsampled 
by a factor of four and goes through three layers of ST-
ConvLSGRU for information extraction and transfor-
mation before being input into the STAM-LSGRU. This 
enables the model to focus on past input states, avoiding 

error accumulation. The output is then upsampled to 
obtain the final prediction results. In order to improve 
the prediction of high echo areas, this paper proposes an 
enhanced loss function. In addition, the gating mecha-
nisms has been optimized with an inception module for 
all the basic units of RNNs. Experimental results demon-
strate that employing the STAM-LSGRU network leads 
to a significant improvement in prediction accuracy, 
thereby enabling more precise forecasting of future echo 
image sequences at different time points.

ST‑ConvLSGRU​
Inspired by ST-LSTM [35], this paper introduces the 
concept of LSTM memory units into the ConvGRU 
model, resulting in the ST-ConvLSGRU model depicted 
in Fig.  2 This model serves as the foundation for sub-
sequent improvements. The original ST-LSTM model 
utilized a dual LSTM structure to process images with 
high spatiotemporal resolution effectively, storing and 
transmitting spatiotemporal information within and 
outside the memory cells. However, this structure tends 
to increase the model’s complexity and the number of 
parameters, leading to overfitting issues. To address 
this challenge, this work integrates LSTM memory 
units into ConvGRU, aiming to reduce the model’s 
parameter count while maintaining effective spati-
otemporal information processing. This enhanced ST-
ConvLSGRU model, compared to ST-LSTM, not only 
reduces the model’s complexity but also enhances its 
capability to handle spatiotemporal information, avoid-
ing overfitting and thus enabling more accurate predic-
tions. As shown in Fig. 2, Zt , Rt and Xt are update gates, 
reset gates and input states, respectively. h̃t , i and f are 
new information, input gates, and forget gates, respec-
tively. g is used as a temporary variable to update M. t 
denotes the tth time step and l denotes that the loop cell 
is located at the lth level of the stacked structure.

For a single ST-ConvLSGRU unit at time t, if the unit 
is located in the first layer (i.e., when l=1), the input state 

Fig. 1  The overall framework of STAM-LSGRU​

Fig. 2  The structure of Spatiotemporal Long Short Gated Recurrent 
Unit (ST-ConvLSGRU)
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Xl
t is a tensor converted from the radar echo map input 

at the current time. If the unit is not in the first layer (i.e., 
l >1), the hidden state Hl−1

t  output at time t is used as the 
input state Xl

t for the unit. The ST-ConvLSGRU unit first 
passes the input state Xl

t and the hidden state Hl
t−1 output 

by the unit in the same layer at time t-1 through a gating 
structure. Two different convolution filters are applied to 
obtain the reset gate Rt , the update gate Zt , and the new 
information vector h̃t . The calculation method for Rt and 
Zt is consistent with that of ConvGRU, and is shown as 
follows, ‘*’ denotes the convolution operation:

Similar to LSTM, the input state Xl
t and spatiotemporal 

memory Ml
t−1 are fed into a gated structure. Three differ-

ent convolution filters are applied to obtain the forget gate 
ft , input gate it , and input modulation gate gt . The forget 
gate ft and element-wise Hadamard product are used to 
forget unimportant features of past time steps in the tem-
poral memory M. The input gate and input modulation 
gate are used to update the features in memory through 
element multiplication, resulting in the updated spati-
otemporal memory Ml

t . The ‘ ◦ ’ represents the Hadamard 
product. This process can be represented as follows:

Next, the input state Xl
t , hidden state Hl−1

t  , and 
updated spatiotemporal memory Ml

t are convolved using 
convolution filters to obtain new information h̃t . The hid-
den state Hl

t  is updated using the reset gate Rt and update 
gate Zt , which extract abundant and rich spatiotemporal 
features through two gating mechanisms. As a result, the 
extrapolation network is able to accurately model the 
motion of radar echoes and make precise predictions on 
whether they will continue to expand or dissipate in the 
future. This process can be represented as follows:

Spatiotemporal attention memory module
The extrapolation of radar echoes can also be classified 
as a regression problem. The extrapolation model theo-
retically has the ability to generate prediction sequences 

(1)
Zt = σ Wz ∗ Xt ,H

l
t−1 + bz

Rt = σ Wr ∗ Xt ,H
l
t−1 + br

(2)

gt = tanh
(

Wxg ∗ Xt +Whg ∗H
l
t−1 + bg

)

it = σ

(

Wxi ∗ Xt +Whi ∗H
l
t−1 + bi

)

ft = σ

(

Wxf ∗ Xt +Whf ∗H
l
t−1 + bf

)

Ml
t = ft ◦M

l−1
t + it ◦ gt

(3)

h̃t = σ

(

Wxh ∗ X
l
t +Whh ∗H

l
t−1

+Wmh ∗M
l
t + Rt ◦H

l
t−1

+ bh

)

H
l
t = (1− Zt ) ∗H

l
t−1

+ Zt ∗ h̃t

of arbitrary lengths. However, as the prediction length 
increases, there is a strong interdependence between 
adjacent frames, resulting in cumulative errors, which 
leads to blurred and distorted extrapolated images with 
missing details. To address this issue and enable the 
model to review the historical input sequence at each 
predicted time step, a STAM is constructed to utilize 
the input Hl

t  of the lth layer, to recall the historical input 
Xl
h . The model can adaptively learn the mapping from 

X0:n to Xn+1:T  based on a rich history of data.

The specific implementation is illustrated in Fig.  3, 
and its design is inspired by the dual-attention mech-
anism, which is named as STAM. STAM receives 
three inputs, including the predicted results of past 
time series Hl

t−τ :t−1 , the multi-layer results Hl−τ :l−1
t  

of the current time series, and the low-level results 
Hl
t  of the current time series, where τ represents the 

step size. STAM consists of two modules, the atten-
tion module and the fusion module. The convolutional 
layer passes the current hidden state Hl

t ∈ RC×H×W  , 
and generates the query Q ∈ RC×H×W  through a 1x1 
convolution operation, where C, H, and W repre-
sent the number of channels, the length and width of 
the input data, respectively. Similarly, the key value 
Kt ∈ Rτ×C×H×W  and value Vt ∈ Rτ×C×H×W  can be 
obtained from the predicted results of the past time 
series Hl

t−τ :t−1 ∈ Rτ×C×H×W  through two independent 
convolutions. The weight matrix At is obtained by mul-
tiplying Q and Kt , and then applying sum and softmax 
operations:

Subsequently, the new temporal state Tl
t  can be calcu-

lated according to the formula of temporal attention:

Finally, the reshaped Tl
t  is resized to the same size as 

the original hidden state, and is used as the input of the 
fusion module.

The above approach enables adaptive learning of the 
historical input Xl

t in the temporal dimension. In order to 
address the problem of information loss during the prop-
agation process from the low-level to high-level layers, 
the output of each convolutional neural network layer is 
kept in the multi-layer state. Then, the top-level hidden 
state Hl

t  is used to recall Hl−τ :l−1
t  and generate a new spa-

tial hidden state Slt as the input of the fusion module.

(4)X̂n+1:T = argmax
Xn+1:T

p(Xn+1:T | X0:n)

(5)At = softmax(sum(Q ◦ Kt))

(6)Tl
t = At ◦ Vt
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The computation process is akin to temporal atten-
tion, whereby the current hidden state Hl

t ∈ RC×H×W  
can be transformed into a query Q ∈ RC×H×W  by reshap-
ing the convolutional layer. Subsequently, the keys 
Ks ∈ Rτ×C×H×W  and values Vs ∈ Rτ×C×H×W  can be 
generated via two independent 1x1 convolutions using 
H0:l−1
t ∈ Rτ×C×H×W  . The weight matrix As is obtained 

by multiplying Q and Ks , followed by summation and 
softmax operations.

Subsequently, the new spatial state Slt can be calculated 
according to the formula for spatial attention:

Finally, the reshaped Slt is resized to the same size as the 
original hidden state and serves as the input to the fusion 
module.

The fusion module aggregates the temporal state Tl
t  and 

the spatial state Slt , and uses gating mechanisms to con-
trol the output of the current time sequence. First, Tl

t  and 
Slt are concatenated along the channel dimension, and the 
number of channels is adjusted through convolutional 
operations to obtain the fusion features:

Subsequently, to effectively control the fusion of histor-
ical attention information and the current hidden state 
Hl
t  , two gating mechanisms are used:

(7)As = softmax (sum(Q ◦ Ks))

(8)Slt = As ◦ Vs

(9)G = tanh
(

Wg ∗
[

Tl
t , S

l
t

]

+ bg

)

The fusion features G are used to generate the input 
gate ei and the forget gate ef  through convolution, and the 
output of the STAM, represented as H̃ l

t  , is given by:

In the STAM-LSTM unit, the STAM will be embed-
ded into the RNN unit shown in Fig.  4, forming the 
STAM-LSGRU.

Convolutional Inception optimization
The radar echo image exhibits varying strengths and 
sizes of echoes in different regions, and the commonly 
used 5x5 convolution is insufficient for capturing the 
multiscale radar echoes and high-order non-stationary 

(10)
ei = Wge ∗ G + be
ef = Wgf ∗ G + bf

(11)H̃ l
t = ei ◦ ef +Hl

t ◦ (1− ei)

Fig. 3  The STAM consists of two components: the attention module and the fusion module

Fig. 4  The STAM-LSGRU unit incorporates the STAM 
module and optimized convolutional patterns on the basis 
of the ST-ConvLSGRU​
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information. In this paper, we propose an improved RNN 
unit that integrates an Inception network structure with 
different gating mechanisms and replaces the original 
5x5 convolution. The Inception network architecture 
exhibits strong capabilities in extracting image features 
across various dimensions and orientations, enhancing 
the model’s generalization ability and feature extraction 
performance [42]. Initially, it adopts a multi-scale fea-
ture extraction strategy, where multiple convolutions of 
varying sizes operating in parallel within the Inception 
modules can capture features at different scales simulta-
neously. This design allows the network to process both 
local and global features within a single layer, leading to 
a more comprehensive understanding of image content. 
Furthermore, the branches within the Inception mod-
ule utilize convolutional kernels of different sizes and 
types, working in parallel to perform convolutions in 
various directions. This parallel operation facilitates the 
network’s effective learning of multiple feature represen-
tations, encompassing both local details and global struc-
tures. Additionally, by employing multiple convolutions 
of different sizes in parallel, the Inception module signifi-
cantly reduces the number of parameters in the network, 
thereby decreasing the risk of overfitting and enhancing 
the model’s generalization capability. Lastly, the Incep-
tion module aggregates information by concatenating 
features of different scales along the channel dimension. 
This capacity for information aggregation enables the 
network to better integrate abstract features at differ-
ent levels, further improving its understanding of image 
content.

As shown in Fig.  5, the enhanced convolutional net-
work structure comprises three branches, each under-
going 1x1 convolution, 3x3 convolution, and two 
consecutive 3x3 convolution operations, respectively. 
By concatenating two consecutive 3x3 convolutions, our 
structure not only achieves the same receptive field as a 
single 5x5 convolution but also significantly reduces the 

parameter count compared to the latter, offering a more 
efficient computational approach. Furthermore, the 
improved Inception convolutional structure effectively 
captures features at different scales by synthesizing con-
volution kernels of different sizes, thereby demonstrat-
ing superior performance in capturing image features 
compared to a single-size 5x5 convolution. This design 
optimizes parameter usage, reduces computational bur-
den, enhances the network’s ability to capture multi-scale 
information in images, and improves the model’s expres-
sive power in handling complex image tasks.

Loss function optimization
Currently, most of the existing deep learning radar echo 
algorithms use mean squared error (MSE) loss as a loss 
function, which is a common loss function used to evalu-
ate the difference between the predicted value and the 
real value of the model, and is suitable for regression 
problems. The smaller the value, the smaller the differ-
ence between the predicted and true results. The calcula-
tion of the MSE is as follows:

In this equation, H and W are the length and width of 
the radar image, and MSE loss is the sum of the squared 
errors for each pixel in every extrapolated radar image 
ŷ and its corresponding true image y. However, since 
MSE is sensitive to outliers and penalizes large pre-
diction errors, using MSE as the loss function on data-
sets with outliers can be influenced by those outliers. In 
practical images, noise or other interference may exist, 
which could greatly affect MSE and thereby impact the 
model’s predictive ability. MSE only considers the dif-
ference between the predicted and actual values of each 
pixel, without considering the correlation between pix-
els. In image prediction, there is usually some correlation 

(12)MSE =
1

H ×W

H
∑

i=1

W
∑

j=1

(

ŷij − yij
)2

Fig. 5  The structure of the proposed convolutional inception optimization
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between pixels, and ignoring this correlation may lead 
to a decrease in prediction performance. Therefore, to 
improve upon MSE, commonly used meteorological indi-
cators such as the CSI and the HSS can be incorporated 
into the evaluation metrics. The improved loss function 
is as follows:

Considering that the CSI and the HSS may not be dif-
ferentiable, they can be made differentiable by applying 
the sigmoid function, and incorporated into the final dif-
ferentiable loss function.

Experiments
Dataset
This paper utilizes the data from the China Central Mete-
orological Observatory’s radar network in the eastern 
region of China from 2020 to 2022, with a spatial resolu-
tion of 0.01◦ and a temporal resolution of 6 minutes. The 
radar data is sliced at the central point to achieve a spa-
tial resolution of 400x400. dBZ represents the radar echo 
value, with larger dBZ values indicating a higher likeli-
hood and intensity of severe convective weather. Atmos-
pheric motion exhibits periodicity, particularly in the 
same region, with many similar samples in both real-time 
observations and model forecasts, leading to overfitting. 
Additionally, severe convective weather occurs only a 
few days out of the year, thus filtering out some relatively 
mediocre data is necessary. Ultimately, 10,000 sequen-
tial samples are selected, with 6,000 sequences serving 
as the training set, 2,000 sequences as the validation set, 
and 2,000 sequences as the test set. The radar echo val-
ues range from 0 to 70, and normalization is employed to 
distribute the values between 0 and 1, facilitating better 
model convergence.

Implementation
For all experiments, a Nvidia GeForce RTX 3090 GPU 
was used for training. The default hyperparameters 
and experimental setup were as follows: the model was 
trained using a batch size of four image sequences, the 
Adam optimizer with an initial learning rate of 0.001, and 
momentum decay set to 0.90. The four-layer model was 
configured with 64 channels, and a total of 70,000 train-
ing steps were performed. At every 5000 training steps, 
evaluation metrics were recorded for both the train-
ing and validation sets. During training, the model was 
designed to predict the next 10 time sequences, with the 
attention mechanism of the STAM module focusing on a 
time step of 5. All experiments were conducted using the 
same set of hyperparameter values to ensure consistency 
and comparability. To enhance training performance 

(13)
Loss = MSE + (1− 0.5 · sigmoid(CSI)− 0.5 · sigmoid(HSS))

and explore different strategies, various techniques were 
employed. These included the use of teacher forcing, 
which involved providing the correct sequence as input 
during training, and bidirectional training, where the 
model was trained in both forward and backward direc-
tions. To prevent overfitting, early stopping techniques 
were utilized. Specifically, training was terminated if 
the validation loss did not decrease for 10,000 consecu-
tive steps, indicating that the model’s performance had 
plateaued. This ensured that the model was not trained 
excessively and retained its generalization ability.

Evaluation indicators
This paper evaluates the effectiveness of various models 
based on MSE, CSI, HSS, and Structural Similarity (SSIM). 
MSE measures the average difference between model pre-
dictions and true values, reflecting the model’s precision 
in predicting future radar echoes. CSI assesses the model’s 
detection capability for precipitation events, taking into 
account false alarms and missed detections. HSS compares 
the correctness of the model’s predictions to random fore-
casting, used to measure the predictive capability of the 
model. The SSIM is used to evaluate the degree of similar-
ity between the model-predicted radar echo images and 
the actual radar echo images, considering aspects such as 
luminance, contrast, and structure. Considering the corre-
lation between radar echo values and actual weather, three 
thresholds of 20dBZ, 35dBZ, and 45dBZ were chosen to 
evaluate the efficacy of the algorithm for radar extrapola-
tion. Under these thresholds, radar echo images were bina-
rized by designating a value of 1 if the echo value exceeded 
the threshold and a value of 0 otherwise. TP represents 
a predicted event that actually occurred, FP represents 
a predicted event that did not occur, FN represents an 
unpredicted event that did occur, and TN represents a pre-
dicted event that did not occur. Following are the formulas 
used to calculate the evaluation metrics in this paper:

where µx and µy are the means of x and y, respectively. 
σ 2
x  and σ 2

y  denote the variances. σxy is the covariance of x 
and y. c1 and c2 are constants.

Results and analysis
Currently, radar echo extrapolation models are primar-
ily based on stacking multiple layers of basic Convolu-
tional Recurrent Units. There is no fixed standard for the 
number of layers in the stacked radar echo extrapolation 

(14)

CSI = TP

TP+FN+FP

HSS = 2(TP×TN−FN×FP)
(TP+FN )(FN+TN )+(TP+FP)(FP+TN )

SSIM
(

x,y
)

=
(2µxµy+c1)(2σxy+c2)

(

µ2
x+µ2

y+c1

)(

σ 2
x+σ 2

y +c2

)

MSE = 1

m

∑

m

i=1

(

yi − ŷi

)2
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model, as it is contingent on variables such as data vol-
ume, data complexity, network structure, and hardware. 
Increasing the number of layers can improve the network’s 
expressive power and the model’s capacity to represent 
and abstract data, but it may also increase the network’s 
computational and storage burden, resulting in overfitting 
and other issues. The number of layers is typically deter-
mined by the extent and complexity of the dataset as well 
as the training effect of the network. For smaller datasets 
and relatively straightforward problems, a shallower net-
work structure may be optimal, whereas a deeper network 
structure may be preferable for larger datasets and more 
complex problems. Using experimental methods, this 
paper determines the optimal number of stacked layers 
to avoid overfitting and underfitting issues. Table  1 pre-
sents the MSE scores of various models at different num-
bers of layers. It is observed that as the number of layers 
increases, the MSE value of each model typically decreases 
to reach a minimum value before starting to rise again. For 
most models, the MSE value reaches its minimum when 
the number of layers is four, indicating that the mod-
els perform best at this depth. As the depth of the model 
increases, it is able to learn more complex features and 
deeper data representations. There comes a point where 
this learning capability is optimized, and further increases 
in the number of layers make the model more complex, 
increasing the number of parameters. This complexity can 
lead to gradients gradually vanishing or exploding during 
the backpropagation process, making it difficult to train 

the model. The STAM-LSGRU model achieves its best 
performance at four layers; when the number of layers is 
less than or greater than four, the model’s performance 
metrics decrease. Therefore, this paper sets the number of 
layers of the STAM-LSGRU model to four.

Through ablation experiments and comparative experi-
ments, we validated the best performance of radar echo 
extrapolation at different thresholds. The results are 
shown in Tables  2 and  3, where CSI and HSS scores 
were calculated at the thresholds of 20 dBZ, 35 dBZ, 
and 45 dBZ, while MSE and SSIM were averaged across 
all thresholds. The symbol ↑ indicates that higher values 
indicate better performance in radar echo extrapolation, 
while ↓ indicates the opposite.

The ablation experiment results are presented in 
Table 2, where evaluation metrics of the original ST-Con-
vLSGRU model and various improvement methods are 
compared. Across all metrics and thresholds, ST-Con-
vLSGRU-1, STAM-LSGRU-0, and STAM-LSGRU-1 out-
perform ST-ConvLSGRU. Specifically, STAM-LSGRU* 
demonstrates improvements of 6.87%, 6.45%, 5.8%, and 
7.7% in CSI, HSS, SSIM, and MSE, respectively, compared 
to the ST-ConvLSGRU network. Figure  6 illustrates the 
radar echo extrapolation results in order to visually com-
pare the experimental outcomes of various enhancement 
techniques. Indicating that these modules can enhance 
the performance of intensity prediction, the prediction 
results of STAM-LSGRU* are clearer, have more distinct 
edges, and pay closer attention to high echo regions.

Table 1  MSE score of 10 frame advance prediction for different depth models

Depth ConvLSTM [21] TrajGRU [34] PredRNN [35] MIM [37] MotionRNN [39] STAM-LSGRU​

2 168.7 159.7 149.3 139.6 125.3 129.5

3 161.3 152.3 134.7 128.7 110.2 115.3

4 156.8 145.7 127.5 121.6 103.4 106.7
5 153.2 149.8 134.1 128.2 108.6 113.8

6 160.1 155.3 142.8 135.4 113.2 116.1

Table 2  The improved components were evaluated through a series of ablation experiments. The ST-ConvLSGRU served as the 
baseline model, while the ST-ConvLSGRU-1 incorporated an inception optimization. The STAM-LSGRU introduced an STAM module, 
and the loss function of STAM-LSGRU-1 was further optimized. Finally, the STAM-LSGRU* model integrated all the improvement 
strategies

Model CSI↑ HSS↑ SSIM↑ MSE↓

T=20 T=35 T=45 T=20 T=35 T=45

ST-ConvLSGRU​ 0.557 0.457 0.298 0.586 0.496 0.322 0.583 115.3

ST-ConvLSGRU-1 0.565 0.461 0.309 0.599 0.504 0.334 0.598 111.2

STAM-LSGRU​ 0.571 0.465 0.305 0.604 0.513 0.329 0.590 105.6
STAM-LSGRU-1 0.581 0.470 0.311 0.605 0.519 0.335 0.601 119.7

STAM-LSGRU* 0.589 0.485 0.324 0.615 0.529 0.347 0.617 106.4



Page 10 of 13Cheng et al. Journal of Cloud Computing          (2024) 13:100 

As shown in Table  3, different evaluation metrics 
have been improved. Compared to the state-of-the-art 
MotionRNN model, the CSI score has increased by an 
average of 1.6%, the HSS score has increased by 1.1%, the 
SSIM score has increased by 2.7%, and the mean squared 
error has increased by 3.2%, under different thresholds. 
Figure 7 displays the hourly scores of each model in the 
prediction of the next hour. The models exhibit similar 
performances, but as time progresses, the scores of other 
models sharply decline, whereas STAM-LSGRU shows a 
more gradual decrease in scores.

For a more intuitive observation, a visual example is 
also shown in Fig. 8. From Fig. 8, it can be observed that 
the STAM-LSGRU model designed in this research out-
performed the other five models. The ConvLSTM model 
produced smoother results than other methods and suf-
fered from severe detail loss and prediction errors in the 
high reflectivity regions of radar images. TrajGRU and 
PredRNN had poor performance in predicting the cen-
tral echo region and also suffered from distortion to some 
extent. Since radar image changes are a high-order non-
stationary process, these methods were able to effectively 
predict the radar motion trend. MIM and STAM-LSGRU 
better captured the overall changing trend characteristics 

of the echo region, but STAM-LSGRU captured the high 
and low echo characteristics better than MIM. The predic-
tion results of MotionRNN and STAM-LSGRU were simi-
lar, but the predicted image blocks of STAM-LSGRU were 
closer to the actual observation results. From the edge of 
the echo main body, its predicted image edges were more 
in line with the actual ones, and its blurring degree was 
lower, showing greater consistency with the real image.

Conclusion
This research introduces a neural network-based radar 
echo extrapolation algorithm named STAM-LSGRU. By 
deploying the STAM-LSGRU model in an edge comput-
ing environment, we not only achieve enhanced real-time 
data processing capabilities but also significantly reduce 
data transmission delays. Compared with traditional 
radar echo extrapolation algorithms and other deep learn-
ing-based algorithms, STAM-LSGRU exhibits markedly 
improved predictive performance in complex environ-
ments, particularly in heavy rain areas. This paper designs 
STAM to capture reliable inter-frame motion information 
by expanding the temporal and spatial receptive fields 
of the prediction units. The convolutional structure and 
loss function of the basic unit have been improved to 

Fig. 6  Comparison of results of different improved versions based on ST-ConvLSGRU​

Table 3  The predictive performance of different models on radar echo data was compared. All models were trained using 5 time 
series and evaluated based on their ability to predict the next 10 time series. The evaluation metric was the average of the 10 
predicted time series

Model CSI↑ HSS↑ SSIM↑ MSE↓

T=20 T=35 T=45 T=20 T=35 T=45

ConvLSTM [21] 0.455 0.358 0.212 0.483 0.374 0.278 0.452 156.8

TrajGRU [34] 0.478 0.377 0.246 0.512 0.396 0.298 0.530 145.7

PredRNN [35] 0.502 0.433 0.265 0.534 0.468 0.315 0.535 127.5

MIM [37] 0.525 0.445 0.284 0.559 0.481 0.309 0.551 121.6

MotionRNN [39] 0.585 0.475 0.316 0.609 0.525 0.341 0.612 103.4
STAM-LSGRU* 0.589 0.485 0.324 0.615 0.529 0.347 0.617 106.4
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enhance the robustness of model predictions. Compared 
to the MotionRNN model, the CSI score has increased by 
an average of 1.6%, the HSS score by 1.1%, and the SSIM 
score by 2.7%. In the future, we plan to further advance 
meteorological forecasting by integrating more obser-
vational data and model outputs, aiming to improve the 
accuracy and timeliness of weather predictions. With the 
continuous advancements in MEC and AI technologies, 
along with the increasing abundance of meteorological 
observation data, we anticipate that the STAM-LSGRU 
model will demonstrate higher predictive capabilities in 
a wider range of meteorological scenarios, bringing new 
breakthroughs to the field of weather forecasting.

Fig. 7  Extrapolated objective indicators of 10 time series of different models

Fig. 8  The top row shows the labels, while the comparison results 
of different extrapolation methods are presented below. The pixel 
values correspond to the right side of the images. The darker 
the color, the higher the probability of the occurrence of severe 
convective weather
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