
Feng et al. Journal of Cloud Computing (2024) 13:110
https://doi.org/10.1186/s13677-024-00667-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

ABWOA: adaptive boundary whale
optimization algorithm for large-scale digital
twin network construction
Hao Feng1, Kun Cao1, Gan Huang1 and Hao Liu2*

Abstract

Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale
networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To
address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA)
to solve the digital twin network construction problem, improving the efficiency and reducing operational costs
of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic
algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm
and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms
in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction
problem more effectively.

Keywords Digital twin network (DTN), DTN construction, Whale optimization algorithm (WOA), Adaptive boundary

Introduction
In recent years, Digital Twin (DT) technology has gar-
nered significant attention from both academia and
industry due to its widespread applications in areas
such as real-time remote monitoring in industrial set-
tings, traffic risk assessment, and intelligent scheduling
in smart cities. The applications of DT technology have
demonstrated its immense value in improving and opti-
mizing the performance of various systems, providing
new impetus and perspectives for development across
multiple fields.

The application of DT in networks has also gradually
become a research hotspot. Digital twin networks cre-
ate real-time synchronized virtual mirrors of physical

networks, enabling real-time interaction between
physical and twin networks. This enables digital twin
networks to play a significant role in network manage-
ment, optimization, and prediction, thereby providing
powerful support for innovation and intelligent devel-
opment of networks. Through this approach, DTN can
help the network achieve low-cost testing and valida-
tion, enhance the level of intelligent decision-mak-
ing, and increase the innovative efficiency of network
applications [1]. This technology has been successfully
implemented in various network scenarios, such as
edge computing networks, network security, and the
industrial internet [2–4].

With the advancement of computer network technol-
ogy, network loads have been steadily increasing, and
network scales continue to expand, making network
operation and maintenance increasingly complex [5]. As
the scale of networks continues to expand, the number
of digital twin entities involved in digital twin networks
gradually increases, making the digital twin pattern of a
single server even more challenging [6, 7]. For large-scale

*Correspondence:
Hao Liu
liuhaobwgl@sina.com
1 School of Computer Science and Information Security, Guilin University
of Electronic Technology, JinJi Road, Guilin, Guangxi 541004, China
2 School of Information Engineering, Nanning College of Technology,
Yanshan Street, Guilin, Guangxi 541006, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00667-z&domain=pdf

Page 2 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

networks, it becomes nearly impossible for a single server
to handle the simulation and emulation processes of a
DTN. Consequently, it becomes necessary to map the
modeled physical network entities onto multiple server
platforms for distributed operation. DTN construction
algorithms serve as the prerequisite and foundation for
fulfilling this requirement [8].

In this context, a key challenge is how to effectively
allocate the digital twin entities of various physical net-
work elements to the distributed digital twin network
infrastructure (DTNI, referring to a series of specially
configured hardware and software resources, usually
a group of dedicated servers connected by high-speed
networks), to ensure that the servers can accommodate
as many digital twins as possible, while enabling the
platform to handle the communication traffic between
entities effectively. Moreover, as the number of DTNI
servers utilized increases, the operational power con-
sumption and cost of the DTN also increase. Minimiz-
ing the number of DTNI servers used can thus enhance
the operational efficiency of the digital twin network
and reduce its operational costs. In addressing this
issue, it is necessary to consider multiple factors com-
prehensively, including the performance characteristics
of DTNI, the topological structure of the physical net-
work and DTNI network, the workload of simulation
entities, and communication patterns [1, 9]. To ensure
the efficient operation of the entire DTN system, the
key lies in adopting effective construction algorithms
and deployment strategies. In large-scale distributed
DTN systems, reasonably allocating the DTNI servers
where numerous DT entities are located is a crucial
task, which directly affects the performance and effi-
ciency of the entire system.

We proposes a heuristic method using an Adaptive
Boundary Whale Optimization Algorithm (ABWOA) to
address the current issue of constructing digital twin net-
works, and its effectiveness has been validated through
experiments. The following summarizes the main contri-
butions of this paper.

1. A digital twin network construction mapping prob-
lem model was established. By analyzing and mode-
ling the construction process and encoding the prob-
lem for solution, an efficient mapping of the digital
twin network construction was achieved, effectively
improving operational efficiency and reducing oper-
ating costs.

2. A new heuristic algorithm, ABWOA, was proposed.
An improved whale optimization algorithm was put
forward for the digital twin network construction
problem. The introduction of an adaptive boundary
strategy enhanced the solution efficiency and quality.

3. The superiority of ABWOA in solving the digital
twin network construction problem was verified.
Comparative experiments were conducted between
ABWOA and six existing algorithms. Extensive
experiments were carried out for six different net-
work scales. The experimental results show that
ABWOA is more effective than the comparative
algorithms.

The rest of this paper is organized as follows. “Related
work” section reviews the related works. “Problem state-
ment” section introduces the DTN architecture in detail
and analyzes DTN construction problem. “Whale opti-
mization algorithm” and “Adaptive boundary whale opti-
mization algorithm” sections detail WOA and ABWOA,
respectively. Experimental evaluation and results are pre-
sented in “Experimental evaluation” section. Finally, The
conclusion will be elaborated in “Conclusion” section.

Related work
The origin of digital twin technology can be traced back
to 2003, when Professor Michael Grieves from the Uni-
versity of Michigan first introduced the concept of the
“mirror space model” while teaching Product Lifecycle
Management (PLM) [10]. In 2017, Grieves and Vick-
ers proposed the formal definition of digital twin in
their white paper [11], which encompasses three core
elements: the physical entity in the physical space, the
digitalized object in the virtual space, and the data link
connecting these two spaces.

Tao et al. [12] defined digital twin as the creation of
virtual replicas of physical objects using digital means.
In this process, through data simulation, it accurately
reflects the behavior of physical objects in real envi-
ronments. Through interactive feedback between vir-
tual and real, deep integration and analysis of data, and
iterative optimization of decisions, digital twin tech-
nology can add or expand new functions to physical
objects. Sun et al. [9] defined the digital twin network
as a network system that includes physical network
entities and their virtual twins, which can interact and
map with each other in real time. They also designed
a system architecture and analyzed the key technolo-
gies of the digital twin network, discussing its future
development trends. Jyoti, A et al. [13] view dynamic
resource allocation as a primary objective and employ
a novel method based on load balancing and service
proxies to address the issue of dynamic resource dis-
tribution. Kumar, M et al. [14] proposed an efficient
meta-heuristic technique to provide improved explo-
ration and exploitation capabilities and to optimize
various QoS parameters. Zhao et al. [15] proposed
the development of digital twin for software-defined

Page 3 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

vehicular networks (SDVN) on centralized servers or
controllers, while Krishnan et al. [16] independently
developed DT for software-defined Internet of Things
(SD-IoT) on central servers. Currently, many studies
have applied DT to physical networks, such as [15–18]
etc., which apply DT to scenarios like industrial IoT,
vehicular networks, and edge networks, indicating
that DT has strong potential for enhancing the appli-
cation performance of current communication net-
works. However, to the best of our knowledge, there is
still limited research on the construction methods for
large-scale distributed digital twin networks.

Problem statement
Digital dwin network architecture
Figure 1 illustrates the three-plane architecture of
the digital twin network: the physical network plane,
the twin network plane, and the control plane. Physi-
cal network plane serves as the physical object of the
digital twin entities and can represent various network
types such as data center networks, Internet of Things
(IoT), and campus networks. Network elements within
the physical network interact with the network digital
twin through the southbound interface, exchanging
network data and control information. As the core fea-
ture of the digital twin network system, twin network
plane is responsible for organizing and managing the
data collected from the physical network. Additionally,
it manages all model data of the digital twin entities,
utilizing this data to complete modeling tasks for vari-
ous network applications. Control plane is responsible
for the distributed construction of the digital twin net-
work system. Initially, the distributed build scheduler
obtains the load state and topological relationship of
each network element in the physical network, from
which it analyzes the resource demand of the digital
twin corresponding to each physical network element.
Based on the resource requirements and topological
relationships of the digital twins, the distributed con-
struction scheduler employs a construction algorithm
to determine an allocation scheme. Following this
scheme, digital twins are assigned to the appropriate
Digital Twin Network Infrastructure (DTNI). DTNI
consists of a series of specially configured hardware
and software resources, typically a group of dedicated
servers connected by a high-speed network, ensuring
the efficient and stable operation of the digital twin
network. Ultimately, each DTNI operates synchro-
nously, forming a distributed digital twin network
operation support platform.

Figure 2 illustrates the two stage construction pro-
cess of a DTN. For clarity and convenience, we use a
small-scale network as an example. The first step is

to utilize the data of the physical network to model
the entire physical network. Due to the diverse objec-
tives of DTN applications, numerous methods for
DT modeling have been extensively researched [1].
Studies on DT modeling methods primarily concen-
trate on three aspects: specific models [19], multidi-
mensional models [20], and general models [21]. For
example, in this step, host h1 and switch sw1 in Fig. 2
are modeled and implemented as digital twins DTh1
and DTsw1 , respectively. The second step involves
deploying the modeled physical network entities (i.e.,
digital twin entities) onto the Digital Twin Network
Infrastructure (DTNI). The DTNI executes complex
simulations and analysis tasks while maintaining
real-time synchronization between the physical enti-
ties and their corresponding digital twin entities. As
per the construction scheme depicted in the figure,
digital twins DTh1,DTh2,DTh3,DTh4,DTsw1 , and DTsw2
are deployed onto DTNI S1, which is responsible
for their operation. Similarly, DTh5,DTh6,DTh7 , and
DTsw3 are deployed onto DTNI S2 and managed by it.
The link communication between digital twin entities
deployed on the same DTNI is carried out internally
within the DTNI. For example, the communication
between DTh1 and DTh2 will involve data exchange
within S1 and will not occupy DNTI link resources.
Furthermore, link communication between digi-
tal twin entities deployed on different DTNI will be
handled by the DTNI network links between them.
For instance, the communication between DTsw2 and
DTsw3 will be carried out by the DTNI network link
between S1 and S2. DT modeling and DTs deploy-
ment form the foundation for building the entire
DTN. This paper primarily focuses on researching
the solution algorithm for the second step, which is
the construction scheme.

DTN construction problem model
In the digital twin network construction scheme, the
physical network is presented as a graph G = (V ,E) . The
V and E stand for the sets of nodes and links in the physi-
cal network, respectively. Let Vi , Vj be two nodes in the
physical network, and Eij be the link connecting nodes Vi
and Vj in the physical network. For the convenience of
description below, we use i, j instead of Vi , Vj and ij
instead of Eij . Here, i, j ∈ V represent two nodes in G ,
and ij ∈ E represent the physical link connecting nodes Vi
and Vj in G . A digital twin element of the physical net-
work can be delineated as a triplet ωbw

ij ,ωmem
i ,ωCPU

i ,
where i, j ∈ V , and ij ∈ E . Here, ωbw

ij
 , ωmem

i , and ωCPU
i

correspondingly signify the bandwidth of link ij as well as
the memory and CPU required by the digital twin ele-
ment of the physical network node i.

Page 4 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Similarly, the digital twin network infrastructure is
presented as a graph GD = (VD,ED) . Let VD

u ,VD
v be two

nodes in DTNI, and ED
uv be the link connecting nodes

VD
u and VD

v in DTNI. For the convenience of descrip-
tion below, we use u, v instead of VD

u , VD
v and uv instead

of ED
uv . The VD represents the set of DTNI nodes, with

u, v ∈ V
D indicating two nodes in GD . The ED repre-

sents the set of links connecting DTNI nodes, with

uv ∈ E
D indicating the link connecting nodes GD

u and
GD
v in GD.
DTNI serves as the operational platform for the digi-

tal twin entities, characterized by three capacity met-
rics: the bandwidth capacity of link uv, the memory
capacity of node u, and the CPU capacity of node u,
denoted by Cbw

uv , Cmem
u and CCPU

u respectively. A continu-
ous exchange of data is maintained among digital twins

Fig. 1 Architecture of large-scale digital twin network

Page 5 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

throughout the operational phase of the DTN. When
these digital twins are assigned to different DTNI serv-
ers, their operational efficiency is significantly lower
than when they are allocated to the same DTNI server,
primarily because interactions between them must be
completed through network communications between
DTNI servers. Moreover, the increment in the count of
DTNI servers requisitioned escalates the operational
energy consumption and associated costs within the
DTN framework. Therefore, the problem to be solved is
to efficiently construct the physical network G to run on
DTNI, with the aim of minimizing the number of DTNI
servers used. The objective function of the DTNI con-
struction problem is represented as Eq. (1).

where, pu represents whether the DTNI node u is being
used, where pu = 1 if and only if u is used, otherwise
pu = 0 . So, pu ∈ {0, 1},u ∈ VD.

In the operation of the DTN, there is only one DTNI
responsible for the operation of the digital twin of the

(1)min
∑

u∈VD

pu

physical network throughout the entire DTN system.
Therefore, the DT uniqueness constraint for is:

where,ziu represents whether the digital twin of the physi-
cal network node i is placed on the DTNI node u, and
only when the digital twin of the physical network node
i is deployed on the DTNI node u, there is ziu = 1 , other-
wise ziu = 0 . So ziu ∈ {0, 1}, i ∈ V ,u ∈ VD

The total CPU and total memory size of the digital
twins deployed to a specific DTNI node must not exceed
the capacity of that DTNI node, therefore, the CPU and
memory constraints can be:

The total network bandwidth of communication
between digital twins across the DTNI nodes link uv

(2)
∑

u∈VD

ziu = 1, i ∈ V

(3)
∑

i∈V

ωCPU
i · ziu ≤ CCPU

u ,u ∈ V
D

(4)
∑

i∈V

ωmem
i · ziu ≤ Cmem

u ,u ∈ V
D

Fig. 2 DTN construction process

Page 6 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

must not exceed the link capacity of the DTNI nodes link
uv, therefore, the link constraint can be:

where, zijuv denotes whether the physical network link ij
passes through the DTNI link uv. zijuv = 1 if and only if the
physical network link ij passes through the DTNI link uv,
otherwise zijuv = 0. So, zijuv ∈ {0, 1}, ij ∈ E,uv ∈ ED

In summary, our target is to minimize the number of
DTNI servers used:

The problem of digital twins construction is a Multi-
dimensional Bin Packing Problem (MBPP). DTNI is a
box, and the DT is the item to be placed into the box.
Since MBPP is a typical NP-hard problem [22, 23], there
does not exist a solution with polynomial time complex-
ity unless P=NP [24]. So, we designed a heuristic solution
to solve it.

Whale optimization algorithm
Whale optimization algorithm is a new type of intel-
ligent optimization algorithm proposed by Seyedali
et al. [25], which has the advantages of easy imple-
mentation, few control parameters, and strong robust-
ness. The algorithm is inspired by the unique hunting
behavior of humpback whales, simulating their strate-
gies for encircling prey.

The whale optimization algorithm mimics the preda-
tion strategy of humpback whales, treating each potential
solution as a whale. These whales use a random explo-
ration mechanism to locate prey and, upon detecting
prey, employ two tactics for attack: encircling shrinkage
and spiral bubble netting. The WOA algorithm summa-
rizes three mechanisms for updating positions: shrinking
encircling mechanism, spiral updating mechanism, and
prey exploration mechanism.

Shrinking encircling mechanism
After detecting the prey, humpback whales approach the
prey gradually by employing a strategy of encirclement
contraction. The formula for updating their position is as
follows:

(5)
∑

ij∈E

ωbw
ij · z

ij
uv ≤ Cbw

uv ,uv ∈ E
D

(6)
min

∑

u∈VD

pu,

s.t. Eq. 2 to Eq. 5.

(7)D =
∣

∣C · X∗
t − X t

∣

∣

(8)X t+1 = X
∗
t − A ·D

Where, t represents the current iteration number; X∗
represents the position vector of the best solution in the
current population; X represents the position vector of
the current individual, D and A control the step length of
contraction and encirclement, their coefficients A and C
are calculated by the following formulas:

Where, r is a random vector whose values range
between [0, 1] . a is a convergence factor, which lin-
early decreases from 2 to 0 as the iteration progresses.
a = 2− 2t

tmax
 , tmax is the maximum number of iterations.

In the shrinking encircling mechanism, each whale
updates its own position based on the current optimal
position of the population. By adjusting the values of the
coefficient vectors A and C , the search behavior of the
whales around the prey can be controlled, while reduc-
ing the value of parameter a can achieve the behavior of
shrinking encirclement.

Spiral updating mechanism
Whales attack their prey by moving upwards in a spiral
motion and continuously shrinking the encirclement
during the hunting process. In the spiral update posi-
tion method, whales move towards the prey in a spiral
motion. The formula for updating their position is as
follows:

Where, D
′ =

∣

∣X
∗
t − X

∣

∣ , represents the distance
between the whale and the current global optimum indi-
vidual; b is a constant defining the shape of the logarith-
mic spiral, l is a random number between [−1, 1].

Whales swim synchronously along a spiral path within
the shrinking encirclement of the prey. In order to sim-
ulate this synchronous behavior, it is assumed that the
probability of choosing the shrinking encirclement
mechanism and the spiral update mechanism is both 0.5
during the optimization process. The formula for updat-
ing their position is as follows:

Where, p is a random number uniformly distributed in
the range [0, 1].

Prey exploration mechanism
Before the approximate location of the prey is deter-
mined, in order to enhance the exploration of the

(9)A = 2a · r − a

(10)C = 2 · r

(11)X t+1 = D
′ · ebl · cos(2π l)+ X

∗
t

(12)X t+1 =

{

X
∗
t − A ·D if p < 0.5

D
′ · ebl · cos(2π l)+ X

∗
t if p ≥ 0.5

Page 7 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

hunting space, the search for prey mechanism is
conducted. The whales swim outside the shrinking
encirclement when the coefficient vector |A| > 1 . the
position update formula of the prey exploration mech-
anism is as follows:

Where, X rand stand for the position of a random indi-
vidual in the whale population, D represents the distance
between the current individual and the random whale
individual. The definitions of coefficient vectors A and C
are the same as in Eqs. (9) and (10).

Based on the above analysis, the main parameters of
the WOA algorithm include coefficient vectors A and
C . Among them, parameter A is crucial for adjusting
the global exploration and local exploitation capabili-
ties of the WOA algorithm. When |A| > 1 , the whale
population is guided to conduct extensive searches,
which helps to enhance the global exploration capa-
bility of the WOA algorithm in the solution space.
Whereas when |A| ≤ 1 , the search range is limited to
a smaller area, prompting the algorithm to conduct
more detailed local searches, thereby improving local
exploitation capability.

The flowchart of WOA is shown in Fig. 3.

Adaptive boundary whale optimization algorithm
Although WOA performs excellently in many situa-
tions, it has limitations in handling high-dimensional
problems or problems with a wide feature space. In
order to tackle this problems, we put forth an Adaptive
Boundary Whale Optimization Algorithm. ABWOA
enhances the algorithm’s convergence speed and accu-
racy by dynamically adjusting the search bounda-
ries during the search process. This method not only
strengthens the algorithm’s global search capability but
also improves its performance in multimodal function
optimization problems.

The decimal coding scheme of population X is shown
in Fig. 4. The individual xk within the population repre-
sents a potential construction scheme, which is a 1×m
matrix, where m denotes the number of twin physical
network nodes and n represents the quantity of DTNI
service nodes. Each individual within the popula-
tion X is designated as xk = (ak1, ak2, . . . , aki, . . . , akm) ,
where xk represents a possible construction scheme
for DTN. aki denotes the deployment of twinned
physical network node i on DTNI node aki , with
1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ aki ≤ n . p refers to the

(13)D = |C · X rand − X t |

(14)X t+1 = X rand − A ·D

number of individuals in population X, m signifies the
number of twinned physical network nodes, and n rep-
resents the number of DTNI nodes. For the construc-
tion scheme xk , let τ represent the number of distinct
values of the discrete value aki in xk . Then τ indicates
that running m twin physical network nodes requires
τ DTNI nodes. It is evident that the smaller τ is, the
greater the quality of the solution.

Every swarm intelligence optimization algorithm incor-
porates some concepts of random algorithms, which
directly leads to the randomness of solutions. Our pro-
posed ABWOA algorithm is no exception. Under the
influence of randomness, the solutions generated by the
ABWOA algorithm are likely to be invalid, meaning that
the allocation of services according to the allocation plan
may result in negative remaining CPU, memory, or link
bandwidth between some DTNI servers. A negative value
indicates that the DTs deployed on these DTNI servers
have exceeded the maximum available resources on these
servers.

There are generally three methods to deal with ille-
gal solutions. The first is to repair the illegal solu-
tions to make them valid, but in this issue, repairing
illegal solutions is relatively difficult, mainly because
modifying the value must consider each constraint in
“Problem statement” section, and the combination of
these constraints constitutes an NP-hard problem. The
second, and simplest, is to directly discard the illegal
solutions, but this leads to a reduction in the number
of individuals in the population and a loss of popula-
tion diversity. The last method to handle illegal solu-
tions is to penalize the illegal solutions, reducing their
priority in the overall population, and this penalty
should reflect the severity of different illegal solutions.
The objective of the penalty function is to trans-
form the constrained problem into an unconstrained
one by introducing artificial penalties for violating
constraints.

In this paper, we employ the Augmented Lagrangian
Method (ALM) for constraint handling, which was first
discussed by Hestenes and Powell in 1969 [26]. Rockafel-
lar modified the idea for inequality constraints [27]. ALM
is similar to the penalty method. However, it reduces
the possibility of ill-conditioned situations occurring in
the penalty method by incorporating explicit Lagrange
multiplier estimates into the function to be minimized
(referred to as the augmented Lagrangian function)
[28]. In generally, a series of such penalty functions are
defined, in which the penalty term for constraint viola-
tion is multiplied by a positive coefficient (penalty coef-
ficient or parameter). By increasing this coefficient, more

Page 8 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Fig. 3 The flow chart of WOA

Page 9 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

severe punishment is imposed on the behavior of violat-
ing constraints, thus forcing the minimum value of the
penalty function to be closer to the feasible region of the
constrained problem.

where f(x) is the objective function and g(x) is the ine-
quality constraint.

The ALM can be written as follows:

where
〈

g(x)
〉

= g(x) if g(x) > 0 else it is zero, µ is the
penalty coefficient and

∑
〈

gi(x)
〉2 is the quadratic pen-

alty term. � is the Lagrange multiplier. The main advan-
tage of this method is that, unlike the penalty method,
it does not require the penalty coefficient µ to approach
infinity to solve the original constrained problem.
Instead, by introducing the Lagrange multiplier term,
the penalty coefficient µ can remain relatively small, thus
avoiding the occurrence of ill-conditioned situations.

WOA uses a random vector to update the whale’s
position during the solution process. By using the coef-
ficient vector A , whales are forced away from the cur-
rent optimal solution to expand the search range. For the
problem we need to solve, the expanded search range
and the solutions dynamically adjusted according to the
optimal solution may have already exceeded the range

(15)
Minimize f (x)

Subject to gi(x) ≤ 0 , i = 1, 2, 3, . . . , s

(16)F(x) = f (x)+ µ ·
∑

〈

gi(x)
〉2

−
∑

� ·
〈

gi(x)
〉

of the optimal values that have been solved. Based on
the previously mentioned encoding, we discovered that
dynamically adjusting the search boundaries of the prob-
lem during the algorithm’s iterative process – dynami-
cally modifying the search boundaries of the whale – can
significantly enhance the quality of the optimal solution
and accelerate the algorithm’s rate of convergence.

According to “Problem statement” section and Eqs.
(15), (16), it can be known that F(xk) denotes the out-
put of the individual xk after the operation of the eval-
uation function F(x), which is the number of DTNI
nodes used. Let yk = F(xk) , then yk signifies the num-
ber of DTNI nodes required to construct the DTN sys-
tem according to the operation plan xk constructed by
DTN, and Y signifies the output of the population X
after the operation of the evaluation function F(X) . Let
ε = min(Y) , ε represents the optimal solution within
the population X , suggesting that ε DTNI nodes are
adequate for the operation of the DTN system. If ε < n ,
which implies that the number of DTNI nodes needed
by the current scheme is less than the present search
boundary n, the problem’s upper limit can be reduced
to ε . Then, the other components in population X are
adjusted under the new upper bound.

The ABWOA will operate according to the pseudoc-
ode shown in Algorithm 1.

(17)aki_new =
ε

n
· aki , 1 ≤ k ≤ p, 1 ≤ i ≤ m

Fig. 4 The decimal coding scheme of population

Page 10 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Algorithm 1 Adaptive Boundary Whale Optimization Algorithm

Experimental evaluation
In this section, we discuss the performance of the
ABWOA. Our experiments are based on Microsoft’s
public dataset Azure VM Packing Trace [29], from which
we extract creation requests (each creation request
includes CPU, memory, and other metrics) to serve as a
reference for resource occupation during the operation of
twin physical network nodes. According to the operation
of the digital twin network, 10% of the requested data
resources (CPU, memory) are taken as the resource occu-
pation for DTNI operation.

The physical network topology adopts the campus
network [30], which consists of the core layer, distribu-
tion layer, access layer, and host. The bandwidth of the
core layer network is 10Gbps, and the rest is 1Gbps. To
ensure the operational efficiency of large-scale DTN,

DTNI employs a fully connected network with a band-
width of 20Gbps. To fully verify the superior perfor-
mance of the ABWOA algorithm, we selected physical
networks of six different network scales with 495, 1010,
1520, 2015, 2550, and 3054 nodes as experimental sub-
jects. The number of nodes in each layer and the num-
ber of iterations corresponding to each network scale are
shown in Table 1.

Figure 5 shows an example of a physical network
topology. To ensure the normal operation of DTN and
to provide it with operational margin, during the physi-
cal network experiments with 495 and 1010 nodes, 50
DTNI nodes were selected; for the remaining larger-scale
physical network experiments, 60 DTNI nodes were cho-
sen. The experiment compares the ABWOA algorithm
with ABC (Artificial Bee Colony) [31], DE (Differential

Page 11 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Evolution Algorithm) [32], GA (Genetic Algorithm)
[33], MSA (Moth Search Algorithm) [34], PSO (Parti-
cle Swarm Optimization) [35], and the original WOA
algorithm. Furthermore, to verify the universality of the
proposed adaptive boundary strategy, we applied the
adaptive boundary strategy to each of the comparison
algorithms mentioned above.

The algorithm is written in Python and runs on an Intel
Core I7-12700KF CPU 3.6GHz, 32G RAM and Windows
11 64-bit operating system. To fairly compare all algo-
rithms, the termination condition for each algorithm’s
run is the same number of iterations. To avoid the ran-
domness of the experimental results, after multiple runs
and comparisons of different parameters for each algo-
rithm, and based on repeated parameter adjustments
according to the literature, the results of 30 consecutive

runs of each algorithm were selected for statistical analy-
sis. The running parameters of each algorithm are shown
in Table 2.

Table 3 illustrates the performance metrics of various
algorithms across different problem dimensions. Where
best, Worst, Average, Standard Deviation refer to the
optimal, worst, mean and standard deviation obtained
from 30 runs respectively. It is evident from the data that
as the problem size escalates, the performance of most
algorithms tends to degrade in terms of optimal solu-
tion quality. However, ABWOA consistently outperforms
the other algorithms, showcasing superior solution qual-
ity and greater stability across all dimensions considered.
Although the standard deviation of ABWOA increases
with the size of the problem, its worst solution is always
better than the best solutions of other algorithms. In con-
trast, ABC, DE, and MSA progressively fail to obtain better
solutions as the problem size increases, reflecting the fact
that it becomes increasingly difficult for them to find high-
quality solutions as the problem size increases. WOA can
obtain better solutions, but its standard deviation is larger,
indicating that WOA has poorer stability. Compared to the
WOA, ABWOA not only improves the quality of the solu-
tions but also enhances the stability of the solutions. PSO
and GA have lower standard deviations at various scales,
but their best solutions are far inferior to those of WOA
and ABWOA, indicating that PSO and GA have better sta-
bility at various scales but lower solution quality.

Table 1 Number of network element nodes and number of
iterations at each layer in each scale

Dim Core Distribution Access Hosts Iterations

495 5 10 40 440 500

1010 5 15 90 900 500

1520 5 15 75 1425 1000

2015 5 15 105 1890 1500

2550 6 24 120 2400 1500

3054 6 24 168 2865 2000

Fig. 5 The topology of physical network

Page 12 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Figure 6 shows the convergence graphs of various algo-
rithms on the problem of constructing large-scale digital
twin networks. It can be observed that DE and MSA can-
not converge on large-scale problems, and both the ABC
and PSO have difficulty converging or even cannot con-
verge. However, the convergence speed of GA is relatively
stable, but under the unified limit of iteration times,
their final results are not as good as the WOA algorithm.
Among all the algorithms compared, WOA has the best
convergence speed and convergence effect, but it still
falls short compared to the ABWOA algorithm, which
has the optimal running speed, convergence speed, and
convergence effect.

Table 4 illustrates the performance metrics of vari-
ous algorithms using adaptive boundary across differ-
ent problem dimensions. In comparison with Table 3, it
is evident that the adaptive boundary can also enhance
the quality of solutions from each algorithm to a certain
extent. However, the standard deviation of the algorithms
that utilized adaptive boundary has also increased, indi-
cating that the stability of the solutions is not as good as
when adaptive boundary is not used. In large-scale exper-
iments, the ABC, DE and MSA that used adaptive bound-
ary still failed to converge, while the quality of solutions
from the PSO algorithm that utilized adaptive boundary
has significantly improved. Nevertheless, the optimal
solutions obtained by other algorithms using adaptive
boundary still have a considerable gap compared to the
optimal solution of ABWOA.

It is worth noting that some of the algorithms in
Tables 3 and 4 have zero standard deviation. This is
because these algorithms have been unable to further
improve and find a better solution.

Figure 7 shows the convergence graphs of various
algorithms using adaptive boundary in the problem
of constructing large-scale digital twin networks. It
can be observed that after using adaptive boundary,
the algorithms are improved in the experiment in 495

Table 2 Comparison of ABWOA results with others

Parameters Values

p Population size 100

ebees The number of employed bees for ABC 16

obees The number of onlooker bees for ABC 4

cr Crossover rate for DE 0.9

wf Weight factor for DE 0.8

pc Crossover probability for GA 0.95

pm Mutation probability for GA 0.025

nbest The number of best moths to keep for MSA 5

pf The proportional of first partition for MSA 0.5

c1 Cognitive factor for PSO 1.2

c2 Social factor for PSO 1.2

wmin Minimum bound on inertia weight for PSO 0.4

wmax Maximum bound on inertia weight for PSO 0.9

b The shape of the logarithmic spiral for WOA 1

Table 3 Comparison of ABWOA results with other algorithms

Dim Algorithms Best Worst Average Standard deviation

495 ABC 47 49 48.033333 0.319841

DE 48 49 48.5 0.517549

GA 21 23 22.133333 0.681445

MSA 49 50 49.5 0.527046

PSO 34 39 37.166667 1.391683

WOA 11 32 21.9 4.626386

ABWOA 10 13 11 0.870988
1010 ABC 49 50 49.066667 0.253708

DE 50 50 50 0

GA 30 35 32.1 1.061878

MSA 50 50 50 0

PSO 40 45 42.8 1.349329

WOA 16 38 28.166667 6.308633

ABWOA 14 21 16.366667 1.449930
1520 ABC 59 60 59.7 0.466091

DE 60 60 60 0

GA 40 44 42.5 1.167077

MSA 60 60 60 0

PSO 50 55 53.333333 1.268540

WOA 22 50 34.1 7.662492

ABWOA 17 24 20.366667 2.07586
2015 ABC 60 60 60 0

DE 60 60 60 0

GA 46 51 48 1.174440

MSA 60 60 60 0

PSO 50 56 54.366667 1.351457

WOA 24 50 34.366667 6.950481

ABWOA 20 31 23.7 2.380234
2550 ABC 60 60 60 0

DE 60 60 60 0

GA 49 54 51.7 1.087547

MSA 60 60 60 0

PSO 50 57 54.633333 1.325696

WOA 25 51 34.4 6.300519

ABWOA 23 36 28.333333 3.230600
3054 ABC 60 60 60 0

DE 60 60 60 0

GA 51 55 53.9 1.093870

MSA 60 60 60 0

PSO 54 57 55.7 0.952311

WOA 27 54 35.833333 7.543361

ABWOA 26 42 30.733333 3.551913

Page 13 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

dimensions, but the effect is gradually less obvious as
the scale increases, and in larger scales, the solution is
still fails to converge. In addition, the PSO algorithm
converges significantly faster and continues to converge
at all scales, and the quality of the solution improves.
The convergence speed of GA is also enhanced, and
the quality of the solution is improved. Overall, adap-
tive boundary can enhance the convergence speed and
the quality of the optimal solution at convergence of

each comparative algorithm, but it still cannot match
ABWOA.

Tables 5 and 6 shows the average running time statis-
tics of various algorithms. It can be observed that as the
problem size continues to increase, the running time of the
algorithms sharply increases. Through comparison, it can
be seen that the contrast algorithms using adaptive bound-
ary have also significantly improved in terms of running
speed, but overall, they are still not as fast as ABWOA.

Fig. 6 The convergence result (without adaptive boundary)

Page 14 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Conclusion
With the development of computer network technol-
ogy and the application of digital twin network tech-
nology, the number of digital twins involved in DTN
is increasing, necessitating the efficient allocation of
digital twins of various physical network elements to
the distributed digital twin network infrastructure. In
this paper, we propose an adaptive boundary whale
optimization algorithm for the DTN construction
problem, aiming to efficiently obtain a set of DTNI
servers while minimizing total resources, improving

operational efficiency, and reducing operational costs.
The ABWOA leverages the characteristics of adaptive
boundary to flexibly adjust the search range, acceler-
ate the convergence speed of the algorithm, and obtain
better solutions during the convergence process. The
algorithm was compared with other heuristic algo-
rithms. Experimental results show that our algorithm is
competitive, especially in larger scale networks.

As the physical network topology changes over time
during operation, the digital twin network system also
needs to adapt to these changes in real time. Future work

Table 4 Comparison of ABWOA results with other algorithms using Adaptive Boundary

Dim Algorithms Best Worst Average Standard deviation

495 ABC-AB 17 25 21.833333 1.858500

DE-AB 17 29 24.5 3.240370

GA-AB 15 21 17.566667 1.501340

MSA-AB 47 49 48.5 0.674664

PSO-AB 14 17 15.733333 0.784915

ABWOA 10 13 11 0.870988
1010 ABC-AB 38 50 43.333333 3.043742

DE-AB 50 50 50 0

GA-AB 22 27 24.933333 1.362890

MSA-AB 49 50 49.833333 0.379049

PSO-AB 22 25 23.133333 0.937102

ABWOA 14 21 16.366667 1.449930
1520 ABC-AB 49 60 57.333333 3.345953

DE-AB 60 60 60 0

GA-AB 29 38 32.966667 2.173243

MSA-AB 59 60 59.933333 0.253708

PSO-AB 28 32 29.466667 1.105888

ABWOA 17 24 20.366667 2.07586
2015 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 36 43 38.466667 1.716719

MSA-AB 60 60 60 0

PSO-AB 30 35 32.933333 1.172481

ABWOA 20 31 23.7 2.380234
2550 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 39 47 42.5 1.833594

MSA-AB 60 60 60 0

PSO-AB 35 41 37.6 1.544735

ABWOA 23 36 28.333333 3.230600
3054 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 42 50 45.733333 1.964044

MSA-AB 60 60 60 0

PSO-AB 37 44 40.266667 1.720732

ABWOA 26 42 30.733333 3.551913

Page 15 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

Fig. 7 The convergence result (with adaptive boundary)

Table 5 The average running time statistics for algorithms (second)

Dim ABC DE GA MSA PSO WOA ABWOA

495 399.2 325.93 272.76 196.22 394.25 325.6 300.41
1010 1024.06 637.08 855.04 396.53 923.26 832.71 766.63
1520 3702.29 2739.37 3123.33 1491.01 3351.52 3062.25 2884.84
2015 9298.89 6302.36 7939.1 3228.45 6461.65 7850.63 5736.91
2550 12363.87 8694.09 10334.74 4480.55 10955.01 10384.03 10075.47
3054 17758.66 15440.91 16557.44 8034.57 17339.21 16820.34 16506.26

Page 16 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

will focus on researching more efficient real-time sched-
uling algorithms to enable efficient migration of digital
twin entities when there are changes in the physical net-
work or the digital twin network infrastructure, ensuring
effective adaptation to real-time changes in the physical
network environment.

Acknowledgements
The work was supported by National Natural Science Foundation of China No.
61861013, Science and Technology Major Project of Guangxi No. AA18118031,
and Guangxi Natural Science Foundation No. 2018GXNSFAA281318.

Authors’ contributions
Hao Feng and Kun Cao completed the main manuscript text and figures; Kun
Cao, Hao Feng and Gan Huang performed the experiment; Gan Huang and
Hao Liu analyze the experimental results and prepare the result figures. All
authors reviewed the manuscript.

Funding
National Natural Science Foundation of China No. 61861013, Science and
Technology Major Project of Guangxi No. AA18118031, and Guangxi Natural
Science Foundation No. 2018GXNSFAA281318.

Availability of data and materials
The dataset used in this paper is from Microsoft’s public dataset Azure VM
packing trace, https:// github. com/ Azure/ Azure Publi cData set. All of the mate-
rial is owned by the authors and/or no permissions are required.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 15 March 2024 Accepted: 5 May 2024

References
 1. Wu Y, Zhang K, Zhang Y (2021) Digital twin networks: a survey. IEEE Inter-

net Things J 8(18):13789–13804
 2. Dong R, She C, Hardjawana W, Li Y, Vucetic B (2019) Deep learning for

hybrid 5g services in mobile edge computing systems: learn from a
digital twin. IEEE Trans Wirel Commun 18(10):4692–4707

 3. Shi G, Shen X, Xiao F, He Y (2023) DANTD: a deep abnormal network
traffic detection model for security of industrial internet of things using
high-order features. IEEE Internet Things J 10(24):21143-21153. https://
doi. org/ 10. 1109/ JIOT. 2023. 32537 77

 4. Dai Y, Zhang K, Maharjan S, Zhang Y (2020) Deep reinforcement learning
for stochastic computation offloading in digital twin networks. IEEE Trans
Ind Inform 17(7):4968–4977

 5. Clemm A, Zhani MF, Boutaba R (2020) Network management 2030:
Operations and control of network 2030 services. J Netw Syst Manag
28(4):721–750

 6. Nguyen HX, Trestian R, To D, Tatipamula M (2021) Digital twin for 5g and
beyond. IEEE Commun Mag 59(2):10–15

 7. Almasan P, Ferriol-Galmés M, Paillisse J, Suárez-Varela J, Perino D, López
D, Perales AAP, Harvey P, Ciavaglia L, Wong L, et al (2022) Digital twin
network: Opportunities and challenges. arXiv preprint arXiv: 2201. 01144

 8. Khan LU, Saad W, Niyato D, Han Z, Hong CS (2022) Digital-twin-enabled
6g: Vision, architectural trends, and future directions. IEEE Commun Mag
60(1):74–80

 9. Tao S, Cheng Z, Xiao-Dong D, Lu L, Dan-Yang C, Hong-Wei Y, Yan-Hong
Z, Chao L, Qin L, Xiao W et al (2021) Digital twin network (dtn): concepts,
architecture, and key technologies. Acta Autom Sin 47(3):569–582

 10. Grieves M (2014) Digital Twin: Manufacturing Excellence through Virtual
Factory Replication. https:// www. 3ds. com/ filea dmin/ PRODU CTS- SERVI
CES/ DELMIA/ PDF/ White paper/ DELMIA- APRISO- Digit al- Twin- White paper.
pdf. Accessed 7 Jan 2024

 11. Grieves M, Vickers J (2017) Digital twin: Mitigating unpredictable, undesir-
able emergent behavior in complex systems. New Find Approaches,
Transdiscipl Perspect Complex Syst, pp 85–113

 12. Tao F, Liu W, Liu J, Liu X, Liu Q, Qu T, Hu T, Zhang Z, Xiang F, Xu W et al
(2018) Digital twin and its potential application exploration. Comput
Integr Manuf Syst 24(1):1–18

 13. Jyoti A, Shrimali M (2020) Dynamic provisioning of resources based on
load balancing and service broker policy in cloud computing. Clust
Comput 23(1):377–395

 14. Kumar M, Sharma SC, Goel S, Mishra SK, Husain A (2020) Autonomic
cloud resource provisioning and scheduling using meta-heuristic algo-
rithm. Neural Comput & Applic 32:18285–18303

 15. Zhao L, Han G, Li Z, Shu L (2020) Intelligent digital twin-based software-
defined vehicular networks. IEEE Netw 34(5):178–184

 16. Krishnan P, Jain K, Buyya R, Vijayakumar P, Nayyar A, Bilal M, Song H (2021)
Mud-based behavioral profiling security framework for software-defined
iot networks. IEEE Internet Things J 9(9):6611–6622

 17. Zhang K, Cao J, Zhang Y (2021) Adaptive digital twin and multiagent
deep reinforcement learning for vehicular edge computing and net-
works. IEEE Trans Ind Inform 18(2):1405–1413

 18. Hexiong C, Jiaping W, Yunkai W, Wei G, Feilu H, Zhengxiong M, Ning
Y (2022) Variable granularity digital twin construction technology for
software defined network. Appl Res Comput/Jisuanji Yingyong Yanjiu
39(10):3101-3107

 19. Milton M, De La OC, Ginn HL, Benigni A (2020) Controller-embeddable
probabilistic real-time digital twins for power electronic converter diag-
nostics. IEEE Trans Power Electron 35(9):9850–9864

 20. Mukherjee T, DebRoy T (2019) A digital twin for rapid qualification of 3d
printed metallic components. Appl Mater Today 14:59–65

 21. Schluse M, Priggemeyer M, Atorf L, Rossmann J (2018) Experimentable
digital twins—streamlining simulation-based systems engineering for
industry 4.0. IEEE Trans Ind Inform 14(4):1722–1731

Table 6 The average running time statistics of algorithms using Adaptive Boundary (second)

Dim ABC-AB DE-AB GA-AB MSA-AB PSO-AB ABWOA

495 340.8 235.67 261.13 189.76 315.99 300.41
1010 964.45 761.25 692.12 325.29 787.29 766.63
1520 3734.42 2881.71 2803.4 1542.23 2982.81 2884.84
2015 7011.25 6396.06 5016.73 3496.7 5287.82 5736.91
2550 10401.46 9118.51 9847.94 4659.69 11336.35 10075.47
3054 17915.93 16183.24 16480.47 8290.33 16647.76 16506.26

https://github.com/Azure/AzurePublicDataset
https://doi.org/10.1109/JIOT.2023.3253777
https://doi.org/10.1109/JIOT.2023.3253777
http://arxiv.org/abs/2201.01144
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf

Page 17 of 17Feng et al. Journal of Cloud Computing (2024) 13:110

 22. Christensen HI, Khan A, Pokutta S, Tetali P (2017) Approximation and
online algorithms for multidimensional bin packing: A survey. Comput
Sci Rev 24:63–79

 23. Christensen HI, Khan A, Pokutta S, Tetali P (2016) Multidimensional bin
packing and other related problems: a survey. https:// tetali. math. gatech.
edu/ PUBLIS/ CKPT. pdf. Accessed 2 Jan 2024

 24. Hidalgo-Herrero M, Rabanal P, Rodriguez I, Rubio F (2013) Comparing
problem solving strategies for np-hard optimization problems. Fundam
Informaticae 124(1–2):1–25

 25. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng
Softw 95:51–67

 26. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) An augmented lagran-
gian approach to the constrained optimization formulation of imaging
inverse problems. IEEE Trans Image Process 20(3):681–695

 27. Cocchi G, Lapucci M (2020) An augmented lagrangian algorithm for
multi-objective optimization. Comput Optim Appl 77(1):29–56

 28. Bahreininejad A (2019) Improving the performance of water cycle algo-
rithm using augmented lagrangian method. Adv Eng Softw 132:55–64

 29. Microsoft (2019) Azure vm packing trace. https:// github. com/ Azure/
Azure Publi cData set. Accessed 16 Jan 2024

 30. Fujimoto RM, Perumalla K, Park A, Wu H, Ammar MH, Riley GF (2003)
Large-scale network simulation: how big? how fast? In: 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, 2003. MASCOTS 2003. IEEE, pp
116–123

 31. Wang Z, Ding H, Li B, Bao L, Yang Z (2020) An energy efficient routing
protocol based on improved artificial bee colony algorithm for wireless
sensor networks. IEEE Access 8:133577–133596

 32. Deng W, Shang S, Cai X, Zhao H, Song Y, Xu J (2021) An improved dif-
ferential evolution algorithm and its application in optimization problem.
Soft Comput 25:5277–5298

 33. Mirjalili S, Mirjalili S (2019) Genetic algorithm. Theory Appl, Evol Algoritm
Neural Netw, pp 43–55

 34. Wang GG (2018) Moth search algorithm: a bio-inspired metaheuris-
tic algorithm for global optimization problems. Memetic Comput
10(2):151–164

 35. Zhang Y, Wang S, Ji G, et al (2015) A comprehensive survey on particle
swarm optimization algorithm and its applications. Math Probl Eng
2015:1-38. https:// doi. org/ 10. 1155/ 2015/ 931256

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://tetali.math.gatech.edu/PUBLIS/CKPT.pdf
https://tetali.math.gatech.edu/PUBLIS/CKPT.pdf
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://doi.org/10.1155/2015/931256

	ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction
	Abstract
	Introduction
	Related work
	Problem statement
	Digital dwin network architecture
	DTN construction problem model

	Whale optimization algorithm
	Shrinking encircling mechanism
	Spiral updating mechanism
	Prey exploration mechanism

	Adaptive boundary whale optimization algorithm
	Experimental evaluation
	Conclusion
	Acknowledgements
	References

