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Abstract 

The rapid advancement of microservice architecture in the cloud has led to the necessity of effectively detecting, 
classifying, and diagnosing run failures in microservice applications. Due to the high dynamics of cloud environ-
ments and the complex dependencies between microservices, it is challenging to achieve robust real-time system 
fault identification. This paper proposes an interpretable fault diagnosis framework tailored for microservice architec-
ture, namely Multi-scale Learnable Transformation Graph for Fault Classification and Diagnosis(MTG_CD). Firstly, we 
employ multi-scale neural transformation and graph structure adjacency matrix learning to enhance data diversity 
while extracting temporal-structural features from system monitoring metrics Secondly, a graph convolutional net-
work (GCN) is utilized to fuse the extracted temporal-structural features in a multi-feature modeling approach, which 
helps to improve the accuracy of anomaly detection. To identify the root cause of system faults, we finally conduct 
a coarse-grained level diagnosis and exploration after obtaining the results of classifying the fault data. We evaluate 
the performance of MTG_CD on the microservice benchmark SockShop, demonstrating its superiority over several 
baseline methods in detecting CPU usage overhead, memory leak, and network delay faults. The average macro F1 
score improves by 14.05%.
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Introduction
In recent years, with the popularization of cloud comput-
ing and distributed systems, large monolithic services 
have been gradually rearchitected into finer-grained 
modules, which combine hundreds or even thousands 
of loosely-coupled microservices [1]. This transforma-
tion involves breaking down single-tenant services into 

smaller, more concentrated microservices. The microser-
vices architecture offers several advantages that make it a 
powerful approach, including simplifying deployment of 
applications and improving the efficiency and flexibility 
of resource provisioning.

The complexity and dynamics of the deployment 
microservices environment, along with the complex con-
nection between microservices, can lead to the propa-
gation of system faults when a micro-service fails. For 
example, as shown in Fig. 1, when a system fault occurs 
in the Shipping service, it then propagates to the Order 
service, and finally affects to the Front-end service. The 
depth of the red represents the severity of the fault super-
position. This propagation can result in cascading effects, 
where the failure of one micro-service can cause issues 
in other connected microservices, potentially leading to a 
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complete system failure. Therefore, it is crucial to quickly 
identify potential issues in microservices before they can 
cause widespread disruption, which helps to guide the 
fault-tolerant and elastic scheduling, so as to alleviate the 
impact of system faults and ensure continuous service 
availability.

Identifying and diagnosing faults in microservice-
based systems poses unique challenges [2], primarily 
due to the inherent complexity and dynamic nature of 
microservices in four aspects: nodes, instance, configu-
ration, and sequence. Firstly, the large-scale deployment 
of microservices across numerous nodes (e.g., physical or 
virtual machines), leads to uncertainties in microservice 
communication. For instance, the microservice instances 
processing requests may be located in various network 
localities, resulting in inaccurate timeout estimates. Sec-
ondly, microservices are often configured in a decentral-
ized manner, with different instances having different 
configurations. This leads to a high degree of variability 
in the behavior of microservices, making it challenging 
to identify patterns and relationships between services. 
Thirdly, the sequence in which microservices are exe-
cuted can have a significant impact on the overall system 
behavior. Lastly, the high degree of inter-service depend-
ency in microservice systems adds another layer of com-
plexity to fault diagnosis. A fault in one microservice can 
propagate through the dependency graph, affecting other 
services and making it difficult to isolate the root cause of 
the problem.

Microservices often face system in practical scenarios, 
such as network latency and memory leaks, which may 
negatively affect their performance. Most of the data 
collected from microservices is stored in multi-variable 
time series, containing various key performance indica-
tors of the microservices, such as request latency and 

CPU utilization. These usually reflect the system status, 
and these indicators record the status of different services 
in time series form [3]. Therefore, closely monitoring 
and analyzing various key performance indicators col-
lected from each service instance, such as CPU load and 
network usage, has become the mainstream method for 
detecting and locating faults [4].

Recent research on micro-service system fault classifi-
cation can be divided into multi-variable fault detection 
[5], and single-variable fault detection [6]. Single-variable 
detection methods are mainly based on a specific key 
performance indicator and can model time dependen-
cies but cannot capture complex spatial relationships 
[5]. They are more likely to misidentify normal changes 
as anomalies, leading to more false alarms. In compari-
son, multi-variable fault detection methods can learn the 
inherent connections between microservices data. How-
ever, these methods are often not very effective, unable 
to fully capture the multi-scale features of data, and it 
is also challenging to model the complex relationships 
between different services, resulting in unsatisfactory 
classification results. For example, the classic Naive Bayes 
classifier [7] has certain biases when building models for 
related features, which may have a negative impact on 
anomaly detection results. GDN [8] network has cer-
tain advantages in building models for the complex rela-
tionships between different services in the microservice 
architecture. However, GDN still does not fully consider 
time features. In practical applications, temporal features 
are important for fault classification and prediction.

To address these issues, we propose an interpretable 
fault diagnosis framework tailored for microservices 
architecture. Specifically, since multi-scale neural 
transformations can enhance data diversity, and the 
execution sequence of microservices can represented 

Fig. 1  An example of microservices system fault propagation
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as a graph, we combine multi-scale neural transfroma-
tions with graph structure adjacency matrix. Then, the 
extracted spatiotemporal features and the topological 
structure characteristics of microservices are inte-
grated into a multi-feature modeling, with the aim-
ming to infer the relationships between microservices 
and achieve effective fault detection. Upon obtain-
ing the corresponding multi-class fault classification 
results, we employ the PC algorithm [9] and PageR-
ank algorithm [10] to diagnose and explore faults, thus 
explaining the potential causes of system failures. The 
main contributions of our work are as follows: 

1)	 We propose an interpretable fault diagnosis frame-
work for microservice architecture, namely Multi-
scale Learnable Transformation Graph for Fault 
Classification and Diagnosis (MTG_CD). This 
approach combines multi-scale neural transforma-
tion and graph structure adjacency matrix, where 
we represent the order of executing microservices 
as a graph to extract structure-temporal features 
from system monitoring data, aiming to enhancing 
data diversity.

2)	 We employ graph convolutional networks (GCNs) to 
fuse the extracted spatio-temporal and microservice 
topology structure features in a multi-feature mod-
eling approach. This helps to infer the relationships 
among microservices and achieve effective faults 
detection.

3)	 After obtaining the corresponding fault multi-clas-
sification results, we perform a coarse-grained level 
diagnosis and exploration to determine the underly-
ing cause of system failures, which indicates that our 
model is interpretable.

4)	 Experiment results show that the MTG_CD model 
outperformed several baseline methods in the 
SockShop’s microservice benchmark test, with an 
average macro F1 score improvement of 14.05%. 
The results demonstrate its superiority in detecting 
CPU usage overhead, memory leak, and network 
delay faults.

Related works
With the increasing complexity and scale of modern 
application systems, microservices have become a 
popular solution for enterprises to address these chal-
lenges. As a result, detecting and locating faults in 
microservice systems have become essential for ensur-
ing system stability and reliability. Here, we divide 
related works into two main aspects: micro-service 
system fault classify detection and micro-service sys-
tem fault diagnosis, respectively.

Micro‑service system fault classify detection
In the field of micro-service system fault detection, a 
wide range of techniques have been proposed and widely 
applied. These techniques can be generally categorized 
into two major groups: machine learning methods, and 
deep learning methods.

Machine learning methods: They have been widely 
applied in various fields and have shown promising 
results. Some popular classification algorithms include 
Naive Bayes [7], Support Vector Machine (SVM) [11], 
Random Forest [12], K-Nearest Neighbors (KNN) [13] 
-based models, and others. For example, Murugan et al. 
[7] adopted a Naive Bayes classifier to model microser-
vice event logs. By preprocessing and extracting features 
from log data, they classify normal and abnormal behav-
iors. Additionally, they use an adaptive learning method 
called AdaNet to dynamically adjust model parameters 
and improve detection accuracy. Russo et al. [11] utilized 
SVM to classify normal and abnormal data in microser-
vice systems. To improve classification performance, they 
preprocessed and extracted features from the data. They 
also adopted cross-validation methods to evaluate model 
performance and adjust SVM hyperparameters for opti-
mization. Miao et  al. [12] employed the random forest 
algorithm to classify log data from microservice systems. 
They preprocessed the data and select features, then used 
random forests to classify normal and abnormal behav-
iors. To evaluate the performance of the model, they con-
ducted a series of experiments and use cross-validation. 
Guan et  al. [13] introduced a multi-view OVA model 
grounded on decision tree (MVDT) to facilitate the com-
plexity of the decision tree structure and enhance the 
generalization capability for multi-classification tasks. 
Cinque et al. [14] adopted the KNN algorithm to classify 
normal and abnormal data in microservice systems. To 
improve classification performance, they also discussed 
how to select appropriate distance metrics and distance 
thresholds to enhance detection accuracy.

Deep learning based methods: Deep learning methods 
have gained significant attention in recent years due to 
their ability to automatically learn complex features and 
achieve state-of-the-art performance in various tasks. 
In the context of microservice anomaly detection, deep 
learning techniques have been applied to improve the 
accuracy and generalization ability of the models, such 
as neural networks [15], Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN) 
[16], Graph-Based Methods [17]. For example, aim-
ing to solve the problem of detecting potential anoma-
lies in microservices, Hasnain et  al. [15] used recurrent 
neural networks (RNN) based approach to capture and 
analyze temporal patterns in microservice logs, thereby 
detecting anomalies. Lindemann et al. [16] utilized long 
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short-term memory networks (LSTM) to capture tem-
poral patterns and generate accurate predictions for 
microservice anomaly detection. Bae et al. [17] employed 
convolutional neural networks (CNN) for microservice 
anomaly detection to address issues related to accuracy, 
reliability, and real-time performance. CNN and LSTM 
models is employed by in DeepADNet [18] to classify 
multichannel EEG signals; [19] proposed a reinforcement 
learning-informed pattern mining framework for multi-
variate time series classification. A cooperative algorithm 
was proposed by Chen et al. [20] to automatically learn 
essential features and patterns in time series, which can 
be used for classification tasks; Zhao et al. [21] combines 
a multi-scale residual attention network (MSRA) and a 
generative adversarial network (GAN). It uses the MSRA 
network to extract features from hyperspectral images 
and enhances the model’s generalization ability through 
data augmentation via the GAN network [4].

Some studies emplyed GNN. Aubet et al. [22] applied 
graph-theoretic methods to analyze the inter-service 
dependencies and detect anomalies based on the graph 
structures. Deng et  al. employed graph structure based 
GDN [8] for binary classification models; Sha et al. [23] 
introduced a new semisupervised classification frame-
work based on graph attention networks (GATs) for 
hyperspectral images (HSIs). Guillaume et al. [24] fused 
GCN and attention mechanisms to model multi-scale 
images, which enhanced the accuracy of multiclassifi-
cation and system fault detection. Sheng et al. [25] con-
sidered employing the GCN for hyperspectral image 
classification, given its capability to perform convolu-
tions on arbitrarily structured non-Euclidean data and 
its applicability to irregular image regions represented 
by graph topological information. Zhang et  al. [26] dis-
cussed a flexible monitoring framework based on a 
dynamic-multilayer GCN that effectively captures tem-
poral and spatial features from industrial time series data, 
in order to adapt to various tasks such as fault diagno-
sis and remaining useful life prediction. Wang et al. [27] 
presented a multivariate time series anomaly detection 
framework called Multiscale wavElet Graph AE (MEGA), 
which enhances anomaly detection accuracy by employ-
ing a dynamic graph module to capture changes in inter-
variable dependencies.

However, the previously mentioned methods are 
unable to model the correlation and spatio-temporal 
characteristics of micro-service system fault features 
simultaneously, leading to limited feature learning. 
Moreover, for datasets with small sample sizes, extracting 
features becomes increasingly challenging. Therefore, it 
is necessary to design of multi- scale of feature extraction 
to enhance data diversity, so that improving the model’s 
performance.

Micro‑service system fault diagnosis methods
System fault diagnosis allows us to determine the under-
lying cause of anomalies among the various detected sys-
tem faults. For instance, X. Zhou et  al. [28] performed 
an industrial investigation to detect regular defects in 
microservice platforms, contemporary debugging meth-
odologies, and the obstacles encountered by developers 
during implementation. Their research highlights the 
necessity of implementing intelligent trace examination 
that utilizes data-driven and learning-oriented strate-
gies for trace comparison. X. Zhou et  al. [29] executed 
an industrial investigation to detect common defects in 
microservice platforms, contemporary debugging strat-
egies, and the difficulties encountered by developers 
during implementation. Their research underscores the 
necessity of adopting intelligent trace examination that 
utilizes data-driven and learning-oriented approaches for 
trace comparison. Ma et al. [30] focused on research on 
the challenge of identifying the root cause of exceptions 
in large-scale microservice frameworks, and introduced 
a technique referred to as ServiceRank. This approach 
ranks the services within the microservice architecture, 
enabling rapid identification of potential root causes of 
exceptions. Li et al. [31] presented Graph-Attention-Sage 
algorithm to categorizes and performs root cause analy-
sis on anomalies by examining the graph neural network 
derived from dependency relationships among microser-
vices. The TS-InvarNet method in [32] first extracts key 
performance indicator (KPI) sequences from the services 
by conducting time series analysis. Then, it aggregates 
and analyzes these KPI sequences in the spatial dimen-
sion, resulting in KPI invariants for each service node. 
Finally, TS-InvarNet employs machine learning algo-
rithms to train an anomaly detection model utilizing 
these KPI invariants. Brandón et  al. [33] introduced a 
root cause analysis framework that relies on graph rep-
resentations of these architectures. These graphs allowed 
for comparing any abnormal situation occurring in the 
system with a library of anomalous graphs serving as a 
knowledge base for user troubleshooting. Xin et  al. [2] 
proposed CausalRCA for fine-grained, automated, and 
real-time root cause localization. The method operates 
by employing a gradient-based causal structure learn-
ing approach to generate weighted causal graphs, fol-
lowed by a root cause inference technique to identify 
root cause metrics. Liu et  al. [34] investigated potential 
anomaly propagation chains based on dynamically gener-
ated service call graphs, and ranked potential root causes 
according to their correlation. Wu et  al. [35] deduced 
root causes in real-time absence of any application detec-
tion, by correlating application performance symptoms 
with corresponding system resource utilization. Ma et al. 
[36] treated the system’s components as individual nodes, 
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and their interdependencies configure a graph. A graph 
neural network is trained, followed by the identification 
of the root cause utilizing the PC algorithm, and PageR-
ank algorithm, where the PC [9] is a method based on 
probabilistic graphical models that infers causal relation-
ships between variables by analyzing conditional inde-
pendencies between them, and PageRank algorithm [10] 
determines the importance and ranking of web pages 
by analyzing the link relationships between web pages. 
Inspired by this, we employ the PageRank algorithm in 
this article to assess the impact of nodes on system faults.

System model
In this section, we first introduce the overall architec-
ture of MTG_CD. After that, the four sub-modules of the 
MTG_CD are described, respectively.

Overall architecture of MTG_CD
Figure  2 shows an overview of the proposed MTG_CD 
architecture systematic fault multi-classification in 
microservices, MTG_CD consits four modules, includ-
ing: (a) Multi-scale Neural Transformations, (b) Graph 
Structure Adjacency Matrix Learning, (c) Multi-feature 
Modeling, and (d) System Fault Multi-classification and 
Diagnosis, respectively. The general process of MTG_CD 
can be summarized as follows:

First of all, we collect and normalize data from the 
microservice fault monitoring system, where the col-
lected data contain multiple attributes, such as order, 
payment, catalogue, user and carts, etc. Assuming the 
system fault data is derived from the real time monitoring 
of micro services, let X = (x1, ..., xt , ..., xT )N ∈ RT×N be 
the input time series, where t = 1, ...,T  . is the time step, 
and T is the total number of time steps. N is the feature 

dimensions of the data at each time step. In this paper, we 
employ the maximum-minimum normalization method 
to standardize the data and facilitate meaningful analysis.

Secondly, the normalized data are inputted into two 
modules simultaneously, namely (a) Multi-scale Neu-
ral Transformations and (b) Graph Structure Adjacency 
Matrix Learning. Regarding module (a), it enhances the 
diversity of the data through neural transformations. 
With respect to module (b), it helps to obtain the adja-
cency matrix of the graph.

Thirdly, the outputs from (a) Multi-scale Neural Trans-
formations and (b) Graph Structure Adjacency Matrix 
Learning are simultaneously fed into the (c) Multi-feature 
Modeling section, to fuse the extracted spatio-temporal 
and microservice topology structure features in a multi-
feature modeling approach. This helps to achieve effec-
tive faults detection.

Last but not least, the features captured by Multi-fea-
ture Modeling is inputted into the (d) System Fault Multi-
classification and Diagnosis, which is beneficial to realize 
fault muti-classification and faults’ causing analysis. The 
output vector Y = (y1, ..., yt , ..., yT )M ∈ RT×M indicates 
the system fault multi-classification, where M is the num-
ber of system fault types, and yt = (0, 1, ...,M) represents 
whether the data at the t-th time step is an system fault. 
In actual scenarios, the dimensions of time series data 
may be time-varying, making it challenging to analyze 
and interpret the data effectively.

Multi‑scale neural transformation
To enhance the diversity of the data in various scales, the 
(a) Multi-scale Neural Transformation is applied for fault 
multi-classification. The core of neural transformation 
technology is based on residual networks, which enhance 

Fig. 2  The architecture of the proposed MTG_CD. a represents the Multi-scale Neural Transformation part; b represents the Graph Structure 
Adjacency Matrix Learning part; c represents the Multi-feature Modeling part; d represents the System Fault Multi-classification and Diagnosis part
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the diversity of data features, including sparse anomalies, 
thus facilitating the model’s ability to detect anomalies. 
On the other hand, the application of multi-scale tech-
niques enables the model to capture information across 
various temporal scales and spatial dimensions. By learn-
ing the diverse characteristics of different anomalies, 
the model’s generalization capability can be improved, 
as well as the accuracy of anomaly detection and multi-
classification. As shown in Fig.  2a, Multi-scale Neural 
Transformation is a sub-module of proposed MTG_CD. 
We define M is the neural transformation function struc-
ture. as shown in Fig. 3, M is designed by a stack residual 
network containing numbers of residual blocks. Each 
residual block consists of several 1D convolutional lay-
ers, followed by instance normalization layers and ReLU 
activations.

Given the input micro-service system fault data X, the 
neural transformation result Vk(X) is computed by Eq. (1) 
[37].

where k is the number of transformation.
Based on the characteristic of the neural transforma-

tion structure, the micro-service system fault data’s tem-
poral features can be captured. Specifically, the global 
and subtle temporal features can be get by the residual 
block, and local temporal features can be extracted by 
convolution operation. Both of the residual blocks and 1d 
convolutional layers improve the model’s ability to model 
temporal features.

(1)Vk(X) = Mk(X)+ X

Graph structure adjacency matrix learning
In micro-service system, the data are graph-like struc-
ture data. To better process such data, we introduce 
Graph Structure Adjacency Matrix Learning to encode 
the correlation between micro-service system fault 
data and the adjacency matrix. In this paper, the graph 
generated by the adjacency matrix is used to describe 
the temporal-structural feature information of time 
series data. The adjacency matrix established in our 
work is established by two steps: first, calculating the 
Pearson correlation coefficient between the dimensions 
of the microservices system failure data. Then build-
ing the adjacency matrix based on the computed cor-
relation. Therefore, the adjacency matrix reflects the 
correlation between different time series of the micros-
ervices system failure data, which is used to extract 
temporal-structural feature information to assist in sys-
tem anomalies detection. In the adjacency matrix, the 
rows and columns denote the strength of the correla-
tion between various time series. In other words, the 
larger value represents the stronger correlation, and 
vice versa. Assuming X is the input micro-service sys-
tem fault data. The extracted adjacency matrix A can be 
defined as Eq. (2):

where Adj is the adjacency matrix learning function. 
Pearson correlation coefficient is utilized to calculate the 
correlation among dimensions in micro-service system 
fault data. Subsequently, we set up our adjacency matrix 
based on the computed correlation, as shown in Eq. (3).

(2)A = Adj(X)

Fig. 3  One example of residual network containing numbers of residual blocks



Page 7 of 15Chen et al. Journal of Cloud Computing          (2024) 13:103 	

where xi represents the data in the i-th dimensions of the 
micro-service system fault data, i = 1, ...,T  , while xj is the 
data in the j-th dimensions of the micro-service system 
fault data, j = 1, ...,T  , cov and σ are the covariance and 
standard deviation, respectively.

Multi‑feature modeling
As mentioned above, Multi-scale Neural Transforma-
tion is used to extract the multi-scale temporal features, 
while Graph Structure Adjacency Matrix Learning is 
adopted to capture the structure-spatial feature infor-
mation. The data outing from both Multi-scale Neural 
Transformation and Graph Structure Adjacency Matrix 
Learning are then input to the multi-feature Modeling, 
as shown in Fig. 2c.

Multi-feature Modeling is consisted by graph Convo-
lutional Network (GCN) layer and a batch normalization 
layer. We employ the Multi-feature Modeling to model the 
input data with multiple features, including multi-scale 
temporal features and structure-spatial features. In par-
ticular, Multi-feature Modeling is capable of extracting 
information about the trend and periodic changes in data 
over time. Additionally, spatial features can reveal informa-
tion about the spatial correlation between data points. By 
conducting a comprehensive analysis of both temporal and 
spatial characteristics, we can gain a deeper understanding 
of the data, uncover potential connections and rules, and 
enhance the model’s performance. Furthermore, the mod-
eled data comprises features that are advantageous for the 
multi-classification task of downstream system faults.

Let Xmodel be the output of Multi-feature Modeling, 
which is formulated in Eq. (4).

where V is the multi-scale temporal features from the Multi-
scale Neural Transformation, A is the structure-spatial 
feature information from the Graph Structure Adjacency 
Matrix Learning, G represents the Multi-feature Modeling 
combining by GCN layer and a batch normalization layer. 
Specifically, V and A perform matrix multiplication in GCN. 
The new feature matrix is obtained and multiplied by the 
GCN’s weight matrix. The output is processed using an 
aggregation method and linear layer, resulting in the final 
output. The GCN layer can be expressed as Eq. (5).

(3)Adj =
cov(xi, yi)

σxiσyi

(4)Xmodel = G(V ,A)

(5)hi = σ

j∈N (i)

1

cij
Whj

where w and hi represent the weight matrix and the fea-
ture vector of the i-th node, respectively. σ stands the 
activation function, and cij is a normalization constant 
that represents the elements of the i-th row and j-th col-
umn in adjacency matrix.

System fault multi‑classification and diagnosis
To identify and distinguish different types of faults, 
thereby improving the reliability and stability of the sys-
tem, we have established the system fault multi-classifica-
tion and diagnosis module, as shown in Fig. 2d.

Firstly, the modeled feature vector Xmodel are mapped 
to specific prediction classes. Next, a standard multi-layer 
fully connected neural network is employed to convert the 
dimension of the feature vector to the number of classes. 
In addition, a cross-entropy loss function is adopted to 
compare the actual labels with the predicted labels. The 
cross-entropy loss function is defined in Eq. (6).

where M and N represent the number of training sam-
ples and the number of fault classification, respectively. 
while y and ŷ is the actual label and predicted label, 
respectively.

Through this approach, we can more accurately predict 
potential fault types. After obtaining the results of clas-
sifying the fault data, we also conduct a coarse-grained 
level diagnosis and exploration to identify the root cause 
of such system faults. This involves tracing the micros-
ervices that are most likely to exhibit these faults. For 
implementing system fault diagnosis, we employ Prin-
cipal Component (PC) and PageRank techniques to 
complement our analysis. By incorporating these two 
methods, we can further enhance our understanding of 
the underlying issues and contribute to the development 
of more efficient and reliable systems.

To be specific, we need to understand the degree of cor-
relation between system faults and various microservices. In 
this process, we utilize the PC algorithm to find the DAG 
with minimum information loss in the initial G0 . This algo-
rithm can retain critical information while reducing unnec-
essary redundancy, enabling us to analyze the relationship 
between system faults and microservices more precisely.

After finding an appropriate DAG, we perform a ran-
dom walk using the PageRank algorithm. This algorithm 
calculates access probabilities based on the importance of 
nodes, helping us understand the relative importance of 
each node in the graph. By analyzing the importance of 
these nodes, we can identify the microservices that have 
the greatest impact on system faults.

(6)loss = −
1

M

∑

i

N
∑

j

yij log
(

ŷij
)
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Algorithm 1 is the process of system fault diagnosis based 
on multi-classification results. This algorithm takes multi-
classified anomaly data as input and outputs the PageRank 
scores of each dimension after analyzing the causality graph. 
It is used to identify the most critical dimensions causing the 
anomalies, thus diagnosing the root cause of system faults. In 
summary, our method consists of two steps: first, using the 
PC algorithm in the initial G0 to find the DAG with minimum 
information loss; second, after constructing the DAG related 
to system faults, employing the PageRank algorithm for a ran-
dom walk and mining the microservices most likely to cause 
system faults based on node ranking. This approach helps 
us identify and resolve potential system faults more quickly, 
thereby improving the reliability and stability of the system.

Algorithm 1 System Fault Diagnosis based on multi-classification results

Evaluation experiments
In this section, we first introduce the dataset platform 
and experimental parameter settings for the micros-
ervices architecture. Then, we present the experimen-
tal results of our model and seven other comparative 

models. Finally, we show the system anomaly diagnosis 
experimental results.

Dataset
In order to conduct the evaluation experiment, we 
adopt a widely utilized microservices architecture test-
ing platform, namely “Sock Shop”, which comprises 13 
core services1 The primary focus of this research is on 
the following service domains: frontend presentation, 
product catalog, shopping cart, user management, order 
processing, payment functionality, and logistics services. 
As illustrated in Fig.  4, the microservices architecture 
of Sock Shop exhibits interconnected service modules, 
resulting in a higher complexity of the microservices sys-
tem failure data we collected. This complexity also poses 
a challenge for our model in terms of multi-classification 
tasks.

The dataset contains spatial and temporal information 
of the microservices system. On one hand, the dataset 
includes service-level request latency metrics, as well as 
resource-level performance metrics, such as CPU utili-
zation, memory utilization, disk read-write counts, and 
network send-receive bytes. This reflects the state of dif-
ferent services at different points in time. On the other 
hand, the dataset records the performance metrics of 
individual service instances within the microservices sys-
tem, reflecting the spatial relationships between differ-
ent service instances. Additionally, the document utilizes 
the dependencies between services to construct a graph 
structure that describes the spatial relationship informa-
tion between services. In summary, the dataset presents a 
comprehensive view of the temporal and spatial informa-
tion of the microservices system through time series and 
graph structures, providing important support for system 
fault detection and diagnosis.

Fig. 4  The micro-service architecture of Sock Shop

1  https://​github.​com/​micro​servi​ces-​demo/​micro​servi​ces-​demo

https://github.com/microservices-demo/microservices-demo
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To simulate a real-world application environment, we 
inject three typical system faults: CPU profiling, memory 
leakage, and network latency [38]. In our microservices 
system fault multi-classification task, these three system 
faults are categorized into different classes, and are dis-
tinct from the normal data class. The application can nor-
mally run for 10 to 30 minutes before an anomaly occurs, 
and the injecting process of system faults is repeated at 
least five times for each system fault. It is worth mention-
ing that, each system fault lasts between 1 and 5 minutes.

In the experiment, we collect real-time data every 5 
seconds, including both service-level and resource-level 
information. Specifically, we focus on the latency of each 
service at the service level, we collect performance met-
rics related to container resources at the resource level, 
such as CPU usage, memory usage, disk reads and writes, 
and network receive and transmit bytes. Table  1 sum-
marizes the key characteristics of eight dataset. By the 
in-depth analysis of these data, we aim to provide a ben-
eficial reference for microservices system fault diagnosis.

Experimental settings
our experimental platform is equipped with an on an 
server equipped with an Intel (R) Core (TM) i9-10900K 
CPU @ 3.70GHz, NVIDIA 2080Ti (12G) graphics card, 
and 32G RAM. The Python version installed on the 
server is 3.6, and the GPU-enabled PyTorch version is 
1.4.0. We employ 3, 5, 7 as the convolutional kernel size 
in the Mk . We set initial learning rate and batch size as 
0.00001 and 35, respectively. The dropout is set to 0.2, 
and categorical cross-entropy loss. We utilize the Adam 
optimizer to optimize the model’s parameters and con-
duct 200 epochs of high-frequency training.

Evaluation metrics
We evaluate the performance of our proposed model 
and the baseline models using Four evaluation metrics, 
including macro-F1, macro-Precision, macro-Recall and 
macro-Acc.

Comparison with neural transformation k
Table  2 illustrates the impact of the number of neural 
transformation k on performance metrics under three 
different datasets: Catalogue, Shipping, and Payment. 
The K is set to 1, 3, 7, 12, 15, 17, and 19, respectively. 

The performance metrics include macro-F1, macro-
Pre, and macro-Acc. We can observe that on the Cat-
alogue dataset, the performance metrics generally 
improve with the increase of k, with the highest values 
being achieved at k = 17 . Similarly, on the Shipping 
dataset, the performance metrics exhibit an upward 
trend as k increases, reaching their peak at k = 15 . In 
the Payment dataset, the performance metrics also 
consistently improve with the increase of k, with the 
best performance being observed at k = 15 . In general, 
k changes from 1 to 15, the performance of our model 
shows an upward trend, 15 to 17 shows a downward 
trend. This is because the k is too small, the model can 
not fully extract the relevant features of multivariate 
time series. The reason is that k is too large, the fea-
tures extracted by the model are too redundant, which 
increases the workload to the following tasks and does 

Table 1  The detail of partial datasets in the Sock Shop

Statistics Carts Catalogue Frontend Orders Payment Shipping User

Dimension 35 35 36 35 36 35 36

Train size 3276 3229 3448 3273 3080 3096 3174

Test size 1405 1384 1479 1403 1321 1328 1361

Class 4 4 4 4 4 4 4

Table 2  The number of neural transformation on performance 
metrics under three different datasets: catalogue, shipping, and 
payment

k macro-F1 macro-Pre macro-Rec macro-Acc

Catalogue 1 0.8556 0.8494 0.8619 0.9494

3 0.8732 0.8725 0.8745 0.9531

7 0.8986 0.9362 0.8706 0.9663

12 0.9056 0.9404 0.8761 0.9678

15 0.9148 0.9426 0.8898 0.97

17 0.9172 0.9491 0.8889 0.9714

19 0.9029 0.9425 0.8711 0.9684

Shipping 1 0.836 0.8442 0.8292 0.9467

3 0.8119 0.7942 0.8346 0.9336

7 0.8668 0.882 0.8531 0.9552

12 0.883 0.909 0.8613 0.9621

15 0.9004 0.9183 0.8853 0.9667

17 0.8979 0.9023 0.8938 0.9652

19 0.8974 0.9063 0.8888 0.9667

Payment 1 0.9035 0.8988 0.9091 0.9675

3 0.915 0.9292 0.9018 0.973

7 0.9145 0.927 0.9031 0.9722

12 0.9201 0.9313 0.9115 0.9737

15 0.9426 0.9492 0.9369 0.9807

17 0.9314 0.9406 0.923 0.9768

19 0.9341 0.9391 0.9305 0.9776
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not use our anomaly detection. Setting the number of 
transformations allows the model to finely tune the fea-
ture extraction across various scales during the multi-
scale transformation process. This precision helps the 
model to delve deeper into the intrinsic features of 
the data, which in turn enhances its ability to classify 
anomalies accurately. Thus, in the subsequent experi-
ments, we will set k to 15.

Baselines
In addition to the proposed MTG_CD model, the follow-
ing system fault multi-classification models, including 
HMM [39], NaiveBayes [7], Random Forset [11], Omni-
Anomaly [5], CNN [16], TranAD [40], GDN [8] are com-
pared to our proposed model on the Sock Shop testing 
platform.

Comparison with previous work
Table 3 presents the performance of our model and the 
baseline models on the selected eight datasets in terms 
of macro-F1, macro-Precision, macro-Recall and macro-
Acc. The outstanding performance for each dataset is 
highlighted in bold.

It is noted that our model achieves the highest ranks in 
macro-F1, macro-Precision, macro-Recall, and macro-
Accuracy. This demonstrates that our model is robust, 
consistently delivers solid performance in various data 
scenarios, and has strong generalization capabilities.

On the other hand, we also find that deep learning 
networks such as OmniAnomaly, TranADand GDN 
perform worse than classical, shallow network meth-
ods (e.g. NaiveBayes and RandomForest) in the micro-
service system fault multi-classification task, and may 
even exhibit counterproductive.

In the system fault multi-classification problem, dif-
ferent system faults may possess distinct feature rep-
resentations. The OmniAnomaly algorithm may not 
fully consider the data distribution and diversity dur-
ing the training process, which could lead to its perfor-
mance degradation on certain datasets. The complex 
deep transformer network TranAD might not fully 
capture the differences and complexity between these 
categories, as the Transformer network primarily 
focuses on global dependencies in sequences and may 
not effectively capture local features of individual sys-
tem fault categories. Similarly, graph-based networks 
GDN might have limited representational abilities for 
nodes and edges, failing to learn the feature differences 
between categories thoroughly. Consequently, these 
limitations lead to poor performance for both models.

The shallow neural network CNN has fewer param-
eters, which might not be sufficient to adapt to the 

complex system fault multi-classification problem. For 
this system fault multi-classification problem, more 
intricate models might be necessary to extract more 
abstract and advanced feature representations. For 
HMM, the reason for poor performance may be due 
to the large difference between the data distribution of 
the HMM model and the actual data distribution. In 
addition, during the training process, the model is also 
prone to falling into local optimal solutions. Classical 
methods like Naive Bayes and Random Forest outper-
form other baselines in handling system fault multi-
classification problems, due to their ability to adapt to 
small samples and unbalanced data. However, since 
their limited feature representation capabilities, their 
performance falls low of our model.

Since macro-F1 is a more comprehensive evaluation 
metric, we separately compare the macro-F1 of dif-
ferent models across all datasets. The macro-F1 per-
formance of various models on the eight datasets is 
presented in Fig.  5. Our model achieves the optimal 
macro-F1 in all datasets. This demonstrates that all 
components of our model function effectively and can 
learn data features better to achieve superior system 
fault multi-classification results.

Ablation experiment
To assess the effectiveness of each component in our 
model, we conducted ablation experiments on Catalogue, 
Shipping, and Payment datasets.

•	 w/o NT: replacing multi-scale neural transformation 
with multi-scale convolution.

•	 w/o MS: eliminating the multi-scale element in the 
multi-scale neural transformation

•	 w/o MNT: substituting multi-scale neural transfor-
mation directly with conventional convolution.

As illustrated in Table 4, the macro-F1 score decreases 
appropriately when we eliminate or substitute the cor-
responding components of the model. This evidence 
demonstrates that each component in our proposed 
model serves a distinct function and collectively pro-
motes the successful accomplishment of the multi-clas-
sification task for microservice system faults.

Considering the performance indicators under three 
datasets, when the multi-scale component is removed, the 
average macro-F1 score decreases by 0.76%. This indicates 
that multi-scale effectively captures the feature informa-
tion of abnormal data, thereby enhancing the model’s 
capacity to detect random and scarce system faults.
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When we replace the neural transformation with 
convolution, the average macro-F1 score decreases by 
0.24%. This suggests that the neural transformation 
plays a vital role in enhancing data diversity by cap-
turing diverse aspects of data features. This, in turn, 
enables the model to learn data more effectively and 
classify various data features.

Lastly, when we directly replace the multi-scale neu-
ral transformation with simple convolution, the average 
macro-F1 score decreases by 3.05%. This demonstrates 
that both components significantly contribute to 
extracting data features and classifying different data 

types, providing essential support for detecting micro-
service system faults.

In conclusion, each part of our model plays a cru-
cial role in improving the model’s performance and 
facilitating the successful completion of the multi-
classification task for microservice system faults. The 
ablation experiments validate the effectiveness of the 
components in our proposed model and emphasize the 
importance of multi-scale neural transformation and 
multi-scale convolution in detecting and classifying 
microservice system faults.

System fault diagnosis results
In this subsection, we exemplify the effectiveness of our 
system fault diagnosis by selecting the Payment data-
set and validating our method based on the classifica-
tion results of the model. The causal propagation graph 
illustrating the interplay between microservices is pre-
sented in Fig. 6. The nodes in the figure represent seven 
microservices: 0 (Front-end), 1 (User), 2 (Catalogue), 
3 (Orders), 4 (Carts), 5 (Payment), and 6 (Shipping). 
When a system fault occurs, it propagates through the 
connections between microservices, necessitating spe-
cific techniques to capture the causality between them.

To identify the most fundamental microservices under-
lying the system fault and diagnose its source, we utilize 
the PC algorithm to generate a causal propagation graph. 
This graph effectively displays the relationships between 
different microservices. Furthermore, we employ the 
PageRank algorithm to conduct a random walk in the 
causal propagation graph and calculate the abnormality 

Fig. 5  Comparison of macro-F1 for eight models

Table 4  Ablation experiment on Catalogue, Shipping, and Payment 
datasets

Method macro-F1 macro-
Pre

macro-
Rec

macro-Acc

Cata-
logue

Ours 0.9148 0.9426 0.8898 0.97

w/o NT 0.9029 0.9224 0.886 0.9663

w/o MS 0.9123 0.9417 0.8885 0.9699

w/o MNT 0.8972 0.9311 0.8691 0.9655

Shipping Ours 0.9004 0.9183 0.8853 0.9667

w/o NT 0.8683 0.8464 0.8929 0.9536

w/o MS 0.8998 0.9051 0.8963 0.9665

w/o MNT 0.8575 0.8532 0.8627 0.9521

Payment Ours 0.9426 0.9492 0.9369 0.9807

w/o NT 0.9146 0.9152 0.9154 0.9714

w/o MS 0.923 0.926 0.9209 0.9745

w/o MNT 0.9115 0.9127 0.9118 0.9699
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score for each node. Finally, we select the top two nodes 
as the most fundamental causes of the system fault. The 
PageRank results are provided in Table 5.

Table  5 reveals that various microservices can con-
tribute to different system faults, and the proportion of 
exceptions occurring for each microservice differs. For 
instance, concerning CPU system faults, the most likely 
culprits are User and Catalogue; for Memory system 
faults, it’s Front-end and Orders; and for Latency system 
faults, Payment and Front-end are the most probable 
suspects. This indicates that our proposed approach can 
effectively determine the key microservices responsible 
for system faults, facilitating root cause diagnosis and 
enabling more targeted fault detection and optimization 
efforts.

It is worth noting that the presented study incorpo-
rates additional adjustments to the logical framework 
and includes supplementary explanations to ensure a 

more comprehensive and academic representation of the 
methodology and its applications. This comprehensive 
approach to system fault diagnosis in microservice sys-
tems can potentially benefit the development and main-
tenance of robust and efficient systems, contributing to 
the overall reliability of modern software systems.

Conclusions and future work
In this paper, we study the problem of system faults 
potentially caused by real-time monitoring data in 
microservices. To classify and diagnose these system 
faults, we propose a supervised learning framework with 
a multi-scale approach to categorize occurring system 
faults and perform fault diagnosis based on the classified 
fault data.

Our proposed MTG_CD framework effectively 
addresses the challenge of robust real-time system fault 
identification in microservice applications. By utilizing 
graph structure adjacency matrix learning, multi-scale 
neural transformation, and graph convolutional net-
works, we achieve accurate and efficient fault diagnosis, 
paving the way for autonomous maintenance and repair 
in cloud-based microservice systems. Experimental 
results indicate that our model exhibits excellent perfor-
mance, stability, and robustness.

Fig. 6  Causal propagation diagram about CPU, Memory,and Latency system faults (treating different microservices as nodes)

Table 5  The results of PageRank

Anomaly Top 2

CPU (2, 0.2217) (1, 0.2145)

Memory (0, 0.3147) (3, 0.1722)

Latency (5, 0.3083) (0, 0.1666)
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Future research may proceed from two perspec-
tives. First, We can conduct an in-depth investigation 
into the underlying causes of anomalies, extending 
our analysis beyond the service level. Second, we can 
optimize our model to achieve superior multi-classifi-
cation performance for system faults. By doing so, we 
aim to better address various fault scenarios in micros-
ervice systems and enhance system reliability and 
stability.

Abbreviation
MTG_CD	� Multi-Scale Neural Transformation Graph
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