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Abstract 

Sensitive data identification represents the initial and crucial step in safeguarding sensitive information. With 
the ongoing evolution of the industrial internet, including its interconnectivity across various sectors like the electric 
power industry, the potential for sensitive data to traverse different domains increases, thereby altering the composi-
tion of sensitive data. Consequently, traditional approaches reliant on sensitive vocabularies struggle to adequately 
address the challenges posed by identifying sensitive data in the era of information abundance. Drawing inspiration 
from advancements in natural language processing within the realm of deep learning, we propose a transferable 
Sensitive Data Identification method based on Product Quantization, named PQ-SDI. This innovative approach har-
nesses both the composition and contextual cues within textual data to accurately pinpoint sensitive information 
within the context of Mobile Edge Computing (MEC). Notably, PQ-SDI exhibits proficiency not only within a singular 
domain but also demonstrates adaptability to new domains following training on heterogeneous datasets. Moreo-
ver, the method autonomously identifies sensitive data throughout the entire process, eliminating the necessity 
for human upkeep of sensitive vocabularies. Extensive experimentation with the PQ-SDI model across four real-world 
datasets, resulting in performance improvements ranging from 2% to 5% over the baseline model and achieves 
an accuracy of up to 94.41%. In cross-domain trials, PQ-SDI achieved comparable accuracy to training and identi-
fication within the same domain. Furthermore, our experiments showcased the product quantization technique 
significantly reduces the parameter size by tens of times for the subsequent sensitive data identification phase, 
particularly beneficial for resource-constrained environments characteristic of MEC scenarios. This inherent advan-
tage not only bolsters sensitive data protection but also mitigates the risk of data leakage during transmission, thus 
enhancing overall security measures in MEC environments.
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Introduction
With the onset of the big data era, data transmission and 
collaboration have become widespread, driving signifi-
cant advancements in information technology research 

[1–4]. In the context of Mobile Edge Computing (MEC), 
the emergence of the Industrial Internet heralds the 
inception of profound integration between the new gen-
eration of information technology and the industrial 
sector [5–9]. Consequently, data within industrial pro-
duction have undergone rapid aggregation, integration, 
and processing. The Industrial Internet has been widely 
adopted across various industries [10], including key 
sectors such as electric power, petroleum, and chemi-
cal industries, with MEC infrastructure facilitating real-
time data processing and analysis at the edge [11–13]. 
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Sensitive data are frequently generated in actual indus-
trial production [14]. These sensitive data in industrial 
production typically encompass product information, 
sales volume, production equipment details, and more. 
In the MEC environment, sensitive data may encom-
pass the user’s personal and financial information, which 
is reflected in the power system may be the electricity 
bill, electricity consumption, etc. The leakage or theft of 
such sensitive information can have far-reaching conse-
quences, posing significant risks to both industrial pro-
duction and individual privacy. Such breaches not only 
jeopardize the integrity of industrial operations but also 
pose serious privacy and security threats [15]. Electric 
power data, serving as a core element in production, has 
emerged as a pivotal strategic resource for propelling the 
digital transformation of energy production and estab-
lishing a novel type of power system. So, the urgency 
to bolster data security measures becomes increasingly 
pronounced in MEC scenarios, where data integrity and 
confidentiality are paramount. Therefore, identifying sen-
sitive information in the big data environment stands as 
the initial step in safeguarding sensitive data and consti-
tutes a crucial aspect of the entire process within MEC 
ecosystems.

Traditional methods of identifying sensitive data typi-
cally involve building a sensitive dictionary, extracting 
data features, and conducting similarity queries. In the 
power system domain, it is even more common to manu-
ally review each data table and data stream to identify 
sensitive data, albeit in MEC environments, automated 
processes leveraging edge computing capabilities are 
becoming more prevalent. These traditional approaches 
necessitate human intervention, posing two major chal-
lenges within MEC ecosystems. Firstly, manual opera-
tions often lead to inefficiencies in the overall process, 
and due to the diversity of production data, the definition 
of sensitive data will be affected by subjective factors. 
Secondly, as industrial operations scale up and data vol-
umes rapidly increase, the efficiency of manual interven-
tion in sensitive data identification struggles to keep pace 
with the growth rate of data in MEC environments. Con-
sequently, it may gradually lose accuracy amidst the del-
uge of big data, highlighting the need for automated and 
efficient sensitive data identification techniques tailored 
for MEC architectures.

Given the challenges outlined above, there arises an 
urgent necessity for the development of more intel-
ligent and automated sensitive data identification 
technology tailored for big data environments. This 
technology should be capable of comprehensively, 
swiftly, and accurately identifying sensitive data within 
the vast quantities of data generated in industrial pro-
duction. Such advancements are crucial to ensuring the 

effectiveness of subsequent security measures, includ-
ing protection, desensitization, and control of sensitive 
data. In recent years, researchers have been exploring 
smarter sensitive identification techniques leveraging 
artificial intelligence [16–18]. However, many of these 
techniques are tailored to specific application scenarios, 
such as medical data [19, 20], social information [21], 
or mobile application platforms [22]. Given the varia-
bility of semantic information across different domains, 
it’s worth noting that some sensitive words may not be 
transferable across domains. Even if an existing sensi-
tive data identification model demonstrates high accu-
racy within one domain, it may require retraining when 
migrating to other scenarios, consuming a lot of time 
and computing resources.

In response to the aforementioned challenges, we pro-
pose a transferable sensitive data identification model, 
PQ-SDI, by integrating advanced techniques from natu-
ral language processing and text embedding, specifically 
based on product quantization. The proposed model 
operates as follows: Firstly, it converts text data into high-
dimensional representation vectors using the pretrained 
language model BERT. Subsequently, these representa-
tion vectors are quantized into low-dimensional vectors 
using product quantization. Finally, the quantized text 
representation vectors are fed into a feed-forward net-
work for identification, determining whether the text 
data is sensitive or not. There are several key advantages 
to our approach. Firstly, leveraging pretrained language 
models provides a foundational level of knowledge, aid-
ing the sensitive data identification task. Secondly, the 
use of multiplicative quantization removes irrelevant 
semantic information, focusing solely on key information 
pertinent to sensitive data identification, thereby enhanc-
ing distinguishability. Moreover, PQ-SDI can effectively 
identify sensitive data in target domains by leveraging 
pre-trained models from other domains when training 
samples in the target domain are limited.

In summary, the primary contributions of this paper 
can be outlined as follows:

•	 This paper proposed a sensitive data identification 
model, named PQ-SDI, based on product quantiza-
tion, which can automatically and accurately identify 
sensitive data based on semantic information of text 
data. PQ-SDI achieves an impressive accuracy of up 
to 94.41% on real-world datasets, surpassing the per-
formance of all baseline models.

•	 The PQ-SDI model proposed in the paper is able to 
identify sensitive data in a new domain after train-
ing on a mixed domain dataset. The identification 
accuracy of the sensitive data can be the same as the 
model trained on the same domain.
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•	 In our experiments, we simulated a mobile edge 
computing scenario, demonstrating that PQ-SDI 
effectively reduces parameter scale and minimizes 
computational resources required for sensitive data 
identification. This capability enables the sensitive 
data identification on small mobile terminals by uti-
lizing codebooks sent from the cloud, consequently 
preventing sensitive data leakage during data trans-
mission. Figure 1 illustrates the schematic diagram of 
the model in the cloud-edge environment.

Paper overview. In “Related work”  section, We give 
a brief overview of the current state of research on sen-
sitive data identification techniques and the current 
state of research on natural language processing tech-
niques related to PQ-SDI. In “Methodology”  section, 
We describe in detail the composition of PQ-SDI and 
the process of identifying sensitive data. In “Experi-
ments” section, We show the details of our experiments 
on PQ-SDI, the results of the experiments, and the anal-
ysis of the results. Finally, we place our conclusion in 
“Conclusion” section.

Related work
Sensitive data identification and protection
Currently there have been many scholars studying the 
methods of sensitive data identification in many fields 
such as healthcare, industry and so on. Bi et  al. [14] 
mentioned that the identification of sensitive infor-
mation in the industrial internet needs to meet the 
requirements of timely identification of sensitive data; 
the ability to support secure decision-making, analysis 
and sharing; and the enhanced ability to protect data 
security. Mahendran et al. [23] reviewed the research in 
the area of data privacy protection, which to the best of 
our knowledge is the first interdisciplinary review that 
discusses privacy protection in the technical context 

of natural language processing.The paper focuses on 
the application of natural language processing to data 
security in four sections: healthcare data privacy, pri-
vacy protection in technical domains, analysis of pri-
vacy preserving strategies, and detection of privacy 
breaches in textual representations. Yang et  al. [22] 
proposed a method for mobile applications to auto-
matically identify sensitive data, called S3. S3 integrates 
semantic, syntactic, and lexical information to identify 
sensitive data mainly through the semantics of descrip-
tive text, and experiments on more than 18,000 apps in 
the GooglePlay store have achieved good performance, 
which is a pioneering work in the direction of sensitive 
data identification. Xu et  al. [24] proposed a method 
for topic identification of sensitive information on the 
web based on a weighted potential Dirichlet allocation 
model of sensitive words. The method first generates 
an embedded representation of sensitive words from 
manually collected sensitive vocabularies, and then 
embeds the sensitive vocabularies into the LDA model, 
thus improving the semantic understanding and identi-
fication of sensitive words by LDA. Garcia-Pablos et al. 
[19] used a pre-trained language model based on BERT 
to detect and classify sensitive data on several Spanish-
language clinical datasets, and the results show that 
the BERT-based model does not need to be fine-tuned 
for specific domains in order to have better perfor-
mance than the other baseline models, and has better 
stability in the face of insufficient training data. In the 
mobile edge computing scenario, paper [25] propose a 
data security mechanism called Fine-Grained Access 
Control (FGAC), which can ensure data security when 
accessing data in MEC, overcoming the disadvantages 
of existing methods such as not considering network 
attacks. Furthermore, paper [26] propose a privacy pre-
serving data aggregation scheme for MEC-assisted IoT 
applications, which not only ensures terminal device’s 

Fig. 1  Illustration of deploying PQ-SDI in a Cloud-Edge environment
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data privacy, but also provides source verification and 
integrity. Paper [27] also takes into account the com-
putational resource constraints on the device and pro-
poses a multiuser resource allocation and computation 
offloading model with data security. They also intro-
duced an ANS cryptographic technique as a security 
layer to protect sensitive data from cyber attacks.

Natural language processing and text classification
With the development of deep learning techniques, 
the field of natural language processing has also been 
enhanced. One of the most significant milestones is the 
proposal of the Transformer [28] architecture, which 
has driven research in various fields, including the 
field of natural language processing.The Transformer 
architecture is a deep learning architecture designed 
entirely based on the attention mechanism, which is 
different from previous architectures based on con-
volutional neural networks (CNN) or recurrent neu-
ral networks (RNN).The original proposal of the The 
Transformer architecture was motivated by the task 
of machine translation. In recent years, the proposal 
and development of large language models based on 
the Transformer architecture has achieved even more 
impressive results, improving almost all tasks related to 
text processing.

The most representative large language models are the 
GPT [29] model proposed by OpenAI, the Llama [30] 
model proposed by Meta, and the BERT [31] model pro-
posed by Google. The BERT model is the most widely 
used pre-trained language model, which is a bi-direc-
tional encoder based on the Transformer architecture, 
and the main training method is to pretrain an unsuper-
vised language model on a large amount of unlabeled 
text data by using the Masked Language Model (MLM) 
and the Next Sentence Prediction (NSP) task. The pre-
trained model can be fine-tuned in downstream applica-
tions according to the needs of the scenario to meet the 
specific task requirements. Up to now, BERT has been 
successfully applied to many NLP-related tasks by many 
practitioners [32].

Different from the traditional text classification task in 
machine learning, deep learning based text classification 
task requires a large amount of data to allow the model 
to understand the semantic information of the text, and 
relies heavily on the quality of the dataset during train-
ing. Current deep learning-based text classification 
methods can be divided into CNN-based methods [33], 
RNN-based methods [34], GNN-based methods [35], 
and Attention-based methods [36]. The main application 
scenarios include topic labeling, sentiment analysis, short 
text classification and sensitive data identification.

Methodology
In this section, we will propose a transferable method for 
Sensitive Data Identification based on Product Quanti-
zation, named PQ-SDI.

Approach overview
In this paper, we consider sensitive data identification as 
a binary classification task, aiming to determine whether 
textual information contains sensitive content. Unlike tra-
ditional methods, our approach goes beyond simply iden-
tifying specific sensitive words, as we analyze the semantic 
information embedded within the text. To train our model, 
we consider data from multiple domains, aiming to evalu-
ate the migration ability of PQ-SDI across both familiar 
and unfamiliar domains. It should be noted that the mixed 
dataset we use in the training stage is not splicing the sam-
ples from different datasets into a single sample, but rather 
mixing the data from different datasets into a single dataset. 
For example: there are two datasets [[a1, a2, a3], [b1, b2, b3]] 
and [[c1, c2, c3], [d1, d2, d3]] , we mix them into one data-
set [[a1, a2, a3], [b1, b2, b3], [c1, c2, c3], [d1, d2, d3]] , instead  
of splicing them into something like [[a1, a2, a3, c1, c2, c3],
[b1, b2, b3, d1, d2, d3]].

To enhance the semantic understanding of text infor-
mation within our sensitive data identification model, 
we employ a pre-trained language model based on the 
Transformer architecture. This architecture, leveraging 
the attention mechanism, has gained widespread adop-
tion across various research fields in recent years. PQ-
SDI initially utilizes the pre-trained language model to 
encode text information into high-dimensional vectors 
within the semantic space. However, encountering large 
volumes of data poses two challenges: high-dimensional 
vectors consume a lot of computational resources and 
more storage space is required to store model parame-
ters. To address these challenges, we employ the product 
quantization technique to compress the embedded repre-
sentations produced by the pre-trained language model. 
This compression reduces the computational demands 
for sensitive data identification while focusing on the 
semantic information crucial for the task at hand. Finally, 
the compressed representations are fed into a feed-for-
ward network to perform the identification of sensitive 
data. The structure of the PQ-SDI model is shown in 
Fig. 2 and our notation is summarized in Table 1.

Text representation based on product quantization
As previously discussed, the process of embedding text 
involves two primary steps. Initially, the text undergoes 
encoding into high-dimensional vectors using a pre-
trained language model, effectively embedding it into the 
feature space. Subsequently, the high-dimensional vec-
tors are reduced to low-dimensional vectors through the 
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application of product quantization techniques, which 
serve to encapsulate the semantic information contained 
within the text. The subsequent subsections offer a com-
prehensive description of the implementation of this 
process.

Text representations generated by BERT
In this paper, the pre-trained language model we have 
chosen is the BERT [31] model, which is widely used 
in academia. The BERT model uses the encoder part 
of the Transformer to bidirectional encoding the con-
text. However, unlike the original Transformer encoder, 

BERT uses learnable positional embeddings. The 
encoder layer consist of multiple Transformer encod-
ers, each of which includes two sublayers: a multi-head 
self-attention layer and a feed-forward neural network 
layer. In this case, self-attention score is calculated in 
the multi-head self-attention layer using the scaled dot 
product attention formula:

The feed-forward neural network layer comprises two 
fully connected layers aimed at augmenting the net-
work’s parameter count and enhancing the encoder’s 
learning capability. In this setup, the ReLU activation 
function is employed:

Each sub-layer is accompanied by a residual connec-
tion and a normalization layer. The residual connec-
tion serves to diminish the variance between inputs and 
outputs, mitigating issues like gradient explosion and 
vanishing. This, in turn, expedites model convergence, 
reduces training time, and facilitates the addition of 
more layers to the model. Layer normalization further 
enhances the process by scaling both inputs and outputs, 
ensuring that each layer maintains consistent distribu-
tion patterns. The formula for layer normalization is:

(1)score = softmax
QKT

dk

(2)ReLU(x) = max(0, x)

Fig. 2  The overall framework of the proposed transferable sensitive data identification method based on product quantization. It should be 
noted in particular that the codebook in the figure is from the trained PQ-SDI model, which in this paper is obtained using the K-Means algorithm 
on the training set

Table 1  Notations

Notation Description

wi Each token in raw data

[CLS] Special token at the beginning of data

x i Vector generated by pre-trained language model

d Vector dimensions generated by pre-trained language model

k Number of subvectors divided in product quantization

ci Indexing of clustering centre in product quantization

j Number of clustering centres in product quantization

hi The feature vector processed by product quantization

y i Identification results of FFN output
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γ and β are scaling and offset factors, µ and σ 2 are the 
mean and variance computed alone the last dimension, ǫ 
is a small positive number used to prevent division by 0. 
The encoder layer can encode the input text sequence and 
learn the relationship between tokens in the sequence to 
extract the contextual information of the sequence.

Before inputting text into the model for encoding, we 
need to preprocess the text with a special token [CLS] at 
the beginning of the text. In adddition, since the BERT 
model has a limit on the length of input text, we also need 
to fix the length of each text. We fix the length of text to 
n, for shorter text we use the special token [PAD] to fill 
the text to length n, and for the text which length greater 
than n, we truncate the part over length n. So generating 
vectors with the BERT model can be expressed as:

Where (w1,w2, ...,wn) represents a text sequence of 
length n. [CLS] also means classify, which is often used 
in text classification tasks in the field of natural language 
processing, because the feature vector of [CLS] contains 
the semantic information of the whole text in the BERT 
model. In this paper, we also use the vectors character-
izing [CLS] as the basis of classification for sensitive data 
identification too, denoted as xi ∈ R

d and d is the vector 
dimension of the BERT model. It’s important to empha-
size that the BERT model in PQ-SDI is interchangeable, 
and careful consideration should be given to the maxi-
mum length of the data in the dataset when selecting a 
pre-trained language model for encoding. Failure to do 
so may result in the truncation of sensitive information. 
Since the majority of data lengths in our dataset are less 
than the input limit of the BERT model, the set length nis 
primarily utilized to standardize data of varying lengths 
by employing a special token [pad] prior to encoding. 
In essence, n is determined by the longest data in the 
dataset.

Dimensionality reduction of vectors via product quantization
Next we will utilize Product Quantization (PQ) [37] to 
quantize the vector output from the BERT model. We 
split each vector equally into k sub-vectors, the dimen-
sion of each sub-vector is d/k. The split operation can 
be expressed formulaically as xi = [xi,1, xi,2, ..., xi,k ] . PQ 
first clusters each subclass in all data samples, and then, 
for each sub-vector, PQ will search for clustering cent-
ers with sub-vector’s nearest neighbors and turn it to 
the index of the clustering center. For example, the sub-
vector xi,1 of vector xi is nearest to the second clustering 
center, so xi,1 can be written as the index of the second 

(3)Layer Norm(x) = γ
x − µ√
σ 2 + ǫ

+ β

(4)xi = BERT ([CLS],w1,w2, ...,wn)

clustering center 2. Noting all transformed sub-vectors as 
hi , the formal description can be written as:

where cn denotes the n-th clustering center and there are 
a total of j clustering centres. In the process of quantiza-
tion operation on vectors, the set of numerous cluster 
centers generated after clustering is called codebook and 
has the shape: Rk×j×(d/k) . It should be noted that on the 
cross-domain experiments, the codebook is obtained in 
the model entirely from the training data, and then the 
data in the target domain generates a vector of down-
scaled textual representations based on the codebook, 
thus demonstrating the transferability of the model. The 
schematic diagram illustrating the learning of the code-
book is presented in Fig. 3.

Sensitive data identification
After embedded representation of the input textual infor-
mation, we next identify the sensitive textual. In PQ-SDI, 
we take a feed-forward network (FFN) consisting of two 
fully connected layers for the identification of sensitive 
data:

where hi is the previously mentioned text embedding 
vector after product quantization, which is used here as 
input to the FFN.W1,W2 is learnable parameter, The acti-
vation function between the two fully connected layers 
is the sigmoid function commonly used in classification 
tasks. the output of the FFN can be denoted as yi:

where yi is a two-dimensional vector representing the 
probability distribution of whether the text data is sensi-
tive or not.

Model training and optimization
Finally, we describe the loss function and optimization 
methods used in training PQ-SDI. Since the sensitive 
data identification task solved by the model is regarded as 
a binary classification task, the loss function employed in 
training the model is the widely used Cross-Entropy Loss 
[38] function:

(5)hi,k = arg min
n

�xi,k − cn�2 ∈ {1, 2, ..., j}

(6)hi = [hi,1, hi,2, ..., hi,k ]

(7)FFN (hi) = W2 × sigmoid(W1hi + b1)+ b2

(8)sigmoid(·) = 1

1+ exp(·)

(9)yi = FFN (hi)
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where m is the number of samples entered into the model 
for training each time, rj = (rj1, rj2) is the ground truth 
of the sample, generally (0, 1) or (1, 0). yj1 and yj2 comes 
from the PQ-SDI, the probabilistic prediction whether 
the sample is sensitive or not, obviously yj1 + yj2 = 1.

The optimizer used in training is the Adam [39] opti-
mizer, which is widely used in the current deep learning 
field, and is a variant algorithm derived from the stochastic 
gradient descent algorithm with adaptive moment estima-
tion. We can present it formulaically:

(10)

LossCrossEntropy = − 1

m

m
∑

j=1

(rj1 log yj1 + rj2 log yj2)

(11)mt = β1mt−1 + (1− β1)g t

(12)vt = β2vt−1 + (1− β2)g
2
t

(13)m̂t =
mt

1− βt
1

(14)v̂t =
vt

1− βt
2

In the above equation, g t is the gradient at step t, mt 
and vt are estimate of the first-order moments and sec-
ond-order moments at step t, θt is the parameter at step 
t, α is learning rate, β1 and β2 are decay rates of the first-
order moments and the second-order moments, ǫ is a 
small positive number used to prevent division by 0.

Experiments
In this section, we will organize our experiments 
around the following Research Questions (RQs) to 
demonstrate the sophistication of our proposed model 
PQ-SDI:

•	 RQ1: How does the model perform on datasets 
from different domains?

•	 RQ2: How well the model performs in the new 
domain after training on the mixed training set?

•	 RQ3: Is the quantization operation on the embed-
ding vectors generated by BERT necessary for the 
sensitive data identification task?

(15)θt+1 = θt − α
m̂t

√

v̂t + ǫ

Fig. 3  Schematic for learning codebook in product quantization
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Experimental setup
In this section, we present the dataset we chose, the 
evaluation metrics used in the experiment and the imple-
mentation details of PQ-SDI.

Dataset
We will initially evaluate the model’s performance in 
identifying sensitive data across four real-world public 
datasets from various domains: All Beauty, Gift Cards, 
Magazine Subscriptions, and Software datasets sourced 
from the Amazon Review Dataset [40]. These datasets 
comprise user reviews of diverse products on the Ama-
zon platform as of 2018. Subsequently, we will curate a 
subset of data from these three datasets to construct a 
mixed training set for model training. We will then assess 
the model’s capability to identify sensitive data within 
target domains that were not included in the training set. 
The statistical information for the four datasets is pre-
sented in Table 2.

As previously mentioned, the definition of sensitive 
data varies across different domains and is subject to 
constant evolution in real-world production settings. So, 
it is difficult to have a unified standard for defining sen-
sitive data. In this paper, what we need to ensure is that 
there is the same definition of sensitive on the data in dif-
ferent domains. Therefore, in our experiments, we define 
user-generated negative reviews as sensitive data. Across 
various domains, users may articulate their dissatisfac-
tion with products differently, but typically, such dissat-
isfaction is reflected in low ratings. Hence, we uniformly 
classify reviews associated with low ratings as negative 
reviews. The primary task of PQ-SDI is to swiftly and 
accurately identify sensitive data on new datasets after 
being trained on mixed datasets.

Evaluation metrics
For the sensitive data identification task, the primary 
metric for assessing the effectiveness of a model lies in its 
ability to accurately distinguish between normal text and 
sensitive text. Therefore, in this paper, we utilize Accu-
racy as the key metric to evaluate the model’s effective-
ness in identifying sensitive data.

Implementation details
As introduced to the model in “Related work”  section, 
the identification of sensitive data by PQ-SDI contains 
two main steps: one is to embed the text data into the 
feature space, and the other is to identify sensitive text 
data by a feed-forward network.The BERT model used in 
the experiments is from Huggingface ’models–bert-base-
uncased’, which is available from Huggingface1. The text 
is passed through the BERT model and the output is a 
768-dimensional vector, which is input into the product 
quantization module and then split the 768-dimensional 
vector into 32 sub-vectors of 48 dimensions each. When 
clustering codebook with K-Means algorithm, due to the 
limitation of computational resources, the samples used 
on a single NVIDIA GeForce RTX3090 are about 70,000-
80,000 each time, and the clustering center of each group 
of subvectors is set to 256, which can be said that each 
group of subvectors is divided into 256 classes, and the 
theoretical number of samples that can be characterized 
reaches 25632 = 2256 , which is far more than that of the 
experimental samples, and it almost doesn’t produce the 
problem that the different texts have the same embedding 
representations. Since the feature vector after product 
quantization has 32 dimensions, the dimensions of the 
feed-forward network used to identify the sensitive data 
are set to 32,16,2 respectively, so the parameter matrices 
in the model are 32× 16 and 16× 2 respectively, and the 
learning rate when training the feed-forward network is 
set to 1e-4. In our experiments, we also discovered that 
the embedding vector’s lower dimensionality resulting 
from product quantization leads to a reduced demand for 
computational resources during the training of the feed-
forward network, to a certain extent.

Cloud edge setup
To evaluate the practicality of deploying PQ-SDI in 
cloud-edge environment, we divided the deploy-
ment process into two stages. Firstly, we conducted 
the pre-training of the codebook on a cloud server. 
Next, we deployed the feed-forward neural network for 

Table 2  Statistical information on datasets after data preprocessing

Datasets Review amount Average review 
length

Normal Sensitive amount Sensitive rate

All Beauty 341406 206.9 281896 59510 17.43%

Gift Cards 144039 95.1 135231 8808 6.12%

Magazine Subscriptions 82687 238.05 66436 16251 19.65%

Software 419976 418.7 285989 133987 31.90%

1  https://​huggi​ngface.​co/​bert-​base-​uncas​ed

https://huggingface.co/bert-base-uncased
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sensitive data identification on a local personal computer 
equipped with an NVIDIA GeForce RTX 2060 graph-
ics card, offering 13.9 GB of available graphics memory. 
Since our experiments involved many trials, we ran the 
experiments related to RQ2 and RQ3 on cloud-edge 
environment.

Performance on identify sensitive data (RQ1)
To address the first problem, we conducted experiments 
and analysis. Specifically, we selected several sensitive 
data identification methods based on machine learn-
ing as baseline models for comparison with the PQ-SDI 
model proposed in this paper. The experiments were 
conducted across four real-world datasets to evaluate the 
effectiveness of these methods for the sensitive data iden-
tification task.

Baselines
We compare the PQ-SDI with the following baseline 
models:

•	 TF-IDF-RF: Sensitive data identification techniques 
integrating TF-IDF [41] algorithm and Random For-
est [42] classification algorithm outside the deep 
learning domain are selected.

•	 BERT-RF: We replace the TF-IDF algorithm with the 
pre-trained language model BERT used in PQ-SDI to 
encode the text, which is then fed into the Random 
Forest algorithm to identify the sensitive data.

Performance on identify sensitive data
Based on the previously mentioned dataset, evaluation 
metrics, experimental details, and baseline models, we 
conducted comprehensive experiments and analyzed the 
results. The outcomes of these experiments are presented 
in the Table 3.

To maintain fairness, we employed identical data pre-
processing methods across all experiments, ensuring 
consistency in the data used for analysis. Our findings 
indicate that PQ-SDI outperforms all baseline mod-
els across diverse datasets in identifying sensitive data 

effectively. Additionally, we observed that, for the Ran-
dom Forest algorithm, the text representations generated 
by the BERT model resulted in diminished performance 
in sensitive data identification compared to the TF-IDF 
algorithm. This underscores the necessity for quantizing 
the representation vectors produced by the BERT model.

Cross domain experiments (RQ2)
Next, we conducted experiments and analysis to evalu-
ate the transferability of PQ-SDI. Our approach involved 
selecting a portion of data from each of the three data-
sets to create a mixed dataset for training the model, 
primarily for generating the codebook in PQ-SDI. Sub-
sequently, we deployed the trained model into a new 
domain for sensitive data identification and observed 
its performance in identifying sensitive data within the 
new domain. To assess the transferability of PQ-SDI, we 
compared the model trained on the mixed dataset with 
the model trained specifically in the target domain. If the 
model trained on the mixed dataset performs compara-
bly to the model trained in the target domain in terms of 
identifying sensitive data, then we can conclude that PQ-
SDI exhibits good transferability. The specific experimen-
tal results are presented in the Fig. 4.

We conducted two main transferability experiments. In 
the first experiment, we trained PQ-SDI on a mixed data-
set comprising the Software, All Beauty, and Magazine 
Subscriptions datasets. Subsequently, we evaluated its per-
formance in sensitive data identification on the Gift Cards 
dataset. Our findings revealed that the model’s ability to 
identify sensitive data in the new domain after training on 
the mixed-domain dataset was slightly superior to training 

Table 3  Performance of different models in identifying sensitive 
data on various datasets. The data with the highest accuracy on 
each dataset has been denoted in bold

Model All beauty Gift cards Magazine 
subscriptions

Software

TF-IDF-RF 0.8226 0.9224 0.805 0.7579

BERT-RF 0.774 0.899 0.779 0.74

PQ-SDI 0.8251 0.9441 0.8226 0.7669

Fig. 4  Performance of PQ-SDI in cross domain experiments
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on the original dataset and testing it. In the second experi-
ment, we observed that the sensitive data identification 
performance in the new domain, Software, after training 
on the mixed dataset consisting of Gift Cards, All Beauty, 
and Magazine Subscriptions, was marginally weaker com-
pared to training and testing on the original dataset. How-
ever, the difference was not statistically significant. Overall, 
based on these two experiments, we can conclude that PQ-
SDI exhibits some degree of transferability and can swiftly 
adapt to sensitive data identification tasks in new scenarios.

Ablation study: effect after adding product quantization 
(RQ3)
In this section, we investigate the extent to which the 
incorporation of the product quantization technique 

enhances the model’s ability to identify sensitive data. 
To begin, we compare the distribution of vectors in the 
feature space after the product quantization process with 
the distribution of unprocessed vectors. For this pur-
pose, we randomly selected 5,000 data points from two 
datasets, Gift Card and All Beauty, for visualization. The 
results of this comparison are presented in Fig. 5

We observed that the product quantization tech-
nique effectively clusters irregularly distributed sam-
ples in the feature space towards the central region, 
irrespective of the dataset. This clustering phenome-
non reduces semantic gaps between domains, thereby 
enhancing the effectiveness of sensitive data identifi-
cation and improving the model’s transferability. For 
comparison, we devised a variant of the PQ-SDI model 

Fig. 5  Comparison plot after product quantization
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called BERT-SDI, where we removed the product 
quantization technique. Instead, we directly input the 
embedding vectors generated by BERT into the feed-
forward neural network. In BERT-SDI, the number of 
neurons per layer in the feed-forward network was set 
to 768, 384, and 2, and the size of the learnable param-
eter matrices in the model was adjusted accordingly 
768× 384 and 384 × 2 . In the subsequent table, we 
compare the performance of BERT-SDI and PQ-SDI in 
identifying sensitive data across the three datasets.

From the results presented in Table  4, we observed 
that the PQ-SDI model, augmented with the product 
quantization technique, demonstrates improvements 
across all sensitive data identification tasks. Notably, 
PQ-SDI exhibits the smallest enhancement in the Gift 
Card dataset, primarily due to the lower rate of sen-
sitive data instances within this dataset. Conversely, 
the other two datasets exhibit comparable rates of 
sensitive data instances, resulting in similar degrees 
of enhancement brought about by PQ-SDI. Based on 
these findings, we can conclude that PQ-SDI consist-
ently performs better, particularly when confronted 
with datasets containing higher proportions of sen-
sitive data instances. Indeed, during the process of 
product quantization, the compression and clustering 
of vectors inevitably result in some information loss. 
However, this loss does not compromise the accuracy 
of sensitive data identification. This observation indi-
cates the presence of redundant information in the 
original high-dimensional vectors that is unrelated 
to the task of sensitive data identification. The prod-
uct quantization technique effectively filters out this 
redundant information, thereby conserving resources 
required for downstream tasks.

The results of the ablation study show the signifi-
cance of PQ-SDI in MEC scenarios. While the param-
eters of BERT-SDI are too large to deploy in the 
cloud-edge environment established previously, mak-
ing the comparison in the ablation study somewhat 
“unfair”, the identification performance of PQ-SDI 
on sensitive data in the cloud-edge environment sur-
passes that of BERT-SDI deployed in the cloud. This 
observation highlights the performance of our model 
in MEC scenarios.

Conclusion
In this paper, we propose a novel sensitive data identi-
fication method named PQ-SDI, tailored specifically for 
the Mobile Edge Computing environment. Leveraging a 
combination of pre-trained language models and prod-
uct quantization, PQ-SDI offers a robust solution for 
identifying sensitive data in real-time mobile edge sce-
narios. Initially, PQ-SDI utilizes a pre-trained language 
model BERT, to generate embedding representations of 
data. Subsequently, it employs a product quantization 
technique to compress the high-dimensional embed-
ding vectors into lower-dimensional representations, 
facilitating sensitive data identification. Finally, these 
representations are inputted into a feed-forward net-
work for further analysis and identification, enabling 
efficient processing and classification of sensitive data 
at the edge. Through our experiments, we demon-
strate that PQ-SDI excels in identifying sensitive data 
and exhibits the capability to generalize to new data-
sets after training on a mixed dataset. Additionally, 
the incorporation of vector quantization reduces the 
computational resource requirements during the sensi-
tive data identification phase, addressing the challenges 
posed by the era of massive data growth in mobile edge 
scenarios. Furthermore, our approach holds promise 
for extension to small devices within power information 
networks, serving as a proactive measure to prevent 
sensitive data leakage resulting from data transmission 
processes in MEC environments.

Our proposed method is designed to evolve alongside 
advancements in natural language processing technol-
ogy within the realm of deep learning, specifically tai-
lored for MEC applications. This adaptability allows for 
the flexible selection of various pre-trained language 
models to suit different data environments in MEC sce-
narios. Moving forward, we aim to further enhance the 
effectiveness of our approach by refining the feed-for-
ward network used in the sensitive data identification 
phase. This ongoing research will focus on developing 
more efficient techniques for sensitive data identifica-
tion, ultimately improving the overall performance of 
our method in MEC environments.
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