
Sulimani et al. Journal of Cloud Computing (2024) 13:113
https://doi.org/10.1186/s13677-024-00663-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

HybOff: a Hybrid Offloading approach
to improve load balancing in fog environments
Hamza Sulimani1,2*, Rahaf Sulimani1, Fahimeh Ramezani2, Mohsen Naderpour2, Huan Huo3, Tony Jan4 and
Mukesh Prasad2 

Abstract 

Load balancing is crucial in distributed systems like fog computing, where efficiency is paramount. Offloading
with different approaches is the key to balancing the load in distributed environments. Static offloading (SoA) falls
short in heterogeneous networks, necessitating dynamic offloading to reduce latency in time-sensitive tasks. How-
ever, prevalent dynamic offloading (PoA) solutions often come with hidden costs that impact sensitive applications,
including decision time, networks congested and distance offloading. This paper introduces the Hybrid Offloading
(HybOff) algorithm, which substantially enhances load balancing and resource utilization in fog networks, addressing
issues in both static and dynamic approaches while leveraging clustering theory. Its goal is to create an uncompli-
cated low-cost offloading approach that enhances IoT application performance by eliminating the consequences
of hidden costs regardless of network size. Experimental results using the iFogSim simulation tool show that
HybOff significantly reduces offloading messages, distance, and decision-offloading consequences. It improves load
balancing by 97%, surpassing SoA (64%) and PoA (88%). Additionally, it increases system utilization by an average
of 50% and enhances system performance 1.6 times and 1.4 times more than SoA and PoA, respectively. In
summary, this paper tries to introduce a new offloading approach in load balancing research in fog environments.

Keywords  Fog computing, Load balancing, Resource management, Offloading, Time-sensitive applications

Introduction
Central computing has emerged as a prevalent concept in
various fields in the Internet era, supported by 5G access
networks. Central computing systems encompass tech-
nologies that empower enterprises to collect, process,
analyze, and archive data from distributed clients world-
wide [13]. This concept has become so integral to the

Internet that reverting to primitive, decentralized sys-
tems are no longer feasible [8, 53, 54]. In practice, cloud
computing represents the tangible implementation of
the central computing concept. It has gained widespread
recognition as the ideal infrastructure for efficiently man-
aging widely distributed Internet of Things (IoT) devices
[3]. IoT, a telecommunication system facilitating data
exchange among interconnected objects over a public
network, streamlines operations with minimal human
intervention [6]. As a fundamental framework, IoT ena-
bles cloud computing to interact with the environment,
facilitating the widespread adoption of IoT technology
and the gradual growth of its data. However, it also pre-
sents implications for the efficiency of public networks
[3, 28].

Numerous critical applications rely on the same pub-
lic network infrastructure, designed to support all cloud-
connected applications [16, 37]. When slowdowns occur

*Correspondence:
Hamza Sulimani
Hhhsulimani@uqu.edu.sa
1 College of Computing, Umm Al-Qura University, Makkah, Saudi Arabia
2 Australian Artificial Intelligence Institute, School of Computer
Science, Faculty of Engineering and Information Technology, University
of Technology Sydney, Sydney, Australia
3 School of Computer Science, Faculty of Engineering and Information
Technology, University of Technology Sydney, Sydney, Australia
4 Centre for Artificial Intelligence Research and Optimization (AIRO),
Design and Creative Technology, Torrens University, Sydney, Australia

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00663-3&domain=pdf

Page 2 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

in the public network, time-sensitive applications such
as e-health, smart grids, and unmanned vehicles, which
have strict timing requirements for proper functioning,
are severely affected [48]. Cloud computing often needs
help to consistently deliver the required level of service
for these time-sensitive applications due to the unpre-
dictable efficiency of public networks [53, 54].

To address this challenge, Cisco introduced a new layer
seamlessly integrated into cloud computing, forming fog
computing (FC). FC integrates storage, computing, and
networking at the network’s edge, reducing data transfer
to the cloud, lowering latency, and enhancing efficiency
[5, 17]. This technology is crucial for decentralized com-
puting, especially in real-time IoT applications. However,
the continuous growth in the number of IoT devices and
their generated data, along with the unpredictable nature
of distributed IoT clients, places an increasing load on
fog servers [60].

These factors drive researchers in FC to enhance the
resource management system, particularly the load bal-
ancing (LB) system. A wide range of LB in cloud systems
have been proposed. However, the diverse structures of
FC have led researchers to introduce a different type of
LB algorithm other than the central system, cloud com-
puting. LB aims to allocate incoming tasks among serv-
ers with limited resources to prevent overloading or
underutilizing fog resources. Effective LB management is
vital to maintaining a stable computing environment and
improving network availability and flexibility especially
for time-sensitive applications [7].

A steering algorithm is required to direct user requests
to the most suitable fog server based on application
requirements to achieve effective fog load balancing.
Offloading is the primary mechanism for relieving over-
loaded servers, thus balancing load in a distributed sys-
tem [18]. A well-designed resource allocation policy is
essential for creating an effective offloading strategy to
balance load [34, 35]. In general, there are two funda-
mental approaches to offloading: static and dynamic [48].
Most recent offloading algorithms favour the dynamic
approach due to its superior features compared to the
static algorithm [52]. However, prevalent dynamic off-
loading or prevalent offloading approach (PoA) does
have inherent drawbacks, including decision-making
time, increased offloading messages, and distance-related
issues [48]. These challenges result in significant network
costs, often considered hidden expenses. Many articles
view these costs as a trade-off for the reliability gained
from dynamic approaches [51].

The motivation for this research is rooted in the press-
ing need to address the formidable challenges posed by
large-scale networks and time-sensitive issues, which,
despite various studies on the subject [4], have yet to see a

comprehensive solution that considers the hidden expenses
associated with these challenges. The imperative drives the
impetus for this research to meet the escalating demands of
time-sensitive applications in a world characterized by the
continuous proliferation of IoT devices. Cisco’s introduc-
tion of FC, which seamlessly integrates storage, computing,
and networking at the network’s edge, is a notable develop-
ment [5]. With its capability to reduce data transfer to the
cloud, diminish latency, and improve efficiency, FC repre-
sents a significant step forward. However, the critical need
remains to establish an effective resource management
system, particularly an LB system, to optimize the utiliza-
tion of FC resources and establish a stable environment for
time-sensitive applications. This research aims to develop
a solution that simultaneously tackles the challenges of
fog load balancing for large-scale networks, particularly
in the context of time-sensitive applications. It introduces
a novel approach, a hybrid algorithm, designed to benefit
from previous solutions be selecting what suits the research
goal of creating a low-cost and highly efficient solution to
tackle these issues simultaneously and ensure the selection
of a suitable destination server for offloading. The research
questions guiding this paper include:

1.	 How can fog load balancing be improved to effi-
ciently support time-sensitive applications, such as
e-health and unmanned vehicles?

2.	 What is the impact of offloading strategies on fog
load balancing, and how can the hidden expenses
associated with dynamic offloading be minimized?

3.	 Can a hybrid load-balancing algorithm that combines
the strengths of both static and dynamic offload-
ing approaches provide a comprehensive solution to
these challenges?

We introduce a hybrid load-balancing algorithm that
combines the strengths of both static and dynamic off-
loading approaches. The proposed algorithm offers five
key contributions to fog load balancing:

1.	 It is reintroducing static offloading by deeply under-
standing its drawbacks to reuse it through hybrid
offloading.

2.	 It minimises message exchanges generated in the
system to satisfy the offloading requirements. Even
though these messages are essential, the proposed
solution utilises many techniques to keep this num-
ber at the bottom.

3.	 It reduces decision-making time for offloading. This
time is one of the requirements of dynamic offloading,
which most state-of-the-art algorithms try to trade off
to keep it down. The proposed solution engages the
reuse of the static technique to solve this problem.

Page 3 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

4.	 It encourages servers to handle time-sensitive appli-
cations locally, eliminating the need for global alloca-
tion. The proposed solution is designed to allow this
application to be executed locally to avoid the com-
plicated offloading costs.

5.	 It efficiently manages networks of all sizes using a
cell-based approach, reducing latency, alleviating
network congestion, and enhancing LB. As most dis-
tributed computing systems, such as fog computing,
can expand dramatically and make the offloading
cost more costly and cannot be ignored, our solution
to tackle this problem is considered an excellent con-
tribution to the field.

6.	 Comprehensive experiments evaluate our algorithm
from various perspectives, illustrating its superior-
ity over other state-of-the-art fog LB algorithms in
extensive studies.

Our work marks the implementation of the true
essence of hybrid offloading, merging static and dynamic
offloading behaviour. Additionally, the proposed algo-
rithm incorporates various features, including a central-
distributed control system, fog server clustering, and
prioritization of critical applications while also address-
ing hidden expenses such as distance-based offloading,
decision messages, and network congestion. In compari-
son to the static offloading approach (SoA) and the PoAs,
the experiments demonstrate that the proposed algo-
rithm enhances LB by 52.1% and 38.2%, improves system
performance by 60% and 38.8%, and increases the system
utilization ratio by 62.4% and 42.7% compared to SoA
and PoA, respectively.

The rest of this paper is organized as follows. The next
Section presents the literature review. “Hybrid Approach
to Enhance Load Balancing” section describes the pro-
posed algorithm in detail. “Experiments and Results” sec-
tion shows the experiments and results, followed by the
discussion and conclusion in “Discussion” and “Conclu-
sion” sections.

Literature review
In this Section, the literature review explains the foun-
dational concept of FC systems and the LB strategies
devised to enhance offloading.

Fog computing
FC, a pivotal concept in the realm of distributed com-
puting, is engineered to support Internet of Things (IoT)
applications efficiently, especially those demanding real-
time responses [44]. As a complement to traditional
cloud computing, it aspires to leverage edge resources
strategically positioned closer to end-users [12]. The
core objective is reducing reliance on remote cloud data

centers, reducing latency, and decreasing network band-
width requirements. Embracing FC presents various
innovative advantages, including cost savings in cloud
operations and fortified system stability [7].

However, the continuous proliferation of IoT devices
and the surge in data generation has strained FC’s capac-
ity to meet performance expectations [3]. This strain is
particularly acute in specialized applications, especially
time-sensitive ones. Varied growth rates in user density
across different regions have resulted in an uneven distri-
bution of workloads, causing some fog servers to become
overloaded while others remain underutilized [23]. This
imbalance leads to resource wastage and misalignment
within the fog layer [19, 51]. To tackle these challenges,
researchers have explored dynamic offloading as a poten-
tial solution [31, 32, 36, 42, 56, 57, 60]. Notwithstanding
the merits of FC, due to inherent resource limitations
within the fog layer, certain applications necessitate off-
loading to the cloud, emphasizing the enduring signifi-
cance of web-based computing applications [1].

To better comprehend the structure of computing net-
works in the proposed system, Fig. 1 illustrates the three
interconnected layers. Cellular or WiFi networks are wire-
less links connecting fog servers to client servers in the
IoT edge layer [24]. The Internet serves as the primary
medium connecting the fog layer and the cloud [34, 35].
Within the fog layer, tasks are managed by surrounding
fog servers, with results forwarded to the source server
if necessary. The cloud layer is dedicated to specific pur-
poses, such as heavy processing or data archiving. This
research focuses on applications predominantly processed
within the fog layer [31, 32].

All user-sent applications adhere to a standard opera-
tional algorithm, as outlined by Mukherjee, Shu et al.
[44]:

1.	 Edge servers receive application requests from end-
users.

2.	 Received applications are decomposed into a set of
sub-tasks for distribution.

Heavy fog servers either redirect the sub-tasks to idle
fog servers for processing or add them to their process-
ing queues. The processing results are subsequently sent
back to the original server.

Challenges in task offloading in fog computing
While FC is classified as an evolved extension of the
cloud computing system to handle IoT-related problems
and shortcomings at the network edge, in FC, processing
nodes are distributed and heterogeneous. Furthermore,
the services based on fog technology must work with
various aspects of the restricted environment. Therefore,

Page 4 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

discovering the challenges of task offloading in FC is
essential [43]:

Network dynamics challenges

Dynamic network conditions  IoT networks are fast-var-
ying access networks that produce dynamic network and
traffic conditions. This behaviour is a substantial chal-
lenge that adds extra complexity during the task offload-
ing problem. Offloading prediction can be conjoined with
a resource allocation mechanism at the fog level since
the amount of resources needed for the task execution is
directly proportional to the network traffic that will end
up at the edge of the network.

Dynamic user behaviour  In task offloading, another
level of restriction is added by the unexpected behav-
iour of the users, which is difficult to foresee. Hence, data
analytics and machine learning techniques should be
used to assess the users’ behaviour and the rate of task
generation.

Resource allocation challenges
Task offloading is extremely impacted by the resource
allocation mechanisms determining where and how
the offloaded tasks will be executed in a distant device.
Therefore, the resource allocation and task offloading
decisions are connected to be addressed together.

Partitioning decision  The first and core of the task off-
loading problem is deciding which task to offload. The
offloading algorithm contains an intelligent mechanism
designed to decide whether to execute the generated task

locally or to be offloaded to another device. Some associ-
ated costs are due to this partition decision of the tasks,
such as energy consumption, task execution, and trans-
mission delay. A flawed partitioning decision may cause
performance bottlenecks.

Resource availability  The availability of the system
resources is crucial to enhance the performance of an
application. Although the cloud has a massive amount of
the system, using these resources significantly delays the
overall system. Consequently, utilizing the edge resources
is a crucial challenge requiring an efficient management
mechanism and resource allocation to ensure perfor-
mance requirements.

Task management  At the fog layer, one of the core ben-
efits of Edge Computing is that its infrastructure is usu-
ally spread over multiple geographical sites, which gives
the system minimal execution time. However, a meticu-
lous strategy of the task management control modules is
required at the Edge [40].

The research problem
According to our observation, we have noticed that all
the PoAs use the present system state theme, in which
the heavy servers read the environment (gathering attrib-
utes) to give an offloading action to redirect the excess
tasks to the target server. This is repeated several times
when there is a necessity for extra resources. Obviously,
this theme generates a high volume of exchanged mes-
sages with the peer servers; we can call it decision mes-
sages. They seek to explore unused resources to cover the

Fig. 1  Fog computing architecture [52]

Page 5 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

shortage in the affected areas without any intention to
increase the number of served servers [51].

As illustrated in Fig. 2, an infinite series of interac-
tion and offloading processes among servers will occur
unabated due to the unchanging quantity or quality of
physical resources in the field. These processes make the
network situation seem to get worse over time. Keeping
the networks congested will escalate the latency in the sys-
tem [11], which is a decline in the main objective of FC.

However, expanding the network, either partially or
entirely, appears to be the logical solution to support
the affected areas. Moreover, "serve more clients, earn
more profit" is the goal of most network operators [29].
Expanding their coverage can increase their number
of clients. Increasing coverage is an excellent metric by
which to evaluate any network as an increase in network
cover is an increase in rank. This behaviour increases the
number of servers in the fog layer consequently entering
the network in the state known as network oversizing in
case the expanding has not a sufficient planning. More-
over, increasing the number of fog servers will increase
system availability. However, it can negatively impact

dynamic offloading. Unfortunately, dynamic offloading
in this type of network may offload some tasks to remote
servers because most algorithms have no limits on dis-
tance. The system outcomes will be the worst if the task
is time sensitive. Consequently, this adds an extra bur-
den on the network bandwidth and total execution time
due to messages travelling among remote servers. Hence,
dynamic offloading is affected again by distant offload-
ing, networks congested, and offloading decisions, which
makes it less effective. Although all research approaches
pursue enhancing offloading strategies, they ignore these
hidden costs.

However, the expansion decision may not be suitable
if there is uncertainty about the full utilization of all fog
servers, especially considering the varying efficiency of
LB algorithms. Therefore, finding an efficient offloading
strategy with a low-cost is the key for the dilemma of the
research.

Related works
The offloading technique is a pivotal solution for LB
aimed at conserving computing and storage resources,

Fig. 2  Prevalent offloading process flowchart

Page 6 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

particularly in decentralized systems [56, 57]. A plethora
of research efforts are dedicated to minimizing inefficien-
cies. However, prevalent task offloading schemes have
unavoidable hidden costs due to their specific require-
ments. These costs include offloading decisions, distance
offloading, and network congestion [48]. Conversely, low-
cost static offloading encounters numerous challenges,
such as reliability concerns, that make it inefficient for
use. This Section delves into relevant publications and
prior works that validate the algorithm’s novelty, success-
fully addressing many of these obstacles.

In dynamic offloading, overloaded servers continuously
gather data from other fog servers to distribute incom-
ing tasks among the active servers [55]. Once the system
evaluates and processes this collected data, it makes an
offloading decision, typically referred to as a 1-out-n pro-
cess, where it selects the optimal target server (1) from
among the available options (n) [50]. However, this deci-
sion process leads to network congestion due to the peri-
odic exchange of critical messages known as decision
messages [34, 35, 47]. In addition to network congestion,
it also introduces high communication latency when
identifying the target servers for offloading, termed deci-
sion latency [59]. While decision messages and decision
latency may be minimal individually, they occur continu-
ally in affected areas, collectively impacting the effective-
ness of dynamic offloading when following this approach.

On the other hand, the primary goal of most network
operators is to ’serve more clients, earn more profit’ [26].
Expanding their coverage can increase the number of cli-
ents they serve, making coverage expansion a valuable
metric for evaluating any network, as it correlates with
increased network rank [46]. While expanding the num-
ber of fog servers enhances system availability, it can have
a negative impact on dynamic offloading. In such net-
works, dynamic offloading may offload tasks to remote
servers, as many algorithms have no distance limits [26,
31, 32]. This action can result in unfavourable outcomes,
particularly for time-sensitive tasks, adding a burden on
network bandwidth and total execution time due to mes-
sages travelling among remote servers [42]. Therefore,
distant offloading and offloading decisions hinder the
effectiveness of dynamic offloading.

However, there are severe consequences if the fog sys-
tem fails to deliver the expected services. Many critical
applications that have recently emerged are time-sen-
sitive, including unmanned vehicles, healthcare, and
the smart grid [14, 20, 30]. These applications rely on
the fog layer for proper operation, where any delay can
lead to catastrophic outcomes [45]. Network congestion
is another adverse effect. The conventional offloading
approach increases the number of messages in the net-
work due to present system state requirements (decision

messages) and distant offloading (in some algorithms).
Consequently, the network infrastructure can deteriorate
rapidly [14].

Various LB algorithms and solutions have been pro-
posed. In [25], the authors introduce an energy-efficient
offloading decision mechanism and an offloading dis-
patcher designed to balance energy consumption and
response time for fog servers serving multiple applica-
tions in the IoT. This mechanism employs energy-aware
cloud-fog offloading (ECFO), which aids in selecting
the optimal target server with minimal utilization from
the available servers. To address the issue of distant off-
loading and its associated consequences, ECFO assesses
the cost of offloading decisions concerning bandwidth
and energy consumption. This assessment is con-
ducted through an energy-aware module by comparing
it with the cost of local server execution. The proposed
algorithm is evaluated against two state-of-the-art
algorithms, and the results demonstrate that ECFO out-
performs the others.

In [15], the authors introduce a privacy-aware LB algo-
rithm that employs reinforcement machine learning
techniques to reduce the number of waiting tasks in the
queues of fog nodes. The proposed algorithm, DDQN,
does not rely on load or resource information from fog
servers to determine the optimal server for offload-
ing. Instead, it leverages Markov theory to estimate the
availability of free servers. This approach significantly
enhances system performance while maintaining privacy
at an acceptable level. Interactive experiments demon-
strate that DDQN outperforms a search-based optimiza-
tion algorithm from the literature and traditional baseline
approaches.

Albalawi, Alkayal et al. [2] introduced a hybrid LB algo-
rithm called PSOSVR, which combines particle swarm
optimization (PSO) with support vector regression
(SVR). PSOSVR reduces response time and energy con-
sumption while improving resource utilization (RU) and
throughput. The outcomes of this proposed algorithm
notably enhance various metrics, with energy consump-
tion improving by 56%. Lu, Gu et al. [36] tackled the
offloading problem in large-scale systems and multiple
service clusters. Their paper compares average execution
time, latency, load balancing, and energy consumption,
demonstrating that the IDRQN algorithm outperforms
others. Tran-Dang and Kim [56] proposed a dynamic col-
laborative task offloading (DCTO) algorithm to reduce
execution time delays in fog systems. The algorithm has
two main components: a task division technique and
parallel execution. It seeks to identify the optimal tar-
get server for offloading among the servers in four lay-
ers. However, the algorithm does not prioritize sensitive
applications over others.

Page 7 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

In [19], a dynamic energy resource allotment (DERA)
technique that combines oppositional sparrow search
(OSS) with the gravitational search algorithm (GSA) is
introduced. DERA aims to improve energy efficiency and
overall computing cost in FC environments, focusing on
LB by reducing broadband costs, duration, and energy
consumption. The proposed algorithm includes four lay-
ers: terminal servers, FC, cloud computing, and applica-
tions. The fog layer’s controller module coordinates these
layers. The DERA algorithm outperforms the DRAM
algorithm by 6.96 percent in resource management
through LB in most experiments. However, DERA does
not prioritize sensitive applications and follows a central-
ized approach, which may limit flexibility and reliability.

Hussein and Mousa [22] introduced two task-offload-
ing algorithms using nature-inspired meta-heuristic
schedulers: ant colony optimization (ACO) and parti-
cle swarm optimization (PSO). They aim to minimize
task response times while considering network latency,
bandwidth, and fog server loads. Comparing these algo-
rithms with the round-robin (RR) approach in extensive
experiments, the ACO-based scheduler notably improves
IoT task execution times. This ACO algorithm considers
completion deadlines and optimizes fog server efficiency
by finding the shortest path between the source and
resources. However, it maintains some aspects of tradi-
tional offloading methods, relying on a central server for
decision-making and processing time determination.

Lu, Wu et al. [38] proposed a resource provision-
ing strategy to reduce the total mandatory cost in time-
sensitive applications. The authors conducted a study in
unlimited-processor and limited-processor fog nodes.
Their paper introduces a heuristic algorithm that deliv-
ers exceptional performance in enhancing resource pro-
visioning, even under challenging conditions. Li, Zhuang
et al. [31] introduced a Self-Similarity-based Load Bal-
ancing (SSLB) algorithm for large-scale FC systems. The
authors introduced the concept of the ’cell,’ which is sized
to address distance offloading issues. While SSLB exhib-
its excellent performance compared to other algorithms,
it does not offer advantages for time-sensitive applica-
tions (TSA), which have numerous restrictions. Addi-
tionally, the algorithm enforces uniform cell sizes, leading
cells to be allocated to servers that may be located at a
distance.

The previous Section discussed various LB solutions
summarized in Table 1. These solutions primarily aim to
mitigate the impacts of dynamic offloading rather than
addressing the root cause of the problem. Despite their
use of innovative technologies, they often entail hidden
costs that can create an inconspicuous burden.

This section deeply studies the behaviour of the related
work solution to select suitable vital techniques, such as

static offloading, clustering, and decentralized control
systems. The proposed solution is based on collecting
some of these techniques in a simplified and scientific
way to obtain an innovative solution to the research
dilemma.

A summary of the current literature review reveals
that dynamic offloading has gained widespread accept-
ance in FC. However, it is beset by inherent limitations,
leading to significant consequences. Existing research
has predominantly concentrated on improving dynamic
offloading performance and catering to time-sensitive
applications. Nonetheless, a noticeable gap exists in the
realm of integrated solutions that can effectively address
the inherent challenges of dynamic offloading, particu-
larly those concerning offloading decisions and distant
offloading.

This work aims to bridge these gaps and propel LB
capabilities to new heights within the FC environment.
Achieving this goal necessitates the development of a
novel offloading strategy capable of surmounting these
formidable challenges, as will be explained in the next
section.

Hybrid approach to enhance load balancing
In this Section, we dive deeper into the complexities of
LB for FC and the innovative workload offloading solu-
tion we propose to solve the dilemma of the research.
Our proposed solution aims to directly address these
challenges by providing an efficient offloading strategy
that combines algorithms and real-time analytics to make
informed task allocation decisions. By optimizing LB
at the edge, we aim to optimize resource usage, reduce
latency, and provide a smooth and responsive experience
for end users and servers.

As mentioned, many challenges and difficulties persist
in fog load balancing, including network congestion, dis-
tant offloading, inflation of decision time issues, which
drove us to create the hybrid offloading solution. The
design of this proposed algorithm adheres to the follow-
ing main guiding principles to address some of the short-
comings observed in prevalent algorithms:

•	 Decision time: Despite the minimal impact of off-
loading decisions individually, they occur con-
tinuously across affected servers. To mitigate these
effects, a novel offloading approach is followed, partly
inspired by static offloading principles. The proposed
resolution must utilise the static behaviour in select-
ing process of target server without consume time
to pick up the destination server. At the same time,
it must avoid falling in the drawbacks of static off-
loading. The hybrid approach plays a crucial role in
minimizing the consequences of offloading decisions.

Page 8 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

Ta
bl

e 
1 

Co
m

pa
ris

on
 o

f r
el

at
ed

 w
or

k

A
ut

ho
rs

Co
nt

ri
bu

tio
ns

O
ffl

oa
di

ng
-in

O
ffl

oa
di

ng
 A

pp
ro

ac
h

Cl
us

t
TS

A
Co

nt
ro

l S
ys

te
m

M
et

ri
cs

Pr
os

/C
on

s

Jia
ng

, C
he

n
et

 a
l.

[2
5]

O
ffl

oa
di

ng
 d

is
-

pa
tc

he
r a

nd
 a

n
en

er
gy

-
effi

ci
en

t o
ffl

oa
di

ng

de
ci

si
on

 m
ec

ha
ni

sm

Fo
g

no
de

s
Fi

nd
 th

e
op

tim
um

 d
es

ti-
na

tio
n

se
rv

er
 a

ft
er

 s
tu

dy
-

in
g

th
e

offl
oa

di
ng

 c
os

t-

D
yn

am
ic

N
o

Ye
s

D
ec

en
tr

al
iz

ed
Re

sp
on

se
 ti

m
e,

 E
ne

rg
y

co
ns

um
pt

io
n

Th
e

al
go

rit
hm

 c
os

ts

th
e

sy
st

em
 a

 h
ig

h
nu

m
be

r
of

 e
xc

ha
ng

ed
 m

es
sa

ge
s

to
 e

xp
lo

re
 th

e
su

ita
bl

e
se

rv
er

 fo
r o

ffl
oa

di
ng

Eb
ra

hi
m

 a
nd

 H
afi

d
[1

5]
A

n
LB

 a
lg

or
ith

m
 b

as
ed

on

 R
ei

nf
or

ce
m

en
t L

ea
rn

-
in

g
(R

L)
, D

D
Q

N

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
In

te
lli

ge
nt

ly
 d

is
tr

ib
ut

in
g

w
or

kl
oa

ds
 m

in
im

iz
es

w

ai
tin

g
de

la
ys

 fo
r I

oT

w
or

kl
oa

ds
 in

 d
yn

am
ic

en

vi
ro

nm
en

ts

w
ith

 u
np

re
di

ct
ab

le
 tr

af
-

fic
 d

em
an

ds

Ye
s

N
o

D
is

tr
ib

ut
ed

La
te

nc
y,

 W
ai

tin
g

tim
e,

 E
xe

cu
tio

n
tim

e,

Re
sp

on
se

 ti
m

e

Th
e

au
th

or
 d

oe
s

no
t s

ol
ve

th

e
in

he
re

nt
 is

su
es

 o
f t

ra
-

di
tio

na
l o

ffl
oa

di
ng

A
lb

al
aw

i,
A

lk
ay

al
 e

t a
l.

[2
]

PS
O

SV
R:

 b
as

ed

on
 a

 m
an

y-
ob

je
ct

iv
e

Pa
rt

ic
le

 S
w

ar
m

 O
pt

im
iz

a-
tio

n
(P

SO
) a

lg
or

ith
m

w

ith
 S

up
po

rt
 V

ec
to

r
Re

gr
es

si
on

 (S
VR

)

Fo
g

no
de

s
D

yn
am

ic
- A

I
N

o
N

o
Ce

nt
ra

liz
ed

- T
he

 c
on

tr
ol

un

it
is

 in
 th

e
Fo

g
la

ye
r

–
FS

M

Re
sp

on
se

 ti
m

e,
 E

ne
rg

y
co

ns
um

pt
io

n,
 R

es
ou

rc
e

ut
ili

za
tio

n,
 a

nd
 T

hr
ou

gh
-

pu
t

Th
e

au
th

or
s

ha
ve

no

t g
iv

en
 a

n
ad

va
nt

ag
e

in
 e

xe
cu

tio
n

fo
r t

im
e-

se
ns

iti
ve

 a
pp

lic
at

io
ns

or

 d
is

ta
nc

e
offl

oa
di

ng
.

Th
e

ar
ch

ite
ct

ur
e

ha
s

lo
w

sc

al
ab

ili
ty

Lu
, G

u
et

 a
l.

[3
6]

D
RL

 is
 b

as
ed

on

 th
e

im
pr

ov
ed

 ID
RQ

N

al
go

rit
hm

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
D

RL
 is

 p
ro

po
se

d
fo

r o
ff-

lo
ad

in
g

in
 la

rg
e-

sc
al

e
he

te
ro

ge
ne

ou
s

M
EC

w

ith
 m

ul
tip

le
 s

er
vi

ce

no
de

s
an

d
ta

sk
 d

ep
en

d-
en

ci
es

Ye
s

Ye
s

D
ec

en
tr

al
iz

ed
En

er
gy

 c
on

su
m

pt
io

n,

lo
ad

 b
al

an
ci

ng
, l

at
en

cy
,

an
d

av
er

ag
e

ex
ec

ut
io

n

Th
e

st
ud

y
ex

pl
or

es
 T

SA

an
d

di
st

an
ce

 o
ffl

oa
di

ng

bu
t e

m
pl

oy
s

a
tr

ad
iti

on
al

ap

pr
oa

ch
 th

at
 m

ay
 re

su
lt

in
 u

nn
ot

ic
ed

 d
el

ay
s

Tr
an

-D
an

g
an

d
Ki

m
 [5

7]
Pr

op
os

in
g

D
C

TO
,

a
dy

na
m

ic
 c

ol
la

bo
ra

tiv
e

ta
sk

 o
ffl

oa
di

ng
 a

lg
or

ith
m

Fo
g

no
de

s
U

si
ng

 p
ar

tit
io

ne
d

ta
sk

s
an

d
pa

ra
lle

l c
om

pu
ta

-
tio

n

N
o

N
o

D
ec

en
tr

al
iz

ed
A

ve
ra

ge
 o

f t
as

k
ex

ec
u-

tio
n

de
la

y
an

d
ut

ili
za

tio
n

ra
tio

 o
f f

og
s

Th
e

au
th

or
s

di
d

no
t g

iv
e

an
 a

dv
an

ta
ge

 fo
r s

en
si

tiv
e

ap
pl

ic
at

io
ns

 o
r d

is
ta

nc
e

offl
oa

di
ng

G
ow

ri
an

d
Ba

ra
ni

dh
ar

an

[1
9]

A
 d

yn
am

ic
 e

ne
rg

y
re

so
ur

ce
 a

llo
tm

en
t

(D
ER

A
) t

ec
hn

iq
ue

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
Th

e
pr

op
os

ed
 a

lg
or

ith
m

us

ed
 tw

o
al

go
rit

hm
s

to
 fi

nd
 th

e
op

tim
um

ta

rg
et

 s
er

ve
r

N
o

N
o

Ce
nt

ra
liz

ed
- T

he
 c

on
tr

ol

un
it

is
 lo

ca
te

d
in

 th
e

Fo
g

la
ye

r—
Co

nt
ro

lle
r

Br
oa

db
an

d
co

st
s,

du
ra

tio
n,

 a
nd

 e
ne

rg
y

co
ns

um
pt

io
n

Th
e

al
go

rit
hm

 s
ho

w
s

ou
ts

ta
nd

in
g

re
su

lts
,

am
on

g
ot

he
rs

. H
ow

-
ev

er
, i

t i
gn

or
es

 s
en

si
tiv

e
ap

pl
ic

at
io

ns
 a

nd
 d

is
ta

nc
e

offl
oa

di
ng

H
us

se
in

 a
nd

 M
ou

sa
 [2

2]
Tw

o
na

tu
re

-in
sp

ire
d

m
et

a-
he

ur
is

tic
 s

ch
ed

ul
-

er
s,

na
m

el
y

an
t c

ol
on

y
op

tim
iz

at
io

n
(A

CO
)

an
d

pa
rt

ic
le

 s
w

ar
m

op

tim
iz

at
io

n
(P

SO
),

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
Th

e
pr

op
os

ed
 a

lg
or

ith
m

co

ns
id

er
s

th
e

ne
tw

or
k

la
te

nc
y

an
d

th
e

se
rv

ic
e

ra
te

 o
f t

he
 fo

g
no

de
s

N
o

N
o

Ce
nt

ra
liz

ed
- T

he
 c

on
tr

ol

un
it

is
 lo

ca
te

d
in

 th
e

Fo
g

la
ye

r –
Fo

g
Co

nt
ro

lle
r

N
od

e

Co
m

m
un

ic
at

io
n

co
st

an

d
Re

sp
on

se
 ti

m
e

Th
e

au
th

or
s

do
 n

ot
 p

rio
r-

iti
ze

 th
e

cr
iti

ca
l a

pp
lic

at
io

n
to

 b
e

ex
ec

ut
ed

 lo
ca

lly
.

M
or

eo
ve

r,
th

ey
 ig

no
re

ot

he
r c

rit
ic

al
 p

ro
bl

em
s

Page 9 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

Ta
bl

e 
1 

(c
on

tin
ue

d)

A
ut

ho
rs

Co
nt

ri
bu

tio
ns

O
ffl

oa
di

ng
-in

O
ffl

oa
di

ng
 A

pp
ro

ac
h

Cl
us

t
TS

A
Co

nt
ro

l S
ys

te
m

M
et

ri
cs

Pr
os

/C
on

s

Li
, Z

hu
an

g
et

 a
l.

[3
1]

A
 s

el
f-s

im
ila

rit
y-

ba
se

d
lo

ad
 b

al
an

ci
ng

 (S
SL

B)

m
ec

ha
ni

sm
 fo

r l
ar

ge
-

sc
al

e
FC

Fo
g

no
de

s
ad

dr
es

s
th

e
LB

 c
ha

l-
le

ng
es

 c
au

se
d

by
 fo

g’
s

‘la
rg

e-
sc

al
e’

ch
ar

ac
te

ris
tic

th

ro
ug

h
cl

us
te

rin
g

Ye
s

Ye
s

D
ec

en
tr

al
iz

ed
Ex

ec
ut

io
n

tim
e,

 c
lu

st
er

-
in

g
ov

er
he

ad
Ev

en
 th

ou
gh

 S
SL

B
pr

es
en

ts
 m

an
y

fe
at

ur
es

, i
t

fa
ce

s
th

e
in

he
re

nt
 is

su
es

of

 p
re

va
le

nt
 o

ffl
oa

di
ng

,
su

ch
 a

s
de

ci
si

on
 ti

m
e

an
d

m
es

sa
ge

s

Lu
, W

u
et

 a
l.

[3
8]

Tw
o

sc
en

ar
io

s
ar

e
co

n-
si

de
re

d:
 U

nl
im

ite
d

pr
o-

ce
ss

or
 fo

g
no

de
s

(U
PF

N
)

an
d

lim
ite

d
pr

oc
es

so
r

fo
g

no
de

s
(L

PF
N

)

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
m

in
im

iz
e

th
e

to
ta

l
m

on
et

ar
y

co
st

 b
y

co
n-

si
de

rin
g

th
e

de
ad

lin
e

an
d

ca
pa

ci
ty

 c
on

st
ra

in
ts

N
o

Ye
s

fo
g

no
de

s’
di

st
rib

ut
io

ns

ar
e

co
nc

en
tr

at
ed

A
ve

ra
ge

 c
os

t
an

d
M

ak
es

pa
n

Th
e

m
an

us
cr

ip
t d

oe
s

no
t fi

nd
 a

 s
ol

ut
io

n
fo

r l
ar

ge
-s

ca
le

 n
et

w
or

ks

an
d

ot
he

r p
he

no
m

en
a

in
 d

yn
am

ic
 o

ffl
oa

di
ng

Sa
rm

a,
 K

um
ar

 e
t a

l.
[4

9]
A

 s
m

ar
t g

at
ew

ay

as
 a

 lo
ad

 b
al

an
ce

r
in

 a
 fo

g
en

vi
ro

nm
en

t

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
Th

e
au

th
or

s
pr

op
os

ed

a
sm

ar
t g

at
ew

ay

th
at

 c
on

tr
ol

s
th

e
ar

riv
al

ta

sk
s

w
ith

 m
in

im
um

 c
os

t

N
o

N
o

Ce
nt

ra
liz

ed
-—

Th
e

co
nt

ro
l u

ni
t i

s
lo

ca
te

d
in

 th
e

Fo
g

la
ye

r –
Sm

ar
t

ga
te

w
ay

N
et

w
or

k
de

la
y

an
d

Co
m

pu
tin

g
tim

e
D

es
pi

te
 th

e
ou

tc
om

es

of
 th

e
ce

nt
ra

liz
ed

 s
ys

te
m

,
th

e
pr

op
os

ed
 s

ol
ut

io
n

di
d

no
t c

on
si

de
r o

th
er

in

he
re

nt
 is

su
es

 o
f o

ffl
oa

d-
in

g
co

st
s

C
ha

kr
ab

or
ty

an

d
M

az
um

da
r [

9]
H

yb
rid

 m
et

ah
eu

ris
tic

G

re
ed

y
Ra

nd
om

iz
ed

A

da
pt

iv
e

Se
ar

ch

Pr
oc

ed
ur

e
an

d
G

en
et

ic

A
lg

or
ith

m
 (G

RA
SP

-G
A

)

C
lo

ud
 a

nd
 F

og
 S

er
ve

rs
H

yb
rid

 m
et

ah
eu

ris
tic

an

d
ca

pa
ci

ty
-b

as
ed

D

yn
am

ic
-A

I f
or

 d
yn

am
ic

ed

ge
 s

er
ve

r s
el

ec
tio

n
in

 ta
sk

 o
ffl

oa
di

ng

Ye
s

Ye
s

Ce
nt

ra
liz

ed
. T

he

co
nt

ro
l u

ni
t i

s
lo

ca
te

d
in

 th
e

cl
ou

d
la

ye
r

To
ta

l e
xe

cu
tio

n
tim

e
an

d
en

er
gy

 c
on

su
m

p-
tio

n

Th
e

au
th

or
s

di
d

no
t s

tu
dy

th

e
im

pa
ct

 o
f d

is
ta

nc
e

offl
oa

di
ng

 o
n

cr
iti

ca
l a

pp
li-

ca
tio

ns
. A

ss
ig

ni
ng

 s
en

si
tiv

e
ap

pl
ic

at
io

ns
 to

 fo
g

se
rv

er
s

is
 a

 b
et

te
r a

pp
ro

ac
h

de
sp

ite
 th

e
im

pr
es

si
ve

re

su
lts

 o
f t

he
 p

ro
po

se
d

al
go

rit
hm

s

H
yb

O
ff

(T
he

 p
ro

po
se

d
al

go
rit

hm
)

Re
al

 lo
w

-c
os

t h
yb

rid

offl
oa

di
ng

 a
pp

ro
ac

h
Fo

g
La

ye
r

Ea
ch

 h
ea

vy
 d

ev
ic

e
fo

rw
ar

d
th

e
ex

ce
ed

ed

ta
sk

s
to

 it
s

co
m

pl
em

en
t

de
vi

ce
 in

 th
e

ce
ll

Ye
s

Ye
s

D
ec

en
tr

al
iz

ed
. T

he
 c

en
-

tr
al

 c
on

tr
ol

 u
ni

t i
s

in
 fo

g
la

ye
r

U
til

iz
at

io
n

of
 c

en
tr

al

pr
oc

es
si

ng
 u

ni
t

A
dv

an
ta

ge
s:

It
se

ek
s

to
 g

ai
n

pe
rf

or
m

an
ce

fro

m
 s

ta
tic

 a
nd

 d
yn

am
ic

offl

oa
di

ng
D

is
ad

va
nt

ag
e:

 it
 c

an
-

no
t w

or
k

eff
ec

tiv
el

y
w

ith
in

 lo
ad

ed
 c

el
ls

Page 10 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

Moreover, since the offloading process has time and
network traffic costs, the proposed algorithm com-
pels fog servers to serve locally as much as possible,
meeting the requirements of time-sensitive applica-
tions. Thus, following the static offloading approach
and local execution (at the leaf server) are the keys to
enhancing the system’s decision time.

•	 Distance offloading: While increasing the number of
fog servers enhances system availability, it can nega-
tively affect dynamic offloading. The proposed algo-
rithm mitigates distant offloading issues by grouping
distributed servers into sets of cells. The clustering
concept ensures that all adjacent servers interact
with each other. Additionally, forcing leaf servers to
execute sensitive applications to be performed locally
decreases the number of offloaded tasks across the
network.

•	 Network congestion: As we have explained the rea-
son for and consequences of network congestion,
HybOff’s strategy will be depicted here. To do that,
the HybOff model will utilize static behaviour again
with the clustering technique. Both techniques will
reduce the number of exchanged messages across the
network.

•	 Flexibility: Given the decentralized behaviour of fog
servers, where servers can randomly connect to or
leave the fog environment, it is crucial to design a
flexible mechanism that instantly reflects the status
of connected and reconnected servers. Flexibility

is enhanced by identifying a central server in each
cluster that tracks clustered servers as they join or
leave. Much research uses this feature. However, no
research utilizes all of these features in one work.

This work introduces the Hybrid Offloading (HybOff)
algorithm, which aims to enhance LB efficiency and
resource utilization in fog networks. The development
of this hybrid offloading approach was motivated by
the persistent challenges and difficulties outlined in the
problem statement. Dynamic offloading mitigates these
issues but has drawbacks: network congestion, high deci-
sion latency, and inefficiency with increased servers and
distant offloading. These challenges are critical for time-
sensitive applications like healthcare. HybOff addresses
these issues to provide adequate load balancing. Even
though the techniques used existed before, up to our
knowledge, studies have yet to propose this resolution as
we used. Figure 3 illustrates the estimated costs associ-
ated with prevalent offloading and the essential features
it provides.

Problem formulation and terminology
At the outset, Table 2 presents the essential notations
used in this work to facilitate the reading.

LB in fog networks demands innovative task alloca-
tion for end-user service requests, which are transformed
into applications, underscoring the need for efficient task
management [39]. In this context, this work adopts the

Fig. 3  Prevalent offloading, costs, and solutions

Page 11 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

assumption that the fog layer consists of a single level
of fog servers with no vertical dimension, utilizing only
the horizontal dimension for offloading. Additionally, we
consider the fog layer to comprise W fog servers, denoted
as Fn1 to Fnw, alongside n applications represented as
cloud services.

In this work, we categorize applications based on their
task partitioning. Light applications that are not par-
titioned into multiple tasks classified as lightweight or
time-sensitive applications (TSA) with a restrict deadline
requirements. On the other hand, applications with mul-
tiple tasks are categorized as Heavy applications (HA).
Each HA, upon reception by the fog server, can be subdi-
vided into a group of subtasks, as shown below:

Each HA is divided into subtasks, such as AppTskxi1
(the 1st subtask in the application i assigned to Fnx ),
AppTsk

y
i2 (the 2nd subtask in the application i assigned

to Fny ), and so on, with AppTskziq representing the qth

(1)App = App1,App2,...,Appn

(2)Appi =
{

AppTskxi1,AppTsk
y
i2,,AppTsk

z
iq

}

subtask assigned to Fnz . However, although there is a
possibility to process the (n + 1)th subtask before nth
subtask, the system cannot accomplish the whole task,
application, unless receive the complete subtasks in the
origin server.

HAs are distributed to different servers for parallel
processing once the partitioning process is completed.
In contrast, TSAs are executed locally and receive the
highest priority in the server’s private queue (Q), which is
used to sort and re-sort received tasks.

In PoA, subtasks are generally queued on the system’s
servers when the server’s computing power is insufficient
to handle them immediately. For example, subtasks from
Appi are organized as follows:

It is important to note that application i is concur-
rently served by Fn4 , Fn5 , and Fn7 . In contrast, HybOff
is designed to accept application subsets from a single
server, reducing the load on network bandwidth. For

(3)Q = Q1,Q2,...,QW

(4)Appi =
{

AppTsk5i1,AppTsk
4
i2,AppTsk

7
i3

}

Table 2  Essential notations

Symbol Definition

TSA Time-sensitive application: Refers to applications with strict time constraints, where processing and response times are critical

HA Heavy application: Denotes applications that require a significant number of computational resources and are resource intensive

CPD Cooperating paired servers: Represents servers that work in tandem or cooperation, often used for LB or redundancy

SOT The Static Offloading Table is a data structure or table that contains information about how tasks are offloaded from one server to another
in a static manner

W A complete set of system fog servers: Refers to the entire collection of fog servers in the system, which collectively provide computing
resources

n Number of system applications: Represents the count of applications within the system

N Number of cells constituted after clustering: Indicates the total number of cells formed after applying a clustering algorithm or process

Qk The queue of thekth fog server: Denotes the queue or waiting line for tasks that need to be processed by the kth fog server

Fri Theith fog server: Refers to the specific or ith fog server in the system

Fn
CoDx
i

The complementary server of xth cell for Fni: Denotes the server in cell x that complements or cooperates with the ith fog server Fni

FnRU%i The utilization percentage of theith fog server: Represents the percentage of computational resources used by the ith fog server Fni

Fn
Mx
i ith fog server, which acts as a master of cell x: Refers to the ith fog server that serves as the primary or controlling server for cell x

CelSzi The number of servers inith cell: Indicates the count of servers present within the ith cell

CelRU%i The average utilization of theith cell: Denotes the percentage of resources used, on average, within the ith cell

Appi Theith application: Refers to a specific application, often in the context of multiple applications running within the system

AppTskzxy The yth task of application x computed in Fnx: Describes the task y within application x that is processed by the server Fnx
µ The theoretical difference between each consecutive server in SOT: Represents the calculated or theoretical variance or difference

between consecutive servers listed in the Static Offloading Table (SOT)

SysRU% The average system resource utilization: Denotes the mean or average utilization of resources within the system

SysLB The average load balance of the cells of the system: Represents the average distribution of computational load among the cells
in the system

Page 12 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

instance, Fn6 maintains tasks in its private queue, and it
cooperates with Fn9 , as shown in Eq. (5):

This proposed algorithm describes the workload as a
task or amount of work performed by a system, appli-
cation, or service during a specific period. Equation (6)
shows the total time consumed (TET) for the workloads
in the queue.

where, ETAppTskix
 represents the execution time in milli-

seconds (ms) per subtask, with ’x’ denoting its index. To
improve the TET, a set of tasks ( AppTskix) must be man-
aged in each server queue, where the ET cannot be
enhanced in this study (it is assumed to be fixed). There-
fore, the LB issue can be addressed by efficiently redirect-
ing the workload within each server’s queue, as described
in Eq. (5).

Except for TSAs, this study employs a fixed-price algo-
rithm for evaluating the available servers [31, 32, 53, 54].
Consequently, all servers have identical offloading costs.
HybOff prefers to select a target server with sufficient
resources, necessitating an evaluation process. Due to the
homogeneity in server specifications, a suitable metric is
utilized to identify the most appropriate servers for off-
loading. In the case of HybOff, each server’s resource uti-
lization percentage (RU%) acts as an indicator to assess
its available capacity, as computed in [21]. This metric
depends on the computing power required to execute
offloaded and local tasks. It is worth noting that HybOff
does not factor in offloading costs in its calculations, as
time-sensitive applications are executed locally [34, 35].

HybOff design
In essence, control systems in multi-processing envi-
ronments come in two forms: central and distributed.
Central control, a traditional algorithm, suffers from
reliability issues, as system failure can occur if the pri-
mary controller malfunctions [51]. Consequently, recent
research favours distributed systems, where each com-
puting unit functions independently. However, distrib-
uted systems lack certain central system advantages, like
centralized server selection based on a comprehensive
system analysis [48].

This work adopts a central-distributed control system
as the optimal solution to combine central and distrib-
uted control aspects. It achieves this by segmenting the
extensive system into autonomous mini-controlled sys-
tems, forming the HybOff algorithm. This algorithm

(5)
Q6 =

{

AppTsk6ax,AppTsk
9
bx,AppTsk

9
bz ,AppTsk

6
ay

}

(6)TETQi =
∑

x∈Qi

ETAppTskix

comprises interconnected computing cells, each housing
a cluster of adjacent fog servers governed by an elected
fog server known as the master fog server ( FnM ). Con-
versely, the other cell servers are referred to as followers.
This design empowers FnM to monitor and supervise the
performance of the followers, enhancing system flex-
ibility. Even if a cell loses connection with others, each
maintains an autonomous control system [61]. The inter-
connection of these cells forms the central-distributed
control system, a framework that facilitates the imple-
mentation of HybOff, which requires multi-cells with dis-
tributed control.

In implementing the autonomous control system, each
fog server is equipped with three modules: HybOffMoni-
tor, HybOffComm, and HybOffSched. These modules
handle monitoring, communication, and offloading, cre-
ating an independent control system for the fog serv-
ers, as depicted in Fig. 4. Table 3 details that fog servers
operate in two modes: basic and advanced. The advanced
mode is activated in the master server, while the follow-
ers remain in the primary mode.

In the basic mode, followers continuously use their
monitor module to assess their workload and report it
to the master server. The master server’s scheduler mod-
ule processes the data collected by the monitor module,
determining the offloading policy needed for task alloca-
tion. The offloading process commences once the neces-
sary information is disseminated within the cell via the
communicator module. The communicator module is
responsible for facilitating communication and message
exchange among servers within the cell. The communica-
tor module’s thread is periodically generated to ensure all
servers receive the necessary information. Additionally, it
uses heartbeat information to address churn issues that
may arise due to server crashes or new servers joining the
network [10].

In summary, each master server collects workload data
from the followers, processes it centrally, and then broad-
casts the required offloading information to the cell serv-
ers to initiate static offloading.

Hybrid framework
The HybOff algorithm’s structure comprises a network of
interconnected, distributed, and autonomously managed
fog servers referred to as cells. To initiate and operate the
proposed algorithm, several steps must be performed:

1.	 Clustering: The concept of HybOff draws inspira-
tion from the self-similarity load balancing w(SSLB)
structure, which forms segments (cells) of distrib-
uted fog servers with an equal number of fog serv-
ers [31, 32]. Unlike SSLB, HybOff does not impose
any restrictions on the similarity of cells; instead, the

Page 13 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

clustering algorithm selects cell members regardless
of their size, which mean there is no restrictions on
cell size. This behavior gives a space to HybOff to
build a cell just with adjacent servers. As depicted
in Fig. 5, this approach ensures that cells are con-
structed using adjacent servers. However, significant
benefits, such as reduced energy consumption and
increased bandwidth, can be achieved if we confine
adjacent servers in the same cluster to form cells,
thereby minimizing communication with remote
servers [15, 50]. Additionally, Li, Zhuang et al. [31]
suggest that servers within a close geographical area
tend to exhibit similar behaviour, such as server joins
or crashes [24]. Therefore, initiating a federation of
computing systems is crucial [8]. We employ the sim-
ple K-means algorithm described in [33] to build dis-
tributed cells, an algorithm known for its exceptional
performance in large-scale environments.

The design defines computing servers as the set W,
comprising m points in Euclidean space. The objective

is to partition the W servers into N sets referred to as
cells (Cel1, Cel2, Cel3, ..., CelN), each having a master.
The variable cell size enables the K-means algorithm to
discover the optimal server clustering. The size of any
cell is defined as:

where, CelSzi represents the number of fog servers in the
ith cell, which can be either odd or even. For instance, in
Fig. 5, the system consists of 19 fog servers (W = 19) as
per the clustering algorithm, they are organized into four
cells (N = 4). Each cell accommodates a different num-
ber of fog servers according to the position of servers, as
determined by Eq. (7). By the end of this step, considered
a core of the HybOff principle, the model can walk into
the next steps.

2.	 Master server: In each initialized cell, a controller server
is randomly elected to oversee cell activities [48]. It is
performed each time the master server is missing. The
FnM assumes various responsibilities, including:

(7)2 ≤ CelSzi ≤ W |∀i ∈ N

Fig. 4  Architecture of HybOff algorithms. It comprises three essential components: HybOffMonitor, HybOffComm, and HybOffSched, consistently
maintained across all fog servers [31, 32]

Table 3  Features of HybOff modules

Module Basic (Followers) Advanced (Master)

Monitoring Module Reporting the utilization percentage periodically Reading the utilization percentage of the followers periodically

Comm. Module Acknowledging and updating the target server for off-
loading process

Maintaining static offloading table policy updating to create
the list of targeted servers

Sched. Module Exchanging the server messages across the cell It works as a gateway to block internal messages
within the cell and handle the outboard messages

Page 14 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

A.	Collecting RU information from cell servers, includ-
ing its data.

B.	 Updating the offloading table in the scheduler module.
C.	Periodically broadcasting the required offloading

information within the cell.
D.	Monitoring cell servers to exclude any deactivated

servers from the offloading process.
E.	 Serving as a gateway, connecting followers with

external systems, and keeping exchanged cell mes-
sages confined within the cell, thereby preserving
system bandwidth.

For example, if the master server in a specific cell fails,
followers will lose external connections, such as those
with the cloud and offloading functions. Nevertheless,
followers can continue to perform essential computing
functions until another master is selected.

3.	 SOT Policy and CPDs: In addition to the HybOff archi-
tecture, the SOT policy plays a pivotal role in its design.
A static table is inadequate for a system that requires
flexibility. Therefore, SOT is a dynamic template within
the master’s scheduler module. It is unnecessary to
offload all fog servers in the cell; instead, SOT contains
crucial cell data, including FnRU% , the target offload-
ing server, and fog identification. The latter is a unique
number connecting to each server’s Internet Protocol
(IP) address as a reference number. Each fog server cor-
responds to an individual row in the SOT.

Algorithm 1. Building and maintaining SOT in the master server

Once the necessary data is available, SOT ranks active
fog servers in ascending order based on their resource
utilization. This approach follows an ascending pat-
tern, placing heavy servers at the end of the table and
lighter servers at the top. After sorting the cell servers,
SOT creates cooperating paired servers (CPDs). A CPD
consists of two fog servers within the same cell with
opposite resource utilization readings. The first server
has the highest reading, while the second, known as a
complementary server (CoD), has the lowest reading.
This pairing is illustrated in Fig. 6, where SysRU%

avg = 54%,
CPDs are formed by pairing opposite servers using
Algorithm 1. Equation (8) specifies the servers partici-
pating in each pair, with Celsz − i + 1 representing the
index for the fog node paired with fog node i:

Fig. 5  HybOff structure. In this centrally distributed architecture, contiguous servers are grouped as a cell. Each cell’s servers interact with one
another while choosing a master for external communication and establishing a SOT

Page 15 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

4.	 Broadcasting: After the creation of CPDs, the master
server broadcasts complementary server informa-
tion throughout the cell. The "broadcast()" function
informs the heavy cell servers about their comple-
mentary servers. In contrast, the middle server (in
the SOT when N is odd) disables the offloading func-
tion to operate independently without participating
in the offloading process, achieved through "disabOff(
)". Additionally, light followers must also disable the
offloading function to prevent the system from enter-
ing a thrashing state. In a thrashing state, all serv-
ers spend time forwarding tasks among themselves
without executing their primary functions [27]. The
HybOff algorithm avoids this state by employing the
"disabOff ()" function, which restricts specific and
unnecessary servers from forwarding tasks. However,
the function only prevents servers from offloading
within the cell, allowing them to continue offloading
outside the cell or to the cloud when necessary.

5.	 Static offloading: Heavy servers initiate offloading as
soon as they receive information about their comple-
mentary servers (Algorithm 2). They forward heavy
tasks using the Last In, Last Out (LIFO) procedure,
with priority given to all TSAs in their queue. Servers
continue to utilize their complementary servers until
they receive updated information from SOT.

Algorithm 2. Static offloading (all servers)

HybOff requires verification that heavy servers surpass
the average load of the cell. In this algorithm, offloading
occurs independently within each cell once a server is

(8)CPDi = [Fni, Fnj],where j = CelSz − i + 1 categorized as heavy. To establish the appropriate catego-
rization criteria for servers, the average utilization ratio
of each cell must first be calculated. Equation (9) provides
the formula for categorizing each cell:

where, CelRU%
i represents the average utilization ratio for

cell i, and Fnϕ is 1 if the fog server is active and 0 oth-
erwise. The cell servers will not initiate offloading until
the categorization criteria are met. In this algorithm, if
FnRU%

i ≥ CelRU% , Fni is considered a heavy server; other-
wise, it is categorized as a healthy server. This condition
deactivates the algorithm when all servers are not over-
loaded. For example, if all cell servers have a low load, no
offloading process will commence, and each server will
manage its workload locally. Thus, we can define this cell
as a balanced cell, a feature that significantly benefits net-
work bandwidth.

Let us consider an illustrative example to comprehend
the relationships among cell servers. In previous Fig. 5, if
the clustering algorithm forms a cell with five fog servers,
the first server, after ranking in the SOT, has a utilization
percentage of FnRU%

1 = ω . It is important to note that
there are variations in the utilization percentages among
the sequentially ranked servers, denoted as µ1,µ2,µ3 ,
and µ4 in our calculations. In this example, we have two
CPDs, CPD1 and CPD2 , each with a unique utilization
reading. However, to calculate the RU for the ith pair, we
need to apply the following relationship:

where CPDRU%
i represents the utilization percentage of

CPDi in the cell. Using Eq. (10), CPD1 contains Fn1 and
Fn5 , while CPD2 contains Fn2 and Fn4 . When the load
reaches the average cell load, Fn4 and Fn5 will offload
their workloads to Fn1 and Fn2 , respectively. Fn3 operates
independently as it has an adequate load. In cases where
the number of cell servers is even, all servers are included

(9)CelRU%
i =

∑CelSzi
x=1 (FnRU%

x × Fn
ϕ
x)

(CelSzi −
∑

Fnϕ)

(10)
CPDRU%

i (i,CelSzi) = 2ω +
∑i−1

a=1
µa +

∑CelSz−i

b=1
µb

Fig. 6  Static offloading table in the master server

Page 16 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

in computing pairs. The utilization percentage in each
pair is as follows:

Unfortunately, there is no mathematical relation that
can predict μ. For simplicity, we assume that the utili-
zation value between each sequential server is constant
(

µ1 = µ2 = · · · = µ(sz−1) = µ
)

 . If so, we can conclude
that: CPDRU%

1 = CPDRU%
2 = 2ω + 4µ , which represents

the utilization percentage for any CPD in the previous
example. In other words, HybOff equalizes the loaded
pairs cell-wise. This work predicts the RU% for the coop-
erative pair servers using the following formula:

Mathematically, all CPDs in the cell have the same
load. However, the load of CPDs depends on the num-
ber of fog servers in the cell. For example, after the clus-
tering algorithm builds the cells, CelaandCelb contain
6 and 13 servers, respectively. According to Eq. (13),

(11)CPDRU%
1 = 2ω + µ1 + µ2 + µ3 + µ4.

(12)CPDRU%
2 = 2ω + µ1 + µ1 + µ2 + µ3

(13)CPDRU%
(

CelSzi

)

= 2ω +

(

CelSzi − 1
)

µ

CPDRU%
a = 2ω + 5µ , and CPDRU%

b = 2ω + 12µ . This
means that the amount of shared computational load for
each CPD increases with the cell size.

The proposed algorithm
The identified drawbacks will be effectively addressed
through the integration of the cell concept within our
hybrid offloading framework. In this design, Fog serv-
ers are structured into cells, where each server pairs up
for resource sharing. Our proposed algorithm is aimed
at maintaining consistent average load levels across Fog
servers within each cell, and you can visualize the algo-
rithm’s flowchart in Fig. 7.

As depicted in the figure, this hybrid LB algorithm
capitalizes on the strengths of static and dynamic offload-
ing strategies. Our proposed algorithm brings five crucial
enhancements to fog load balancing:

•	 Reintroduction of static offloading: We are reinte-
grating the efficiency of static offloading into our
approach.

•	 Minimal message exchanges: Our algorithm mini-
mizes message exchange between servers, streamlin-
ing the LB process for greater efficiency.

Fig. 7  HybOff process flowchart

Page 17 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

•	 Reduced decision-making time: We have significantly
reduced the time required to make offloading decisions.

•	 Local management of urgent applications: Our
approach encourages servers to handle urgent appli-
cations locally, eliminating the necessity for global
allocation.

•	 Efficient network management: We employ a cell-
based approach for network management, reducing
latency, alleviating network congestion, and enhanc-
ing overall load balancing.

The subsequent Section illustrates these improvements
through a series of comprehensive experiments.

Experiments and results
Preliminary explanations
This Section assesses the proposed algorithm and dem-
onstrates how the hybrid offloading structure outper-
forms other classical LB schemes. Generally, the essential
requirement of an effective LB is to keep all the com-
puting units equally loaded by avoiding overloaded or
underloaded cases [51]. The RU% of servers are used to
evaluate the effectiveness of LB.

To demonstrate the efficiency of HybOff, we con-
sider the example depicted in Fig. 8 for a mathematical
analysis. Figure 8 (a) shows five fog servers with fixed
differences (μ) after clustering in a specific cell. The
scheduler module collects the resource utilization for
cell servers to rank them in ascending order, as shown
in Fig. 8 (b), to facilitate creating the CPDs shown in
Fig. 8 (C). These figures illustrate how opposite serv-
ers share their load while the middle server operates
independently. After a period of offloading, all cell
servers have the same load, as shown in Fig. 8 (d). This
figure proves that HybOff has the ability (mathemati-
cally and in the ideal case when μ is fixed) to balance
the usage of the resources of fog servers in the cell by
using Eq. (13).

Using Eq. (13), we find that CPDRU% equals 2ω + 4μ
for each pair, where the x for the cell servers is ω + 2μ.
Fortunately, the middle server also has the same load of
ω + 2μ. HybOff balances load by dividing the cell serv-
ers into multiple pairs and ensuring an equal distribu-
tion through sharing. HybOff successfully balances the
load and creates balanced cells by ensuring that oppo-
site servers share the load.

Fig. 8  HybOff model, Balance of resource utilization-mathematical, (a) before offloading, (b) sorted servers, (c) paired servers, and (d)
after offloading

Page 18 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

Environment description
To evaluate the proposed algorithm, three metrics are
employed 1) resource utilization ratio of the fog system,
2) loading balancing resource usage among fog servers,
and 3) system performance. Resource utilization meas-
ures the usage of all the distributed fog servers’ comput-
ing resources. LB determines the distributed tasks among
computing servers in the fog layer. The system perfor-
mance checks the efficiency of the entire algorithm.

Simulation setup
The experiment follows the algorithm described in Fig. 1,
as outlined in the work by Lu, Zheng et al. [38]. It consists
of W distributed fog servers and N created cells, which
are selected according to the clustering algorithm used
in this article. Cloud services, denoted as ’n’, are available
on all fog servers, and offloading is initiated only in cases
of computing power shortage. Tasks of varying sizes are
processed on the fog servers. The initial experiment set-
tings are summarized in Table 4:

It’s important to note that this experiment focuses
exclusively on the fog layer and does not consider the
cloud. The simulation tool used is iFogSim, which is
responsible for creating the necessary environment
(Gupta, Vahid Dastjerdi et al. 2017). The experiment
assesses various parameters across different server scales
and data sizes and examines resource utilization over
time, considering random combinations of data sizes and
scales, as detailed in Tables 5 and 6.

Fog server specifications
The specifications of the fog servers used in the experi-
ment are provided in Table 5:

Evaluation metrics
To evaluate the algorithm’s performance, we measured
RU in the described case studies using three differ-
ent schemes: the static SoA, the PoA, and our proposed
HybOff scheme. PoA is adapted from [56, 57], while
SoA is configured using classical static offloading. The
resource utilization ratio of the system in the experiment
is calculated using Eq. (14), where certain function com-
ponents from the HybOff algorithm were modified and
reused to implement SoA and PoA:

Task specifications
The specifications of the tasks used in the experiment are
detailed in Table 6:

Resource utilization
In this work, the resource utilization ratio of the sys-
tem (SysRU%) refers to the ratio between the number
of resources utilized and the total amount of system
resources. The utilized resource is any processor of fog
server which consumed more than or equaled the aver-
age cell utilization of its processing power. To do this, the
RU needs to be calculated at every detection time using
SysavgRU , Eq. (15).

where t represents the number of detection times during
the experimental period. Figure 9 (a) illustrates that the
system utilization ratio fluctuation is lower for SoA and
PoA. This is primarily because HybOff enforces coopera-
tion among opposite servers, enabling the system to tap
into previously unexplored resources and communicate
directly with the most affected servers to offload their
load. In contrast, SoA and PoA experience inefficiencies
in redistributing workload, resulting in a leakage of fully
utilized servers. Equation (16) presents the formula used
to calculate the system’s utilization during the experi-
mental period.

(14)

SysRU% =
∑N

b=1

∑CelSzb
a=1

FnRU%
a

CelSzb
, if FnRU%

a
∼= ∓5% SysRU%

Avg

(15)SysavgRU =
∑t

i=1
SysRU%

i /t,

Table 4  Initial parameters of experiment

Parameter W n ω µ ET/task

Value Up to 300 15 apps 18% 7% 3 ms

Table 5  Specifications of fog servers

Fri Capacity RAM CPU

Fn1 100 MB 7 MB 120 MHz

Fn2 150 MB 15 MB 80 MHz
.
.
.

.

.

.

.

.

.

.

.

.

Fni 200 MB 10 MB 100 MHz

Table 6  Task specifications

Process Process size Partitions Sensitivity Priority

P1 5 MB 1/1 TSA High

P21 6 MB 1/3 HA Low

P22 6 MB 2/3 HA Low

P23 9 MB 3/3 HA Low
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Page 19 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

To evaluate HybOff’s efficiency in utilizing avail-
able resources at the server level, we need to determine
the average RU under fixed fog scales and varying data
growth rates. To achieve this, different amounts of data
is generated for the same cell scales. The experiment
involved continuously increasing data generation and
monitoring the capacity of fog servers in the cell. The
average RU provides insights into the algorithm’s effec-
tiveness in leveraging the available resources. In Fig. 9
(b), the RU of fog servers in a single cell containing six
fog servers is depicted. The figure illustrates the captured
RU of cell servers at specific times. While all prevalent
algorithms achieve approximately 76% utilization of
edge resources, HybOff maintains an average of 50% in
the cell. This indicates that HybOff evenly distributes the
workload among the fog servers, unlike SoA and PoA,
which fall short in this aspect. HybOff’s advantage stems
from the clustering technique, which divides the fog serv-
ers into mini fogs. This approach allows HybOff to treat
each cell as a mini-fog system, making it easier to manage
and control. Additionally, hybrid offloading enhances RU
further.

Load balancing
To assess the effectiveness of the proposed algorithm, this
Section evaluates the level of balanced RU among servers
in the fog layer and compares it to that of SoA and PoA,
with the target level defined in [51] where all fog servers
were equally loaded. LB is defined as the percentage of
healthy fog servers in the cell, with a ± 5% threshold value
of ( SysRU%) . In this experiment, however, we considered
any server close to the average system utilization as a
healthy server. To do this, we need to count the healthy

(16)SysRU% =

∑N
i=1 Cel

RU%
i

N

server’s cell-wise during the experiment, which satisfies
the criteria previously mentioned. Eq. (14) is used to cal-
culate the RU for the HybOff algorithm, while Eq. (17) is
used to calculate the average RU for the SoA and PoA.

Figure 10 (a) depicts the percentage of fog servers
classified as balanced across various system scales, with
experiments ranging from 1 to 300 servers, all using a
fixed data size. The graph underscores HybOff’s abil-
ity to consistently maintain a high percentage of healthy
servers, closely aligning with the ideal curve. At 150 fog
servers, SoA, PoA, and HybOff achieved percentages of
64%, 88%, and 97% for balanced servers, respectively.
Impressively, HybOff continued to perform exception-
ally well even with 230 fog servers. However, the dynamic
scheme’s performance deteriorated when the number of
fog servers reached 300, revealing communication over-
head as a bottleneck.

The performance of the static approach exhibits a
decreasing slope, consistent with its strategy. Neverthe-
less, the results clearly indicate that HybOff excels in
large-scale networks, primarily because the network is
fragmented, and the central-distributed approach makes
it easier to control and maintain. In contrast to the
theoretical estimation of HybOff, which suggests effec-
tive load equalization among all computing servers, the
experimental results do not align with this mathematical
estimation. This discrepancy arises from the variable and
uncontrolled nature of μ. The uncontrolled differences
among consecutive servers diminish the performance of
HybOff.

However, standard deviation (σ) serves as a crucial
tool for assessing data dispersion. A smaller standard
deviation signifies that data points are closely clustered

(17)
SysRU% =

1

N

∑N

a=1
FnRU%

a , ifFnRU%
a

∼= ∓5%SysRU%
Avg

Fig. 9  Resource Utilization over time and changing number of servers. a Resource Utilization of the System with Changing of Time, and (b)
Resource Utilization Percentage

Page 20 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

around the central measure [41]. In this work, all algo-
rithms were tailored to maintain equal load distribu-
tion among computing servers. As previously defined,
fog servers with computing loads within the 47.5% to
52.5% range are considered healthy. In this experiment,
we tallied the number of servers loaded at approximately
50% for each class within each algorithm. Figure 10 (b)
demonstrates that HybOff exhibited the lowest standard
deviation, while SoA showed the highest. This indicates
that HybOff had the most servers meeting the balanced
criteria. Although PoA also upheld a substantial number
of balanced servers, SoA struggled to keep servers within
the target range. The performance results were 39%, 68%,
and 95% for SoA, PoA, and HybOff, respectively. All
three algorithms had the same mean value, x=17. SoA,
PoA, and HybOff had standard deviations of 20.4, 16.9,
and 9.7, respectively. Evidently, HybOff outperformed the
other algorithms.

System performance
It is essential to compare the performance of HybOff
with SoA and PoA to assess the proposed algorithm’s

effectiveness. To evaluate each system’s performance, we
analyzed the execution of time-sensitive applications.
As previously mentioned, all servers in the fog layer are
tasked with serving time-sensitive applications locally
without offloading. For resource-intensive applications,
offloading is considered only when the computing servers
are deemed fully loaded [58].

Figure 11 (a) depicts system execution time compari-
sons between HybOff, SoA, and PoA, evaluating their
efficiency across various server scales and data sizes.
HybOff exhibits notable effectiveness in handling time-
sensitive applications and ensuring resource alloca-
tion in receiving servers. It excels in resource-intensive
tasks by offloading to Complementary Servers (CoDs)
without distant offloading, outperforming other algo-
rithms. Figure 11 (b) illustrates the system execution
time for the three algorithms with a fixed amount of
generated data and an increasing number of fog servers.
Initially, with just one fog server handling all the gen-
erated tasks, all the algorithms consumed significant
time. However, as the number of fog servers increased,
each algorithm exhibited a distinct behaviour. While

Fig. 10  The percentage of healthy servers for the three algorithms with the same mean value but with different standard deviations, where (a)
is the percentage of balanced servers, and (b) it the standard deviation for algorithms

Fig. 11  TSAs’ performance evaluation with (a) different data sizes and (b) different system scales

Page 21 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

all solutions showed a declining trend, HybOff consist-
ently outperformed the others. With increasing servers,
HybOff’s performance led to reduced system execution
time. Specifically, HybOff achieved a system perfor-
mance 1.6 times and 1.4 times better than SoA and PoA,
respectively, when operating with 100 servers. This
demonstrates HybOff’s efficiency in optimizing sys-
tem performance and resource utilization as fog server
numbers increase.

Discussion
This study aimed to enhance our understanding of LB
within FC environments by introducing a novel offload-
ing algorithm called HybOff. HybOff was developed to
address the inherent challenges associated with existing
LB techniques. Our findings demonstrate that adopting
a hybrid approach that combines the strengths of both
static and dynamic algorithms significantly improves sys-
tem performance.

Key findings
Our comprehensive analysis of the experimental results,
as presented in Figs. 9, 10, and 11, has revealed several
key findings:

•	 Decision time: In a distributed computing system,
offloading is the key to elevating the computing load
in the overloaded servers. Although offloading is one
of the essential tools in this type of computing envi-
ronment, it has accumulated costs. Figs. 11 and 12
show that the total time consumed to perform the
task is low for HybOff, even with increasing tasks
or servers. This performance is for the algorithm
features that avoid the process having an extra cost.
HybOff’s hybrid approach allows for direct offload-
ing, effectively eliminating the delay associated with
decision-making in the offloading process. This
approach contributes to faster and more efficient
resource allocation.

•	 Distance offloading: Unlike other algorithms that
struggle with large-scale networks, HybOff excels
by avoiding offloading to unknown fog locations, a
characteristic more reflective of real-world FC sce-
narios. Moreover, HybOff is excellent by processing
sensitive applications at the received server by giving
advantage by avoiding offloading to this type of tasks.
However, clustering reduces latency and improves
system efficiency.

•	 Decision messages: HybOff’s static behaviour
reduces the need for current system state mes-
sages, minimizing the exchange of messages among
servers and reducing network bandwidth usage. A

hybrid approach is crucial for optimizing network
performance.

•	 Superfluous offloading: While other algorithms may
experience performance degradation when handling
time-sensitive applications (TSAs), HybOff excels
by keeping TSAs local, saving transmission time and
network resources. It also efficiently manages heavy
applications (HAs) by offloading them only to adja-
cent servers, thus minimizing network congestion.

•	 Anti-thrashing state: HybOff effectively prevents the
system from entering a thrashing state by employ-
ing the "disable offloading" function. This ensures
that underloaded servers within each area share their
resources with the most affected servers, ultimately
optimizing system utilization.

These findings align with existing literature that
underscores the effectiveness of dynamic offloading as a
strategy for LB in FC. However, our study further dem-
onstrates the viability of incorporating classical static off-
loading into modern network design. These results mark
the first direct demonstration of this hybrid approach,
offering valuable insights for future research in FC.

Limitations and future directions
Despite the promising findings, this study has identified
two potential limitations:

•	 High-load scenarios: HybOff may not operate effi-
ciently in scenarios with a substantial load within a
single cell. When all computing nodes in a cell reach
their utilization limits, the "disabOff()" function acti-
vates, leading to offloading processes across cells or
to the cloud, which may introduce undesired conse-
quences such as network congestion and distant off-
loading. Future research should explore sustainable
solutions for high-load scenarios within a single cell.

•	 Metric selection: While HybOff uses CPU load and
network state as reference metrics to assess fog
server loads, it does not consider other server met-
rics like memory usage and energy consumption.
Future investigations could consider a more compre-
hensive set of metrics for a nuanced assessment.

Implications
These findings have both theoretical and practical impli-
cations. Reviving the use of static offloading techniques,
previously deemed impractical in modern network
design, emerges as a critical consideration. Additionally,
adopting approaches like HybOff in industrial computing
platforms may help reduce unnecessary network expan-
sion and enhance system performance. In conclusion,

Page 22 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113

HybOff offers a robust and efficient computing environ-
ment for fog systems, outperforming prevalent dynamic
algorithms and providing valuable theoretical and practi-
cal insights for LB in FC scenarios. Future research can
build on these insights to address the identified limita-
tions and further advance the field of FC.

Conclusion
This work aimed to enhance the performance of critical
applications in large-scale fog networks by introducing a
novel algorithm named "HybOff". HybOff represents an
LB offloading technique that adeptly harnesses the benefits
of both static and dynamic offloading methods, resulting in
substantial performance improvements for time-sensitive
applications, regardless of network scale. The offloading
strategies generated by each algorithm in this investigation
were simulated utilizing the iFogSim platform. Through
a comparative analysis of diverse metrics encompassing
resource utilization, load distribution, and system per-
formance, we discerned the merits and demerits of each
approach. The outcomes of these algorithms affirm that,
irrespective of network size, HybOff consistently fulfills
the requisites of Application Service Dependencies (ASD).

Furthermore, the experimental results strongly cor-
roborate the efficacy of HybOff. It demonstrates a notable
reduction in the volume of offloading messages, distance
traversed, and the repercussions of offloading decisions.
These outcomes effectively mitigate the inherent defi-
ciencies encountered in traditional offloading techniques.
Notably, the proposed algorithm enhances LB by an
impressive 97%, a substantial improvement compared to
the 64% and 88% achieved by SoA and PoA, respectively.
Moreover, it elevates the average system utilization rate
by 50% and enhances system performance by 1.6 times
and 1.4 times compared to SoA and PoA, respectively.

Authors’ contributions
H.S wrote the main manuscript, performed experiments, and prepared figures.
R.S. assisted in writing and preparing the figures. F.R assisted in the analytic
and theoretical validation of the new approach. M.N reviewed the manuscript.
H.H Assistance supervised the study. T.J provide general support. M.P fully
supervised the whole study. Hamza Sulimani (Corresponding author).

Funding
This declaration is not applicable.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate.
This declaration is not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 December 2023 Accepted: 1 May 2024

References
	1.	 Aazam M, Zeadally S, Harras KA (2018) Offloading in fog computing for

IoT: Review, enabling technologies, and research opportunities. Futur
Gener Comput Syst 87:278–289

	2.	 Albalawi M, Alkayal E, Barnawi A, Boulares M (2022) Load Balancing Based
on Many-objective Particle Swarm Optimization Algorithm with Support
Vector Regression in Fog Computing. J Eng Appl Sci Technol. 4:1–10. SRC/
JEAST-170. https://​doi.​org/​10.​47363/​JEAST/​2022

	3.	 Alsharif MH, Jahid A, Kelechi AH, Kannadasan R (2023) Green IoT: A review
and future research directions. Symmetry 15(3):757

	4.	 Alzoubi YI, Gill A, Mishra A (2022) A systematic review of the purposes of
Blockchain and fog computing integration: classification and open issues.
J Cloud Comput 11(1):1–36

	5.	 Apat HK, Nayak R, Sahoo B (2023) A comprehensive review on Internet of
Things application placement in Fog computing environment. Internet
of Things 23:100866

	6.	 Bala B, Behal S (2024) AI techniques for IoT-based DDoS attack detection:
Taxonomies, comprehensive review and research challenges. Comp Sci
Rev 52:100631

	7.	 Burhan M, Alam H, Arsalan A, Rehman RA, Anwar M, Faheem M, Ashraf
MW (2023) A Comprehensive Survey on the Cooperation of Fog Comput-
ing Paradigm-based IoT Applications: Layered Architecture, Real-Time
Security Issues, and Solutions. IEEE Access 11:73303–73329

	8.	 Cao B, Li Z, Liu X, Lv Z, He H (2023) Mobility-aware multiobjective task
offloading for vehicular edge computing in digital twin environment.
IEEE J Selected Areas Commun 41(10):3046–3055

	9.	 Chakraborty S, Mazumdar K (2023) A Hybrid GRASP-GA based collabora-
tive task offloading technique in fog computing. Multimedia Tools and
Appl 83:119–148

	10.	 Chen B, Hu J, Zhao Y, Ghosh BK (2022) Finite-time velocity-free rendez-
vous control of multiple AUV systems with intermittent communica-
tion. IEEE Transactions on Systems, Man, and Cybernetics: Systems
52(10):6618–6629

	11.	 Dai X, Xiao Z, Jiang H, Lui JC (2023) UAV-assisted task offloading in vehicu-
lar edge computing networks. IEEE Trans Mob Comput 23(4):2520–2534

	12.	 Das R, Inuwa MM (2023) A review on fog computing: issues, character-
istics, challenges, and potential applications. Telematics and Informatics
Reports 10:100049

	13.	 Datta SK, Bonnet C (eds) (2017) An edge computing architecture inte-
grating virtual IoT devices. 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE), IEEE

	14.	 Dhyani D (2023) E-Health data risks & protection for public cloud: An
elderly healthcare usecase for Swedish municipality

	15.	 Ebrahim, M. and A. Hafid (2023). "Privacy-Aware Load Balancing in Fog
Networks: A Reinforcement Learning Approach." arXiv preprint arXiv:​
2301.​09497

	16.	 El Kafhali S, Tayebi M, Sulimani H (2024) An Optimized Deep Learning
Approach for Detecting Fraudulent Transactions. Information 15(4):227

	17.	 Elbamby MS, Bennis M, Saad W, Latva-Aho M, Hong CS (2018) Proactive
edge computing in fog networks with latency and reliability guarantees.
EURASIP J Wirel Commun Netw 2018:1–13

	18.	 Goel GAK, Chaturvedi (2023) A Systematic Review of Task Offloading &
Load Balancing Methods in a Fog Computing Environment: Major High-
lights & Research Areas. 2023 3rd International Conference on Intelligent
Communication and Computational Techniques (ICCT), IEEE

	19.	 Gowri V, Baranidharan B (2023) Multi Objective Hybrid Load Balanc-
ing Based Optimization Algorithm for Improving Fog Computing
Performance

	20.	 Gupta A, Gupta SK (2022) A survey on green unmanned aerial vehicles-
based fog computing: Challenges and future perspective. Transactions
on Emerging Telecommunications Technologies 33(11):e4603

	21.	 Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, Edge and Fog computing environments. Software:
Practice and Experience 47(9):1275–1296

https://doi.org/10.47363/JEAST/2022
http://arxiv.org/abs/2301.09497
http://arxiv.org/abs/2301.09497

Page 23 of 23Sulimani et al. Journal of Cloud Computing (2024) 13:113 	

	22.	 Hussein MK, Mousa MH (2020) Efficient task offloading for IoT-based
applications in fog computing using ant colony optimization. IEEE Access
8:37191–37201

	23.	 Jebur TK (2023) Greening the internet of things: A comprehensive review
of sustainable iot solutions from an educational perspective. Indonesian
Journal of Educational Research and Technology 3(3):247–256

	24.	 Jiang H, Xiao Z, Li Z, Xu J, Zeng F, Wang D (2020) An energy-efficient
framework for internet of things underlaying heterogeneous small cell
networks. IEEE Trans Mob Comput 21(1):31–43

	25.	 Jiang Y-L, Chen Y-S, Yang S-W, Wu C-H (2018) Energy-efficient task
offloading for time-sensitive applications in fog computing. IEEE Syst J
13(3):2930–2941

	26.	 Jiang Y, Li C, Zhang Y, Zhao R, Yan K, Wang W (2021) Data-driven method
based on deep learning algorithm for detecting fat, oil, and grease (FOG)
of sewer networks in urban commercial areas. Water Res 207:117797

	27.	 Kaur K, Sachdeva M (2020) Fog computing in IoT: An overview of new
opportunities. Proceedings of ICETIT 2019:59–68

	28.	 Khan AA, Laghari AA, Shaikh ZA, Dacko-Pikiewicz Z, Kot S (2022) Internet
of Things (IoT) security with blockchain technology: A state-of-the-art
review. IEEE Access 10:122679–122695

	29.	 Kuempel CD, Adams VM, Possingham HP, Bode M (2018) Bigger or
better: the relative benefits of protected area network expansion and
enforcement for the conservation of an exploited species. Conserv Lett
11(3):e12433

	30.	 Kumar MGV, Karunakaran S, Chandre S, Godi RK, Manirajkumar P, Balaram
A (2023) Implementation of Microgrid Digital Twin System for Unmanned
Vehicles with Cloud Computing Techniques. SN Computer Science
4(5):566

	31.	 Li C, Zhuang H, Wang Q, Zhou X (2018) SSLB: self-similarity-based load
balancing for large-scale fog computing. Arab J Sci Eng 43(12):7487–7498

	32.	 Li Q-K, Lin H, Tan X, Du S (2018) H∞ consensus for multiagent-based
supply chain systems under switching topology and uncertain
demands. IEEE Transactions on Systems, Man, and Cybernetics: Systems
50(12):4905–4918

	33.	 Likas A, Vlassis N, Verbeek JJ (2003) The global k-means clustering algo-
rithm. Pattern Recogn 36(2):451–461

	34.	 Liu C, Wu T, Li Z, Ma T, Huang J (2022) Robust online tensor completion
for IoT streaming data recovery. IEEE transactions on neural networks and
learning systems 34(12):10178–10192

	35.	 Liu J, Li G, Huang Q, Bilal M, Xu X, Song H (2022) Cooperative resource
allocation for computation-intensive IIoT applications in aerial comput-
ing. IEEE Internet Things J 10(11):9295–9307

	36.	 Lu H, Gu C, Luo F, Ding W, Liu X (2020) Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforce-
ment learning. Futur Gener Comput Syst 102:847–861

	37.	 Lu J, Osorio C (2018) A probabilistic traffic-theoretic network load-
ing model suitable for large-scale network analysis. Transp Sci
52(6):1509–1530

	38.	 Lu S, Wu J, Wang N, Duan Y, Liu H, Zhang J, Fang J (2023) “Resource provi-
sioning in collaborative fog computing for multiple delay‐sensitive users.”
Software: Practice and Experience 53(2):243–262

	39.	 Lyu T, Xu H, Zhang L, Han Z (2023) Source selection and resource alloca-
tion in wireless powered relay networks: an adaptive dynamic program-
ming based approach. IEEE Internet Things J 11(5):8973–8988

	40.	 Ma J, Hu J (2022) Safe consensus control of cooperative-competitive
multi-agent systems via differential privacy. Kybernetika 58(3):426–439

	41.	 Martinez MN, Bartholomew MJ (2017) What does it “mean”? A review of
interpreting and calculating different types of means and standard devia-
tions. Pharmaceutics 9(2):14

	42.	 Meurisch, C., A. Seeliger, B. Schmidt, I. Schweizer, F. Kaup and M. Mühl-
häuser (2015). Upgrading wireless home routers for enabling large-scale
deployment of cloudlets. Mobile Computing, Applications, and Services:
7th International Conference, MobiCASE 2015, Berlin, Germany, Novem-
ber 12–13, 2015, Revised Selected Papers 7, Springer.

	43.	 Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ, Polakos PA
(2017) A comprehensive survey on fog computing: State-of-the-art
and research challenges. IEEE communications surveys & tutorials
20(1):416–464

	44.	 Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: Funda-
mental, network applications, and research challenges. IEEE Communica-
tions Surveys & Tutorials 20(3):1826–1857

	45.	 Mutlag AA, Abd Ghani MK, Mohd O, Abdulkareem KH, Mohammed MA,
Alharbi M, Al-Araji ZJ (2023) A new fog computing resource management
(FRM) model based on hybrid load balancing and scheduling for critical
healthcare applications. Physical Communication 59:102109

	46.	 Pavlovic D (2008) Network as a computer: ranking paths to find flows.
Springer, International Computer Science Symposium in Russia

	47.	 Qu Z, Liu X, Zheng M (2022) Temporal-Spatial Quantum Graph Con-
volutional Neural Network Based on Schrödinger Approach for Traffic
Congestion Prediction. IEEE Trans Intell Transp Syst 24(8):8677–8686

	48.	 Saeik F, Avgeris M, Spatharakis D, Santi N, Dechouniotis D, Violos J,
Leivadeas A, Athanasopoulos N, Mitton N, Papavassiliou S (2021) Task
offloading in Edge and Cloud Computing: A survey on mathemati-
cal, artificial intelligence and control theory solutions. Comput Netw
195:108177

	49.	 Sarma B, Kumar R, Tuithung T (2019) Fog Computing: An Enhanced
Performance Analysis Emulation Framework for IoT with Load Balancing
Smart Gateway Architecture. IEEE, 2019 International Conference on
Communication and Electronics Systems (ICCES)

	50.	 Sethi V, Pal S (2023) FedDOVe: A Federated Deep Q-learning-based
Offloading for Vehicular fog computing. Futur Gener Comput Syst
141:96–105

	51.	 Sulimani H, Alghamdi WY, Jan T, Bharathy G, Prasad M (2021) Sustain-
ability of Load Balancing Techniques in Fog Computing Environment.
Procedia Computer Science 191:93–101

	52.	 Sulimani H, Sajjad AM, Alghamdi WY, Kaiwartya O, Jan T, Simoff S, Prasad
M (2022) Reinforcement optimization for decentralized service place-
ment policy in IoT-centric fog environment. Transactions on Emerging
Telecommunications Technologies 34(11):e4650

	53.	 Sun G, Li Y, Liao D, Chang V (2018) Service function chain orchestration
across multiple domains: A full mesh aggregation approach. IEEE Trans
Netw Serv Manage 15(3):1175–1191

	54.	 Sun G, Zhu G, Liao D, Yu H, Du X, Guizani M (2018) Cost-efficient service
function chain orchestration for low-latency applications in NFV net-
works. IEEE Syst J 13(4):3877–3888

	55.	 Tang Q, Xie R, Yu FR, Huang T, Liu Y (2020) Decentralized computation
offloading in IoT fog computing system with energy harvesting: A dec-
POMDP approach. IEEE Internet Things J 7(6):4898–4911

	56.	 Tran-Dang H, Kim D.-S. (2023) Bandit Learning for Distributed Task Off-
loading in Fog Computing Networks: Literature Review, Challenges, and
Open Research Issues. Springer, International Conference on Network-
Based Information Systems

	57.	 Tran-Dang H, Kim D-S (2023) Dynamic collaborative task offloading for
delay minimization in the heterogeneous fog computing systems. Jour-
nal of Communications and Networks 25(2):244–252

	58.	 Xiao Z, Shu J, Jiang H, Lui JC, Min G, Liu J, Dustdar S (2022) Multi-objective
parallel task offloading and content caching in D2D-aided MEC networks.
IEEE Trans Mob Comput 22(11):6599–6615

	59.	 Xie H, Ding D, Zhao L, Kang K, Liu Q (2024) A two-stage preference driven
multi-objective evolutionary algorithm for workflow scheduling in the
Cloud. Expert Syst Appl 238:122009

	60.	 Xu D, Liu L, Zhang N, Dong M, Leung VC, Ritcey JA (2023) Nested Hash
Access with Post Quantum Encryption for Mission-Critical IoT Communi-
cations. IEEE Internet Things J 10(14):12204–12218

	61.	 Yang D, Zhu T, Wang S, Wang S, Xiong Z (2022) LFRSNet: A robust light
field semantic segmentation network combining contextual and geo-
metric features. Front Environ Sci 10:996513

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	HybOff: a Hybrid Offloading approach to improve load balancing in fog environments
	Abstract
	Introduction
	Literature review
	Fog computing
	Challenges in task offloading in fog computing
	Network dynamics challenges
	Resource allocation challenges

	The research problem
	Related works

	Hybrid approach to enhance load balancing
	Problem formulation and terminology
	HybOff design
	Hybrid framework
	The proposed algorithm

	Experiments and results
	Preliminary explanations
	Environment description
	Simulation setup
	Fog server specifications
	Evaluation metrics
	Task specifications
	Resource utilization
	Load balancing
	System performance

	Discussion
	Key findings
	Limitations and future directions
	Implications

	Conclusion
	References

