
Chen et al. Journal of Cloud Computing (2024) 13:103
https://doi.org/10.1186/s13677-024-00666-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

MTG_CD: Multi-scale learnable
transformation graph for fault classification
and diagnosis in microservices
Juan Chen1, Rui Zhang1, Peng Chen1*, Jianhua Ren2, Zongling Wu3, Yang Wang1, Xi Li1 and Ling Xiong1

Abstract

The rapid advancement of microservice architecture in the cloud has led to the necessity of effectively detecting,
classifying, and diagnosing run failures in microservice applications. Due to the high dynamics of cloud environ-
ments and the complex dependencies between microservices, it is challenging to achieve robust real-time system
fault identification. This paper proposes an interpretable fault diagnosis framework tailored for microservice architec-
ture, namely Multi-scale Learnable Transformation Graph for Fault Classification and Diagnosis(MTG_CD). Firstly, we
employ multi-scale neural transformation and graph structure adjacency matrix learning to enhance data diversity
while extracting temporal-structural features from system monitoring metrics Secondly, a graph convolutional net-
work (GCN) is utilized to fuse the extracted temporal-structural features in a multi-feature modeling approach, which
helps to improve the accuracy of anomaly detection. To identify the root cause of system faults, we finally conduct
a coarse-grained level diagnosis and exploration after obtaining the results of classifying the fault data. We evaluate
the performance of MTG_CD on the microservice benchmark SockShop, demonstrating its superiority over several
baseline methods in detecting CPU usage overhead, memory leak, and network delay faults. The average macro F1
score improves by 14.05%.

Keywords Microservice architecture, Neural transformation, Graph convolution network, Fault diagnosis, Fault
detection

Introduction
In recent years, with the popularization of cloud comput-
ing and distributed systems, large monolithic services
have been gradually rearchitected into finer-grained
modules, which combine hundreds or even thousands
of loosely-coupled microservices [1]. This transforma-
tion involves breaking down single-tenant services into

smaller, more concentrated microservices. The microser-
vices architecture offers several advantages that make it a
powerful approach, including simplifying deployment of
applications and improving the efficiency and flexibility
of resource provisioning.

The complexity and dynamics of the deployment
microservices environment, along with the complex con-
nection between microservices, can lead to the propa-
gation of system faults when a micro-service fails. For
example, as shown in Fig. 1, when a system fault occurs
in the Shipping service, it then propagates to the Order
service, and finally affects to the Front-end service. The
depth of the red represents the severity of the fault super-
position. This propagation can result in cascading effects,
where the failure of one micro-service can cause issues
in other connected microservices, potentially leading to a

*Correspondence:
Peng Chen
chenpeng@mail.xhu.edu.cn
1 School of Computer and Software Engineering, Xihua University,
Chengdu, China
2 West China Second University hospital, Sichuan University, Chengdu,
China
3 School of Information Science and Technology, Southwest Jiaotong
University, Chengdu, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00666-0&domain=pdf

Page 2 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

complete system failure. Therefore, it is crucial to quickly
identify potential issues in microservices before they can
cause widespread disruption, which helps to guide the
fault-tolerant and elastic scheduling, so as to alleviate the
impact of system faults and ensure continuous service
availability.

Identifying and diagnosing faults in microservice-
based systems poses unique challenges [2], primarily
due to the inherent complexity and dynamic nature of
microservices in four aspects: nodes, instance, configu-
ration, and sequence. Firstly, the large-scale deployment
of microservices across numerous nodes (e.g., physical or
virtual machines), leads to uncertainties in microservice
communication. For instance, the microservice instances
processing requests may be located in various network
localities, resulting in inaccurate timeout estimates. Sec-
ondly, microservices are often configured in a decentral-
ized manner, with different instances having different
configurations. This leads to a high degree of variability
in the behavior of microservices, making it challenging
to identify patterns and relationships between services.
Thirdly, the sequence in which microservices are exe-
cuted can have a significant impact on the overall system
behavior. Lastly, the high degree of inter-service depend-
ency in microservice systems adds another layer of com-
plexity to fault diagnosis. A fault in one microservice can
propagate through the dependency graph, affecting other
services and making it difficult to isolate the root cause of
the problem.

Microservices often face system in practical scenarios,
such as network latency and memory leaks, which may
negatively affect their performance. Most of the data
collected from microservices is stored in multi-variable
time series, containing various key performance indica-
tors of the microservices, such as request latency and

CPU utilization. These usually reflect the system status,
and these indicators record the status of different services
in time series form [3]. Therefore, closely monitoring
and analyzing various key performance indicators col-
lected from each service instance, such as CPU load and
network usage, has become the mainstream method for
detecting and locating faults [4].

Recent research on micro-service system fault classifi-
cation can be divided into multi-variable fault detection
[5], and single-variable fault detection [6]. Single-variable
detection methods are mainly based on a specific key
performance indicator and can model time dependen-
cies but cannot capture complex spatial relationships
[5]. They are more likely to misidentify normal changes
as anomalies, leading to more false alarms. In compari-
son, multi-variable fault detection methods can learn the
inherent connections between microservices data. How-
ever, these methods are often not very effective, unable
to fully capture the multi-scale features of data, and it
is also challenging to model the complex relationships
between different services, resulting in unsatisfactory
classification results. For example, the classic Naive Bayes
classifier [7] has certain biases when building models for
related features, which may have a negative impact on
anomaly detection results. GDN [8] network has cer-
tain advantages in building models for the complex rela-
tionships between different services in the microservice
architecture. However, GDN still does not fully consider
time features. In practical applications, temporal features
are important for fault classification and prediction.

To address these issues, we propose an interpretable
fault diagnosis framework tailored for microservices
architecture. Specifically, since multi-scale neural
transformations can enhance data diversity, and the
execution sequence of microservices can represented

Fig. 1 An example of microservices system fault propagation

Page 3 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

as a graph, we combine multi-scale neural transfroma-
tions with graph structure adjacency matrix. Then, the
extracted spatiotemporal features and the topological
structure characteristics of microservices are inte-
grated into a multi-feature modeling, with the aim-
ming to infer the relationships between microservices
and achieve effective fault detection. Upon obtain-
ing the corresponding multi-class fault classification
results, we employ the PC algorithm [9] and PageR-
ank algorithm [10] to diagnose and explore faults, thus
explaining the potential causes of system failures. The
main contributions of our work are as follows:

1) We propose an interpretable fault diagnosis frame-
work for microservice architecture, namely Multi-
scale Learnable Transformation Graph for Fault
Classification and Diagnosis (MTG_CD). This
approach combines multi-scale neural transforma-
tion and graph structure adjacency matrix, where
we represent the order of executing microservices
as a graph to extract structure-temporal features
from system monitoring data, aiming to enhancing
data diversity.

2) We employ graph convolutional networks (GCNs) to
fuse the extracted spatio-temporal and microservice
topology structure features in a multi-feature mod-
eling approach. This helps to infer the relationships
among microservices and achieve effective faults
detection.

3) After obtaining the corresponding fault multi-clas-
sification results, we perform a coarse-grained level
diagnosis and exploration to determine the underly-
ing cause of system failures, which indicates that our
model is interpretable.

4) Experiment results show that the MTG_CD model
outperformed several baseline methods in the
SockShop’s microservice benchmark test, with an
average macro F1 score improvement of 14.05%.
The results demonstrate its superiority in detecting
CPU usage overhead, memory leak, and network
delay faults.

Related works
With the increasing complexity and scale of modern
application systems, microservices have become a
popular solution for enterprises to address these chal-
lenges. As a result, detecting and locating faults in
microservice systems have become essential for ensur-
ing system stability and reliability. Here, we divide
related works into two main aspects: micro-service
system fault classify detection and micro-service sys-
tem fault diagnosis, respectively.

Micro‑service system fault classify detection
In the field of micro-service system fault detection, a
wide range of techniques have been proposed and widely
applied. These techniques can be generally categorized
into two major groups: machine learning methods, and
deep learning methods.

Machine learning methods: They have been widely
applied in various fields and have shown promising
results. Some popular classification algorithms include
Naive Bayes [7], Support Vector Machine (SVM) [11],
Random Forest [12], K-Nearest Neighbors (KNN) [13]
-based models, and others. For example, Murugan et al.
[7] adopted a Naive Bayes classifier to model microser-
vice event logs. By preprocessing and extracting features
from log data, they classify normal and abnormal behav-
iors. Additionally, they use an adaptive learning method
called AdaNet to dynamically adjust model parameters
and improve detection accuracy. Russo et al. [11] utilized
SVM to classify normal and abnormal data in microser-
vice systems. To improve classification performance, they
preprocessed and extracted features from the data. They
also adopted cross-validation methods to evaluate model
performance and adjust SVM hyperparameters for opti-
mization. Miao et al. [12] employed the random forest
algorithm to classify log data from microservice systems.
They preprocessed the data and select features, then used
random forests to classify normal and abnormal behav-
iors. To evaluate the performance of the model, they con-
ducted a series of experiments and use cross-validation.
Guan et al. [13] introduced a multi-view OVA model
grounded on decision tree (MVDT) to facilitate the com-
plexity of the decision tree structure and enhance the
generalization capability for multi-classification tasks.
Cinque et al. [14] adopted the KNN algorithm to classify
normal and abnormal data in microservice systems. To
improve classification performance, they also discussed
how to select appropriate distance metrics and distance
thresholds to enhance detection accuracy.

Deep learning based methods: Deep learning methods
have gained significant attention in recent years due to
their ability to automatically learn complex features and
achieve state-of-the-art performance in various tasks.
In the context of microservice anomaly detection, deep
learning techniques have been applied to improve the
accuracy and generalization ability of the models, such
as neural networks [15], Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN)
[16], Graph-Based Methods [17]. For example, aim-
ing to solve the problem of detecting potential anoma-
lies in microservices, Hasnain et al. [15] used recurrent
neural networks (RNN) based approach to capture and
analyze temporal patterns in microservice logs, thereby
detecting anomalies. Lindemann et al. [16] utilized long

Page 4 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

short-term memory networks (LSTM) to capture tem-
poral patterns and generate accurate predictions for
microservice anomaly detection. Bae et al. [17] employed
convolutional neural networks (CNN) for microservice
anomaly detection to address issues related to accuracy,
reliability, and real-time performance. CNN and LSTM
models is employed by in DeepADNet [18] to classify
multichannel EEG signals; [19] proposed a reinforcement
learning-informed pattern mining framework for multi-
variate time series classification. A cooperative algorithm
was proposed by Chen et al. [20] to automatically learn
essential features and patterns in time series, which can
be used for classification tasks; Zhao et al. [21] combines
a multi-scale residual attention network (MSRA) and a
generative adversarial network (GAN). It uses the MSRA
network to extract features from hyperspectral images
and enhances the model’s generalization ability through
data augmentation via the GAN network [4].

Some studies emplyed GNN. Aubet et al. [22] applied
graph-theoretic methods to analyze the inter-service
dependencies and detect anomalies based on the graph
structures. Deng et al. employed graph structure based
GDN [8] for binary classification models; Sha et al. [23]
introduced a new semisupervised classification frame-
work based on graph attention networks (GATs) for
hyperspectral images (HSIs). Guillaume et al. [24] fused
GCN and attention mechanisms to model multi-scale
images, which enhanced the accuracy of multiclassifi-
cation and system fault detection. Sheng et al. [25] con-
sidered employing the GCN for hyperspectral image
classification, given its capability to perform convolu-
tions on arbitrarily structured non-Euclidean data and
its applicability to irregular image regions represented
by graph topological information. Zhang et al. [26] dis-
cussed a flexible monitoring framework based on a
dynamic-multilayer GCN that effectively captures tem-
poral and spatial features from industrial time series data,
in order to adapt to various tasks such as fault diagno-
sis and remaining useful life prediction. Wang et al. [27]
presented a multivariate time series anomaly detection
framework called Multiscale wavElet Graph AE (MEGA),
which enhances anomaly detection accuracy by employ-
ing a dynamic graph module to capture changes in inter-
variable dependencies.

However, the previously mentioned methods are
unable to model the correlation and spatio-temporal
characteristics of micro-service system fault features
simultaneously, leading to limited feature learning.
Moreover, for datasets with small sample sizes, extracting
features becomes increasingly challenging. Therefore, it
is necessary to design of multi- scale of feature extraction
to enhance data diversity, so that improving the model’s
performance.

Micro‑service system fault diagnosis methods
System fault diagnosis allows us to determine the under-
lying cause of anomalies among the various detected sys-
tem faults. For instance, X. Zhou et al. [28] performed
an industrial investigation to detect regular defects in
microservice platforms, contemporary debugging meth-
odologies, and the obstacles encountered by developers
during implementation. Their research highlights the
necessity of implementing intelligent trace examination
that utilizes data-driven and learning-oriented strate-
gies for trace comparison. X. Zhou et al. [29] executed
an industrial investigation to detect common defects in
microservice platforms, contemporary debugging strat-
egies, and the difficulties encountered by developers
during implementation. Their research underscores the
necessity of adopting intelligent trace examination that
utilizes data-driven and learning-oriented approaches for
trace comparison. Ma et al. [30] focused on research on
the challenge of identifying the root cause of exceptions
in large-scale microservice frameworks, and introduced
a technique referred to as ServiceRank. This approach
ranks the services within the microservice architecture,
enabling rapid identification of potential root causes of
exceptions. Li et al. [31] presented Graph-Attention-Sage
algorithm to categorizes and performs root cause analy-
sis on anomalies by examining the graph neural network
derived from dependency relationships among microser-
vices. The TS-InvarNet method in [32] first extracts key
performance indicator (KPI) sequences from the services
by conducting time series analysis. Then, it aggregates
and analyzes these KPI sequences in the spatial dimen-
sion, resulting in KPI invariants for each service node.
Finally, TS-InvarNet employs machine learning algo-
rithms to train an anomaly detection model utilizing
these KPI invariants. Brandón et al. [33] introduced a
root cause analysis framework that relies on graph rep-
resentations of these architectures. These graphs allowed
for comparing any abnormal situation occurring in the
system with a library of anomalous graphs serving as a
knowledge base for user troubleshooting. Xin et al. [2]
proposed CausalRCA for fine-grained, automated, and
real-time root cause localization. The method operates
by employing a gradient-based causal structure learn-
ing approach to generate weighted causal graphs, fol-
lowed by a root cause inference technique to identify
root cause metrics. Liu et al. [34] investigated potential
anomaly propagation chains based on dynamically gener-
ated service call graphs, and ranked potential root causes
according to their correlation. Wu et al. [35] deduced
root causes in real-time absence of any application detec-
tion, by correlating application performance symptoms
with corresponding system resource utilization. Ma et al.
[36] treated the system’s components as individual nodes,

Page 5 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

and their interdependencies configure a graph. A graph
neural network is trained, followed by the identification
of the root cause utilizing the PC algorithm, and PageR-
ank algorithm, where the PC [9] is a method based on
probabilistic graphical models that infers causal relation-
ships between variables by analyzing conditional inde-
pendencies between them, and PageRank algorithm [10]
determines the importance and ranking of web pages
by analyzing the link relationships between web pages.
Inspired by this, we employ the PageRank algorithm in
this article to assess the impact of nodes on system faults.

System model
In this section, we first introduce the overall architec-
ture of MTG_CD. After that, the four sub-modules of the
MTG_CD are described, respectively.

Overall architecture of MTG_CD
Figure 2 shows an overview of the proposed MTG_CD
architecture systematic fault multi-classification in
microservices, MTG_CD consits four modules, includ-
ing: (a) Multi-scale Neural Transformations, (b) Graph
Structure Adjacency Matrix Learning, (c) Multi-feature
Modeling, and (d) System Fault Multi-classification and
Diagnosis, respectively. The general process of MTG_CD
can be summarized as follows:

First of all, we collect and normalize data from the
microservice fault monitoring system, where the col-
lected data contain multiple attributes, such as order,
payment, catalogue, user and carts, etc. Assuming the
system fault data is derived from the real time monitoring
of micro services, let X = (x1, ..., xt , ..., xT)N ∈ RT×N be
the input time series, where t = 1, ...,T . is the time step,
and T is the total number of time steps. N is the feature

dimensions of the data at each time step. In this paper, we
employ the maximum-minimum normalization method
to standardize the data and facilitate meaningful analysis.

Secondly, the normalized data are inputted into two
modules simultaneously, namely (a) Multi-scale Neu-
ral Transformations and (b) Graph Structure Adjacency
Matrix Learning. Regarding module (a), it enhances the
diversity of the data through neural transformations.
With respect to module (b), it helps to obtain the adja-
cency matrix of the graph.

Thirdly, the outputs from (a) Multi-scale Neural Trans-
formations and (b) Graph Structure Adjacency Matrix
Learning are simultaneously fed into the (c) Multi-feature
Modeling section, to fuse the extracted spatio-temporal
and microservice topology structure features in a multi-
feature modeling approach. This helps to achieve effec-
tive faults detection.

Last but not least, the features captured by Multi-fea-
ture Modeling is inputted into the (d) System Fault Multi-
classification and Diagnosis, which is beneficial to realize
fault muti-classification and faults’ causing analysis. The
output vector Y = (y1, ..., yt , ..., yT)M ∈ RT×M indicates
the system fault multi-classification, where M is the num-
ber of system fault types, and yt = (0, 1, ...,M) represents
whether the data at the t-th time step is an system fault.
In actual scenarios, the dimensions of time series data
may be time-varying, making it challenging to analyze
and interpret the data effectively.

Multi‑scale neural transformation
To enhance the diversity of the data in various scales, the
(a) Multi-scale Neural Transformation is applied for fault
multi-classification. The core of neural transformation
technology is based on residual networks, which enhance

Fig. 2 The architecture of the proposed MTG_CD. a represents the Multi-scale Neural Transformation part; b represents the Graph Structure
Adjacency Matrix Learning part; c represents the Multi-feature Modeling part; d represents the System Fault Multi-classification and Diagnosis part

Page 6 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

the diversity of data features, including sparse anomalies,
thus facilitating the model’s ability to detect anomalies.
On the other hand, the application of multi-scale tech-
niques enables the model to capture information across
various temporal scales and spatial dimensions. By learn-
ing the diverse characteristics of different anomalies,
the model’s generalization capability can be improved,
as well as the accuracy of anomaly detection and multi-
classification. As shown in Fig. 2a, Multi-scale Neural
Transformation is a sub-module of proposed MTG_CD.
We define M is the neural transformation function struc-
ture. as shown in Fig. 3, M is designed by a stack residual
network containing numbers of residual blocks. Each
residual block consists of several 1D convolutional lay-
ers, followed by instance normalization layers and ReLU
activations.

Given the input micro-service system fault data X, the
neural transformation result Vk(X) is computed by Eq. (1)
[37].

where k is the number of transformation.
Based on the characteristic of the neural transforma-

tion structure, the micro-service system fault data’s tem-
poral features can be captured. Specifically, the global
and subtle temporal features can be get by the residual
block, and local temporal features can be extracted by
convolution operation. Both of the residual blocks and 1d
convolutional layers improve the model’s ability to model
temporal features.

(1)Vk(X) = Mk(X)+ X

Graph structure adjacency matrix learning
In micro-service system, the data are graph-like struc-
ture data. To better process such data, we introduce
Graph Structure Adjacency Matrix Learning to encode
the correlation between micro-service system fault
data and the adjacency matrix. In this paper, the graph
generated by the adjacency matrix is used to describe
the temporal-structural feature information of time
series data. The adjacency matrix established in our
work is established by two steps: first, calculating the
Pearson correlation coefficient between the dimensions
of the microservices system failure data. Then build-
ing the adjacency matrix based on the computed cor-
relation. Therefore, the adjacency matrix reflects the
correlation between different time series of the micros-
ervices system failure data, which is used to extract
temporal-structural feature information to assist in sys-
tem anomalies detection. In the adjacency matrix, the
rows and columns denote the strength of the correla-
tion between various time series. In other words, the
larger value represents the stronger correlation, and
vice versa. Assuming X is the input micro-service sys-
tem fault data. The extracted adjacency matrix A can be
defined as Eq. (2):

where Adj is the adjacency matrix learning function.
Pearson correlation coefficient is utilized to calculate the
correlation among dimensions in micro-service system
fault data. Subsequently, we set up our adjacency matrix
based on the computed correlation, as shown in Eq. (3).

(2)A = Adj(X)

Fig. 3 One example of residual network containing numbers of residual blocks

Page 7 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

where xi represents the data in the i-th dimensions of the
micro-service system fault data, i = 1, ...,T , while xj is the
data in the j-th dimensions of the micro-service system
fault data, j = 1, ...,T , cov and σ are the covariance and
standard deviation, respectively.

Multi‑feature modeling
As mentioned above, Multi-scale Neural Transforma-
tion is used to extract the multi-scale temporal features,
while Graph Structure Adjacency Matrix Learning is
adopted to capture the structure-spatial feature infor-
mation. The data outing from both Multi-scale Neural
Transformation and Graph Structure Adjacency Matrix
Learning are then input to the multi-feature Modeling,
as shown in Fig. 2c.

Multi-feature Modeling is consisted by graph Convo-
lutional Network (GCN) layer and a batch normalization
layer. We employ the Multi-feature Modeling to model the
input data with multiple features, including multi-scale
temporal features and structure-spatial features. In par-
ticular, Multi-feature Modeling is capable of extracting
information about the trend and periodic changes in data
over time. Additionally, spatial features can reveal informa-
tion about the spatial correlation between data points. By
conducting a comprehensive analysis of both temporal and
spatial characteristics, we can gain a deeper understanding
of the data, uncover potential connections and rules, and
enhance the model’s performance. Furthermore, the mod-
eled data comprises features that are advantageous for the
multi-classification task of downstream system faults.

Let Xmodel be the output of Multi-feature Modeling,
which is formulated in Eq. (4).

where V is the multi-scale temporal features from the Multi-
scale Neural Transformation, A is the structure-spatial
feature information from the Graph Structure Adjacency
Matrix Learning, G represents the Multi-feature Modeling
combining by GCN layer and a batch normalization layer.
Specifically, V and A perform matrix multiplication in GCN.
The new feature matrix is obtained and multiplied by the
GCN’s weight matrix. The output is processed using an
aggregation method and linear layer, resulting in the final
output. The GCN layer can be expressed as Eq. (5).

(3)Adj =
cov(xi, yi)

σxiσyi

(4)Xmodel = G(V ,A)

(5)hi = σ

j∈N (i)

1

cij
Whj

where w and hi represent the weight matrix and the fea-
ture vector of the i-th node, respectively. σ stands the
activation function, and cij is a normalization constant
that represents the elements of the i-th row and j-th col-
umn in adjacency matrix.

System fault multi‑classification and diagnosis
To identify and distinguish different types of faults,
thereby improving the reliability and stability of the sys-
tem, we have established the system fault multi-classifica-
tion and diagnosis module, as shown in Fig. 2d.

Firstly, the modeled feature vector Xmodel are mapped
to specific prediction classes. Next, a standard multi-layer
fully connected neural network is employed to convert the
dimension of the feature vector to the number of classes.
In addition, a cross-entropy loss function is adopted to
compare the actual labels with the predicted labels. The
cross-entropy loss function is defined in Eq. (6).

where M and N represent the number of training sam-
ples and the number of fault classification, respectively.
while y and ŷ is the actual label and predicted label,
respectively.

Through this approach, we can more accurately predict
potential fault types. After obtaining the results of clas-
sifying the fault data, we also conduct a coarse-grained
level diagnosis and exploration to identify the root cause
of such system faults. This involves tracing the micros-
ervices that are most likely to exhibit these faults. For
implementing system fault diagnosis, we employ Prin-
cipal Component (PC) and PageRank techniques to
complement our analysis. By incorporating these two
methods, we can further enhance our understanding of
the underlying issues and contribute to the development
of more efficient and reliable systems.

To be specific, we need to understand the degree of cor-
relation between system faults and various microservices. In
this process, we utilize the PC algorithm to find the DAG
with minimum information loss in the initial G0 . This algo-
rithm can retain critical information while reducing unnec-
essary redundancy, enabling us to analyze the relationship
between system faults and microservices more precisely.

After finding an appropriate DAG, we perform a ran-
dom walk using the PageRank algorithm. This algorithm
calculates access probabilities based on the importance of
nodes, helping us understand the relative importance of
each node in the graph. By analyzing the importance of
these nodes, we can identify the microservices that have
the greatest impact on system faults.

(6)loss = −
1

M

∑

i

N
∑

j

yij log
(

ŷij
)

Page 8 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

Algorithm 1 is the process of system fault diagnosis based
on multi-classification results. This algorithm takes multi-
classified anomaly data as input and outputs the PageRank
scores of each dimension after analyzing the causality graph.
It is used to identify the most critical dimensions causing the
anomalies, thus diagnosing the root cause of system faults. In
summary, our method consists of two steps: first, using the
PC algorithm in the initial G0 to find the DAG with minimum
information loss; second, after constructing the DAG related
to system faults, employing the PageRank algorithm for a ran-
dom walk and mining the microservices most likely to cause
system faults based on node ranking. This approach helps
us identify and resolve potential system faults more quickly,
thereby improving the reliability and stability of the system.

Algorithm 1 System Fault Diagnosis based on multi-classification results

Evaluation experiments
In this section, we first introduce the dataset platform
and experimental parameter settings for the micros-
ervices architecture. Then, we present the experimen-
tal results of our model and seven other comparative

models. Finally, we show the system anomaly diagnosis
experimental results.

Dataset
In order to conduct the evaluation experiment, we
adopt a widely utilized microservices architecture test-
ing platform, namely “Sock Shop”, which comprises 13
core services1 The primary focus of this research is on
the following service domains: frontend presentation,
product catalog, shopping cart, user management, order
processing, payment functionality, and logistics services.
As illustrated in Fig. 4, the microservices architecture
of Sock Shop exhibits interconnected service modules,
resulting in a higher complexity of the microservices sys-
tem failure data we collected. This complexity also poses
a challenge for our model in terms of multi-classification
tasks.

The dataset contains spatial and temporal information
of the microservices system. On one hand, the dataset
includes service-level request latency metrics, as well as
resource-level performance metrics, such as CPU utili-
zation, memory utilization, disk read-write counts, and
network send-receive bytes. This reflects the state of dif-
ferent services at different points in time. On the other
hand, the dataset records the performance metrics of
individual service instances within the microservices sys-
tem, reflecting the spatial relationships between differ-
ent service instances. Additionally, the document utilizes
the dependencies between services to construct a graph
structure that describes the spatial relationship informa-
tion between services. In summary, the dataset presents a
comprehensive view of the temporal and spatial informa-
tion of the microservices system through time series and
graph structures, providing important support for system
fault detection and diagnosis.

Fig. 4 The micro-service architecture of Sock Shop

1 https:// github. com/ micro servi ces- demo/ micro servi ces- demo

https://github.com/microservices-demo/microservices-demo

Page 9 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

To simulate a real-world application environment, we
inject three typical system faults: CPU profiling, memory
leakage, and network latency [38]. In our microservices
system fault multi-classification task, these three system
faults are categorized into different classes, and are dis-
tinct from the normal data class. The application can nor-
mally run for 10 to 30 minutes before an anomaly occurs,
and the injecting process of system faults is repeated at
least five times for each system fault. It is worth mention-
ing that, each system fault lasts between 1 and 5 minutes.

In the experiment, we collect real-time data every 5
seconds, including both service-level and resource-level
information. Specifically, we focus on the latency of each
service at the service level, we collect performance met-
rics related to container resources at the resource level,
such as CPU usage, memory usage, disk reads and writes,
and network receive and transmit bytes. Table 1 sum-
marizes the key characteristics of eight dataset. By the
in-depth analysis of these data, we aim to provide a ben-
eficial reference for microservices system fault diagnosis.

Experimental settings
our experimental platform is equipped with an on an
server equipped with an Intel (R) Core (TM) i9-10900K
CPU @ 3.70GHz, NVIDIA 2080Ti (12G) graphics card,
and 32G RAM. The Python version installed on the
server is 3.6, and the GPU-enabled PyTorch version is
1.4.0. We employ 3, 5, 7 as the convolutional kernel size
in the Mk . We set initial learning rate and batch size as
0.00001 and 35, respectively. The dropout is set to 0.2,
and categorical cross-entropy loss. We utilize the Adam
optimizer to optimize the model’s parameters and con-
duct 200 epochs of high-frequency training.

Evaluation metrics
We evaluate the performance of our proposed model
and the baseline models using Four evaluation metrics,
including macro-F1, macro-Precision, macro-Recall and
macro-Acc.

Comparison with neural transformation k
Table 2 illustrates the impact of the number of neural
transformation k on performance metrics under three
different datasets: Catalogue, Shipping, and Payment.
The K is set to 1, 3, 7, 12, 15, 17, and 19, respectively.

The performance metrics include macro-F1, macro-
Pre, and macro-Acc. We can observe that on the Cat-
alogue dataset, the performance metrics generally
improve with the increase of k, with the highest values
being achieved at k = 17 . Similarly, on the Shipping
dataset, the performance metrics exhibit an upward
trend as k increases, reaching their peak at k = 15 . In
the Payment dataset, the performance metrics also
consistently improve with the increase of k, with the
best performance being observed at k = 15 . In general,
k changes from 1 to 15, the performance of our model
shows an upward trend, 15 to 17 shows a downward
trend. This is because the k is too small, the model can
not fully extract the relevant features of multivariate
time series. The reason is that k is too large, the fea-
tures extracted by the model are too redundant, which
increases the workload to the following tasks and does

Table 1 The detail of partial datasets in the Sock Shop

Statistics Carts Catalogue Frontend Orders Payment Shipping User

Dimension 35 35 36 35 36 35 36

Train size 3276 3229 3448 3273 3080 3096 3174

Test size 1405 1384 1479 1403 1321 1328 1361

Class 4 4 4 4 4 4 4

Table 2 The number of neural transformation on performance
metrics under three different datasets: catalogue, shipping, and
payment

k macro‑F1 macro‑Pre macro‑Rec macro‑Acc

Catalogue 1 0.8556 0.8494 0.8619 0.9494

3 0.8732 0.8725 0.8745 0.9531

7 0.8986 0.9362 0.8706 0.9663

12 0.9056 0.9404 0.8761 0.9678

15 0.9148 0.9426 0.8898 0.97

17 0.9172 0.9491 0.8889 0.9714

19 0.9029 0.9425 0.8711 0.9684

Shipping 1 0.836 0.8442 0.8292 0.9467

3 0.8119 0.7942 0.8346 0.9336

7 0.8668 0.882 0.8531 0.9552

12 0.883 0.909 0.8613 0.9621

15 0.9004 0.9183 0.8853 0.9667

17 0.8979 0.9023 0.8938 0.9652

19 0.8974 0.9063 0.8888 0.9667

Payment 1 0.9035 0.8988 0.9091 0.9675

3 0.915 0.9292 0.9018 0.973

7 0.9145 0.927 0.9031 0.9722

12 0.9201 0.9313 0.9115 0.9737

15 0.9426 0.9492 0.9369 0.9807

17 0.9314 0.9406 0.923 0.9768

19 0.9341 0.9391 0.9305 0.9776

Page 10 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

not use our anomaly detection. Setting the number of
transformations allows the model to finely tune the fea-
ture extraction across various scales during the multi-
scale transformation process. This precision helps the
model to delve deeper into the intrinsic features of
the data, which in turn enhances its ability to classify
anomalies accurately. Thus, in the subsequent experi-
ments, we will set k to 15.

Baselines
In addition to the proposed MTG_CD model, the follow-
ing system fault multi-classification models, including
HMM [39], NaiveBayes [7], Random Forset [11], Omni-
Anomaly [5], CNN [16], TranAD [40], GDN [8] are com-
pared to our proposed model on the Sock Shop testing
platform.

Comparison with previous work
Table 3 presents the performance of our model and the
baseline models on the selected eight datasets in terms
of macro-F1, macro-Precision, macro-Recall and macro-
Acc. The outstanding performance for each dataset is
highlighted in bold.

It is noted that our model achieves the highest ranks in
macro-F1, macro-Precision, macro-Recall, and macro-
Accuracy. This demonstrates that our model is robust,
consistently delivers solid performance in various data
scenarios, and has strong generalization capabilities.

On the other hand, we also find that deep learning
networks such as OmniAnomaly, TranADand GDN
perform worse than classical, shallow network meth-
ods (e.g. NaiveBayes and RandomForest) in the micro-
service system fault multi-classification task, and may
even exhibit counterproductive.

In the system fault multi-classification problem, dif-
ferent system faults may possess distinct feature rep-
resentations. The OmniAnomaly algorithm may not
fully consider the data distribution and diversity dur-
ing the training process, which could lead to its perfor-
mance degradation on certain datasets. The complex
deep transformer network TranAD might not fully
capture the differences and complexity between these
categories, as the Transformer network primarily
focuses on global dependencies in sequences and may
not effectively capture local features of individual sys-
tem fault categories. Similarly, graph-based networks
GDN might have limited representational abilities for
nodes and edges, failing to learn the feature differences
between categories thoroughly. Consequently, these
limitations lead to poor performance for both models.

The shallow neural network CNN has fewer param-
eters, which might not be sufficient to adapt to the

complex system fault multi-classification problem. For
this system fault multi-classification problem, more
intricate models might be necessary to extract more
abstract and advanced feature representations. For
HMM, the reason for poor performance may be due
to the large difference between the data distribution of
the HMM model and the actual data distribution. In
addition, during the training process, the model is also
prone to falling into local optimal solutions. Classical
methods like Naive Bayes and Random Forest outper-
form other baselines in handling system fault multi-
classification problems, due to their ability to adapt to
small samples and unbalanced data. However, since
their limited feature representation capabilities, their
performance falls low of our model.

Since macro-F1 is a more comprehensive evaluation
metric, we separately compare the macro-F1 of dif-
ferent models across all datasets. The macro-F1 per-
formance of various models on the eight datasets is
presented in Fig. 5. Our model achieves the optimal
macro-F1 in all datasets. This demonstrates that all
components of our model function effectively and can
learn data features better to achieve superior system
fault multi-classification results.

Ablation experiment
To assess the effectiveness of each component in our
model, we conducted ablation experiments on Catalogue,
Shipping, and Payment datasets.

• w/o NT: replacing multi-scale neural transformation
with multi-scale convolution.

• w/o MS: eliminating the multi-scale element in the
multi-scale neural transformation

• w/o MNT: substituting multi-scale neural transfor-
mation directly with conventional convolution.

As illustrated in Table 4, the macro-F1 score decreases
appropriately when we eliminate or substitute the cor-
responding components of the model. This evidence
demonstrates that each component in our proposed
model serves a distinct function and collectively pro-
motes the successful accomplishment of the multi-clas-
sification task for microservice system faults.

Considering the performance indicators under three
datasets, when the multi-scale component is removed, the
average macro-F1 score decreases by 0.76%. This indicates
that multi-scale effectively captures the feature informa-
tion of abnormal data, thereby enhancing the model’s
capacity to detect random and scarce system faults.

Page 11 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

Ta
bl

e
3

m
ac

ro
-F

1,
 m

ac
ro

-P
re

, m
ac

ro
-R

ec
 a

nd
 m

ac
ro

-A
cc

 o
f t

he
 e

ig
ht

 a
lg

or
ith

m
s

on
 e

ig
ht

 d
at

as
et

s.
Th

e
be

st
 p

er
fo

rm
an

ce
 is

 b
ol

de
d

Ca
ta

lo
gu

e
Sh

ip
pi

ng
O

rd
er

s
Ca

rt
s

M
et

ho
d

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

 H

M
M

0.
31

08
0.

34
71

0.
33

73
0.

55
92

0.
51

54
0.

51
33

0.
62

88
0.

72
36

0.
38

77
0.

39
22

0.
49

31
0.

57
59

0.
40

51
0.

45
56

0.
48

57
0.

47
49

 N

ai
ve

-
Ba

ye
s

0.
81

26
0.

92
85

0.
73

75
0.

94
43

0.
59

96
0.

88
6

0.
52

61
0.

91
34

0.
86

62
0.

89
52

0.
84

03
0.

95
43

0.
60

63
0.

62
98

0.
59

11
0.

92
17

 R

an
-

do
m

-
Fo

re
st

0.
66

06
0.

69
82

0.
63

16
0.

94
36

0.
85

21
0.

90
12

0.
81

13
0.

95
18

0.
64

62
0.

67
59

0.
62

36
0.

93
37

0.
79

92
0.

86
29

0.
75

18
0.

94
51

 C

N
N

0.
51

56
0.

90
69

0.
47

82
0.

90
62

0.
42

83
0.

46
79

0.
40

85
0.

89
57

0.
63

33
0.

68
41

0.
59

86
0.

93
14

0.
43

79
0.

45
68

0.
42

72
0.

90
28

 O

m
ni

-
A

no
m

-
al

y

0.
21

25
0.

21
2

0.
25

0.
86

92
0.

22
11

0.
21

42
0.

23
8

0.
86

06
0.

23
15

0.
21

56
0.

25
0.

86
22

0.
23

39
0.

21
97

0.
25

0.
87

9

 T

ra
nA

D
0.

23
83

0.
24

85
0.

25
21

0.
86

49
0.

23
13

0.
21

52
0.

25
0.

86
07

0.
22

15
0.

20
56

0.
25

0.
86

24
0.

23
3

0.
21

88
0.

25
0.

86
8

 G

D
N

0.
23

24
0.

21
72

0.
25

0.
86

87
0.

23
1

0.
21

5
0.

25
0.

86
09

0.
23

2
0.

21
57

0.
25

6
0.

86
27

0.
47

51
0.

45
25

0.
5

0.
90

5

 O

ur
s

0.
91

48
0.

94
26

0.
88

98
0.

97
0.

90
04

0.
91

83
0.

88
53

0.
96

67
0.

91
53

0.
91

14
0.

91
96

0.
97

0.
88

62
0.

87
17

0.
90

3
0.

96
36

Pa
ym

en
t

U
se

r
Fr

on
t-

en
d

Vi
ch

al
an

a

M
et

ho
d

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

m
ac

ro
-F

1
m

ac
ro

-P
re

m
ac

ro
-R

ec
m

ac
ro

-A
cc

 H

M
M

0.
44

26
0.

48
7

0.
54

37
0.

41
69

0.
33

73
0.

38
15

0.
40

64
0.

36
68

0.
41

19
0.

45
82

0.
46

84
0.

58
14

0.
25

35
0.

24
09

0.
35

23
0.

70
79

 N

ai
ve

-
Ba

ye
s

0.
68

88
0.

69
47

0.
68

47
0.

93
86

0.
41

48
0.

40
29

0.
42

76
0.

90
96

0.
82

13
0.

88
43

0.
77

9
0.

93
71

0.
36

58
0.

36
23

0.
36

95
0.

94
32

 R

an
-

do
m

-
Fo

re
st

0.
90

53
0.

93
36

0.
88

05
0.

96
97

0.
74

06
0.

86
02

0.
69

2
0.

94
41

0.
86

74
0.

89
57

0.
84

35
0.

95
19

0.
49

27
0.

49
13

0.
49

44
0.

95
06

 C

N
N

0.
65

09
0.

68
11

0.
62

76
0.

91
96

0.
42

1
0.

46
53

0.
39

82
0.

91
2

0.
67

36
0.

69
45

0.
65

72
0.

93
12

0.
45

4
0.

42
55

0.
49

83
0.

95
07

 O

m
ni

-
A

no
m

-
al

y

0.
20

13
0.

20
53

0.
24

5
0.

86
14

0.
23

68
0.

22
5

0.
25

0.
9

0.
22

93
0.

21
17

0.
25

0.
84

71
0.

11
95

0.
11

65
0.

12
58

0.
92

8

 T

ra
nA

D
0.

23
14

0.
21

54
0.

25
0.

86
15

0.
30

1
0.

29
54

0.
30

43
0.

87
65

0.
24

16
0.

24
17

0.
24

15
0.

72
95

0.
12

01
0.

11
5

0.
12

1
0.

92
77

 G

D
N

0.
23

13
0.

21
41

0.
25

0.
86

09
0.

23
69

0.
22

51
0.

25
0.

90
04

0.
22

92
0.

21
17

0.
25

0.
84

67
0.

12
03

0.
11

61
0.

12
5

0.
92

88

 O

ur
s

0.
94

26
0.

94
92

0.
93

69
0.

98
07

0.
82

13
0.

81
67

0.
82

65
0.

95
42

0.
87

59
0.

85
22

0.
90

63
0.

95
19

0.
83

18
0.

85
57

0.
81

42
0.

97
78

Page 12 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

When we replace the neural transformation with
convolution, the average macro-F1 score decreases by
0.24%. This suggests that the neural transformation
plays a vital role in enhancing data diversity by cap-
turing diverse aspects of data features. This, in turn,
enables the model to learn data more effectively and
classify various data features.

Lastly, when we directly replace the multi-scale neu-
ral transformation with simple convolution, the average
macro-F1 score decreases by 3.05%. This demonstrates
that both components significantly contribute to
extracting data features and classifying different data

types, providing essential support for detecting micro-
service system faults.

In conclusion, each part of our model plays a cru-
cial role in improving the model’s performance and
facilitating the successful completion of the multi-
classification task for microservice system faults. The
ablation experiments validate the effectiveness of the
components in our proposed model and emphasize the
importance of multi-scale neural transformation and
multi-scale convolution in detecting and classifying
microservice system faults.

System fault diagnosis results
In this subsection, we exemplify the effectiveness of our
system fault diagnosis by selecting the Payment data-
set and validating our method based on the classifica-
tion results of the model. The causal propagation graph
illustrating the interplay between microservices is pre-
sented in Fig. 6. The nodes in the figure represent seven
microservices: 0 (Front-end), 1 (User), 2 (Catalogue),
3 (Orders), 4 (Carts), 5 (Payment), and 6 (Shipping).
When a system fault occurs, it propagates through the
connections between microservices, necessitating spe-
cific techniques to capture the causality between them.

To identify the most fundamental microservices under-
lying the system fault and diagnose its source, we utilize
the PC algorithm to generate a causal propagation graph.
This graph effectively displays the relationships between
different microservices. Furthermore, we employ the
PageRank algorithm to conduct a random walk in the
causal propagation graph and calculate the abnormality

Fig. 5 Comparison of macro-F1 for eight models

Table 4 Ablation experiment on Catalogue, Shipping, and Payment
datasets

Method macro‑F1 macro‑
Pre

macro‑
Rec

macro‑Acc

Cata-
logue

Ours 0.9148 0.9426 0.8898 0.97

w/o NT 0.9029 0.9224 0.886 0.9663

w/o MS 0.9123 0.9417 0.8885 0.9699

w/o MNT 0.8972 0.9311 0.8691 0.9655

Shipping Ours 0.9004 0.9183 0.8853 0.9667

w/o NT 0.8683 0.8464 0.8929 0.9536

w/o MS 0.8998 0.9051 0.8963 0.9665

w/o MNT 0.8575 0.8532 0.8627 0.9521

Payment Ours 0.9426 0.9492 0.9369 0.9807

w/o NT 0.9146 0.9152 0.9154 0.9714

w/o MS 0.923 0.926 0.9209 0.9745

w/o MNT 0.9115 0.9127 0.9118 0.9699

Page 13 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

score for each node. Finally, we select the top two nodes
as the most fundamental causes of the system fault. The
PageRank results are provided in Table 5.

Table 5 reveals that various microservices can con-
tribute to different system faults, and the proportion of
exceptions occurring for each microservice differs. For
instance, concerning CPU system faults, the most likely
culprits are User and Catalogue; for Memory system
faults, it’s Front-end and Orders; and for Latency system
faults, Payment and Front-end are the most probable
suspects. This indicates that our proposed approach can
effectively determine the key microservices responsible
for system faults, facilitating root cause diagnosis and
enabling more targeted fault detection and optimization
efforts.

It is worth noting that the presented study incorpo-
rates additional adjustments to the logical framework
and includes supplementary explanations to ensure a

more comprehensive and academic representation of the
methodology and its applications. This comprehensive
approach to system fault diagnosis in microservice sys-
tems can potentially benefit the development and main-
tenance of robust and efficient systems, contributing to
the overall reliability of modern software systems.

Conclusions and future work
In this paper, we study the problem of system faults
potentially caused by real-time monitoring data in
microservices. To classify and diagnose these system
faults, we propose a supervised learning framework with
a multi-scale approach to categorize occurring system
faults and perform fault diagnosis based on the classified
fault data.

Our proposed MTG_CD framework effectively
addresses the challenge of robust real-time system fault
identification in microservice applications. By utilizing
graph structure adjacency matrix learning, multi-scale
neural transformation, and graph convolutional net-
works, we achieve accurate and efficient fault diagnosis,
paving the way for autonomous maintenance and repair
in cloud-based microservice systems. Experimental
results indicate that our model exhibits excellent perfor-
mance, stability, and robustness.

Fig. 6 Causal propagation diagram about CPU, Memory,and Latency system faults (treating different microservices as nodes)

Table 5 The results of PageRank

Anomaly Top 2

CPU (2, 0.2217) (1, 0.2145)

Memory (0, 0.3147) (3, 0.1722)

Latency (5, 0.3083) (0, 0.1666)

Page 14 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

Future research may proceed from two perspec-
tives. First, We can conduct an in-depth investigation
into the underlying causes of anomalies, extending
our analysis beyond the service level. Second, we can
optimize our model to achieve superior multi-classifi-
cation performance for system faults. By doing so, we
aim to better address various fault scenarios in micros-
ervice systems and enhance system reliability and
stability.

Abbreviation
MTG_CD Multi-Scale Neural Transformation Graph

Acknowledgements
The authors would like to thank all the staf and students of school of com-
puter and software engineering in Xihua university for contribution during
this research process.

Authors’ contributions
Problem formulation: Juan Chen, Rui Zhang. The proposed algorithm: Peng
Chen, Jianhua Ren. Computer simulations: Yang Wang, Xi Li. Article prepara-
tion: Juan Chen, Zonging Wu, Ling Xiong. All authors have checked the
manuscript and have agreed to the submission.

Funding
The work of this paper is supported by the Sichuan Province Science and
Technology Program (2023JDRC0087).
 Ministry of Education Program (HZKY20220578).

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 7 December 2023 Accepted: 5 May 2024

References
 1. Al-Doghman F, Moustafa N, Khalil I, Sohrabi N, Tari Z, Zomaya AY (2023)

Ai-enabled secure microservices in edge computing: Opportunities and
challenges. IEEE Trans Serv Comput 16(2):1485–1504. https:// doi. org/ 10.
1109/ TSC. 2022. 31554 47

 2. Xin R, Chen P, Zhao Z (2023) Causalrca: Causal inference based precise
fine-grained root cause localization for microservice applications. J Syst
Softw 203:111724. https:// doi. org/ 10. 1016/j. jss. 2023. 111724

 3. Song Y, Xin R, Chen P, Zhang R, Chen J, Zhao Z (2023) Identifying
performance anomalies in fluctuating cloud environments: A robust
correlative-gnn-based explainable approach. Futur Gener Comput Syst
145:77–86. https:// doi. org/ 10. 1016/j. future. 2023. 03. 020

 4. Chen P, Liu H, Xin R, Carval T, Zhao J, Xia Y, Zhao Z (2022) Effectively
Detecting Operational Anomalies In Large-Scale IoT Data Infrastructures
By Using A GAN-Based Predictive Model. Comput J 65(11):2909–2925.
https:// doi. org/ 10. 1093/ comjnl/ bxac0 85

 5. Su Y, Zhao Y, Niu C et al (2019) Robust anomaly detection for multivariate
time series through stochastic recurrent neural network[C]//Proceedings

of the 25th ACM SIGKDD international conference on knowledge discov-
ery & data mining, pp 2828–2837

 6. Zhang L, Cheng W, Xing J, Chen X, Nie Z, Zhang S, Hong J, Xu Z (2023)
Self-supervised variational graph autoencoder for system-level anomaly
detection. IEEE Trans Instrum Meas 72:1–11. https:// doi. org/ 10. 1109/ TIM.
2023. 33239 89

 7. Murugan K, Suresh P (2018) Efficient anomaly intrusion detection using
hybrid probabilistic techniques in wireless ad hoc network. Int J Netw
Secur 20:730–737

 8. Deng A, Hooi B (2021) Graph neural network-based anomaly detection in
multivariate time series. ArXiv abs/2106.06947. http:// arxiv. org/ abs/ 2106.
06947 v1

 9. Le TD, Hoang T, Li J, Liu L, Liu H, Hu S (2019) A fast pc algorithm for high
dimensional causal discovery with multi-core pcs. IEEE/ACM Trans Com-
put Biol Bioinforma 16(5):1483–1495. https:// doi. org/ 10. 1109/ TCBB. 2016.
25915 26

 10. Elbarougy R, Behery G, Khatib AE (2020) Extractive arabic text summariza-
tion using modified pagerank algorithm. Egypt Inform J 21:73–81

 11. Russo L, Sarda K, Glielmo L, Acernese A (2021) Fault detection and diag-
nosis in steel industry: a one class-support vector machine approach.
In: 2021 IEEE International Conference on Systems, Man, and Cybernet-
ics (SMC). pp 2304–2309. https:// doi. org/ 10. 1109/ SMC52 423. 2021.
96590 69

 12. HU M, WANG K (2019) Random forest based on double features and
relaxation boundary for anomaly detection. J Comput Appl 39(4):956

 13. Guan X, Liang J, Qian Y, Pang J (2017) A multi-view ova model based on
decision tree for multi-classification tasks. Knowl Based Syst 138:208–219.
https:// doi. org/ 10. 1016/j. knosys. 2017. 10. 004

 14. Cinque M, Corte RD, Pecchia A (2022) Micro2vec: Anomaly detection in
microservices systems by mining numeric representations of computer
logs. J Netw Comput Appl 208:103515

 15. Hasnain M, Jeong SR, Pasha MF, Ghani I (2020) Performance anomaly
detection in web services: An rnn- based approach using dynamic qual-
ity of service features. Comput Mater Continua 64(2):729–752. https:// doi.
org/ 10. 32604/ cmc. 2020. 010394

 16. Lindemann B, Maschler B, Sahlab N, Weyrich M (2021) A survey on
anomaly detection for technical systems using lstm networks. Comput
Ind 131:103498

 17. Bae J, Jung W, Park Y-H (2022) Normal data based rotating machine
anomaly detection using cnn with self-labeling. Smart Struct Syst
29(6):757–766

 18. Ho TKK, Jeon Y, Na E, Ullah Z, Kim BC, Lee KH, Song JI, Gwak J (2021) Dee-
padnet: A cnn-lstm model for the multi-class classification of alzheimer’s
disease using multichannel eeg. Alzheimers Dement 17:e057573

 19. Gao G, Gao Q, Yang X, Pajic M, Chi M (2022) A reinforcement learning-
informed pattern mining framework for multivariate time series clas-
sification. In: In the Proceeding of 31th International Joint Conference on
Artificial Intelligence (IJCAI-22)

 20. Chen J, Chen P, Niu X, Wu Z, Xiong L, Shi C (2022) Task offloading in
hybrid-decision-based multi-cloud computing network: a cooperative
multi-agent deep reinforcement learning. J Cloud Comput 11(1):1–17

 21. Zhao J, Hu L, Huang L, Wang C, Liang D (2023) Msra-g: Combination
of multi-scale residual attention network and generative adversarial
networks for hyperspectral image classification. Eng Appl Artif Intell
121:106017

 22. Aubet FX, Pahl MO, Liebald S, Norouzian MR (2018) Graph-based anomaly
detection for iot microservices. Measurements 120(140):160. https:// doi.
org/ 10. 13140/ RG.2. 2. 22381. 69609

 23. Sha A, Wang B, Wu X, Zhang L (2020) Semisupervised classification
for hyperspectral images using graph attention networks. IEEE Geosci
Remote Sens Lett 18(1):157–161

 24. Pelluet G, Rizkallah M, Tardy M, Acosta O, Mateus D (2022) Multi-scale
graph neural networks for mammography classification and abnormality
detection. In: Annual Conference on Medical Image Understanding and
Analysis. Springer International Publishing, Cham, p 636–650

 25. Wan S, Gong C, Zhong P, Du B, Zhang L, Yang J (2019) Multiscale dynamic
graph convolutional network for hyperspectral image classification. IEEE
Trans Geosci Remote Sens 58(5):3162–3177

 26. Zhang XJ, Ding X, Zhang HF, Pan DH, Zhong K (2023) A flexible monitor-
ing framework via dynamic-multilayer graph convolution network. IEEE
Trans Instrum Meas 72:1–11. https:// doi. org/ 10. 1109/ TIM. 2023. 32849 56

https://doi.org/10.1109/TSC.2022.3155447
https://doi.org/10.1109/TSC.2022.3155447
https://doi.org/10.1016/j.jss.2023.111724
https://doi.org/10.1016/j.future.2023.03.020
https://doi.org/10.1093/comjnl/bxac085
https://doi.org/10.1109/TIM.2023.3323989
https://doi.org/10.1109/TIM.2023.3323989
http://arxiv.org/abs/2106.06947v1
http://arxiv.org/abs/2106.06947v1
https://doi.org/10.1109/TCBB.2016.2591526
https://doi.org/10.1109/TCBB.2016.2591526
https://doi.org/10.1109/SMC52423.2021.9659069
https://doi.org/10.1109/SMC52423.2021.9659069
https://doi.org/10.1016/j.knosys.2017.10.004
https://doi.org/10.32604/cmc.2020.010394
https://doi.org/10.32604/cmc.2020.010394
https://doi.org/10.13140/RG.2.2.22381.69609
https://doi.org/10.13140/RG.2.2.22381.69609
https://doi.org/10.1109/TIM.2023.3284956

Page 15 of 15Chen et al. Journal of Cloud Computing (2024) 13:103

 27. Wang J, Shao S, Bai Y, Deng J, Lin Y (2023) Multiscale wavelet graph
autoencoder for multivariate time-series anomaly detection. IEEE Trans
Instrum Meas 72:1–11. https:// doi. org/ 10. 1109/ TIM. 2022. 32231 42

 28. Zhou X, Peng X, Xie T, Sun J, Ji C, Li W, Ding D (2021) Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system,
and empirical study. IEEE Trans Softw Eng 47(2):243–260. https:// doi. org/
10. 1109/ TSE. 2018. 28873 84

 29. Zhou X, Peng X, Xie T, Sun J, Ji C, Li W, Ding D (2022) Delta debugging
microservice systems with parallel optimization. IEEE Trans Serv Comput
15(1):16–29. https:// doi. org/ 10. 1109/ TSC. 2019. 29198 23

 30. Ma M, Lin W, Pan D, Wang P (2022) Servicerank: Root cause identification
of anomaly in large-scale microservice architectures. IEEE Trans Depend-
able Secure Comput 19(5):3087–3100. https:// doi. org/ 10. 1109/ TDSC.
2021. 30836 71

 31. Li Z, Tu Y, Ma Z (2022) Root cause analysis of anomalies based on graph
convolutional neural network. Int J Softw Eng Knowl Eng 32(08):1155–
1177. https:// doi. org/ 10. 1142/ S0218 19402 25003 95

 32. Chen P, Qi Y, Hou D (2017) Invarnet-x: A black-box invariant-based
approach to diagnosing big data systems. IEEE Trans Emerg Top Comput
5(4):450–465. https:// doi. org/ 10. 1109/ TETC. 2015. 24971 43

 33. Brandón Álvaro, Solé M, Huélamo A, Solans D, Pérez MS, Muntés-Mulero V
(2020) Graph-based root cause analysis for service-oriented and micros-
ervice architectures. J Syst Softw 159:110432. https:// doi. org/ 10. 1016/j. jss.
2019. 110432

 34. Liu D, He C, Peng X, Lin FF, Zhang C, Gong S, Li Z, Ou J, Wu Z (2021) Micro-
hecl: High-efficient root cause localization in large-scale microservice
systems. https:// arxiv. org/ abs/ 2103. 01782

 35. Wu L, Tordsson J, Elmroth E, Kao O (2020) Microrca: Root cause localiza-
tion of performance issues in microservices. In: NOMS 2020 - 2020 IEEE/
IFIP Network Operations and Management Symposium. pp 1–9. https://
doi. org/ 10. 1109/ NOMS4 7738. 2020. 91103 53

 36. Ma M, Xu J, Wang Y et al (2020) AutoMAP: Diagnose your Microservice-
based web applications automatically. WWW ’20: The Web Conference
2020. https:// doi. org/ 10. 1145/ 33664 23. 33801 11

 37. Qiu C, Pfrommer T, Kloft M, Mandt S, Rudolph MR (2021) Neural transfor-
mation learning for deep anomaly detection beyond images. ArXiv abs/2
103.16440. https:// arxiv. org/ abs/ 2103. 16440 v1

 38. Mariani L, Monni C, Pezzé M, Riganelli O, Xin R (2018) Localizing faults in
cloud systems. In: 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). pp 262–273. https:// doi. org/ 10.
1109/ ICST. 2018. 00034

 39. Fouad MA, Abdel-Hamid AT (2019) On detecting iot power signature
anomalies using hidden markov model (hmm). In: 2019 31st International
Conference on Microelectronics (ICM). pp 108–112. https:// doi. org/ 10.
1109/ ICM48 031. 2019. 90214 83

 40. Tuli S, Casale G, Jennings NR (2022) Tranad: Deep transformer
networks for anomaly detection in multivariate time series
data. CoRR abs/2201.07284. https:// doi. org/ 10. 14778/ 35140 61. 35140 67

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TIM.2022.3223142
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSC.2019.2919823
https://doi.org/10.1109/TDSC.2021.3083671
https://doi.org/10.1109/TDSC.2021.3083671
https://doi.org/10.1142/S0218194022500395
https://doi.org/10.1109/TETC.2015.2497143
https://doi.org/10.1016/j.jss.2019.110432
https://doi.org/10.1016/j.jss.2019.110432
https://arxiv.org/abs/2103.01782
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3366423.3380111
https://arxiv.org/abs/2103.16440v1
https://doi.org/10.1109/ICST.2018.00034
https://doi.org/10.1109/ICST.2018.00034
https://doi.org/10.1109/ICM48031.2019.9021483
https://doi.org/10.1109/ICM48031.2019.9021483
https://doi.org/10.14778/3514061.3514067

	MTG_CD: Multi-scale learnable transformation graph for fault classification and diagnosis in microservices
	Abstract
	Introduction
	Related works
	Micro-service system fault classify detection
	Micro-service system fault diagnosis methods

	System model
	Overall architecture of MTG_CD
	Multi-scale neural transformation
	Graph structure adjacency matrix learning
	Multi-feature modeling
	System fault multi-classification and diagnosis

	Evaluation experiments
	Dataset
	Experimental settings
	Evaluation metrics
	Comparison with neural transformation k
	Baselines
	Comparison with previous work
	Ablation experiment
	System fault diagnosis results

	Conclusions and future work
	Acknowledgements
	References

