
Sulimani et al. Journal of Cloud Computing          (2024) 13:113  
https://doi.org/10.1186/s13677-024-00663-3

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

HybOff: a Hybrid Offloading approach 
to improve load balancing in fog environments
Hamza Sulimani1,2*, Rahaf Sulimani1, Fahimeh Ramezani2, Mohsen Naderpour2, Huan Huo3, Tony Jan4 and 
Mukesh Prasad2 

Abstract 

Load balancing is crucial in distributed systems like fog computing, where efficiency is paramount. Offloading 
with different approaches is the key to balancing the load in distributed environments. Static offloading (SoA) falls 
short in heterogeneous networks, necessitating dynamic offloading to reduce latency in time-sensitive tasks. How-
ever, prevalent dynamic offloading (PoA) solutions often come with hidden costs that impact sensitive applications, 
including decision time, networks congested and distance offloading. This paper introduces the Hybrid Offloading  
(HybOff ) algorithm, which substantially enhances load balancing and resource utilization in fog networks, addressing 
issues in both static and dynamic approaches while leveraging clustering theory. Its goal is to create an uncompli-
cated low-cost offloading approach that enhances IoT application performance by eliminating the consequences  
of hidden costs regardless of network size. Experimental results using the iFogSim simulation tool show that  
HybOff significantly reduces offloading messages, distance, and decision-offloading consequences. It improves load 
balancing by 97%, surpassing SoA (64%) and PoA (88%). Additionally, it increases system utilization by an average  
of 50% and enhances system performance 1.6 times and 1.4 times more than SoA and PoA, respectively. In  
summary, this paper tries to introduce a new offloading approach in load balancing research in fog environments.

Keywords Fog computing, Load balancing, Resource management, Offloading, Time-sensitive applications

Introduction
Central computing has emerged as a prevalent concept in 
various fields in the Internet era, supported by 5G access 
networks. Central computing systems encompass tech-
nologies that empower enterprises to collect, process, 
analyze, and archive data from distributed clients world-
wide [13]. This concept has become so integral to the 

Internet that reverting to primitive, decentralized sys-
tems are no longer feasible [8, 53, 54]. In practice, cloud 
computing represents the tangible implementation of 
the central computing concept. It has gained widespread 
recognition as the ideal infrastructure for efficiently man-
aging widely distributed Internet of Things (IoT) devices 
[3]. IoT, a telecommunication system facilitating data 
exchange among interconnected objects over a public 
network, streamlines operations with minimal human 
intervention [6]. As a fundamental framework, IoT ena-
bles cloud computing to interact with the environment, 
facilitating the widespread adoption of IoT technology 
and the gradual growth of its data. However, it also pre-
sents implications for the efficiency of public networks 
[3, 28].

Numerous critical applications rely on the same pub-
lic network infrastructure, designed to support all cloud-
connected applications [16, 37]. When slowdowns occur 
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in the public network, time-sensitive applications such 
as e-health, smart grids, and unmanned vehicles, which 
have strict timing requirements for proper functioning, 
are severely affected [48]. Cloud computing often needs 
help to consistently deliver the required level of service 
for these time-sensitive applications due to the unpre-
dictable efficiency of public networks [53, 54].

To address this challenge, Cisco introduced a new layer 
seamlessly integrated into cloud computing, forming fog 
computing (FC). FC integrates storage, computing, and 
networking at the network’s edge, reducing data transfer 
to the cloud, lowering latency, and enhancing efficiency 
[5, 17]. This technology is crucial for decentralized com-
puting, especially in real-time IoT applications. However, 
the continuous growth in the number of IoT devices and 
their generated data, along with the unpredictable nature 
of distributed IoT clients, places an increasing load on 
fog servers [60].

These factors drive researchers in FC to enhance the 
resource management system, particularly the load bal-
ancing (LB) system. A wide range of LB in cloud systems 
have been proposed. However, the diverse structures of 
FC have led researchers to introduce a different type of 
LB algorithm other than the central system, cloud com-
puting. LB aims to allocate incoming tasks among serv-
ers with limited resources to prevent overloading or 
underutilizing fog resources. Effective LB management is 
vital to maintaining a stable computing environment and 
improving network availability and flexibility especially 
for time-sensitive applications [7].

A steering algorithm is required to direct user requests 
to the most suitable fog server based on application 
requirements to achieve effective fog load balancing. 
Offloading is the primary mechanism for relieving over-
loaded servers, thus balancing load in a distributed sys-
tem [18]. A well-designed resource allocation policy is 
essential for creating an effective offloading strategy to 
balance load [34, 35]. In general, there are two funda-
mental approaches to offloading: static and dynamic [48]. 
Most recent offloading algorithms favour the dynamic 
approach due to its superior features compared to the 
static algorithm [52]. However, prevalent dynamic off-
loading or prevalent offloading approach (PoA) does 
have inherent drawbacks, including decision-making 
time, increased offloading messages, and distance-related 
issues [48]. These challenges result in significant network 
costs, often considered hidden expenses. Many articles 
view these costs as a trade-off for the reliability gained 
from dynamic approaches [51].

The motivation for this research is rooted in the press-
ing need to address the formidable challenges posed by 
large-scale networks and time-sensitive issues, which, 
despite various studies on the subject [4], have yet to see a 

comprehensive solution that considers the hidden expenses 
associated with these challenges. The imperative drives the 
impetus for this research to meet the escalating demands of 
time-sensitive applications in a world characterized by the 
continuous proliferation of IoT devices. Cisco’s introduc-
tion of FC, which seamlessly integrates storage, computing, 
and networking at the network’s edge, is a notable develop-
ment [5]. With its capability to reduce data transfer to the 
cloud, diminish latency, and improve efficiency, FC repre-
sents a significant step forward. However, the critical need 
remains to establish an effective resource management 
system, particularly an LB system, to optimize the utiliza-
tion of FC resources and establish a stable environment for 
time-sensitive applications. This research aims to develop 
a solution that simultaneously tackles the challenges of 
fog load balancing for large-scale networks, particularly 
in the context of time-sensitive applications. It introduces 
a novel approach, a hybrid algorithm, designed to benefit 
from previous solutions be selecting what suits the research 
goal of creating a low-cost and highly efficient solution to 
tackle these issues simultaneously and ensure the selection 
of a suitable destination server for offloading. The research 
questions guiding this paper include:

1. How can fog load balancing be improved to effi-
ciently support time-sensitive applications, such as 
e-health and unmanned vehicles?

2. What is the impact of offloading strategies on fog 
load balancing, and how can the hidden expenses 
associated with dynamic offloading be minimized?

3. Can a hybrid load-balancing algorithm that combines 
the strengths of both static and dynamic offload-
ing approaches provide a comprehensive solution to 
these challenges?

We introduce a hybrid load-balancing algorithm that 
combines the strengths of both static and dynamic off-
loading approaches. The proposed algorithm offers five 
key contributions to fog load balancing:

1. It is reintroducing static offloading by deeply under-
standing its drawbacks to reuse it through hybrid 
offloading.

2. It minimises message exchanges generated in the 
system to satisfy the offloading requirements. Even 
though these messages are essential, the proposed 
solution utilises many techniques to keep this num-
ber at the bottom.

3. It reduces decision-making time for offloading. This 
time is one of the requirements of dynamic offloading, 
which most state-of-the-art algorithms try to trade off 
to keep it down. The proposed solution engages the 
reuse of the static technique to solve this problem.
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4. It encourages servers to handle time-sensitive appli-
cations locally, eliminating the need for global alloca-
tion. The proposed solution is designed to allow this 
application to be executed locally to avoid the com-
plicated offloading costs.

5. It efficiently manages networks of all sizes using a 
cell-based approach, reducing latency, alleviating 
network congestion, and enhancing LB. As most dis-
tributed computing systems, such as fog computing, 
can expand dramatically and make the offloading 
cost more costly and cannot be ignored, our solution 
to tackle this problem is considered an excellent con-
tribution to the field.

6. Comprehensive experiments evaluate our algorithm 
from various perspectives, illustrating its superior-
ity over other state-of-the-art fog LB algorithms in 
extensive studies.

Our work marks the implementation of the true 
essence of hybrid offloading, merging static and dynamic 
offloading behaviour. Additionally, the proposed algo-
rithm incorporates various features, including a central-
distributed control system, fog server clustering, and 
prioritization of critical applications while also address-
ing hidden expenses such as distance-based offloading, 
decision messages, and network congestion. In compari-
son to the static offloading approach (SoA) and the PoAs, 
the experiments demonstrate that the proposed algo-
rithm enhances LB by 52.1% and 38.2%, improves system 
performance by 60% and 38.8%, and increases the system 
utilization ratio by 62.4% and 42.7% compared to SoA 
and PoA, respectively.

The rest of this paper is organized as follows. The next 
Section presents the literature review. “Hybrid Approach 
to Enhance Load Balancing” section  describes the pro-
posed algorithm in detail. “Experiments and Results” sec-
tion shows the experiments and results, followed by the 
discussion and conclusion in “Discussion” and “Conclu-
sion” sections.

Literature review
In this Section, the literature review explains the foun-
dational concept of FC systems and the LB strategies 
devised to enhance offloading.

Fog computing
FC, a pivotal concept in the realm of distributed com-
puting, is engineered to support Internet of Things (IoT) 
applications efficiently, especially those demanding real-
time responses [44]. As a complement to traditional 
cloud computing, it aspires to leverage edge resources 
strategically positioned closer to end-users [12]. The 
core objective is reducing reliance on remote cloud data 

centers, reducing latency, and decreasing network band-
width requirements. Embracing FC presents various 
innovative advantages, including cost savings in cloud 
operations and fortified system stability [7].

However, the continuous proliferation of IoT devices 
and the surge in data generation has strained FC’s capac-
ity to meet performance expectations [3]. This strain is 
particularly acute in specialized applications, especially 
time-sensitive ones. Varied growth rates in user density 
across different regions have resulted in an uneven distri-
bution of workloads, causing some fog servers to become 
overloaded while others remain underutilized [23]. This 
imbalance leads to resource wastage and misalignment 
within the fog layer [19, 51]. To tackle these challenges, 
researchers have explored dynamic offloading as a poten-
tial solution [31, 32, 36, 42, 56, 57, 60]. Notwithstanding 
the merits of FC, due to inherent resource limitations 
within the fog layer, certain applications necessitate off-
loading to the cloud, emphasizing the enduring signifi-
cance of web-based computing applications [1].

To better comprehend the structure of computing net-
works in the proposed system, Fig. 1 illustrates the three 
interconnected layers. Cellular or WiFi networks are wire-
less links connecting fog servers to client servers in the 
IoT edge layer [24]. The Internet serves as the primary 
medium connecting the fog layer and the cloud [34, 35]. 
Within the fog layer, tasks are managed by surrounding 
fog servers, with results forwarded to the source server 
if necessary. The cloud layer is dedicated to specific pur-
poses, such as heavy processing or data archiving. This 
research focuses on applications predominantly processed 
within the fog layer [31, 32].

All user-sent applications adhere to a standard opera-
tional algorithm, as outlined by Mukherjee, Shu et  al. 
[44]:

1. Edge servers receive application requests from end-
users.

2. Received applications are decomposed into a set of 
sub-tasks for distribution.

Heavy fog servers either redirect the sub-tasks to idle 
fog servers for processing or add them to their process-
ing queues. The processing results are subsequently sent 
back to the original server.

Challenges in task offloading in fog computing
While FC is classified as an evolved extension of the 
cloud computing system to handle IoT-related problems 
and shortcomings at the network edge, in FC, processing 
nodes are distributed and heterogeneous. Furthermore, 
the services based on fog technology must work with 
various aspects of the restricted environment. Therefore, 
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discovering the challenges of task offloading in FC is 
essential [43]:

Network dynamics challenges

Dynamic network conditions IoT networks are fast-var-
ying access networks that produce dynamic network and 
traffic conditions. This behaviour is a substantial chal-
lenge that adds extra complexity during the task offload-
ing problem. Offloading prediction can be conjoined with 
a resource allocation mechanism at the fog level since 
the amount of resources needed for the task execution is 
directly proportional to the network traffic that will end 
up at the edge of the network.

Dynamic user behaviour In task offloading, another 
level of restriction is added by the unexpected behav-
iour of the users, which is difficult to foresee. Hence, data 
analytics and machine learning techniques should be 
used to assess the users’ behaviour and the rate of task 
generation.

Resource allocation challenges
Task offloading is extremely impacted by the resource 
allocation mechanisms determining where and how 
the offloaded tasks will be executed in a distant device. 
Therefore, the resource allocation and task offloading 
decisions are connected to be addressed together.

Partitioning decision The first and core of the task off-
loading problem is deciding which task to offload. The 
offloading algorithm contains an intelligent mechanism 
designed to decide whether to execute the generated task 

locally or to be offloaded to another device. Some associ-
ated costs are due to this partition decision of the tasks, 
such as energy consumption, task execution, and trans-
mission delay. A flawed partitioning decision may cause 
performance bottlenecks.

Resource availability The availability of the system 
resources is crucial to enhance the performance of an 
application. Although the cloud has a massive amount of 
the system, using these resources significantly delays the 
overall system. Consequently, utilizing the edge resources 
is a crucial challenge requiring an efficient management 
mechanism and resource allocation to ensure perfor-
mance requirements.

Task management At the fog layer, one of the core ben-
efits of Edge Computing is that its infrastructure is usu-
ally spread over multiple geographical sites, which gives 
the system minimal execution time. However, a meticu-
lous strategy of the task management control modules is 
required at the Edge [40].

The research problem
According to our observation, we have noticed that all 
the PoAs use the present system state theme, in which 
the heavy servers read the environment (gathering attrib-
utes) to give an offloading action to redirect the excess 
tasks to the target server. This is repeated several times 
when there is a necessity for extra resources. Obviously, 
this theme generates a high volume of exchanged mes-
sages with the peer servers; we can call it decision mes-
sages. They seek to explore unused resources to cover the 

Fig. 1 Fog computing architecture [52]
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shortage in the affected areas without any intention to 
increase the number of served servers [51].

As illustrated in Fig.  2, an infinite series of interac-
tion and offloading processes among servers will occur 
unabated due to the unchanging quantity or quality of 
physical resources in the field. These processes make the 
network situation seem to get worse over time. Keeping 
the networks congested will escalate the latency in the sys-
tem [11], which is a decline in the main objective of FC.

However, expanding the network, either partially or 
entirely, appears to be the logical solution to support 
the affected areas. Moreover, "serve more clients, earn 
more profit" is the goal of most network operators [29]. 
Expanding their coverage can increase their number 
of clients. Increasing coverage is an excellent metric by 
which to evaluate any network as an increase in network 
cover is an increase in rank. This behaviour increases the 
number of servers in the fog layer consequently entering 
the network in the state known as network oversizing in 
case the expanding has not a sufficient planning. More-
over, increasing the number of fog servers will increase 
system availability. However, it can negatively impact 

dynamic offloading. Unfortunately, dynamic offloading 
in this type of network may offload some tasks to remote 
servers because most algorithms have no limits on dis-
tance. The system outcomes will be the worst if the task 
is time sensitive. Consequently, this adds an extra bur-
den on the network bandwidth and total execution time 
due to messages travelling among remote servers. Hence, 
dynamic offloading is affected again by distant offload-
ing, networks congested, and offloading decisions, which 
makes it less effective. Although all research approaches 
pursue enhancing offloading strategies, they ignore these 
hidden costs.

However, the expansion decision may not be suitable 
if there is uncertainty about the full utilization of all fog 
servers, especially considering the varying efficiency of 
LB algorithms. Therefore, finding an efficient offloading 
strategy with a low-cost is the key for the dilemma of the 
research.

Related works
The offloading technique is a pivotal solution for LB 
aimed at conserving computing and storage resources, 

Fig. 2 Prevalent offloading process flowchart
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particularly in decentralized systems [56, 57]. A plethora 
of research efforts are dedicated to minimizing inefficien-
cies. However, prevalent task offloading schemes have 
unavoidable hidden costs due to their specific require-
ments. These costs include offloading decisions, distance 
offloading, and network congestion [48]. Conversely, low-
cost static offloading encounters numerous challenges, 
such as reliability concerns, that make it inefficient for 
use. This Section delves into relevant publications and 
prior works that validate the algorithm’s novelty, success-
fully addressing many of these obstacles.

In dynamic offloading, overloaded servers continuously 
gather data from other fog servers to distribute incom-
ing tasks among the active servers [55]. Once the system 
evaluates and processes this collected data, it makes an 
offloading decision, typically referred to as a 1-out-n pro-
cess, where it selects the optimal target server (1) from 
among the available options (n) [50]. However, this deci-
sion process leads to network congestion due to the peri-
odic exchange of critical messages known as decision 
messages [34, 35, 47]. In addition to network congestion, 
it also introduces high communication latency when 
identifying the target servers for offloading, termed deci-
sion latency [59]. While decision messages and decision 
latency may be minimal individually, they occur continu-
ally in affected areas, collectively impacting the effective-
ness of dynamic offloading when following this approach.

On the other hand, the primary goal of most network 
operators is to ’serve more clients, earn more profit’ [26]. 
Expanding their coverage can increase the number of cli-
ents they serve, making coverage expansion a valuable 
metric for evaluating any network, as it correlates with 
increased network rank [46]. While expanding the num-
ber of fog servers enhances system availability, it can have 
a negative impact on dynamic offloading. In such net-
works, dynamic offloading may offload tasks to remote 
servers, as many algorithms have no distance limits [26, 
31, 32]. This action can result in unfavourable outcomes, 
particularly for time-sensitive tasks, adding a burden on 
network bandwidth and total execution time due to mes-
sages travelling among remote servers [42]. Therefore, 
distant offloading and offloading decisions hinder the 
effectiveness of dynamic offloading.

However, there are severe consequences if the fog sys-
tem fails to deliver the expected services. Many critical 
applications that have recently emerged are time-sen-
sitive, including unmanned vehicles, healthcare, and 
the smart grid [14, 20, 30]. These applications rely on 
the fog layer for proper operation, where any delay can 
lead to catastrophic outcomes [45]. Network congestion 
is another adverse effect. The conventional offloading 
approach increases the number of messages in the net-
work due to present system state requirements (decision 

messages) and distant offloading (in some algorithms). 
Consequently, the network infrastructure can deteriorate 
rapidly [14].

Various LB algorithms and solutions have been pro-
posed. In [25], the authors introduce an energy-efficient 
offloading decision mechanism and an offloading dis-
patcher designed to balance energy consumption and 
response time for fog servers serving multiple applica-
tions in the IoT. This mechanism employs energy-aware 
cloud-fog offloading (ECFO), which aids in selecting 
the optimal target server with minimal utilization from 
the available servers. To address the issue of distant off-
loading and its associated consequences, ECFO assesses 
the cost of offloading decisions concerning bandwidth 
and energy consumption. This assessment is con-
ducted through an energy-aware module by comparing 
it with the cost of local server execution. The proposed 
algorithm is evaluated against two state-of-the-art 
algorithms, and the results demonstrate that ECFO out-
performs the others.

In [15], the authors introduce a privacy-aware LB algo-
rithm that employs reinforcement machine learning 
techniques to reduce the number of waiting tasks in the 
queues of fog nodes. The proposed algorithm, DDQN, 
does not rely on load or resource information from fog 
servers to determine the optimal server for offload-
ing. Instead, it leverages Markov theory to estimate the 
availability of free servers. This approach significantly 
enhances system performance while maintaining privacy 
at an acceptable level. Interactive experiments demon-
strate that DDQN outperforms a search-based optimiza-
tion algorithm from the literature and traditional baseline 
approaches.

Albalawi, Alkayal et al. [2] introduced a hybrid LB algo-
rithm called PSOSVR, which combines particle swarm 
optimization (PSO) with support vector regression 
(SVR). PSOSVR reduces response time and energy con-
sumption while improving resource utilization (RU) and 
throughput. The outcomes of this proposed algorithm 
notably enhance various metrics, with energy consump-
tion improving by 56%. Lu, Gu et  al. [36] tackled the 
offloading problem in large-scale systems and multiple 
service clusters. Their paper compares average execution 
time, latency, load balancing, and energy consumption, 
demonstrating that the IDRQN algorithm outperforms 
others. Tran-Dang and Kim [56] proposed a dynamic col-
laborative task offloading (DCTO) algorithm to reduce 
execution time delays in fog systems. The algorithm has 
two main components: a task division technique and 
parallel execution. It seeks to identify the optimal tar-
get server for offloading among the servers in four lay-
ers. However, the algorithm does not prioritize sensitive 
applications over others.
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In [19], a dynamic energy resource allotment (DERA) 
technique that combines oppositional sparrow search 
(OSS) with the gravitational search algorithm (GSA) is 
introduced. DERA aims to improve energy efficiency and 
overall computing cost in FC environments, focusing on 
LB by reducing broadband costs, duration, and energy 
consumption. The proposed algorithm includes four lay-
ers: terminal servers, FC, cloud computing, and applica-
tions. The fog layer’s controller module coordinates these 
layers. The DERA algorithm outperforms the DRAM 
algorithm by 6.96 percent in resource management 
through LB in most experiments. However, DERA does 
not prioritize sensitive applications and follows a central-
ized approach, which may limit flexibility and reliability.

Hussein and Mousa [22] introduced two task-offload-
ing algorithms using nature-inspired meta-heuristic 
schedulers: ant colony optimization (ACO) and parti-
cle swarm optimization (PSO). They aim to minimize 
task response times while considering network latency, 
bandwidth, and fog server loads. Comparing these algo-
rithms with the round-robin (RR) approach in extensive 
experiments, the ACO-based scheduler notably improves 
IoT task execution times. This ACO algorithm considers 
completion deadlines and optimizes fog server efficiency 
by finding the shortest path between the source and 
resources. However, it maintains some aspects of tradi-
tional offloading methods, relying on a central server for 
decision-making and processing time determination.

Lu, Wu et  al. [38] proposed a resource provision-
ing strategy to reduce the total mandatory cost in time-
sensitive applications. The authors conducted a study in 
unlimited-processor and limited-processor fog nodes. 
Their paper introduces a heuristic algorithm that deliv-
ers exceptional performance in enhancing resource pro-
visioning, even under challenging conditions. Li, Zhuang 
et  al. [31]  introduced a Self-Similarity-based Load Bal-
ancing (SSLB) algorithm for large-scale FC systems. The 
authors introduced the concept of the ’cell,’ which is sized 
to address distance offloading issues. While SSLB exhib-
its excellent performance compared to other algorithms, 
it does not offer advantages for time-sensitive applica-
tions (TSA), which have numerous restrictions. Addi-
tionally, the algorithm enforces uniform cell sizes, leading 
cells to be allocated to servers that may be located at a 
distance.

The previous Section discussed various LB solutions 
summarized in Table 1. These solutions primarily aim to 
mitigate the impacts of dynamic offloading rather than 
addressing the root cause of the problem. Despite their 
use of innovative technologies, they often entail hidden 
costs that can create an inconspicuous burden.

This section deeply studies the behaviour of the related 
work solution to select suitable vital techniques, such as 

static offloading, clustering, and decentralized control 
systems. The proposed solution is based on collecting 
some of these techniques in a simplified and scientific 
way to obtain an innovative solution to the research 
dilemma.

A summary of the current literature review reveals 
that dynamic offloading has gained widespread accept-
ance in FC. However, it is beset by inherent limitations, 
leading to significant consequences. Existing research 
has predominantly concentrated on improving dynamic 
offloading performance and catering to time-sensitive 
applications. Nonetheless, a noticeable gap exists in the 
realm of integrated solutions that can effectively address 
the inherent challenges of dynamic offloading, particu-
larly those concerning offloading decisions and distant 
offloading.

This work aims to bridge these gaps and propel LB 
capabilities to new heights within the FC environment. 
Achieving this goal necessitates the development of a 
novel offloading strategy capable of surmounting these 
formidable challenges, as will be explained in the next 
section.

Hybrid approach to enhance load balancing
In this Section, we dive deeper into the complexities of 
LB for FC and the innovative workload offloading solu-
tion we propose to solve the dilemma of the research. 
Our proposed solution aims to directly address these 
challenges by providing an efficient offloading strategy 
that combines algorithms and real-time analytics to make 
informed task allocation decisions. By optimizing LB 
at the edge, we aim to optimize resource usage, reduce 
latency, and provide a smooth and responsive experience 
for end users and servers.

As mentioned, many challenges and difficulties persist 
in fog load balancing, including network congestion, dis-
tant offloading, inflation of decision time issues, which 
drove us to create the hybrid offloading solution. The 
design of this proposed algorithm adheres to the follow-
ing main guiding principles to address some of the short-
comings observed in prevalent algorithms:

• Decision time: Despite the minimal impact of off-
loading decisions individually, they occur con-
tinuously across affected servers. To mitigate these 
effects, a novel offloading approach is followed, partly 
inspired by static offloading principles. The proposed 
resolution must utilise the static behaviour in select-
ing process of target server without consume time 
to pick up the destination server. At the same time, 
it must avoid falling in the drawbacks of static off-
loading. The hybrid approach plays a crucial role in 
minimizing the consequences of offloading decisions. 
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Moreover, since the offloading process has time and 
network traffic costs, the proposed algorithm com-
pels fog servers to serve locally as much as possible, 
meeting the requirements of time-sensitive applica-
tions. Thus, following the static offloading approach 
and local execution (at the leaf server) are the keys to 
enhancing the system’s decision time.

• Distance offloading: While increasing the number of 
fog servers enhances system availability, it can nega-
tively affect dynamic offloading. The proposed algo-
rithm mitigates distant offloading issues by grouping 
distributed servers into sets of cells. The clustering 
concept ensures that all adjacent servers interact 
with each other. Additionally, forcing leaf servers to 
execute sensitive applications to be performed locally 
decreases the number of offloaded tasks across the 
network.

• Network congestion: As we have explained the rea-
son for and consequences of network congestion, 
HybOff’s strategy will be depicted here. To do that, 
the HybOff model will utilize static behaviour again 
with the clustering technique. Both techniques will 
reduce the number of exchanged messages across the 
network.

• Flexibility: Given the decentralized behaviour of fog 
servers, where servers can randomly connect to or 
leave the fog environment, it is crucial to design a 
flexible mechanism that instantly reflects the status 
of connected and reconnected servers. Flexibility 

is enhanced by identifying a central server in each 
cluster that tracks clustered servers as they join or 
leave. Much research uses this feature. However, no 
research utilizes all of these features in one work.

This work introduces the Hybrid Offloading (HybOff) 
algorithm, which aims to enhance LB efficiency and 
resource utilization in fog networks. The development 
of this hybrid offloading approach was motivated by 
the persistent challenges and difficulties outlined in the 
problem statement. Dynamic offloading mitigates these 
issues but has drawbacks: network congestion, high deci-
sion latency, and inefficiency with increased servers and 
distant offloading. These challenges are critical for time-
sensitive applications like healthcare. HybOff addresses 
these issues to provide adequate load balancing. Even 
though the techniques used existed before, up to our 
knowledge, studies have yet to propose this resolution as 
we used. Figure  3 illustrates the estimated costs associ-
ated with prevalent offloading and the essential features 
it provides.

Problem formulation and terminology
At the outset, Table  2 presents the essential notations 
used in this work to facilitate the reading.

LB in fog networks demands innovative task alloca-
tion for end-user service requests, which are transformed 
into applications, underscoring the need for efficient task 
management [39]. In this context, this work adopts the 

Fig. 3 Prevalent offloading, costs, and solutions
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assumption that the fog layer consists of a single level 
of fog servers with no vertical dimension, utilizing only 
the horizontal dimension for offloading. Additionally, we 
consider the fog layer to comprise W fog servers, denoted 
as Fn1 to Fnw, alongside n applications represented as 
cloud services.

In this work, we categorize applications based on their 
task partitioning. Light applications that are not par-
titioned into multiple tasks classified as lightweight or 
time-sensitive applications (TSA) with a restrict deadline 
requirements. On the other hand, applications with mul-
tiple tasks are categorized as Heavy applications (HA). 
Each HA, upon reception by the fog server, can be subdi-
vided into a group of subtasks, as shown below:

Each HA is divided into subtasks, such as AppTskxi1 
(the 1st subtask in the application i assigned to Fnx ), 
AppTsk

y
i2 (the 2nd subtask in the application i assigned 

to Fny ), and so on, with AppTskziq representing the qth 

(1)App = App1,App2,...,Appn

(2)Appi =
{

AppTskxi1,AppTsk
y
i2, . . . .,AppTsk

z
iq

}

subtask assigned to Fnz . However, although there is a 
possibility to process the (n + 1)th subtask before  nth 
subtask, the system cannot accomplish the whole task, 
application, unless receive the complete subtasks in the 
origin server.

HAs are distributed to different servers for parallel 
processing once the partitioning process is completed. 
In contrast, TSAs are executed locally and receive the 
highest priority in the server’s private queue (Q), which is 
used to sort and re-sort received tasks.

In PoA, subtasks are generally queued on the system’s 
servers when the server’s computing power is insufficient 
to handle them immediately. For example, subtasks from 
Appi are organized as follows:

It is important to note that application i is concur-
rently served by Fn4 , Fn5 , and Fn7 . In contrast, HybOff 
is designed to accept application subsets from a single 
server, reducing the load on network bandwidth. For 

(3)Q = Q1,Q2,...,QW

(4)Appi =
{

AppTsk5i1,AppTsk
4
i2,AppTsk

7
i3

}

Table 2 Essential notations

Symbol Definition

TSA Time-sensitive application: Refers to applications with strict time constraints, where processing and response times are critical

HA Heavy application: Denotes applications that require a significant number of computational resources and are resource intensive

CPD Cooperating paired servers: Represents servers that work in tandem or cooperation, often used for LB or redundancy

SOT The Static Offloading Table is a data structure or table that contains information about how tasks are offloaded from one server to another 
in a static manner

W A complete set of system fog servers: Refers to the entire collection of fog servers in the system, which collectively provide computing 
resources

n Number of system applications: Represents the count of applications within the system

N Number of cells constituted after clustering: Indicates the total number of cells formed after applying a clustering algorithm or process

Qk The queue of thekth fog server: Denotes the queue or waiting line for tasks that need to be processed by the kth fog server

Fri Theith fog server: Refers to the specific or ith fog server in the system

Fn
CoDx
i

The complementary server of xth cell for Fni: Denotes the server in cell x that complements or cooperates with the ith fog server Fni

FnRU%i The utilization percentage of theith fog server: Represents the percentage of computational resources used by the ith fog server Fni

Fn
Mx
i ith fog server, which acts as a master of cell x: Refers to the ith fog server that serves as the primary or controlling server for cell x

CelSzi The number of servers inith cell: Indicates the count of servers present within the ith cell

CelRU%i The average utilization of theith cell: Denotes the percentage of resources used, on average, within the ith cell

Appi Theith application: Refers to a specific application, often in the context of multiple applications running within the system

AppTskzxy The yth task of application x computed in Fnx: Describes the task y within application x that is processed by the server Fnx
µ The theoretical difference between each consecutive server in SOT: Represents the calculated or theoretical variance or difference 

between consecutive servers listed in the Static Offloading Table (SOT)

SysRU% The average system resource utilization: Denotes the mean or average utilization of resources within the system

SysLB The average load balance of the cells of the system: Represents the average distribution of computational load among the cells 
in the system
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instance, Fn6 maintains tasks in its private queue, and it 
cooperates with Fn9 , as shown in Eq. (5):

This proposed algorithm describes the workload as a 
task or amount of work performed by a system, appli-
cation, or service during a specific period. Equation (6) 
shows the total time consumed (TET) for the workloads 
in the queue.

where, ETAppTskix
 represents the execution time in milli-

seconds (ms) per subtask, with ’x’ denoting its index. To 
improve the TET, a set of tasks ( AppTskix) must be man-
aged in each server queue, where the ET cannot be 
enhanced in this study (it is assumed to be fixed). There-
fore, the LB issue can be addressed by efficiently redirect-
ing the workload within each server’s queue, as described 
in Eq. (5).

Except for TSAs, this study employs a fixed-price algo-
rithm for evaluating the available servers [31, 32, 53, 54]. 
Consequently, all servers have identical offloading costs. 
HybOff prefers to select a target server with sufficient 
resources, necessitating an evaluation process. Due to the 
homogeneity in server specifications, a suitable metric is 
utilized to identify the most appropriate servers for off-
loading. In the case of HybOff, each server’s resource uti-
lization percentage (RU%) acts as an indicator to assess 
its available capacity, as computed in [21]. This metric 
depends on the computing power required to execute 
offloaded and local tasks. It is worth noting that HybOff 
does not factor in offloading costs in its calculations, as 
time-sensitive applications are executed locally [34, 35].

HybOff design
In essence, control systems in multi-processing envi-
ronments come in two forms: central and distributed. 
Central control, a traditional algorithm, suffers from 
reliability issues, as system failure can occur if the pri-
mary controller malfunctions [51]. Consequently, recent 
research favours distributed systems, where each com-
puting unit functions independently. However, distrib-
uted systems lack certain central system advantages, like 
centralized server selection based on a comprehensive 
system analysis [48].

This work adopts a central-distributed control system 
as the optimal solution to combine central and distrib-
uted control aspects. It achieves this by segmenting the 
extensive system into autonomous mini-controlled sys-
tems, forming the HybOff algorithm. This algorithm 

(5)
Q6 =

{

AppTsk6ax,AppTsk
9
bx,AppTsk

9
bz ,AppTsk

6
ay

}

(6)TETQi =
∑

x∈Qi

ETAppTskix

comprises interconnected computing cells, each housing 
a cluster of adjacent fog servers governed by an elected 
fog server known as the master fog server ( FnM ). Con-
versely, the other cell servers are referred to as followers. 
This design empowers FnM to monitor and supervise the 
performance of the followers, enhancing system flex-
ibility. Even if a cell loses connection with others, each 
maintains an autonomous control system [61]. The inter-
connection of these cells forms the central-distributed 
control system, a framework that facilitates the imple-
mentation of HybOff, which requires multi-cells with dis-
tributed control.

In implementing the autonomous control system, each 
fog server is equipped with three modules: HybOffMoni-
tor, HybOffComm, and HybOffSched. These modules 
handle monitoring, communication, and offloading, cre-
ating an independent control system for the fog serv-
ers, as depicted in Fig. 4. Table 3 details that fog servers 
operate in two modes: basic and advanced. The advanced 
mode is activated in the master server, while the follow-
ers remain in the primary mode.

In the basic mode, followers continuously use their 
monitor module to assess their workload and report it 
to the master server. The master server’s scheduler mod-
ule processes the data collected by the monitor module, 
determining the offloading policy needed for task alloca-
tion. The offloading process commences once the neces-
sary information is disseminated within the cell via the 
communicator module. The communicator module is 
responsible for facilitating communication and message 
exchange among servers within the cell. The communica-
tor module’s thread is periodically generated to ensure all 
servers receive the necessary information. Additionally, it 
uses heartbeat information to address churn issues that 
may arise due to server crashes or new servers joining the 
network [10].

In summary, each master server collects workload data 
from the followers, processes it centrally, and then broad-
casts the required offloading information to the cell serv-
ers to initiate static offloading.

Hybrid framework
The HybOff algorithm’s structure comprises a network of 
interconnected, distributed, and autonomously managed 
fog servers referred to as cells. To initiate and operate the 
proposed algorithm, several steps must be performed:

1. Clustering: The concept of HybOff draws inspira-
tion from the self-similarity load balancing w(SSLB) 
structure, which forms segments (cells) of distrib-
uted fog servers with an equal number of fog serv-
ers [31, 32]. Unlike SSLB, HybOff does not impose 
any restrictions on the similarity of cells; instead, the 
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clustering algorithm selects cell members regardless 
of their size, which mean there is no restrictions on 
cell size. This behavior gives a space to HybOff to 
build a cell just with adjacent servers. As depicted 
in Fig.  5, this approach ensures that cells are con-
structed using adjacent servers. However, significant 
benefits, such as reduced energy consumption and 
increased bandwidth, can be achieved if we confine 
adjacent servers in the same cluster to form cells, 
thereby minimizing communication with remote 
servers [15, 50]. Additionally, Li, Zhuang et  al. [31] 
suggest that servers within a close geographical area 
tend to exhibit similar behaviour, such as server joins 
or crashes [24]. Therefore, initiating a federation of 
computing systems is crucial [8]. We employ the sim-
ple K-means algorithm described in [33] to build dis-
tributed cells, an algorithm known for its exceptional 
performance in large-scale environments.

The design defines computing servers as the set W, 
comprising m points in Euclidean space. The objective 

is to partition the W servers into N sets referred to as 
cells (Cel1, Cel2, Cel3, ..., CelN), each having a master. 
The variable cell size enables the K-means algorithm to 
discover the optimal server clustering. The size of any 
cell is defined as:

where, CelSzi  represents the number of fog servers in the 
ith cell, which can be either odd or even. For instance, in 
Fig.  5, the system consists of 19 fog servers (W = 19) as 
per the clustering algorithm, they are organized into four 
cells (N = 4). Each cell accommodates a different num-
ber of fog servers according to the position of servers, as 
determined by Eq. (7). By the end of this step, considered 
a core of the HybOff principle, the model can walk into 
the next steps.

2. Master server: In each initialized cell, a controller server 
is randomly elected to oversee cell activities [48]. It is 
performed each time the master server is missing. The 
FnM assumes various responsibilities, including:

(7)2 ≤ CelSzi ≤ W |∀i ∈ N

Fig. 4 Architecture of HybOff algorithms. It comprises three essential components: HybOffMonitor, HybOffComm, and HybOffSched, consistently 
maintained across all fog servers [31, 32]

Table 3 Features of HybOff modules

Module Basic (Followers) Advanced (Master)

Monitoring Module Reporting the utilization percentage periodically Reading the utilization percentage of the followers periodically

Comm. Module Acknowledging and updating the target server for off-
loading process

Maintaining static offloading table policy updating to create 
the list of targeted servers

Sched. Module Exchanging the server messages across the cell It works as a gateway to block internal messages 
within the cell and handle the outboard messages
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A. Collecting RU information from cell servers, includ-
ing its data.

B. Updating the offloading table in the scheduler module.
C. Periodically broadcasting the required offloading 

information within the cell.
D. Monitoring cell servers to exclude any deactivated 

servers from the offloading process.
E. Serving as a gateway, connecting followers with 

external systems, and keeping exchanged cell mes-
sages confined within the cell, thereby preserving 
system bandwidth.

For example, if the master server in a specific cell fails, 
followers will lose external connections, such as those 
with the cloud and offloading functions. Nevertheless, 
followers can continue to perform essential computing 
functions until another master is selected.

3. SOT Policy and CPDs: In addition to the HybOff archi-
tecture, the SOT policy plays a pivotal role in its design. 
A static table is inadequate for a system that requires 
flexibility. Therefore, SOT is a dynamic template within 
the master’s scheduler module. It is unnecessary to 
offload all fog servers in the cell; instead, SOT contains 
crucial cell data, including FnRU% , the target offload-
ing server, and fog identification. The latter is a unique 
number connecting to each server’s Internet Protocol 
(IP) address as a reference number. Each fog server cor-
responds to an individual row in the SOT.

Algorithm 1. Building and maintaining SOT in the master server

Once the necessary data is available, SOT ranks active 
fog servers in ascending order based on their resource 
utilization. This approach follows an ascending pat-
tern, placing heavy servers at the end of the table and 
lighter servers at the top. After sorting the cell servers, 
SOT creates cooperating paired servers (CPDs). A CPD 
consists of two fog servers within the same cell with 
opposite resource utilization readings. The first server 
has the highest reading, while the second, known as a 
complementary server (CoD), has the lowest reading. 
This pairing is illustrated in Fig. 6, where SysRU%

avg = 54%, 
CPDs are formed by pairing opposite servers using 
Algorithm 1. Equation (8) specifies the servers partici-
pating in each pair, with Celsz − i + 1 representing the 
index for the fog node paired with fog node i:

Fig. 5 HybOff structure. In this centrally distributed architecture, contiguous servers are grouped as a cell. Each cell’s servers interact with one 
another while choosing a master for external communication and establishing a SOT
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4. Broadcasting: After the creation of CPDs, the master 
server broadcasts complementary server informa-
tion throughout the cell. The "broadcast( )" function 
informs the heavy cell servers about their comple-
mentary servers. In contrast, the middle server (in 
the SOT when N is odd) disables the offloading func-
tion to operate independently without participating 
in the offloading process, achieved through "disabOff( 
)". Additionally, light followers must also disable the 
offloading function to prevent the system from enter-
ing a thrashing state. In a thrashing state, all serv-
ers spend time forwarding tasks among themselves 
without executing their primary functions [27]. The 
HybOff algorithm avoids this state by employing the 
"disabOff ( )" function, which restricts specific and 
unnecessary servers from forwarding tasks. However, 
the function only prevents servers from offloading 
within the cell, allowing them to continue offloading 
outside the cell or to the cloud when necessary.

5. Static offloading: Heavy servers initiate offloading as 
soon as they receive information about their comple-
mentary servers (Algorithm  2). They forward heavy 
tasks using the Last In, Last Out (LIFO) procedure, 
with priority given to all TSAs in their queue. Servers 
continue to utilize their complementary servers until 
they receive updated information from SOT.

Algorithm 2. Static offloading (all servers)

HybOff requires verification that heavy servers surpass 
the average load of the cell. In this algorithm, offloading 
occurs independently within each cell once a server is 

(8)CPDi = [Fni, Fnj],where j = CelSz − i + 1 categorized as heavy. To establish the appropriate catego-
rization criteria for servers, the average utilization ratio 
of each cell must first be calculated. Equation (9) provides 
the formula for categorizing each cell:

where, CelRU%
i  represents the average utilization ratio for 

cell i, and Fnϕ is 1 if the fog server is active and 0 oth-
erwise. The cell servers will not initiate offloading until 
the categorization criteria are met. In this algorithm, if 
FnRU%

i ≥ CelRU% , Fni is considered a heavy server; other-
wise, it is categorized as a healthy server. This condition 
deactivates the algorithm when all servers are not over-
loaded. For example, if all cell servers have a low load, no 
offloading process will commence, and each server will 
manage its workload locally. Thus, we can define this cell 
as a balanced cell, a feature that significantly benefits net-
work bandwidth.

Let us consider an illustrative example to comprehend 
the relationships among cell servers. In previous Fig. 5, if 
the clustering algorithm forms a cell with five fog servers, 
the first server, after ranking in the SOT, has a utilization 
percentage of FnRU%

1 = ω . It is important to note that 
there are variations in the utilization percentages among 
the sequentially ranked servers, denoted as µ1,µ2,µ3 , 
and µ4 in our calculations. In this example, we have two 
CPDs, CPD1 and CPD2 , each with a unique utilization 
reading. However, to calculate the RU for the ith pair, we 
need to apply the following relationship:

where CPDRU%
i  represents the utilization percentage of 

CPDi in the cell. Using Eq.  (10), CPD1 contains Fn1 and 
Fn5 , while CPD2 contains Fn2 and Fn4 . When the load 
reaches the average cell load, Fn4 and Fn5 will offload 
their workloads to Fn1 and Fn2 , respectively. Fn3 operates 
independently as it has an adequate load. In cases where 
the number of cell servers is even, all servers are included 

(9)CelRU%
i =

∑CelSzi
x=1 (FnRU%

x × Fn
ϕ
x )

(CelSzi −
∑

Fnϕ)

(10)
CPDRU%

i (i,CelSzi ) = 2ω +
∑i−1

a=1
µa +

∑CelSz−i

b=1
µb

Fig. 6 Static offloading table in the master server
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in computing pairs. The utilization percentage in each 
pair is as follows:

Unfortunately, there is no mathematical relation that 
can predict μ. For simplicity, we assume that the utili-
zation value between each sequential server is constant 
(

µ1 = µ2 = · · · = µ(sz−1) = µ
)

 . If so, we can conclude 
that: CPDRU%

1 = CPDRU%
2 = 2ω + 4µ , which represents 

the utilization percentage for any CPD in the previous 
example. In other words, HybOff equalizes the loaded 
pairs cell-wise. This work predicts the RU% for the coop-
erative pair servers using the following formula:

Mathematically, all CPDs in the cell have the same 
load. However, the load of CPDs depends on the num-
ber of fog servers in the cell. For example, after the clus-
tering algorithm builds the cells, CelaandCelb contain 
6 and 13 servers, respectively. According to Eq.  (13), 

(11)CPDRU%
1 = 2ω + µ1 + µ2 + µ3 + µ4.

(12)CPDRU%
2 = 2ω + µ1 + µ1 + µ2 + µ3

(13)CPDRU%
(

CelSzi

)

= 2ω +

(

CelSzi − 1
)

µ

CPDRU%
a = 2ω + 5µ , and CPDRU%

b = 2ω + 12µ . This 
means that the amount of shared computational load for 
each CPD increases with the cell size.

The proposed algorithm
The identified drawbacks will be effectively addressed 
through the integration of the cell concept within our 
hybrid offloading framework. In this design, Fog serv-
ers are structured into cells, where each server pairs up 
for resource sharing. Our proposed algorithm is aimed 
at maintaining consistent average load levels across Fog 
servers within each cell, and you can visualize the algo-
rithm’s flowchart in Fig. 7.

As depicted in the figure, this hybrid LB algorithm 
capitalizes on the strengths of static and dynamic offload-
ing strategies. Our proposed algorithm brings five crucial 
enhancements to fog load balancing:

• Reintroduction of static offloading: We are reinte-
grating the efficiency of static offloading into our 
approach.

• Minimal message exchanges: Our algorithm mini-
mizes message exchange between servers, streamlin-
ing the LB process for greater efficiency.

Fig. 7 HybOff process flowchart
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• Reduced decision-making time: We have significantly 
reduced the time required to make offloading decisions.

• Local management of urgent applications: Our 
approach encourages servers to handle urgent appli-
cations locally, eliminating the necessity for global 
allocation.

• Efficient network management: We employ a cell-
based approach for network management, reducing 
latency, alleviating network congestion, and enhanc-
ing overall load balancing.

The subsequent Section illustrates these improvements 
through a series of comprehensive experiments.

Experiments and results
Preliminary explanations
This Section assesses the proposed algorithm and dem-
onstrates how the hybrid offloading structure outper-
forms other classical LB schemes. Generally, the essential 
requirement of an effective LB is to keep all the com-
puting units equally loaded by avoiding overloaded or 
underloaded cases [51]. The RU% of servers are used to 
evaluate the effectiveness of LB.

To demonstrate the efficiency of HybOff, we con-
sider the example depicted in Fig. 8 for a mathematical 
analysis. Figure 8 (a) shows five fog servers with fixed 
differences (μ) after clustering in a specific cell. The 
scheduler module collects the resource utilization for 
cell servers to rank them in ascending order, as shown 
in Fig.  8 (b), to facilitate creating the CPDs shown in 
Fig.  8 (C). These figures illustrate how opposite serv-
ers share their load while the middle server operates 
independently. After a period of offloading, all cell 
servers have the same load, as shown in Fig. 8 (d). This 
figure proves that HybOff has the ability (mathemati-
cally and in the ideal case when μ is fixed) to balance 
the usage of the resources of fog servers in the cell by 
using Eq. (13).

Using Eq.  (13), we find that CPDRU% equals 2ω + 4μ 
for each pair, where the x for the cell servers is ω + 2μ. 
Fortunately, the middle server also has the same load of 
ω + 2μ. HybOff balances load by dividing the cell serv-
ers into multiple pairs and ensuring an equal distribu-
tion through sharing. HybOff successfully balances the 
load and creates balanced cells by ensuring that oppo-
site servers share the load.

Fig. 8 HybOff model, Balance of resource utilization-mathematical, (a) before offloading, (b) sorted servers, (c) paired servers, and (d) 
after offloading
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Environment description
To evaluate the proposed algorithm, three metrics are 
employed 1) resource utilization ratio of the fog system, 
2) loading balancing resource usage among fog servers, 
and 3) system performance. Resource utilization meas-
ures the usage of all the distributed fog servers’ comput-
ing resources. LB determines the distributed tasks among 
computing servers in the fog layer. The system perfor-
mance checks the efficiency of the entire algorithm.

Simulation setup
The experiment follows the algorithm described in Fig. 1, 
as outlined in the work by Lu, Zheng et al. [38]. It consists 
of W distributed fog servers and N created cells, which 
are selected according to the clustering algorithm used 
in this article. Cloud services, denoted as ’n’, are available 
on all fog servers, and offloading is initiated only in cases 
of computing power shortage. Tasks of varying sizes are 
processed on the fog servers. The initial experiment set-
tings are summarized in Table 4:

It’s important to note that this experiment focuses 
exclusively on the fog layer and does not consider the 
cloud. The simulation tool used is iFogSim, which is 
responsible for creating the necessary environment 
(Gupta, Vahid Dastjerdi et  al. 2017). The experiment 
assesses various parameters across different server scales 
and data sizes and examines resource utilization over 
time, considering random combinations of data sizes and 
scales, as detailed in Tables 5 and 6.

Fog server specifications
The specifications of the fog servers used in the experi-
ment are provided in Table 5:

Evaluation metrics
To evaluate the algorithm’s performance, we measured 
RU in the described case studies using three differ-
ent schemes: the static SoA, the PoA, and our proposed 
HybOff scheme. PoA is adapted from [56, 57], while 
SoA is configured using classical static offloading. The 
resource utilization ratio of the system in the experiment 
is calculated using Eq. (14), where certain function com-
ponents from the HybOff algorithm were modified and 
reused to implement SoA and PoA:

Task specifications
The specifications of the tasks used in the experiment are 
detailed in Table 6:

Resource utilization
In this work, the resource utilization ratio of the sys-
tem (SysRU%) refers to the ratio between the number 
of resources utilized and the total amount of system 
resources. The utilized resource is any processor of fog 
server which consumed more than or equaled the aver-
age cell utilization of its processing power. To do this, the 
RU needs to be calculated at every detection time using 
SysavgRU , Eq. (15).

where t represents the number of detection times during 
the experimental period. Figure 9 (a) illustrates that the 
system utilization ratio fluctuation is lower for SoA and 
PoA. This is primarily because HybOff enforces coopera-
tion among opposite servers, enabling the system to tap 
into previously unexplored resources and communicate 
directly with the most affected servers to offload their 
load. In contrast, SoA and PoA experience inefficiencies 
in redistributing workload, resulting in a leakage of fully 
utilized servers. Equation (16) presents the formula used 
to calculate the system’s utilization during the experi-
mental period.

(14)

SysRU% =
∑N

b=1

∑CelSzb
a=1

FnRU%
a

CelSzb
, if FnRU%

a
∼= ∓5% SysRU%

Avg

(15)SysavgRU =
∑t

i=1
SysRU%

i /t,

Table 4 Initial parameters of experiment

Parameter W n ω µ ET/task

Value Up to 300 15 apps 18% 7% 3 ms

Table 5 Specifications of fog servers

Fri Capacity RAM CPU

Fn1 100 MB 7 MB 120 MHz

Fn2 150 MB 15 MB 80 MHz
.
.
.

.

.

.

.

.

.

.

.

.

Fni 200 MB 10 MB 100 MHz

Table 6 Task specifications

Process Process size Partitions Sensitivity Priority

P1 5 MB 1/1 TSA High

P21 6 MB 1/3 HA Low

P22 6 MB 2/3 HA Low

P23 9 MB 3/3 HA Low
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
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To evaluate HybOff’s efficiency in utilizing avail-
able resources at the server level, we need to determine 
the average RU under fixed fog scales and varying data 
growth rates. To achieve this, different amounts of data 
is generated for the same cell scales. The experiment 
involved continuously increasing data generation and 
monitoring the capacity of fog servers in the cell. The 
average RU provides insights into the algorithm’s effec-
tiveness in leveraging the available resources. In Fig.  9 
(b), the RU of fog servers in a single cell containing six 
fog servers is depicted. The figure illustrates the captured 
RU of cell servers at specific times. While all prevalent 
algorithms achieve approximately 76% utilization of 
edge resources, HybOff maintains an average of 50% in 
the cell. This indicates that HybOff evenly distributes the 
workload among the fog servers, unlike SoA and PoA, 
which fall short in this aspect. HybOff’s advantage stems 
from the clustering technique, which divides the fog serv-
ers into mini fogs. This approach allows HybOff to treat 
each cell as a mini-fog system, making it easier to manage 
and control. Additionally, hybrid offloading enhances RU 
further.

Load balancing
To assess the effectiveness of the proposed algorithm, this 
Section evaluates the level of balanced RU among servers 
in the fog layer and compares it to that of SoA and PoA, 
with the target level defined in [51] where all fog servers 
were equally loaded. LB is defined as the percentage of 
healthy fog servers in the cell, with a ± 5% threshold value 
of ( SysRU%) . In this experiment, however, we considered 
any server close to the average system utilization as a 
healthy server. To do this, we need to count the healthy 

(16)SysRU% =

∑N
i=1 Cel

RU%
i

N

server’s cell-wise during the experiment, which satisfies 
the criteria previously mentioned. Eq. (14) is used to cal-
culate the RU for the HybOff algorithm, while Eq. (17) is 
used to calculate the average RU for the SoA and PoA.

Figure  10 (a) depicts the percentage of fog servers 
classified as balanced across various system scales, with 
experiments ranging from 1 to 300 servers, all using a 
fixed data size. The graph underscores HybOff’s abil-
ity to consistently maintain a high percentage of healthy 
servers, closely aligning with the ideal curve. At 150 fog 
servers, SoA, PoA, and HybOff achieved percentages of 
64%, 88%, and 97% for balanced servers, respectively. 
Impressively, HybOff continued to perform exception-
ally well even with 230 fog servers. However, the dynamic 
scheme’s performance deteriorated when the number of 
fog servers reached 300, revealing communication over-
head as a bottleneck.

The performance of the static approach exhibits a 
decreasing slope, consistent with its strategy. Neverthe-
less, the results clearly indicate that HybOff excels in 
large-scale networks, primarily because the network is 
fragmented, and the central-distributed approach makes 
it easier to control and maintain. In contrast to the 
theoretical estimation of HybOff, which suggests effec-
tive load equalization among all computing servers, the 
experimental results do not align with this mathematical 
estimation. This discrepancy arises from the variable and 
uncontrolled nature of μ. The uncontrolled differences 
among consecutive servers diminish the performance of 
HybOff.

However, standard deviation (σ) serves as a crucial 
tool for assessing data dispersion. A smaller standard 
deviation signifies that data points are closely clustered 

(17)
SysRU% =

1

N

∑N

a=1
FnRU%

a , ifFnRU%
a

∼= ∓5%SysRU%
Avg

Fig. 9 Resource Utilization over time and changing number of servers. a Resource Utilization of the System with Changing of Time, and (b) 
Resource Utilization Percentage
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around the central measure [41]. In this work, all algo-
rithms were tailored to maintain equal load distribu-
tion among computing servers. As previously defined, 
fog servers with computing loads within the 47.5% to 
52.5% range are considered healthy. In this experiment, 
we tallied the number of servers loaded at approximately 
50% for each class within each algorithm. Figure  10 (b) 
demonstrates that HybOff exhibited the lowest standard 
deviation, while SoA showed the highest. This indicates 
that HybOff had the most servers meeting the balanced 
criteria. Although PoA also upheld a substantial number 
of balanced servers, SoA struggled to keep servers within 
the target range. The performance results were 39%, 68%, 
and 95% for SoA, PoA, and HybOff, respectively. All 
three algorithms had the same mean value, x=17. SoA, 
PoA, and HybOff had standard deviations of 20.4, 16.9, 
and 9.7, respectively. Evidently, HybOff outperformed the 
other algorithms.

System performance
It is essential to compare the performance of HybOff 
with SoA and PoA to assess the proposed algorithm’s 

effectiveness. To evaluate each system’s performance, we 
analyzed the execution of time-sensitive applications. 
As previously mentioned, all servers in the fog layer are 
tasked with serving time-sensitive applications locally 
without offloading. For resource-intensive applications, 
offloading is considered only when the computing servers 
are deemed fully loaded [58].

Figure 11 (a) depicts system execution time compari-
sons between HybOff, SoA, and PoA, evaluating their 
efficiency across various server scales and data sizes. 
HybOff exhibits notable effectiveness in handling time-
sensitive applications and ensuring resource alloca-
tion in receiving servers. It excels in resource-intensive 
tasks by offloading to Complementary Servers (CoDs) 
without distant offloading, outperforming other algo-
rithms. Figure  11 (b) illustrates the system execution 
time for the three algorithms with a fixed amount of 
generated data and an increasing number of fog servers. 
Initially, with just one fog server handling all the gen-
erated tasks, all the algorithms consumed significant 
time. However, as the number of fog servers increased, 
each algorithm exhibited a distinct behaviour. While 

Fig. 10 The percentage of healthy servers for the three algorithms with the same mean value but with different standard deviations, where (a) 
is the percentage of balanced servers, and (b) it the standard deviation for algorithms

Fig. 11 TSAs’ performance evaluation with (a) different data sizes and (b) different system scales
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all solutions showed a declining trend, HybOff consist-
ently outperformed the others. With increasing servers, 
HybOff’s performance led to reduced system execution 
time. Specifically, HybOff achieved a system perfor-
mance 1.6 times and 1.4 times better than SoA and PoA, 
respectively, when operating with 100 servers. This 
demonstrates HybOff’s efficiency in optimizing sys-
tem performance and resource utilization as fog server 
numbers increase.

Discussion
This study aimed to enhance our understanding of LB 
within FC environments by introducing a novel offload-
ing algorithm called HybOff. HybOff was developed to 
address the inherent challenges associated with existing 
LB techniques. Our findings demonstrate that adopting 
a hybrid approach that combines the strengths of both 
static and dynamic algorithms significantly improves sys-
tem performance.

Key findings
Our comprehensive analysis of the experimental results, 
as presented in Figs.  9, 10, and 11, has revealed several 
key findings:

• Decision time: In a distributed computing system, 
offloading is the key to elevating the computing load 
in the overloaded servers. Although offloading is one 
of the essential tools in this type of computing envi-
ronment, it has accumulated costs. Figs.  11  and 12 
show that the total time consumed to perform the 
task is low for HybOff, even with increasing tasks 
or servers. This performance is for the algorithm 
features that avoid the process having an extra cost. 
HybOff’s hybrid approach allows for direct offload-
ing, effectively eliminating the delay associated with 
decision-making in the offloading process. This 
approach contributes to faster and more efficient 
resource allocation.

• Distance offloading: Unlike other algorithms that 
struggle with large-scale networks, HybOff excels 
by avoiding offloading to unknown fog locations, a 
characteristic more reflective of real-world FC sce-
narios. Moreover, HybOff is excellent by processing 
sensitive applications at the received server by giving 
advantage by avoiding offloading to this type of tasks. 
However, clustering reduces latency and improves 
system efficiency.

• Decision messages: HybOff’s static behaviour 
reduces the need for current system state mes-
sages, minimizing the exchange of messages among 
servers and reducing network bandwidth usage. A 

hybrid approach is crucial for optimizing network 
performance.

• Superfluous offloading: While other algorithms may 
experience performance degradation when handling 
time-sensitive applications (TSAs), HybOff excels 
by keeping TSAs local, saving transmission time and 
network resources. It also efficiently manages heavy 
applications (HAs) by offloading them only to adja-
cent servers, thus minimizing network congestion.

• Anti-thrashing state: HybOff effectively prevents the 
system from entering a thrashing state by employ-
ing the "disable offloading" function. This ensures 
that underloaded servers within each area share their 
resources with the most affected servers, ultimately 
optimizing system utilization.

These findings align with existing literature that 
underscores the effectiveness of dynamic offloading as a 
strategy for LB in FC. However, our study further dem-
onstrates the viability of incorporating classical static off-
loading into modern network design. These results mark 
the first direct demonstration of this hybrid approach, 
offering valuable insights for future research in FC.

Limitations and future directions
Despite the promising findings, this study has identified 
two potential limitations:

• High-load scenarios: HybOff may not operate effi-
ciently in scenarios with a substantial load within a 
single cell. When all computing nodes in a cell reach 
their utilization limits, the "disabOff()" function acti-
vates, leading to offloading processes across cells or 
to the cloud, which may introduce undesired conse-
quences such as network congestion and distant off-
loading. Future research should explore sustainable 
solutions for high-load scenarios within a single cell.

• Metric selection: While HybOff uses CPU load and 
network state as reference metrics to assess fog 
server loads, it does not consider other server met-
rics like memory usage and energy consumption. 
Future investigations could consider a more compre-
hensive set of metrics for a nuanced assessment.

Implications
These findings have both theoretical and practical impli-
cations. Reviving the use of static offloading techniques, 
previously deemed impractical in modern network 
design, emerges as a critical consideration. Additionally, 
adopting approaches like HybOff in industrial computing 
platforms may help reduce unnecessary network expan-
sion and enhance system performance. In conclusion, 
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HybOff offers a robust and efficient computing environ-
ment for fog systems, outperforming prevalent dynamic 
algorithms and providing valuable theoretical and practi-
cal insights for LB in FC scenarios. Future research can 
build on these insights to address the identified limita-
tions and further advance the field of FC.

Conclusion
This work aimed to enhance the performance of critical 
applications in large-scale fog networks by introducing a 
novel algorithm named "HybOff". HybOff represents an 
LB offloading technique that adeptly harnesses the benefits 
of both static and dynamic offloading methods, resulting in 
substantial performance improvements for time-sensitive 
applications, regardless of network scale. The offloading 
strategies generated by each algorithm in this investigation 
were simulated utilizing the iFogSim platform. Through 
a comparative analysis of diverse metrics encompassing 
resource utilization, load distribution, and system per-
formance, we discerned the merits and demerits of each 
approach. The outcomes of these algorithms affirm that, 
irrespective of network size, HybOff consistently fulfills 
the requisites of Application Service Dependencies (ASD).

Furthermore, the experimental results strongly cor-
roborate the efficacy of HybOff. It demonstrates a notable 
reduction in the volume of offloading messages, distance 
traversed, and the repercussions of offloading decisions. 
These outcomes effectively mitigate the inherent defi-
ciencies encountered in traditional offloading techniques. 
Notably, the proposed algorithm enhances LB by an 
impressive 97%, a substantial improvement compared to 
the 64% and 88% achieved by SoA and PoA, respectively. 
Moreover, it elevates the average system utilization rate 
by 50% and enhances system performance by 1.6 times 
and 1.4 times compared to SoA and PoA, respectively.
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