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Abstract 

Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale 
networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To 
address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA) 
to solve the digital twin network construction problem, improving the efficiency and reducing operational costs 
of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic 
algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm 
and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms 
in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction 
problem more effectively.
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Introduction
In recent years, Digital Twin (DT) technology has gar-
nered significant attention from both academia and 
industry due to its widespread applications in areas 
such as real-time remote monitoring in industrial set-
tings, traffic risk assessment, and intelligent scheduling 
in smart cities. The applications of DT technology have 
demonstrated its immense value in improving and opti-
mizing the performance of various systems, providing 
new impetus and perspectives for development across 
multiple fields.

The application of DT in networks has also gradually 
become a research hotspot. Digital twin networks cre-
ate real-time synchronized virtual mirrors of physical 

networks, enabling real-time interaction between 
physical and twin networks. This enables digital twin 
networks to play a significant role in network manage-
ment, optimization, and prediction, thereby providing 
powerful support for innovation and intelligent devel-
opment of networks. Through this approach, DTN can 
help the network achieve low-cost testing and valida-
tion, enhance the level of intelligent decision-mak-
ing, and increase the innovative efficiency of network 
applications [1]. This technology has been successfully 
implemented in various network scenarios, such as 
edge computing networks, network security, and the 
industrial internet [2–4].

With the advancement of computer network technol-
ogy, network loads have been steadily increasing, and 
network scales continue to expand, making network 
operation and maintenance increasingly complex [5]. As 
the scale of networks continues to expand, the number 
of digital twin entities involved in digital twin networks 
gradually increases, making the digital twin pattern of a 
single server even more challenging [6, 7]. For large-scale 
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networks, it becomes nearly impossible for a single server 
to handle the simulation and emulation processes of a 
DTN. Consequently, it becomes necessary to map the 
modeled physical network entities onto multiple server 
platforms for distributed operation. DTN construction 
algorithms serve as the prerequisite and foundation for 
fulfilling this requirement [8].

In this context, a key challenge is how to effectively 
allocate the digital twin entities of various physical net-
work elements to the distributed digital twin network 
infrastructure (DTNI, referring to a series of specially 
configured hardware and software resources, usually 
a group of dedicated servers connected by high-speed 
networks), to ensure that the servers can accommodate 
as many digital twins as possible, while enabling the 
platform to handle the communication traffic between 
entities effectively. Moreover, as the number of DTNI 
servers utilized increases, the operational power con-
sumption and cost of the DTN also increase. Minimiz-
ing the number of DTNI servers used can thus enhance 
the operational efficiency of the digital twin network 
and reduce its operational costs. In addressing this 
issue, it is necessary to consider multiple factors com-
prehensively, including the performance characteristics 
of DTNI, the topological structure of the physical net-
work and DTNI network, the workload of simulation 
entities, and communication patterns [1, 9]. To ensure 
the efficient operation of the entire DTN system, the 
key lies in adopting effective construction algorithms 
and deployment strategies. In large-scale distributed 
DTN systems, reasonably allocating the DTNI servers 
where numerous DT entities are located is a crucial 
task, which directly affects the performance and effi-
ciency of the entire system.

We proposes a heuristic method using an Adaptive 
Boundary Whale Optimization Algorithm (ABWOA) to 
address the current issue of constructing digital twin net-
works, and its effectiveness has been validated through 
experiments. The following summarizes the main contri-
butions of this paper.

1. A digital twin network construction mapping prob-
lem model was established. By analyzing and mode-
ling the construction process and encoding the prob-
lem for solution, an efficient mapping of the digital 
twin network construction was achieved, effectively 
improving operational efficiency and reducing oper-
ating costs.

2. A new heuristic algorithm, ABWOA, was proposed. 
An improved whale optimization algorithm was put 
forward for the digital twin network construction 
problem. The introduction of an adaptive boundary 
strategy enhanced the solution efficiency and quality.

3. The superiority of ABWOA in solving the digital 
twin network construction problem was verified. 
Comparative experiments were conducted between 
ABWOA and six existing algorithms. Extensive 
experiments were carried out for six different net-
work scales. The experimental results show that 
ABWOA is more effective than the comparative 
algorithms.

The rest of this paper is organized as follows. “Related 
work” section reviews the related works. “Problem state-
ment” section introduces the DTN architecture in detail 
and analyzes DTN construction problem. “Whale opti-
mization algorithm” and “Adaptive boundary whale opti-
mization algorithm” sections detail WOA and ABWOA, 
respectively. Experimental evaluation and results are pre-
sented in “Experimental evaluation” section. Finally, The 
conclusion will be elaborated in “Conclusion” section.

Related work
The origin of digital twin technology can be traced back 
to 2003, when Professor Michael Grieves from the Uni-
versity of Michigan first introduced the concept of the 
“mirror space model” while teaching Product Lifecycle 
Management (PLM) [10]. In 2017, Grieves and Vick-
ers proposed the formal definition of digital twin in 
their white paper [11], which encompasses three core 
elements: the physical entity in the physical space, the 
digitalized object in the virtual space, and the data link 
connecting these two spaces.

Tao et al. [12] defined digital twin as the creation of 
virtual replicas of physical objects using digital means. 
In this process, through data simulation, it accurately 
reflects the behavior of physical objects in real envi-
ronments. Through interactive feedback between vir-
tual and real, deep integration and analysis of data, and 
iterative optimization of decisions, digital twin tech-
nology can add or expand new functions to physical 
objects. Sun et al. [9] defined the digital twin network 
as a network system that includes physical network 
entities and their virtual twins, which can interact and 
map with each other in real time. They also designed 
a system architecture and analyzed the key technolo-
gies of the digital twin network, discussing its future 
development trends. Jyoti, A et  al. [13] view dynamic 
resource allocation as a primary objective and employ 
a novel method based on load balancing and service 
proxies to address the issue of dynamic resource dis-
tribution. Kumar, M et  al. [14] proposed an efficient 
meta-heuristic technique to provide improved explo-
ration and exploitation capabilities and to optimize 
various QoS parameters. Zhao et  al. [15] proposed 
the development of digital twin for software-defined 
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vehicular networks (SDVN) on centralized servers or 
controllers, while Krishnan et  al. [16] independently 
developed DT for software-defined Internet of Things 
(SD-IoT) on central servers. Currently, many studies 
have applied DT to physical networks, such as [15–18] 
etc., which apply DT to scenarios like industrial IoT, 
vehicular networks, and edge networks, indicating 
that DT has strong potential for enhancing the appli-
cation performance of current communication net-
works. However, to the best of our knowledge, there is 
still limited research on the construction methods for 
large-scale distributed digital twin networks.

Problem statement
Digital dwin network architecture
Figure  1 illustrates the three-plane architecture of 
the digital twin network: the physical network plane, 
the twin network plane, and the control plane. Physi-
cal network plane serves as the physical object of the 
digital twin entities and can represent various network 
types such as data center networks, Internet of Things 
(IoT), and campus networks. Network elements within 
the physical network interact with the network digital 
twin through the southbound interface, exchanging 
network data and control information. As the core fea-
ture of the digital twin network system, twin network 
plane is responsible for organizing and managing the 
data collected from the physical network. Additionally, 
it manages all model data of the digital twin entities, 
utilizing this data to complete modeling tasks for vari-
ous network applications. Control plane is responsible 
for the distributed construction of the digital twin net-
work system. Initially, the distributed build scheduler 
obtains the load state and topological relationship of 
each network element in the physical network, from 
which it analyzes the resource demand of the digital 
twin corresponding to each physical network element. 
Based on the resource requirements and topological 
relationships of the digital twins, the distributed con-
struction scheduler employs a construction algorithm 
to determine an allocation scheme. Following this 
scheme, digital twins are assigned to the appropriate 
Digital Twin Network Infrastructure (DTNI). DTNI 
consists of a series of specially configured hardware 
and software resources, typically a group of dedicated 
servers connected by a high-speed network, ensuring 
the efficient and stable operation of the digital twin 
network. Ultimately, each DTNI operates synchro-
nously, forming a distributed digital twin network 
operation support platform.

Figure 2 illustrates the two stage construction pro-
cess of a DTN. For clarity and convenience, we use a 
small-scale network as an example. The first step is 

to utilize the data of the physical network to model 
the entire physical network. Due to the diverse objec-
tives of DTN applications, numerous methods for 
DT modeling have been extensively researched [1]. 
Studies on DT modeling methods primarily concen-
trate on three aspects: specific models [19], multidi-
mensional models [20], and general models [21]. For 
example, in this step, host h1 and switch sw1 in Fig. 2 
are modeled and implemented as digital twins DTh1 
and DTsw1 , respectively. The second step involves 
deploying the modeled physical network entities (i.e., 
digital twin entities) onto the Digital Twin Network 
Infrastructure (DTNI). The DTNI executes complex 
simulations and analysis tasks while maintaining 
real-time synchronization between the physical enti-
ties and their corresponding digital twin entities. As 
per the construction scheme depicted in the figure, 
digital twins DTh1,DTh2,DTh3,DTh4,DTsw1 , and DTsw2 
are deployed onto DTNI S1, which is responsible 
for their operation. Similarly, DTh5,DTh6,DTh7 , and 
DTsw3 are deployed onto DTNI S2 and managed by it. 
The link communication between digital twin entities 
deployed on the same DTNI is carried out internally 
within the DTNI. For example, the communication 
between DTh1 and DTh2 will involve data exchange 
within S1 and will not occupy DNTI link resources. 
Furthermore, link communication between digi-
tal twin entities deployed on different DTNI will be 
handled by the DTNI network links between them. 
For instance, the communication between DTsw2 and 
DTsw3 will be carried out by the DTNI network link 
between S1 and S2. DT modeling and DTs deploy-
ment form the foundation for building the entire 
DTN. This paper primarily focuses on researching 
the solution algorithm for the second step, which is 
the construction scheme.

DTN construction problem model
In the digital twin network construction scheme, the 
physical network is presented as a graph G = (V ,E) . The 
V  and E stand for the sets of nodes and links in the physi-
cal network, respectively. Let Vi , Vj be two nodes in the 
physical network, and Eij be the link connecting nodes Vi 
and Vj in the physical network. For the convenience of 
description below, we use i, j instead of Vi , Vj and ij 
instead of Eij . Here, i, j ∈ V  represent two nodes in G , 
and ij ∈ E represent the physical link connecting nodes Vi 
and Vj in G . A digital twin element of the physical net-
work can be delineated as a triplet ωbw

ij ,ωmem
i ,ωCPU

i  , 
where i, j ∈ V  , and ij ∈ E . Here, ωbw

ij
 , ωmem

i  , and ωCPU
i

 
correspondingly signify the bandwidth of link ij as well as 
the memory and CPU required by the digital twin ele-
ment of the physical network node i.



Page 4 of 17Feng et al. Journal of Cloud Computing          (2024) 13:110 

Similarly, the digital twin network infrastructure is 
presented as a graph GD = (VD,ED) . Let VD

u ,VD
v  be two 

nodes in DTNI, and ED
uv be the link connecting nodes 

VD
u  and VD

v  in DTNI. For the convenience of descrip-
tion below, we use u, v instead of VD

u  , VD
v  and uv instead 

of ED
uv . The VD represents the set of DTNI nodes, with 

u, v ∈ V
D indicating two nodes in GD . The ED repre-

sents the set of links connecting DTNI nodes, with 

uv ∈ E
D indicating the link connecting nodes GD

u  and 
GD
v  in GD.
DTNI serves as the operational platform for the digi-

tal twin entities, characterized by three capacity met-
rics: the bandwidth capacity of link uv, the memory 
capacity of node u, and the CPU capacity of node u, 
denoted by Cbw

uv  , Cmem
u  and CCPU

u  respectively. A continu-
ous exchange of data is maintained among digital twins 

Fig. 1 Architecture of large-scale digital twin network
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throughout the operational phase of the DTN. When 
these digital twins are assigned to different DTNI serv-
ers, their operational efficiency is significantly lower 
than when they are allocated to the same DTNI server, 
primarily because interactions between them must be 
completed through network communications between 
DTNI servers. Moreover, the increment in the count of 
DTNI servers requisitioned escalates the operational 
energy consumption and associated costs within the 
DTN framework. Therefore, the problem to be solved is 
to efficiently construct the physical network G to run on 
DTNI, with the aim of minimizing the number of DTNI 
servers used. The objective function of the DTNI con-
struction problem is represented as Eq. (1).

where, pu represents whether the DTNI node u is being 
used, where pu = 1 if and only if u is used, otherwise 
pu = 0 . So, pu ∈ {0, 1},u ∈ VD.

In the operation of the DTN, there is only one DTNI 
responsible for the operation of the digital twin of the 

(1)min
∑

u∈VD

pu

physical network throughout the entire DTN system. 
Therefore, the DT uniqueness constraint for is:

where,ziu represents whether the digital twin of the physi-
cal network node i is placed on the DTNI node u, and 
only when the digital twin of the physical network node 
i is deployed on the DTNI node u, there is ziu = 1 , other-
wise ziu = 0 . So ziu ∈ {0, 1}, i ∈ V ,u ∈ VD

The total CPU and total memory size of the digital 
twins deployed to a specific DTNI node must not exceed 
the capacity of that DTNI node, therefore, the CPU and 
memory constraints can be:

The total network bandwidth of communication 
between digital twins across the DTNI nodes link uv 

(2)
∑

u∈VD

ziu = 1, i ∈ V

(3)
∑

i∈V

ωCPU
i · ziu ≤ CCPU

u ,u ∈ V
D

(4)
∑

i∈V

ωmem
i · ziu ≤ Cmem

u ,u ∈ V
D

Fig. 2 DTN construction process
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must not exceed the link capacity of the DTNI nodes link 
uv, therefore, the link constraint can be:

where, zijuv denotes whether the physical network link ij 
passes through the DTNI link uv. zijuv = 1 if and only if the 
physical network link ij passes through the DTNI link uv, 
otherwise zijuv = 0. So, zijuv ∈ {0, 1}, ij ∈ E,uv ∈ ED

In summary, our target is to minimize the number of 
DTNI servers used:

The problem of digital twins construction is a Multi-
dimensional Bin Packing Problem (MBPP). DTNI is a 
box, and the DT is the item to be placed into the box. 
Since MBPP is a typical NP-hard problem [22, 23], there 
does not exist a solution with polynomial time complex-
ity unless P=NP [24]. So, we designed a heuristic solution 
to solve it.

Whale optimization algorithm
Whale optimization algorithm is a new type of intel-
ligent optimization algorithm proposed by Seyedali 
et  al. [25], which has the advantages of easy imple-
mentation, few control parameters, and strong robust-
ness. The algorithm is inspired by the unique hunting 
behavior of humpback whales, simulating their strate-
gies for encircling prey.

The whale optimization algorithm mimics the preda-
tion strategy of humpback whales, treating each potential 
solution as a whale. These whales use a random explo-
ration mechanism to locate prey and, upon detecting 
prey, employ two tactics for attack: encircling shrinkage 
and spiral bubble netting. The WOA algorithm summa-
rizes three mechanisms for updating positions: shrinking 
encircling mechanism, spiral updating mechanism, and 
prey exploration mechanism.

Shrinking encircling mechanism
After detecting the prey, humpback whales approach the 
prey gradually by employing a strategy of encirclement 
contraction. The formula for updating their position is as 
follows:

(5)
∑

ij∈E

ωbw
ij · z

ij
uv ≤ Cbw

uv ,uv ∈ E
D

(6)
min

∑

u∈VD

pu,

s.t. Eq. 2 to Eq. 5.

(7)D =
∣

∣C · X∗
t − X t

∣

∣

(8)X t+1 = X
∗
t − A ·D

Where, t represents the current iteration number; X∗ 
represents the position vector of the best solution in the 
current population; X represents the position vector of 
the current individual, D and A control the step length of 
contraction and encirclement, their coefficients A and C 
are calculated by the following formulas:

Where, r is a random vector whose values range 
between [0, 1] . a is a convergence factor, which lin-
early decreases from 2 to 0 as the iteration progresses. 
a = 2− 2t

tmax
 , tmax is the maximum number of iterations.

In the shrinking encircling mechanism, each whale 
updates its own position based on the current optimal 
position of the population. By adjusting the values of the 
coefficient vectors A and C , the search behavior of the 
whales around the prey can be controlled, while reduc-
ing the value of parameter a can achieve the behavior of 
shrinking encirclement.

Spiral updating mechanism
Whales attack their prey by moving upwards in a spiral 
motion and continuously shrinking the encirclement 
during the hunting process. In the spiral update posi-
tion method, whales move towards the prey in a spiral 
motion. The formula for updating their position is as 
follows:

Where, D
′ =

∣

∣X
∗
t − X

∣

∣ , represents the distance 
between the whale and the current global optimum indi-
vidual; b is a constant defining the shape of the logarith-
mic spiral, l is a random number between [−1, 1].

Whales swim synchronously along a spiral path within 
the shrinking encirclement of the prey. In order to sim-
ulate this synchronous behavior, it is assumed that the 
probability of choosing the shrinking encirclement 
mechanism and the spiral update mechanism is both 0.5 
during the optimization process. The formula for updat-
ing their position is as follows:

Where, p is a random number uniformly distributed in 
the range [0, 1].

Prey exploration mechanism
Before the approximate location of the prey is deter-
mined, in order to enhance the exploration of the 

(9)A = 2a · r − a

(10)C = 2 · r

(11)X t+1 = D
′ · ebl · cos(2π l)+ X

∗
t

(12)X t+1 =

{

X
∗
t − A ·D if p < 0.5

D
′ · ebl · cos(2π l)+ X

∗
t if p ≥ 0.5
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hunting space, the search for prey mechanism is 
conducted. The whales swim outside the shrinking 
encirclement when the coefficient vector |A| > 1 . the 
position update formula of the prey exploration mech-
anism is as follows:

Where, X rand stand for the position of a random indi-
vidual in the whale population, D represents the distance 
between the current individual and the random whale 
individual. The definitions of coefficient vectors A and C 
are the same as in Eqs. (9) and (10).

Based on the above analysis, the main parameters of 
the WOA algorithm include coefficient vectors A and 
C  . Among them, parameter A is crucial for adjusting 
the global exploration and local exploitation capabili-
ties of the WOA algorithm. When |A| > 1 , the whale 
population is guided to conduct extensive searches, 
which helps to enhance the global exploration capa-
bility of the WOA algorithm in the solution space. 
Whereas when |A| ≤ 1 , the search range is limited to 
a smaller area, prompting the algorithm to conduct 
more detailed local searches, thereby improving local 
exploitation capability.

The flowchart of WOA is shown in Fig. 3.

Adaptive boundary whale optimization algorithm
Although WOA performs excellently in many situa-
tions, it has limitations in handling high-dimensional 
problems or problems with a wide feature space. In 
order to tackle this problems, we put forth an Adaptive 
Boundary Whale Optimization Algorithm. ABWOA 
enhances the algorithm’s convergence speed and accu-
racy by dynamically adjusting the search bounda-
ries during the search process. This method not only 
strengthens the algorithm’s global search capability but 
also improves its performance in multimodal function 
optimization problems.

The decimal coding scheme of population X is shown 
in Fig. 4. The individual xk within the population repre-
sents a potential construction scheme, which is a 1×m 
matrix, where m denotes the number of twin physical 
network nodes and n represents the quantity of DTNI 
service nodes. Each individual within the popula-
tion X is designated as xk = (ak1, ak2, . . . , aki, . . . , akm) , 
where xk represents a possible construction scheme 
for DTN. aki denotes the deployment of twinned 
physical network node i on DTNI node aki , with 
1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ aki ≤ n . p refers to the 

(13)D = |C · X rand − X t |

(14)X t+1 = X rand − A ·D

number of individuals in population X, m signifies the 
number of twinned physical network nodes, and n rep-
resents the number of DTNI nodes. For the construc-
tion scheme xk , let τ represent the number of distinct 
values of the discrete value aki in xk . Then τ indicates 
that running m twin physical network nodes requires 
τ DTNI nodes. It is evident that the smaller τ is, the 
greater the quality of the solution.

Every swarm intelligence optimization algorithm incor-
porates some concepts of random algorithms, which 
directly leads to the randomness of solutions. Our pro-
posed ABWOA algorithm is no exception. Under the 
influence of randomness, the solutions generated by the 
ABWOA algorithm are likely to be invalid, meaning that 
the allocation of services according to the allocation plan 
may result in negative remaining CPU, memory, or link 
bandwidth between some DTNI servers. A negative value 
indicates that the DTs deployed on these DTNI servers 
have exceeded the maximum available resources on these 
servers.

There are generally three methods to deal with ille-
gal solutions. The first is to repair the illegal solu-
tions to make them valid, but in this issue, repairing 
illegal solutions is relatively difficult, mainly because 
modifying the value must consider each constraint in 
“Problem statement”  section, and the combination of 
these constraints constitutes an NP-hard problem. The 
second, and simplest, is to directly discard the illegal 
solutions, but this leads to a reduction in the number 
of individuals in the population and a loss of popula-
tion diversity. The last method to handle illegal solu-
tions is to penalize the illegal solutions, reducing their 
priority in the overall population, and this penalty 
should reflect the severity of different illegal solutions. 
The objective of the penalty function is to trans-
form the constrained problem into an unconstrained 
one by introducing artificial penalties for violating 
constraints.

In this paper, we employ the Augmented Lagrangian 
Method (ALM) for constraint handling, which was first 
discussed by Hestenes and Powell in 1969 [26]. Rockafel-
lar modified the idea for inequality constraints [27]. ALM 
is similar to the penalty method. However, it reduces 
the possibility of ill-conditioned situations occurring in 
the penalty method by incorporating explicit Lagrange 
multiplier estimates into the function to be minimized 
(referred to as the augmented Lagrangian function) 
[28]. In generally, a series of such penalty functions are 
defined, in which the penalty term for constraint viola-
tion is multiplied by a positive coefficient (penalty coef-
ficient or parameter). By increasing this coefficient, more 
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Fig. 3 The flow chart of WOA
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severe punishment is imposed on the behavior of violat-
ing constraints, thus forcing the minimum value of the 
penalty function to be closer to the feasible region of the 
constrained problem.

where f(x) is the objective function and g(x) is the ine-
quality constraint.

The ALM can be written as follows:

where 
〈

g(x)
〉

= g(x) if g(x) > 0 else it is zero, µ is the 
penalty coefficient and 

∑
〈

gi(x)
〉2 is the quadratic pen-

alty term. � is the Lagrange multiplier. The main advan-
tage of this method is that, unlike the penalty method, 
it does not require the penalty coefficient µ to approach 
infinity to solve the original constrained problem. 
Instead, by introducing the Lagrange multiplier term, 
the penalty coefficient µ can remain relatively small, thus 
avoiding the occurrence of ill-conditioned situations.

WOA uses a random vector to update the whale’s 
position during the solution process. By using the coef-
ficient vector A , whales are forced away from the cur-
rent optimal solution to expand the search range. For the 
problem we need to solve, the expanded search range 
and the solutions dynamically adjusted according to the 
optimal solution may have already exceeded the range 

(15)
Minimize f (x)

Subject to gi(x) ≤ 0 , i = 1, 2, 3, . . . , s

(16)F(x) = f (x)+ µ ·
∑

〈

gi(x)
〉2

−
∑

� ·
〈

gi(x)
〉

of the optimal values that have been solved. Based on 
the previously mentioned encoding, we discovered that 
dynamically adjusting the search boundaries of the prob-
lem during the algorithm’s iterative process – dynami-
cally modifying the search boundaries of the whale – can 
significantly enhance the quality of the optimal solution 
and accelerate the algorithm’s rate of convergence.

According to “Problem statement”  section and Eqs. 
(15), (16), it can be known that F(xk) denotes the out-
put of the individual xk after the operation of the eval-
uation function F(x), which is the number of DTNI 
nodes used. Let yk = F(xk) , then yk signifies the num-
ber of DTNI nodes required to construct the DTN sys-
tem according to the operation plan xk constructed by 
DTN, and Y  signifies the output of the population X 
after the operation of the evaluation function F(X) . Let 
ε = min(Y ) , ε represents the optimal solution within 
the population X , suggesting that ε DTNI nodes are 
adequate for the operation of the DTN system. If ε < n , 
which implies that the number of DTNI nodes needed 
by the current scheme is less than the present search 
boundary n, the problem’s upper limit can be reduced 
to ε . Then, the other components in population X are 
adjusted under the new upper bound.

The ABWOA will operate according to the pseudoc-
ode shown in Algorithm 1.

(17)aki_new =
ε

n
· aki , 1 ≤ k ≤ p, 1 ≤ i ≤ m

Fig. 4 The decimal coding scheme of population
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Algorithm 1 Adaptive Boundary Whale Optimization Algorithm

Experimental evaluation
In this section, we discuss the performance of the 
ABWOA. Our experiments are based on Microsoft’s 
public dataset Azure VM Packing Trace [29], from which 
we extract creation requests (each creation request 
includes CPU, memory, and other metrics) to serve as a 
reference for resource occupation during the operation of 
twin physical network nodes. According to the operation 
of the digital twin network, 10% of the requested data 
resources (CPU, memory) are taken as the resource occu-
pation for DTNI operation.

The physical network topology adopts the campus 
network [30], which consists of the core layer, distribu-
tion layer, access layer, and host. The bandwidth of the 
core layer network is 10Gbps, and the rest is 1Gbps. To 
ensure the operational efficiency of large-scale DTN, 

DTNI employs a fully connected network with a band-
width of 20Gbps. To fully verify the superior perfor-
mance of the ABWOA algorithm, we selected physical 
networks of six different network scales with 495, 1010, 
1520, 2015, 2550, and 3054 nodes as experimental sub-
jects. The number of nodes in each layer and the num-
ber of iterations corresponding to each network scale are 
shown in Table 1.

Figure  5 shows an example of a physical network 
topology. To ensure the normal operation of DTN and 
to provide it with operational margin, during the physi-
cal network experiments with 495 and 1010 nodes, 50 
DTNI nodes were selected; for the remaining larger-scale 
physical network experiments, 60 DTNI nodes were cho-
sen. The experiment compares the ABWOA algorithm 
with ABC (Artificial Bee Colony) [31], DE (Differential 
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Evolution Algorithm) [32], GA (Genetic Algorithm) 
[33], MSA (Moth Search Algorithm) [34], PSO (Parti-
cle Swarm Optimization) [35], and the original WOA 
algorithm. Furthermore, to verify the universality of the 
proposed adaptive boundary strategy, we applied the 
adaptive boundary strategy to each of the comparison 
algorithms mentioned above.

The algorithm is written in Python and runs on an Intel 
Core I7-12700KF CPU 3.6GHz, 32G RAM and Windows 
11 64-bit operating system. To fairly compare all algo-
rithms, the termination condition for each algorithm’s 
run is the same number of iterations. To avoid the ran-
domness of the experimental results, after multiple runs 
and comparisons of different parameters for each algo-
rithm, and based on repeated parameter adjustments 
according to the literature, the results of 30 consecutive 

runs of each algorithm were selected for statistical analy-
sis. The running parameters of each algorithm are shown 
in Table 2.

Table  3 illustrates the performance metrics of various 
algorithms across different problem dimensions. Where 
best, Worst, Average, Standard Deviation refer to the 
optimal, worst, mean and standard deviation obtained 
from 30 runs respectively. It is evident from the data that 
as the problem size escalates, the performance of most 
algorithms tends to degrade in terms of optimal solu-
tion quality. However, ABWOA consistently outperforms 
the other algorithms, showcasing superior solution qual-
ity and greater stability across all dimensions considered. 
Although the standard deviation of ABWOA increases 
with the size of the problem, its worst solution is always 
better than the best solutions of other algorithms. In con-
trast, ABC, DE, and MSA progressively fail to obtain better 
solutions as the problem size increases, reflecting the fact 
that it becomes increasingly difficult for them to find high-
quality solutions as the problem size increases. WOA can 
obtain better solutions, but its standard deviation is larger, 
indicating that WOA has poorer stability. Compared to the 
WOA, ABWOA not only improves the quality of the solu-
tions but also enhances the stability of the solutions. PSO 
and GA have lower standard deviations at various scales, 
but their best solutions are far inferior to those of WOA 
and ABWOA, indicating that PSO and GA have better sta-
bility at various scales but lower solution quality.

Table 1 Number of network element nodes and number of 
iterations at each layer in each scale

Dim Core Distribution Access Hosts Iterations

495 5 10 40 440 500

1010 5 15 90 900 500

1520 5 15 75 1425 1000

2015 5 15 105 1890 1500

2550 6 24 120 2400 1500

3054 6 24 168 2865 2000

Fig. 5 The topology of physical network
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Figure 6 shows the convergence graphs of various algo-
rithms on the problem of constructing large-scale digital 
twin networks. It can be observed that DE and MSA can-
not converge on large-scale problems, and both the ABC 
and PSO have difficulty converging or even cannot con-
verge. However, the convergence speed of GA is relatively 
stable, but under the unified limit of iteration times, 
their final results are not as good as the WOA algorithm. 
Among all the algorithms compared, WOA has the best 
convergence speed and convergence effect, but it still 
falls short compared to the ABWOA algorithm, which 
has the optimal running speed, convergence speed, and 
convergence effect.

Table  4 illustrates the performance metrics of vari-
ous algorithms using adaptive boundary across differ-
ent problem dimensions. In comparison with Table 3, it 
is evident that the adaptive boundary can also enhance 
the quality of solutions from each algorithm to a certain 
extent. However, the standard deviation of the algorithms 
that utilized adaptive boundary has also increased, indi-
cating that the stability of the solutions is not as good as 
when adaptive boundary is not used. In large-scale exper-
iments, the ABC, DE and MSA that used adaptive bound-
ary still failed to converge, while the quality of solutions 
from the PSO algorithm that utilized adaptive boundary 
has significantly improved. Nevertheless, the optimal 
solutions obtained by other algorithms using adaptive 
boundary still have a considerable gap compared to the 
optimal solution of ABWOA.

It is worth noting that some of the algorithms in 
Tables  3 and  4 have zero standard deviation. This is 
because these algorithms have been unable to further 
improve and find a better solution.

Figure  7 shows the convergence graphs of various 
algorithms using adaptive boundary in the problem 
of constructing large-scale digital twin networks. It 
can be observed that after using adaptive boundary, 
the algorithms are improved in the experiment in 495 

Table 2 Comparison of ABWOA results with others

Parameters Values

p Population size 100

ebees The number of employed bees for ABC 16

obees The number of onlooker bees for ABC 4

cr Crossover rate for DE 0.9

wf  Weight factor for DE 0.8

pc Crossover probability for GA 0.95

pm Mutation probability for GA 0.025

nbest The number of best moths to keep for MSA 5

pf  The proportional of first partition for MSA 0.5

c1 Cognitive factor for PSO 1.2

c2 Social factor for PSO 1.2

wmin Minimum bound on inertia weight for PSO 0.4

wmax Maximum bound on inertia weight for PSO 0.9

b The shape of the logarithmic spiral for WOA 1

Table 3 Comparison of ABWOA results with other algorithms

Dim Algorithms Best Worst Average Standard deviation

495 ABC 47 49 48.033333 0.319841

DE 48 49 48.5 0.517549

GA 21 23 22.133333 0.681445

MSA 49 50 49.5 0.527046

PSO 34 39 37.166667 1.391683

WOA 11 32 21.9 4.626386

ABWOA 10 13 11 0.870988
1010 ABC 49 50 49.066667 0.253708

DE 50 50 50 0

GA 30 35 32.1 1.061878

MSA 50 50 50 0

PSO 40 45 42.8 1.349329

WOA 16 38 28.166667 6.308633

ABWOA 14 21 16.366667 1.449930
1520 ABC 59 60 59.7 0.466091

DE 60 60 60 0

GA 40 44 42.5 1.167077

MSA 60 60 60 0

PSO 50 55 53.333333 1.268540

WOA 22 50 34.1 7.662492

ABWOA 17 24 20.366667 2.07586
2015 ABC 60 60 60 0

DE 60 60 60 0

GA 46 51 48 1.174440

MSA 60 60 60 0

PSO 50 56 54.366667 1.351457

WOA 24 50 34.366667 6.950481

ABWOA 20 31 23.7 2.380234
2550 ABC 60 60 60 0

DE 60 60 60 0

GA 49 54 51.7 1.087547

MSA 60 60 60 0

PSO 50 57 54.633333 1.325696

WOA 25 51 34.4 6.300519

ABWOA 23 36 28.333333 3.230600
3054 ABC 60 60 60 0

DE 60 60 60 0

GA 51 55 53.9 1.093870

MSA 60 60 60 0

PSO 54 57 55.7 0.952311

WOA 27 54 35.833333 7.543361

ABWOA 26 42 30.733333 3.551913
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dimensions, but the effect is gradually less obvious as 
the scale increases, and in larger scales, the solution is 
still fails to converge. In addition, the PSO algorithm 
converges significantly faster and continues to converge 
at all scales, and the quality of the solution improves. 
The convergence speed of GA is also enhanced, and 
the quality of the solution is improved. Overall, adap-
tive boundary can enhance the convergence speed and 
the quality of the optimal solution at convergence of 

each comparative algorithm, but it still cannot match 
ABWOA.

Tables  5 and  6 shows the average running time statis-
tics of various algorithms. It can be observed that as the 
problem size continues to increase, the running time of the 
algorithms sharply increases. Through comparison, it can 
be seen that the contrast algorithms using adaptive bound-
ary have also significantly improved in terms of running 
speed, but overall, they are still not as fast as ABWOA.

Fig. 6 The convergence result (without adaptive boundary)
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Conclusion
With the development of computer network technol-
ogy and the application of digital twin network tech-
nology, the number of digital twins involved in DTN 
is increasing, necessitating the efficient allocation of 
digital twins of various physical network elements to 
the distributed digital twin network infrastructure. In 
this paper, we propose an adaptive boundary whale 
optimization algorithm for the DTN construction 
problem, aiming to efficiently obtain a set of DTNI 
servers while minimizing total resources, improving 

operational efficiency, and reducing operational costs. 
The ABWOA leverages the characteristics of adaptive 
boundary to flexibly adjust the search range, acceler-
ate the convergence speed of the algorithm, and obtain 
better solutions during the convergence process. The 
algorithm was compared with other heuristic algo-
rithms. Experimental results show that our algorithm is 
competitive, especially in larger scale networks.

As the physical network topology changes over time 
during operation, the digital twin network system also 
needs to adapt to these changes in real time. Future work 

Table 4 Comparison of ABWOA results with other algorithms using Adaptive Boundary

Dim Algorithms Best Worst Average Standard deviation

495 ABC-AB 17 25 21.833333 1.858500

DE-AB 17 29 24.5 3.240370

GA-AB 15 21 17.566667 1.501340

MSA-AB 47 49 48.5 0.674664

PSO-AB 14 17 15.733333 0.784915

ABWOA 10 13 11 0.870988
1010 ABC-AB 38 50 43.333333 3.043742

DE-AB 50 50 50 0

GA-AB 22 27 24.933333 1.362890

MSA-AB 49 50 49.833333 0.379049

PSO-AB 22 25 23.133333 0.937102

ABWOA 14 21 16.366667 1.449930
1520 ABC-AB 49 60 57.333333 3.345953

DE-AB 60 60 60 0

GA-AB 29 38 32.966667 2.173243

MSA-AB 59 60 59.933333 0.253708

PSO-AB 28 32 29.466667 1.105888

ABWOA 17 24 20.366667 2.07586
2015 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 36 43 38.466667 1.716719

MSA-AB 60 60 60 0

PSO-AB 30 35 32.933333 1.172481

ABWOA 20 31 23.7 2.380234
2550 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 39 47 42.5 1.833594

MSA-AB 60 60 60 0

PSO-AB 35 41 37.6 1.544735

ABWOA 23 36 28.333333 3.230600
3054 ABC-AB 60 60 60 0

DE-AB 60 60 60 0

GA-AB 42 50 45.733333 1.964044

MSA-AB 60 60 60 0

PSO-AB 37 44 40.266667 1.720732

ABWOA 26 42 30.733333 3.551913
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Fig. 7 The convergence result (with adaptive boundary)

Table 5 The average running time statistics for algorithms (second)

Dim ABC DE GA MSA PSO WOA ABWOA

495 399.2 325.93 272.76 196.22 394.25 325.6 300.41
1010 1024.06 637.08 855.04 396.53 923.26 832.71 766.63
1520 3702.29 2739.37 3123.33 1491.01 3351.52 3062.25 2884.84
2015 9298.89 6302.36 7939.1 3228.45 6461.65 7850.63 5736.91
2550 12363.87 8694.09 10334.74 4480.55 10955.01 10384.03 10075.47
3054 17758.66 15440.91 16557.44 8034.57 17339.21 16820.34 16506.26
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will focus on researching more efficient real-time sched-
uling algorithms to enable efficient migration of digital 
twin entities when there are changes in the physical net-
work or the digital twin network infrastructure, ensuring 
effective adaptation to real-time changes in the physical 
network environment.
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