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Abstract 

In recent years, knowledge graph technology has been widely applied in various fields such as intelligent auditing, 
urban transportation planning, legal research, and financial analysis. In traditional auditing methods, there are inef-
ficiencies in data integration and analysis, making it difficult to achieve deep correlation analysis and risk identification 
among data. Additionally, decision support systems in the auditing process may face issues of insufficient information 
interpretability and limited predictive capability, thus affecting the quality of auditing and the scientificity of decision-
making. However, knowledge graphs, by constructing rich networks of entity relationships, provide deep knowledge 
support for areas such as intelligent search, recommendation systems, and semantic understanding, significantly 
improving the accuracy and efficiency of information processing. This presents new opportunities to address 
the challenges of traditional auditing techniques. In this paper, we investigate the integration of intelligent audit-
ing and knowledge graphs, focusing on the application of knowledge graph technology in auditing work for power 
engineering projects. We particularly emphasize mainstream key technologies of knowledge graphs, such as data 
extraction, knowledge fusion, and knowledge graph reasoning. We also introduce the application of knowledge 
graph technology in intelligent auditing, such as improving auditing efficiency and identifying auditing risks. Further-
more, considering the environment of cloud-edge collaboration to reduce computing latency, knowledge graphs can 
also play an important role in intelligent auditing. By integrating knowledge graph technology with cloud-edge col-
laboration, distributed computing and data processing can be achieved, reducing computing latency and improving 
the response speed and efficiency of intelligent auditing systems. Finally, we summarize the current research status, 
outlining the challenges faced by knowledge graph technology in the field of intelligent auditing, such as scalability 
and security. At the same time, we elaborate on the future development trends and opportunities of knowledge 
graphs in intelligent auditing.
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Introduction
Auditing, as a systematic process, aims to indepen-
dently obtain and evaluate evidence to ensure the 
accuracy of an entity’s financial statements, records, 
operations, or performance, and to fairly reflect its 

financial position, operating results, and compliance 
with laws, regulations, and industry standards. Audit-
ing is divided into two main categories: internal and 
external [1]. Internal auditing is conducted by internal 
audit departments within organizations to improve effi-
ciency and effectiveness, safeguard compliance, secu-
rity, and efficiency [2]. External auditing is conducted 
by independent third-party organizations, focusing 
primarily on the accuracy and fairness of financial 
reports and information [3]. In an environment where 
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cloud-edge collaboration reduces computing latency, 
auditing can be conducted more conveniently and effi-
ciently [4]. Cloud technology enables auditing teams to 
achieve real-time collaboration, cross-regional, cross-
departmental collaboration, significantly reducing 
information transmission and communication delays, 
and improving auditing efficiency. At the same time, 
the cloud environment provides elastic and scalable 
computing resources to meet the demands of large-
scale data processing and analysis, providing stronger 
technical support for auditing. Under the framework 
of cloud-edge collaboration, auditing teams can flexibly 
adjust resource allocation, expand on demand, to adapt 
to audits of different scales and complexities, enhanc-
ing auditing quality and efficiency [5].

Traditional approaches in the field of auditing primar-
ily rely on auditors manually examining ledgers, finan-
cial statements, and other relevant documents to assess 
the financial condition and operational efficiency of an 
organization or project [6]. This method emphasizes on-
site investigations, face-to-face interviews, and sample 
inspections to ensure the accuracy and compliance of 
records [7]. In the context of power engineering projects, 
this involves auditing aspects such as project progress, 
cost control, contract execution, and project manage-
ment. Traditional auditing methods exhibit the following 
characteristics:

• On-site investigations and face-to-face interviews: 
Auditors visit the site to observe and engage in direct 
communication with project managers and staff.

• Sample inspections: Since manually auditing all 
records is impractical, random or targeted sample 
inspections are typically employed.

• Manual record analysis: Auditors need to manu-
ally inspect and analyze ledger records and financial 
statements.

• Reliance on historical data: Traditional auditing 
methods primarily rely on historical data and records 
of completed tasks [8].

With the development of technology and changes in the 
business environment, traditional auditing methods face 
various challenges:

• Sharp increase in data volume: As project scales 
expand, the volume of data involved also increases 
significantly, making it challenging for traditional 
methods to efficiently handle large datasets .

• Increased complexity of technology: Power engineer-
ing projects involve various new technologies and 
complex engineering management processes, making 
it difficult for traditional auditing methods to com-

prehensively assess the effectiveness of technology 
implementation and project management.

• Need for higher efficiency and accuracy: With 
increased regulatory requirements and stakeholders’ 
demands for transparency and accountability, audit-
ing requires higher efficiency and accuracy.

• Application of intelligent auditing technologies: The 
application of technologies such as big data, artificial 
intelligence (AI), and knowledge graphs presents new 
opportunities and challenges for auditing [9].

In power engineering projects, intelligent auditing refers 
to the comprehensive and real-time monitoring and 
analysis of various stages such as design, procurement, 
construction, and operation using modern informa-
tion technologies such as big data analytics, AI, cloud 
computing, and knowledge graphs. This approach can 
enhance auditing efficiency and accuracy, enable timely 
identification and prevention of risks, and optimize 
resource allocation.

A knowledge graph is a technology that represents 
knowledge through a graphical structure, using nodes 
(entities) and edges (relations) to store and represent 
information related to entities and their relations. The 
core advantage of knowledge graphs lies in their ability 
to present complex data and information in a structured 
and interconnected manner, thus providing support 
for data analysis, information retrieval, and intelligent 
decision-making. Knowledge graphs can handle and 
analyze large-scale, heterogeneous datasets, which is 
particularly important for auditing to deal with complex 
financial data and unstructured information (such as 
contract texts, communication records, etc.) [10]. They 
can quickly identify correlations between data, improv-
ing the efficiency and accuracy of data processing. By 
constructing knowledge graphs involving companies, 
individuals, transactions, and other relevant entities and 
their relations, auditors can more easily identify abnor-
mal patterns, hidden risks, and potential fraudulent 
behavior. This structured approach to data analysis can 
assist auditors in conducting more in-depth risk assess-
ment and management. Knowledge graphs can provide a 
comprehensive perspective, helping auditors understand 
complex business environments and transaction rela-
tions. This deeper insight supports more precise audit 
decisions, enhancing audit quality and efficiency [11]. 
They can be used to monitor and analyze an organiza-
tion’s compliance by quickly identifying potential com-
pliance issues through comparing entity behavior and 
transactions with relevant regulations and standards. 
Combined with AI technologies such as machine learn-
ing and natural language processing (NLP), knowledge 
graphs can automate data analysis and insight discovery, 
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providing powerful technical support for intelligent 
auditing [12]. This not only reduces manual workload 
during the audit process but also improves the quality 
and effectiveness of auditing. Knowledge graph technol-
ogy demonstrates enormous potential in intelligent audit 
data analysis, enhancing audit process efficiency and 
accuracy, strengthening risk management, supporting 
wiser decision-making, and driving audit work towards 
greater efficiency and intelligence. With technology con-
tinually advancing, knowledge graphs are expected to 
play an increasingly important role in the field of intel-
ligent auditing.

In the reality of limited resources for internal audit 
investment, it is imperative for internal auditing to 
enhance audit efficiency and focus on core risks within 
the enterprise, while expanding audit coverage. This 
has become an important trend in the current innova-
tion and quality improvement of internal auditing [13]. 
Accelerating the pace of enterprise digital transforma-
tion, strengthening the reuse of data audit methods, and 
achieving intelligent auditing on this basis, transition-
ing from “human audit” to “machine audit” and then 
to “smart audit”, is gradually becoming a new trend. In 
this process, the cloud-edge collaboration environment 
plays a crucial role by reducing computing latency and 
improving the response speed and efficiency of audit-
ing teams. Through the introduction of intelligent audit-
ing and cloud-edge collaboration environments, internal 
auditing can better coordinate the relationships between 
power enterprise managers, audited business depart-
ments, and external auditing, thereby reducing the daily 
workload of internal auditors [14]. At the same time, uti-
lizing advanced digital management methods and cloud-
edge collaboration environments can enhance the level of 
intelligent auditing for engineering projects, achieve the 
intelligence and standardization of internal auditing, and 
thus improve the quality and efficiency of data analysis. 
This not only provides intelligent support for subsequent 
decision-making and advanced applications but also 
has profound theoretical and practical significance for 
preventing and reducing the operational risks of power 
enterprises [15]. Therefore, incorporating cloud-edge 
collaboration environments into the technical innova-
tion and quality improvement strategies of internal audit-
ing can effectively enhance audit efficiency, expand audit 
coverage, and provide support for the digital transforma-
tion of power enterprises.

The rest of the paper is organised as follows: “Knowl-
edge graphs: fundamentals and technologies”  sec-
tion outlines the foundations and technical concepts 
of knowledge graphs. Then, “Application of knowledge 
graphs in intelligent audit”  section analyses the applica-
tion of knowledge graphs in smart auditing. “Challenges 

in adopting knowledge graphs for audit”  section 
describes the challenges of applying knowledge graph to 
auditing. “Future trends and opportunities” section anal-
yses future trends and challenges in the field of knowl-
edge graphs and auditing. Finally, we conclude the paper 
in “Conclusion” section.

Knowledge graphs: fundamentals 
and technologies
Basic concepts of knowledge graphs
The concept of knowledge graph was first introduced 
by Google in its Knowledge Graph [16] project in 2012, 
aimed at enhancing the search quality and user experi-
ence of the Google search engine. A knowledge graph 
is a multi-relational directed graph composed of enti-
ties as nodes and relations as different types of edges. It 
describes various pieces of information about the real 
world in the form of knowledge triples, represented as 
(h,  r,  t), where h and t correspond to the head and tail 
entities, and r represents the relation between them. An 
entity can be an objectively existing object or an abstract 
concept. The connections between entities are described 
using relations, which include pre-defined types and 
properties. Semantic descriptions and relations between 
entities form a networked structure of knowledge.

One key advantage of knowledge graphs is their ability 
to express complex knowledge systems in a highly intui-
tive and flexible manner. This graphical representation 
not only allows people to easily understand the relations 
between information but also enables computers to effi-
ciently process large amounts of data. In recent years, due 
to the outstanding advantage of knowledge graphs in rep-
resenting structured data, they have played an increas-
ingly important role in variousAI tasks, injecting new 
vitality into intelligent question answering [17], intel-
ligent recommendation [18], and information retrieval 
[19]. Numerous large-scale knowledge graphs such as 
DBPedia [20], Freebase [21], WordNet [20], and Wikidata 
[22] are widely used in various fields. Table 1 shows the 
large-scale knowledge bases that are now well known. 
With the continuous discovery of new knowledge and the 
reinterpretation of old knowledge, knowledge graphs can 
be easily updated by adding new nodes and edges. This 
dynamism makes knowledge graphs an evolving knowl-
edge base that can reflect the latest developments in the 
field of knowledge.

Furthermore, knowledge graphs excel in task analy-
sis mainly due to their semantic relationship models, 
rich knowledge representations, semantic reasoning 
capabilities, structured representations, and support for 
large-scale data. These features enable knowledge graphs 
to better understand tasks and provide accurate, com-
prehensive information support for them [27]. Users 
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can query the knowledge graph to discover hidden rela-
tions between different entities or explore the knowl-
edge structure within a specific domain. For example, by 
analyzing a medical knowledge graph, researchers can 
uncover associations between a certain medication and 
specific diseases, or identify connections between certain 
symptoms and particular health conditions. The con-
struction and application of knowledge graphs are inter-
disciplinary fields that combine research achievements 
from various fields such as computer science, linguistics, 
and information science. With the continuous advance-
ment ofAI technology, knowledge graphs will play an 
increasingly important role in intelligent information 
processing and knowledge discovery, providing people 
with richer, more accurate, and personalized information 
services [28].

Key technologies for knowledge graphs
Knowledge extraction
Knowledge extraction was first proposed in the late 
1970s, with its core task being the automated discovery 
and extraction of relevant information from text. Knowl-
edge extraction is a crucial technology for automatically 
constructing large-scale knowledge graphs, aiming to 
extract knowledge from various sources and structures of 

data and store it in a knowledge graph. The data sources 
for knowledge extraction can include structured data 
(such as linked data, databases), semi-structured data 
(such as tables, lists in web pages), or unstructured data 
(pure text data). Depending on the type of data source, 
knowledge extraction involves different key technolo-
gies and technical challenges that need to be addressed. 
Knowledge extraction models are classified into pipe-
line models and joint extraction models, as illustrated in 
Fig. 1.

In the pipeline model, Named Entity Recognition 
(NER) aims to identify strict indicators in the text 
belonging to predefined semantic types such as person 
names, locations, organizations, etc [29]. NER not only 
serves as an independent tool in Information Extraction 
(IE) but also plays a crucial role in various NLP applica-
tions including text understanding, information retrieval, 
automatic text summarization, question answering sys-
tems, machine translation, and knowledge base construc-
tion. The development of NER traces back to the Sixth 
Message Understanding Conference (MUC-6), where its 
purpose was to identify organization, personnel, and geo-
graphical location names, as well as currency, time, and 
percentage expressions in text. Since MUC-6, NER has 
garnered increasing attention and undergone in-depth 

Table 1 Large-scale knowledge tables

NAME Institutions Database content Products

DBPedia [23] University of Leipzig 38 million labels and abstracts containing 3 billion pieces of information DBPedia

Freebase [21] MetaWeb 68 million entities, 1 billion pieces of relation information FB15k, FB15k-237

WikiData [22] Wikimedia Foundation Over 46 million data items Wikipedia

YAGO [24] Max Planck Institute 459 million entities, 24 million knowledge triples YAGO

YAGO2 [25] Max Planck Institute 200,000 entity categories, 3 million entities and 220 million knowledgen triples YAGO2

WordNet [26] University of Princeton 117,000 synonym sets WN11,WN18

Fig. 1 Information extraction model classification diagram
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research in various scientific activities. In its initial stages, 
NER primarily relied on expert-crafted rules and domain 
dictionaries [29]. These rules encompassed morphologi-
cal rules, punctuation, statistical information, etc., while 
dictionaries included domain-specific vocabularies and 
common sense knowledge. The emergence and evolu-
tion of machine learning further propelled NER research. 
These methods leverage large volumes of annotated data 
for training, optimizing parameters to ultimately generate 
optimal models. Common machine learning approaches 
for entity recognition include Support Vector Machines, 
Hidden Markov Models, Maximum Entropy Models, and 
Conditional Random Fields. The advent of deep learning 
provided new avenues for entity recognition compared to 
earlier rule-based or machine learning-based approaches. 
Bengio et al. [30] proposed establishing a three-layer neu-
ral network structure to train language models and gen-
erate distributed word vectors. Subsequently, researchers 
continuously optimized word vectors, fostering rapid 
development in NLP. More updated techniques applied 
to NER subsequently achieved state-of-the-art perfor-
mance. Collobert et  al. [31] introduced a method based 
on sentences and windows, marking the classical incep-
tion of applying neural network models and word vectors 
to NER. This work also marked the first attempt to obtain 
general word embeddings from unlabeled data. Huang 
et al. [32] proposed the BiLSTM-CRF model, which com-
bines bidirectional LSTM and CRF models for sequence 
labeling tasks, becoming the mainstream NER model at 
the time and still widely used as a baseline model. Chiu 
et  al. [33] proposed the BiLSTM-CRF-CNNS model, 
combining RNN and CNN based on the work of Bengio 
et al. [30]. In 2015, Lu et al. [34] introduced the concept 
of hypergraphs, presenting a model based on hypergraph 
representation called Mention Hypergraph. This model 
uses nodes and directed edges together to represent 
named entities and their combinations. This representa-
tion efficiently handles nested named entities, solving the 
problem of difficult detection. In 2018, Wang et  al. [35] 
proposed a new method called Segmental Hypergraphs, 
addressing structural ambiguity issues present in the pre-
vious Mention Hypergraph method.

Relation extraction (RE) is a core task in the field of 
NLP, aiming to extract unknown relation facts from 
human language text and organize unstructured infor-
mation into structured formats [36]. By leveraging deep 
learning techniques such as Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and 
Long Short-Term Memory networks (LSTMs), research-
ers can accurately extract relations between entities from 
complex language environments [37, 38]. This process 
is crucial for applications like constructing knowledge 
graphs, understanding text content, and supporting 

question-answering systems, as it automates the handling 
and analysis of large-scale textual data, revealing implicit 
connections between information.Mainstream RE meth-
ods are categorized into supervised, unsupervised, and 
distantly supervised extraction methods based on the 
need for annotated data. Supervised RE methods are 
typically modeled as multi-class classification tasks, with 
much research focusing on extracting text features for 
relation classification. Early classic supervised methods 
for RE were based on feature vectors and kernel func-
tions. For instance, Kambhatla [39] proposed a method 
to extract semantic relations between nouns by combin-
ing shallow and deep syntactic processing with semantic 
information, using kernel functions for calculation, and 
reducing dependence on semantic trees. Additionally, 
Giuliano et  al. [40] integrated various lexical, syntac-
tic, and semantic features in text using Support Vector 
Machine (SVM) models and Maximum Entropy mod-
els, achieving good results.Although methods based on 
feature vectors and kernel functions perform well in the 
extraction process, feature extraction and kernel function 
design often rely on the modeler’s expertise. Deep learn-
ing has seen wide application in various fields, with many 
neural network-based models such as CNNs, RNNs, and 
LSTMs performing well on entity RE tasks [41]. Unsuper-
vised RE methods involve automatically identifying enti-
ties and their relations from text without pre-annotated 
corpora. Some clustering-based methods perform well in 
unsupervised RE. For example, Zhao et  al. [42] utilized 
pre-defined relation labeled data to learn a relation-ori-
ented representation and form a clustering structure by 
aggregating instances of the same relation into corre-
sponding relation centers to discover new relation types 
in unlabeled data. Additionally, pattern matching-based 
methods are also popular, where Tran et al. [43] extracted 
relations between entities based on manually defined 
rules or patterns such as regular expressions and syntac-
tic parsing. Furthermore, some deep learning techniques 
have been applied to unsupervised RE. Yuan et  al. [44] 
proposed an unsupervised RE technique based on Vari-
ational Autoencoders (VAEs), connecting the decoder 
and encoder without imposing restrictions on the classi-
fication distribution, thereby improving training stability.

In the context of joint extraction models, meth-
ods based on Seq2Seq refer to treating triples as token 
sequences, transforming the triple extraction task into 
a generation task of producing triples in a certain order. 
Addressing the issue of overlapping triples in complex 
contexts, Zeng et al. [45] introduced the CopyRE model, 
which utilizes a copying mechanism. This model first 
generates relations and then generates all triples in the 
text to resolve the problem of relation overlap. Fu et  al. 
[46] and Nayak et  al. [47] also tackled this problem, 
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where Fu et  al. [46] proposed a Graph Convolutional 
Network (GCN)-based method for relation triple extrac-
tion, while Nayak et al. [47] introduced a Seq2Seq-based 
approach where each time step extracts a word represen-
tation. In 2021, Ye et  al. [48] proposed a Transformer-
based generative contrastive learning framework for RE, 
aiming to address the issue of recurrent neural networks 
failing to capture long-term dependency relations, result-
ing in unreliable triple generation. Additionally, word 
replacement operations can also be conducted to achieve 
different purposes. Zheng et  al. [49] employed a novel 
annotation strategy, simultaneously labeling entity infor-
mation and relation types, transforming the tasks of NER 
and RE into sequence labeling tasks. However, this model 
overlooks the scenarios of SEO and EPO.

The fill-in-the-blank method involves models typically 
maintaining tables corresponding to each relation, where 
each entry indicates whether the corresponding relation 
exists for a given token pair. Entries with labels usually 
represent the start and end positions of the two entities 
involved in the relation. This method represents rela-
tion information by filling in tables. In 2020, Wang et al. 
[50] proposed a method that utilizes mutual interaction 
between sequence encoders and relation table encoders, 
combined with attention mechanisms, to capture the 
interaction information between entity recognition and 
RE tasks, thereby enhancing model performance. In the 
same year, Wang et al. [51] also introduced the TPLinker 
model, which unifies the annotation framework into a 
linking problem of word pairs, capable of addressing 
issues like entity overlap relations and nested entities. In 
2021, Ren et  al. [52] first considered the global correla-
tion between word pairs and various types of relations 
in fill-in-the-blank-based methods to overcome the limi-
tations of relying solely on local features of individual 
word pairs. Additionally, Miwa et  al. [53] proposed an 
end-to-end model for extracting entity relations on word 
sequences and dependency tree structures. This model 
employs bidirectional sequences and bidirectional tree 
structures to jointly model entities and relations. It first 
detects entities and then uses a single incremental decod-
ing vector structure to extract relations between entities, 
while jointly updating vector parameters for entities and 
relation labels, achieving better entity RE results. Eberts 
et  al. [54] proposed the SPERT (span-based joint entity 
and RE) model, which utilizes a Transformer network as 
the foundational unit to perform lightweight embedding, 
entity recognition, and filtering for entities within spans. 
This model also conducts word replacement operations.

The token-based method typically refers to models 
predicting relations based on tokens. In these mod-
els, binary token sequences are often used to determine 
the start and end positions of entities and sometimes 

to identify relations between two entities. Additionally, 
word replacement operations are commonly applied in 
these methods to increase model flexibility and adapt-
ability. Yu et  al. [55] proposed a span-based annotation 
strategy, where they first label the positions and types 
of head entities, then label the positions of tail entities, 
and predict the relation between head and tail entities. 
However, this method overlooks the potential relations 
between head and tail entities. Li et  al. [56] formalized 
the joint RE task as a multi-turn question-answering 
task, extracting triplets based on question-answer tem-
plates, but the high computational complexity due to 
multiple sentence encodings is a limitation. Dai et al. [57] 
introduced a word-position-based annotation strategy, 
generating content vectors by combining position-based 
attention mechanisms. To better explore the interac-
tion between entity recognition and RE, Wu et  al. [58] 
employed two isomorphic bidirectional type attention 
LSTMs and enhanced the dependency between entity 
types and relation types through cross-type attention 
mechanisms. In recent years, researchers have also pro-
posed the PRGC [59] model and bidirectional extrac-
tion framework to improve model efficiency and reduce 
entity extraction omissions. Additionally, word replace-
ment operations can be performed in these methods to 
increase model flexibility and adaptability.

Knowledge graphs completion
Knowledge graph completion aims to automatically dis-
cover and fill in missing entities or relations by utilizing 
existing knowledge and reasoning techniques. Currently, 
there are numerous methods available for constructing 
knowledge graphs and inferring incomplete triplets [60]. 
These methods can be broadly categorized into tensor 
factorization models and translation models. In the con-
text of intelligent auditing, tensor decomposition mod-
els can aid auditors in identifying potential irregularities 
or anomalies by transforming financial data into tensor 
form and leveraging tensor decomposition techniques to 
uncover underlying patterns and factors, thus providing 
valuable decision support. On the other hand, translation 
models can be utilized for translating and understanding 
cross-language audit information, enhancing audit team 
efficiency and communication quality.

Models based on tensor decomposition represent the 
combination of incomplete triplets and missing parts as 
a three-way tensor, which is then decomposed to obtain 
embeddings for head entities, relations, and tail entities. 
Among these are some lightweight models, such as the 
one proposed by Nickel et al. [61], which leverages hyper-
complex space to learn knowledge graph embeddings, 
enhancing the generalization compared to ComplEx [62]. 
Unlike the standard vector space with a single component 
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i, each quaternion embedding is a vector in the hyper-
complex space H with imaginary components i,j, and 
k, embedding the relation quaternion via the Hamilton 
product into a new scoring function. Tucker [63] utilizes 
a different decomposition model called Tucker decompo-
sition to compute a smaller core tensor and a sequence 
composed of three matrices, each representing embed-
dings for entities and relations. Overall, these models 
offer effective approaches for handling incomplete tri-
plets and missing parts in knowledge graphs, which are 
crucial for reasoning and completion tasks.

The translation model interprets relations as sim-
ple translations of hidden entity representations. The 
translation distance model measures the plausibility 
of facts and utilizes a distance-based scoring function. 
Translation-based models aim to find low-dimensional 
vector representations of entities related to entity trans-
lations. TransW [64] proposes using word embeddings 
for knowledge graph embedding to better handle unseen 
entities or relations. Unlike previous works that overlook 
word-level details in triplets, TransW aims to enrich the 
knowledge graph by using word embeddings to repre-
sent missing entities and relations. RotatE [65] is another 
translation-based knowledge graph representation learn-
ing method. This model can infer different relation pat-
terns, whether symmetric or asymmetric. The rotation 
model defines each relation as a rotation from the source 
entity to the target entity in the complex vector space. 
HAKE [66] is a translation distance model that explicitly 
models modulus information, with tree depth considered 
as modulus, while the distance function only considers 
the modulus part.

Knowledge graphs reasoning
With the further development of the Internet and big 
data technology, the types of knowledge graphs are con-
stantly increasing, and the amount of data is continuously 
growing. During the inference process, complex question 
types are constrained, and answers are derived through 
multi-hop relations between entities. For instance, for the 
question “Which company did the chairman of xx com-
pany invest in?”, we can find Tom through the chairman 

relation of the subject entity “xx company”, and then find 
the answer entity “yy company” through Tom’s invest-
ment relation. The intermediate relations and entities 
constitute the reasoning path. Our goal is to automati-
cally and accurately learn such reasoning paths. The 
simplified reasoning process is illustrated in Fig. 2. Multi-
source knowledge graph reasoning holds significant 
importance in real-world application scenarios. With the 
advancement of multi-source knowledge graph reason-
ing, numerous methods have emerged in recent years, 
including inference based on traditional rule represen-
tation, distributed inference, and neural network-based 
inference.

Rule-based inference primarily applies simple rules or 
statistical features on some early manually constructed 
knowledge graphs. For instance, the NELL knowl-
edge graph internally utilizes simple first-order relation 
learning algorithms for inference [67]. Wang et  al. [68] 
introduced the first-order probabilistic language model 
ProPPR for knowledge graph inference. Lao et  al. [69, 
70] proposed the PRA algorithm, which treats inference 
paths as features to predict whether specific relations 
exist between entities. Gardner et al. [71] introduced the 
simpler and more effective SFE algorithm for generating 
feature matrices from knowledge graphs, which traverses 
adjacent entities of head entities using a breadth-first 
strategy, extracts features from local structures, and then 
performs inference. Liu et al. [72] proposed the hierarchi-
cal random walk inference algorithm, where the upper 
layer corresponds to a global learning perspective, and 
the lower layer corresponds to local learning inference 
within the knowledge graph. Additionally, some mod-
els utilize rule-based inference based on different types 
of paths. For example, Guo et al. [73] employ angle-soft 
rules, while Zhang et al. [74] utilize axioms.

The process of distributed-based inference involves 
obtaining low-dimensional vector representations 
through models and then using vector operations for 
inference on the corresponding knowledge graph. 
Bordes et  al. [75] proposed the first transfer-based rep-
resentation model, TransE, which serves as the foun-
dation of distributed-based models and initiated the 

Fig. 2 Simple inference graph
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research trend of the Trans series. Wang et al. [76] pro-
posed TransH, which learns one more mapping vector 
for each relation on top of TransE for mapping entities 
to the hyperplane specified by the relation, which some-
what alleviates the problem of not being able to deal with 
multi-mapped attribute relations well. Lin et al. [77] pro-
posed TransR and CTransR. TransR establishes repre-
sentations for entities and relations in separate spaces, 
with each relation corresponding to a space and a map-
ping matrix. After mapping relations to relation space, 
the relation vector can be transformed into a transition 
between two entity vectors. Lin et al. [78] also introduced 
PTransE, which distinguishes between different paths 
between entities. PTransE extends TransE by modeling 
relation path constraints, constructing paths through 
relation combination operations, and then weighting 
multiple paths between entities to improve the accuracy 
of inference.

With the rapid development of neural network tech-
nology, research on knowledge graphs based on neural 
networks has received widespread attention. Neural net-
works offer advantages in knowledge graph reasoning, 
including self-learning capabilities, fast computation 
speed, and high accuracy. Socher et  al. [79] proposed 
NTN, which uses a bilinear tensor layer instead of tra-
ditional neural network layers to connect head and tail 
entities, enabling the representation of complex seman-
tic relations between entities in different dimensions. 
Shi et al. [80] introduced the ProjE shared-variable neu-
ral network model in 2017. It learns joint embeddings 
of entities and edges in the knowledge graph and fills in 
missing information by modifying standard loss func-
tions. Neelakantan et  al. [81] trained an RNN for each 
relation type to obtain variable-length combination rep-
resentations. They generate the next combination vector 
from input relation vectors and the current path vector 
on the path, with the output of the last step serving as 
the representation of the path vector. The training objec-
tive of this model is to maximize the probability of cor-
rect triplets. Graves et  al. [82] proposed DNC, which 
includes an LSTM neural network controller and an 
addressable external storage matrix. Additionally, Trivedi 
et  al. [83] proposed Know-Evolve, a novel deep evolu-
tionary knowledge network capable of learning nonlinear 
evolving entity representations over time. Xu et  al. [84] 
introduced GNN into TEA-GNN to capture long-term 
dependency relationships in temporal knowledge graphs. 
Bai et al. [85] employed a pruning strategy to obtain tem-
poral logical rules and calculate their confidence scores.

Knowledge graphs and intelligent auditing
The application of knowledge graphs in intelligent 
auditing is increasingly widespread. Its core lies in 

utilizing graph databases to construct and represent 
enterprise information, associated entities, and their 
interactions, thereby supporting tasks such as informa-
tion integration, data mining, and risk identification 
during the auditing process [86]. Through knowledge 
graphs, auditors can swiftly access comprehensive 
information about audit targets. Leveraging the query-
ing and analytical capabilities of graph databases ena-
bles data correlation, pattern recognition, and trend 
analysis, thus enhancing audit efficiency and accuracy 
[87]. Additionally, knowledge graphs can be combined 
with natural language processing techniques to achieve 
semantic understanding and intelligent inference of 
audit documents and reports, providing further sup-
port and reference for audit decision-making [88].

While the application of knowledge graphs in intel-
ligent auditing brings many benefits, it also faces sev-
eral challenges. Firstly, constructing knowledge graphs 
requires a significant amount of data, including struc-
tured and semi-structured data, which can be a major 
challenge for enterprises [9]. Secondly, updating and 
maintaining knowledge graphs is also a concern as 
enterprise information and relationships may change 
frequently, requiring timely updates to ensure accuracy. 
Additionally, the scale and complexity of knowledge 
graphs increase the complexity of queries and reason-
ing, necessitating efficient algorithms and technolo-
gies to support them [89]. Lastly, the incompleteness 
and uncertainty of data in knowledge graphs may affect 
auditors’ judgment and decision-making regarding 
risks. Therefore, addressing these challenges requires 
a comprehensive consideration of issues such as data 
quality, update mechanisms, query performance, and 
uncertain reasoning [90].

The development of knowledge graphs in the field of 
intelligent auditing holds vast prospects for the future. 
Several trends are anticipated: Firstly, the construction 
of knowledge graphs will become increasingly auto-
mated and intelligent. With advancements in natural 
language processing, machine learning, and graph data-
bases, enterprises can more easily extract knowledge 
from large-scale audit data and autonomously build and 
update knowledge graphs. Secondly, knowledge graphs 
will be integrated with other intelligent technologies 
such as machine learning, data mining, and predic-
tive analytics to achieve more precise and efficient risk 
identification and decision support [91]. Furthermore, 
the application scope of knowledge graphs will expand 
beyond financial auditing to areas such as compli-
ance auditing, internal controls, and risk management. 
Lastly, the openness and sharing of knowledge graphs 
will be enhanced, enabling different enterprises and 
institutions to share and exchange knowledge graphs, 
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thereby further improving audit efficiency and accuracy 
[8].

Application of knowledge graphs in intelligent 
audit
Knowledge graphs, as a form of structured semantic 
knowledge repository, are designed to store information 
about entities (such as individuals, locations, organiza-
tions, etc.) and their relations in a graphical format from 
various forms of data [92–94]. This approach significantly 
simplifies the process of knowledge comprehension and 
retrieval for both machines and humans. The organiza-
tion of information in graphs not only enhances the 
accessibility of data but also strengthens the intercon-
nectedness of information, thereby making knowledge 
more easily explorable and exploitable.

Furthermore, the integration of knowledge graphs with 
cloud-edge computing could further enhance the utility 
of this technology [95]. Cloud-edge computing provides 
a decentralized processing infrastructure, which could 
not only speed up the processing and retrieval of data 
from large-scale knowledge graphs but also reduce the 
risk of data loss as the data can be stored on local devices. 
Moreover, this could facilitate real-time data analysis, as 
data can be processed at the edge of the network, closer 
to the source, thus reducing latency times significantly 
[15, 96–101].

In various fields, the application of knowledge graphs 
has become increasingly important, spanning domains 
such as finance, healthcare, education, information and 
communication technology, scientific engineering, social 
politics, and tourism.

In these domains, knowledge graph technology is uti-
lized to integrate information from diverse sources, dem-
onstrating its potent capabilities. For instance, in the 
healthcare sector, knowledge graphs constructed by inte-
grating heterogeneous resources have been successfully 
employed to establish unified question-answering sys-
tems and recommendation systems, which provide accu-
rate medical information and personalized health advice 
[10, 102, 103]. Additionally, knowledge graphs are uti-
lized for uncovering intricate relations within biological 
data [104], predicting ecotoxicological effects in environ-
mental engineering [36], detecting fraudulent activities 
in the financial domain [105], as well as discovering and 
visualizing political relations [29, 106]. These applications 
showcase how knowledge graphs enable the integration 
of knowledge from disparate sources and effectively uti-
lize this knowledge for conceptualization and problem-
solving in specific domains.

While general-purpose and open-world knowledge 
repositories have been widely adopted for handling 
a variety of cross-domain tasks, the construction of 

knowledge bases focusing on specific domain issues is 
particularly crucial. This is because such domain-specific 
knowledge graphs not only provide data directly relevant 
to the domain’s problems but also encompass semanti-
cally interrelated applications, which are essential for a 
deeper understanding and resolution of specific issues 
within the domain [107]. Specifically, these knowledge 
graphs enrich and extend the underlying domain ontol-
ogy, enabling the resolution of specific problems from 
domain corpora. Although domain-specific knowledge 
graphs remain a relatively novel and underexplored area, 
lacking a unified and comprehensive definition [108], 
some studies have begun to regard domain-specific 
knowledge graphs as a particular type of knowledge 
repository representing specific and complex domains 
[11, 109, 110]. Jain et al. [111] proposed a report indicat-
ing that domain-specific knowledge bases result from the 
process of enriching the underlying domain ontology.

In efforts to provide an inclusive definition for domain-
specific knowledge graphs, Abu-Salih et  al. [112] pro-
posed a comprehensive definition outlining three core 
aspects. (1) Formal Conceptualization: This refers to 
the logical design of the knowledge graph, which is 
depicted through a specific and predefined domain 
ontology aimed at capturing the generalization (higher-
level) meaning of the domain of interest or the content 
of specific subdomains. (2) Thematic Domain: Ensur-
ing that the knowledge graph for a specific domain is 
constructed around specific thematic knowledge, firmly 
situated within the context of that particular thematic 
knowledge. (3) Semantically Interrelated Entities and 
Relations: Emphasizing the physical design of domain-
specific knowledge graphs, which are presented in the 
form of a labeled graph where the semantics of the data 
are enriched through specific conceptual representa-
tions of entities and the relations between them. This 
comprehensive definition not only provides a profound 
understanding of domain-specific knowledge graphs but 
also underscores their significant potential for informa-
tion integration and knowledge discovery across various 
domains.

In this chapter, we will specifically delve into the 
achievements of knowledge graphs in the field of audit-
ing, primarily focusing on the following aspects: the spe-
cific applications of knowledge graphs in the auditing 
domain, how to leverage knowledge graphs to enhance 
the efficiency of collecting and analyzing audit evidence, 
and the role of knowledge graphs in detecting audit risks 
and abnormal behaviors.

Specific applications of knowledge graphs in auditing
The task of auditing involves identifying risk points 
from complex structured and unstructured data and 
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reporting significant errors. Therefore, the application 
of big data in the auditing domain is of great signifi-
cance for achieving audit objectives [113]. Betti et  al. 
[114] discussed the evolution of internal audit models 
in the context of digitization and intelligence, laying 
the foundation for integrating knowledge graphs and 
deep learning in audits. In recent years, the advent of 
big data has led to a shift in the media of audit targets, 
with the focus of audits shifting towards electronic 
data, such as financial data and other business data in 
various well-structured databases [115]. Lv et al. [116] 
pointed out that unstructured data from external audit 
network resources can be extracted using web crawler 
technologies like Nutch [117] and Heritrix [118], then 
transformed and stored in a structured manner in audit 
cloud platforms. In terms of data analysis, “SAMPLE = 
Total” data analysis models, software, and model-based 
streaming analysis methods have been used to enhance 
the accuracy of analysis and effectively improve audit 
efficiency [119]. Despite the widespread adoption and 
application of technologies such as data mining and 
data analysis in the auditing domain, the impact of 
the big data era on auditing remains insufficient [120]. 
Therefore, in the field of auditing, the application of 
knowledge graphs is rapidly becoming an indispensable 
part, fundamentally changing traditional methods by 
analyzing large and complex datasets to discover hid-
den relations and insights. This helps auditors identify 
potential risks and anomalies.

The general process of using a knowledge graph to 
accurately represent intelligent audit issues is as follows:

• Knowledge graph modeling: Firstly, it is necessary 
to construct an appropriate knowledge graph model 
based on the domain expertise of intelligent auditing. 
This model should include entities, attributes, and 
relationships related to auditing. For example, enti-
ties such as “enterprise,” “financial statements,” “audi-
tor,” attributes such as “enterprise registration time,” 
“period of financial statements,” and relationships 
such as “enterprise owns financial statements,” “audi-
tor audits financial statements” can be defined.

• Knowledge extraction and import: Knowledge 
related to intelligent auditing in the form of auditing 
reports, financial documents, regulatory files, and 
other sources is extracted and transformed into the 
format of a knowledge graph. This can be achieved 
through techniques such as natural language process-
ing and information extraction. For example, infor-
mation such as auditing conclusions and financial 
indicators from auditing reports can be extracted and 
mapped to entities, attributes, and relationships in 
the knowledge graph.

• Knowledge inference and querying: Inference and 
querying operations are performed using the rela-
tionships and rules in the knowledge graph to answer 
specific intelligent audit questions. Graph databases 
and query languages like SPARQL can be used for 
implementation. For example, it is possible to query 
whether the financial statements of a particular 
enterprise comply with relevant regulations or find 
audit cases related to a specific auditor.

However, literature on knowledge graph analysis 
regarding the current state of research in internal audit-
ing, big data auditing, intelligent auditing, performance 
auditing, and other auditing fields is scarce. Practical 
research utilizing knowledge graph technology for off-
site audits and designing intelligent expert models for 
industry auditing is even rarer. By illustrating the practi-
cal applications of knowledge graphs in auditing work, we 
delve deeper into the contribution of knowledge graphs 
to improving audit quality and efficiency. The specific 
applications of knowledge graphs in the auditing domain 
include two aspects: auditing and information system 
applications, and network threat analysis and detection.

• Audit and information systems applications: These 
applications aim to utilize semantic networks and 
graph technologies to better integrate, interpret, and 
apply data in the context of auditing and financial 
analysis.

• Network threat analysis and detection: These appli-
cations focus on identifying and analyzing network 
security threats through systematic audit record 
examination. Techniques such as kernel audit record 
analysis and recommendation-guided threat analysis 
are employed. These efforts emphasize the develop-
ment of methods for hunting network threats and 
strengthening security measures.

In the field of audit and information systems applica-
tions, Liu et  al. [89] proposed a preliminary innovative 
approach to constructing an enterprise-level, knowledge 
graph-based information audit platform. The conceptual 
model is depicted in Fig.  3. Specifically, this platform 
gathers information from diverse data sources, includ-
ing structured and semi-structured enterprise data from 
audit databases and commercial databases, as well as 
unstructured general information from sources such 
as encyclopedias. During the data collection and stand-
ardization phase, the platform employs a standardized 
terminology dictionary to normalize the data and trans-
fers it to relational databases and object storage ser-
vices. Subsequently, the construction of the knowledge 
graph encompasses knowledge extraction, storage, and 
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fusion. Ultimately, leveraging the developed knowledge 
graph, this platform facilitates data-driven decision-
making and efficient data analysis. It is important to note 
that this depiction represents a conceptual model, and 
an actual company information auditing platform may 
exhibit greater complexity. This integration significantly 
enhances the capability for data processing, analysis, 
and decision-making by leveraging various data sources 
to construct comprehensive knowledge graphs, thereby 
improving the efficiency and effectiveness of the audit 
process [89]. It underscores the transformative potential 
of knowledge graphs in auditing, providing a cutting-
edge solution to the inherent complexity in audit data 
management and analysis. Additionally, the research 
by Zhu et  al. [5] elaborately discussed the multifaceted 
applications of knowledge graphs in Economic Respon-
sibility Auditing (ERA), emphasizing their utility in trend 
identification, hotspot identification in ERA data, as well 
as elucidating key themes, patterns, and their evolution 
over time. This approach not only deepens audit analysis 
by addressing emerging issues and predicting the future 
development of electronic reverse auctions but also uti-
lizes a comprehensive analysis of literature on electronic 
reverse auctions from 1986 to 2022. Chen et al. [8] dem-
onstrated an innovative approach that combines knowl-
edge graphs with deep learning technologies to enhance 
the audit process, mapping structured and unstructured 
data to uncover hidden relations and insights. This signif-
icantly improves internal audit efficiency, highlighting the 
potential of knowledge graphs in transforming traditional 
audit practices. Dai et  al. [9] introduced an innovative 
method for conducting audit queries through an intel-
ligent question-answering system based on knowledge 

graphs and semantic similarity, emphasizing the inte-
gration of knowledge graphs to effectively handle and 
respond to complex audit-related queries. Their research 
underscores the transformative potential of combining 
knowledge graphs with AI technologies in auditing, pro-
viding insights for practical applications and improving 
audit efficiency.

In the realm of network threat analysis and detection, 
Zeng et  al. [1] utilized system audit records and data 
source technologies, along with graph neural networks 
and recommendation systems, to identify and ana-
lyze network threats. This approach not only enhances 
threat detection accuracy but also reduces reliance on 
expert knowledge, showcasing the potential of knowl-
edge graphs in automating and enhancing audit intel-
ligence. Similarly, Wu et  al. [3] developed a method for 
detecting financial fraud risks using an audit information 
knowledge graph, particularly for companies listed on 
the Growth Enterprise Market in China, as illustrated in 
Fig. 4. When detecting fraudulent companies, the work-
flow of utilizing a knowledge graph is as follows: firstly, 
they collect and preprocess audit opinion data, includ-
ing information about companies, audit firms, auditors, 
and so on. Next, they perform information extraction 
and data analysis to gain insights into the financial con-
dition of companies and audit opinions. Subsequently, 
they construct a knowledge graph that describes the 
associations between companies, audit firms, and audi-
tors. With the knowledge graph in place, they proceed 
with model training and feature mining to enhance the 
ability to detect fraudulent behavior. Finally, they apply 
the trained model to a test set to validate its performance 
on new data. This workflow leverages the structure and 

Fig. 3 The conceptual model of the knowledge graph-based enterprise information audit platform
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relationships within the knowledge graph to improve 
the detection of potential fraudulent companies. This 
method integrates audit information into structured 
knowledge graphs for advanced analysis and inference, 
providing insights into identifying potential financial 
fraud. It offers a new tool for auditors and financial ana-
lysts to enhance risk analysis by leveraging intercon-
nected data in knowledge graphs, thereby improving 
the accuracy and efficiency of fraud detection processes. 
Yang et al. [6] proposed a flexible approach to track net-
work threats through kernel audit record analysis using 
knowledge graphs. This method organizes audit data 
into structured formats for detecting complex threat pat-
terns and behaviors, thereby enhancing investigation and 
understanding of security events. This approach helps 
identify abnormal activities and potential security vul-
nerabilities, demonstrating the application of knowledge 
graphs in improving audit processes in the field of net-
work security. A notable example of the application of 
knowledge graphs in the auditing domain is their use in 
financial audits of power grid enterprises. In addition, in 
the financial audit of power grid enterprises, the integra-
tion of cloud-edge data into a knowledge graph can offer 
a more comprehensive perspective, aiding auditors in 
evaluating the financial condition and operational perfor-
mance of power grid enterprises.

Methodology and practices
After exploring the specific applications of knowledge 
graphs in the auditing domain, it is evident that these 
advanced data structures provide profound improve-
ments to traditional auditing methods. Knowledge 

graphs further revolutionize the auditing process by sig-
nificantly enhancing the efficiency of evidence collection 
and analysis. From identifying potential risks and anoma-
lies through knowledge graphs to leveraging these sys-
tems for more detailed audit evidence tasks, a promising 
path is paved for auditing. By optimizing data integration, 
analysis, and insight generation, knowledge graphs offer 
an innovative approach that not only simplifies evidence 
collection but also enhances the analytical processes that 
support effective audit practices. This advancement high-
lights a broader trend of data-driven decision-making in 
auditing, where knowledge graphs act as catalysts and 
pathways to more complex and efficient auditing meth-
ods. Liu et al. [89], through collecting data from various 
databases and external internet resources, constructed, 
updated, and expanded knowledge graphs using compre-
hensive data. These graphs enhance data accessibility and 
support data-driven decision-making, providing flexible 
and adaptive tools for sustainable auditing. Addition-
ally, Zhu et  al. [5] utilized knowledge graph analysis to 
improve the efficiency of collecting and analyzing audit 
evidence in Economic Responsibility Auditing (ERA). 
Through CiteSpace analysis of ERA research, the study 
mapped the evolution of ERA themes, identified research 
hotspots, and elucidated trends. Chen et al. [8] proposed 
a method to enhance the efficiency of evidence collection 
and analysis in power grid enterprise audits using knowl-
edge graphs.

In the realm of network threat analysis and detection, 
Zeng et  al. [1] transformed system audit records into 
source graphs, which, in conjunction with system entities, 
form a knowledge graph. Wu et al. [3] outlined a method 

Fig. 4 The main workflow of using knowledge graphs to detect fraud corporations
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that utilizes a knowledge graph constructed based on 
audit information to enhance the efficiency and accu-
racy of detecting financial fraud. They focus on mining 
characteristic paths in the knowledge graph to identify 
potential fraudulent companies by analyzing abnormal 
relations between potential fraudulent companies and 
known fraudulent entities. This approach enhances the 
interpretability of audit data, allowing for a more com-
prehensive analysis of audit evidence and potential fraud-
ulent activities, thereby aiding auditors and regulatory 
agencies in more effectively monitoring and identifying 
fraud risks. Yang et al. [6] discussed how to use a knowl-
edge graph constructed based on kernel audit logs to 
improve the efficiency of network threat hunting. It sim-
plifies the process by integrating threat intelligence and 
expert knowledge into the graph. This method enables 
security analysts to trim searches and quickly summarize 
large volumes of formatted data for anomaly detection, 
thereby aiding in identifying unknown threats. Dai et al. 
[9] constructed a knowledge graph from audit-related 
documents, allowing the system to better understand 
the context and semantics of user queries. They propose 
using this graph to classify issues, identify intentions, and 
match queries with relevant entities or information. This 
approach enables more accurate and timely responses to 
audit queries, significantly improving the efficiency of 
handling audit-related tasks. The overview of knowledge 
graph approaches in Audit domain is shown in Table 2. 
By significantly enhancing the efficiency of audit evidence 
collection and analysis, knowledge graphs have further 
revolutionized the audit process. From identifying poten-
tial risks and anomalies through knowledge graphs to 
leveraging these systems for more detailed audit evidence 
tasks, they provide a promising path for auditing. By 
optimizing data integration, analysis, and insight genera-
tion, knowledge graphs offer an innovative approach that 

not only simplifies evidence collection but also enhances 
the analytical processes that support effective audit prac-
tices. This advancement highlights a broader trend of 
data-driven decision-making in auditing, where knowl-
edge graphs act as catalysts and pathways to more com-
plex and efficient audit methods. Various research and 
practical cases demonstrate that by integrating and ana-
lyzing large amounts of data, knowledge graphs not only 
enhance data accessibility and interpretability but also 
improve the efficiency of risk identification and decision 
support in the audit process. Therefore, the application 
of knowledge graphs in the auditing domain showcases 
their significant potential in enhancing audit quality and 
efficiency, bringing about revolutionary changes in audit 
practices.

Intelligent exploration and response
In the identification of audit risks and abnormal behav-
iors, knowledge graphs play a pivotal role in integrating 
and analyzing complex cloud-edge data and relation-
ships. Efficient internal auditing enables enterprises to 
better assess and improve themselves, enhance their 
risk management capabilities, and mitigate audit risks 
[121, 122]. Hou et al. [86] proposed an intelligent finan-
cial accounting and financial risk monitoring and early 
warning model based on knowledge graph and deep 
learning technologies, aiming to address the inefficiency, 
time consumption, and low level of intelligence in exist-
ing computerized financial data prediction systems. 
Additionally, Zehra et  al. [123] explored the construc-
tion of domain knowledge graphs and their application 
in financial auditing, elucidating the practical application 
of knowledge graphs in the auditing process. Therefore, 
knowledge graphs play an increasingly important role in 
identifying audit risks, as they help auditors effectively 
identify potential audit risks and abnormal behaviors 

Table 2 Overview of knowledge graph approaches in audit domain

Ref. Sub-domain Knowlegde graph usage Knowlegde graph resource(s)

Liu et al. [89] Audit Enterprise informationized audit platform 1)Existing business systems

2)Audit systems

3)Internet data sources containing general audit knowledge

Zhu et al. [5] Audit Explore and predict the Chinese economy 
responsibility audit

1)The articles on “ERA” from 1986 to 2022

Chen et al. [8] Audit Financial audit of power grid enterprises 1)Unstructured audit rules

2)Structured financial statements

Dai et al. [9] Audit Intelligent audit question answering system 1)1,628 audit-related law and institution documents

Zeng et al. [1] Threat detection An automated detection system 1)System audit records

Wu et al. [3] Threat detection Financial fraud risk analysis 1)Audit opinion reports

2)CSMAR Database

Yang et al. [6] Threat detection Cyber threat hunting 1)Kernel audit records
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by structuring and analyzing large amounts of data. 
The application of knowledge graphs can significantly 
improve audit efficiency and quality. Auditors can use 
knowledge graphs to monitor changes in key indicators 
and transaction activities, identify new risks and abnor-
mal behaviors in real-time, and thus achieve more effec-
tive risk management.

In auditing, abnormal behavior refers to actions that 
significantly deviate from normal business or accounting 
processes, which may indicate errors or fraud. Abnormal 
behavior can be unintentional errors, such as calcula-
tion mistakes or data input errors, or intentional fraudu-
lent activities, such as falsifying transactions, concealing 
liabilities, or overstating income. Huang et al. [124] pro-
posed CoDetect for detecting financial fraud, aiming to 
utilize both network and feature information simultane-
ously. Hilal et al. [125] explored the concept of anomalies 
in the context of financial fraud detection and reviewed 
the effectiveness of various anomaly detection techniques 
in identifying such fraud. Bakumenko et  al. [126] intro-
duced the application of machine learning techniques in 
identifying anomalies in general ledger data, which devi-
ate from standard financial transaction patterns. These 
anomalies may signify errors or potential fraudulent 
activities. The role of knowledge graphs in detecting audit 
anomalies mainly lies in their capability to integrate and 
analyze vast amounts of financial data and their interre-
lationships to identify unusual patterns or behaviors. This 
approach enhances the efficiency and quality of auditing, 
enabling auditors to better understand complex financial 
data and transaction contexts, thereby more effectively 
identifying and responding to audit anomalies.

In summary, the role of knowledge graphs in iden-
tifying audit risks and anomalies lies in their ability to 
integrate and analyze complex financial data and their 
relations, thus identifying unusual patterns or behaviors 
that point to potential risks. Through entity relations, 
auditors can swiftly and accurately pinpoint areas of con-
cern, conducting in-depth analyses to uncover the under-
lying reasons for risks. This enhances audit efficiency and 
quality, enabling auditors to better understand financial 
data and transaction contexts, and effectively identify and 
respond to abnormal behaviors.

The application of knowledge graphs in auditing, infor-
mation system applications, and network threat analy-
sis and detection holds vast potential. However, it also 
faces certain limitations. These limitations encompass 
challenges related to data quality and completeness, 
effective representation and integration of diverse knowl-
edge, scalability and performance issues, complexities 
in knowledge acquisition and maintenance, challenges 
in interpretability and explainability, as well as concerns 
regarding privacy and security. Nevertheless, through 

continuous research and innovation, these limitations 
can be gradually overcome. Progress in improving data 
quality and completeness, developing more effective 
knowledge representation and integration techniques, 
enhancing system scalability and performance, automat-
ing knowledge acquisition and maintenance, bolstering 
interpretability and explainability, as well as ensuring pri-
vacy and security, will contribute to greater success in the 
application of knowledge graphs in these domains.

Challenges in adopting knowledge graphs 
for audit
We will explore the challenges of integrating knowledge 
graphs with auditing, including issues with data quality, 
scalability of knowledge graphs, and the integration of 
domain expertise and technological implementation in 
intelligent auditing.

Data quality concerns
The introduction of knowledge graph technology has 
brought unprecedented efficiency and convenience to 
the audit industry, significantly driving innovation and 
optimization in audit work [3]. The application of edge 
computing makes the audit process faster and more flex-
ible, as it allows data to be processed close to where it is 
generated, reducing transmission latency and bandwidth 
requirements [14, 14, 127]. However, the issue of data 
quality is a major barrier to maximizing its effectiveness 
[128, 129]. The accuracy, consistency, timeliness, com-
pleteness, trustworthiness, and availability of data have 
a decisive impact on the reliability and effectiveness of 
audit outcomes [130], Table 3 shows the sources of these 
evaluation indicators. Each evaluation indicators for 
knowledge graph quality can provide objective standards 
for the data quality of knowledge graphs. In addition, 
edge computing can improve the real-time monitoring 
of data quality by processing data in real time near the 
data source, ensuring the real-time and accuracy of the 
data during the audit process [127]. It is noteworthy that 
these standards influence and interrelate with each other. 
Figure 5 offers insights into the correlations among these 
metrics and their roles in the workflow, thereby assist-
ing in controlling data quality in the construction and 
maintenance of knowledge graphs to meet the specific 
requirements of the audit domain [130].

In the audit process, the reliance on accurate and com-
plete data is self-evident. The construction and applica-
tion of knowledge graphs are directly impacted by errors, 
omissions, or incompleteness in the original data, which 
can significantly compromise the quality of the knowl-
edge graph and the accuracy of audit decisions. Initially, 
during the creation process, knowledge graphs can be 
optimized through these evaluation indicators at the 
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stages of dataset selection, knowledge extraction, and 
knowledge integration. Issa et  al. [128] focused on pro-
viding a systematic literature review to assess the com-
pleteness of knowledge graphs and collected existing 
methods from the literature for qualitative and quanti-
tative analysis. By adopting comprehensive data qual-
ity management strategies and advanced knowledge 
extraction techniques, data quality can be significantly 
enhanced, thereby offering solid support for audit work. 
Once a knowledge graph has been created, its data qual-
ity can still be improved through evaluation indicators 
with updates and iterations. Identifying incorrect enti-
ties, relations, and attributes in the knowledge graph can 
resolve erroneous information, thus enhancing accuracy. 
Research by Xue et al. [145] found that low-quality data 
might contain inaccurate or outdated entries and not 
cover sufficient facts, limiting their credibility and fur-
ther utility. Inaccurate financial data input or missing 
transaction information can lead to errors in audit out-
comes. In addition, knowledge graph may also encounter 
the problem of missing data, and enhancing the missing 
information can improve the data quality of knowledge 
graph. Knowledge graph completion can be used to solve 
the problem of missing data. Knowledge graph comple-
tion can be divided into link prediction and attribute 

completion. Link prediction [146] can identify implicit 
relationships between entities. Link prediction predicts 
the missing relationship by determining whether there is 
an edge between two entities. It can deal with large-scale 
graph data, and it is suitable for short and medium term 
forecast, and the prediction effect of approximate expo-
nential growth is good. However, it is only suitable for 
static networks, not for dynamic networks. At the same 
time, it is difficult to deal with complex graph structure. 
Cai et al. [147] proposes a linear graph neural network to 
realize link prediction and solve the problem of missing 
data. Trouillon et al. [62] enables link prediction through 
complex embedding to fill in the missing data. Attrib-
ute completion identifies the missing attribute values of 
the entity. Attribute completion can predict the missing 
attribute value based on the information of the existing 
attribute. It can solve the problems of low historical data 
and low sequence integrity, and is suitable for short and 
medium term forecasting. And it can generate regular 
sequences from irregular original data. However, attrib-
ute completion is also only applicable to predictions 
that approximate exponential growth and is not suitable 
for long-term predictions. Chen et  al. [148] designed a 
novel GNN to perform attribute completion on graphs 
with missing attributes through distribution matching. 

Table 3 The sources of these evaluation indicators

Evaluation indicators Definition Reference

Accuracy The correctness of information in Knowlegde Graph Beyond accuracy: what data quality means to data consumers 
[131];

Swiqa-a semantic web information quality assessment frame-
work [132];

A framework for evaluating semantic metadata [133].

Consistency The degree of inconsistency of information in Knowlegde 
Graph

Weaving the pedantic web [134];

User-driven quality evaluation of DBpedia [135];

Probabilistic error detecting in numerical linked data [136].

Completeness The extent of information omission in Knowlegde Graph Sieve: linked data quality assessment and fusion [137];

Non-parametric class completeness estimators for collabora-
tive knowledge graphs-the case of Wikidata [138].

Timeliness The update rate of information in Knowlegde Graph Quality assessment for linked data: a survey [139];

Quality-driven query answering for integrated information 
systems [140];

Linked data quality of DBpedia, Freebase, Opencyc, Wikidata, 
and Yago [141].

Availability The ease of use of knowledge in Knowlegde Graph Quality assessment for linked data: a survey [139];

Linked data quality of DBpedia, Freebase, Opencyc, Wikidata, 
and Yago [141];

Assessing linked data mappings using network measures [142].

Trustworthiness The reliability of the sources of information in Knowlegde 
Graph

Beyond accuracy: what data quality means to data consumers 
[131];

Quality, trust, and utility of scientific data on the web: 
towards a joint model [143];

Towards content trust of web resources [144].
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Jin et al. [149] completes both attribute completion and 
learning embedding by generating adversarial networks. 
Handling information from multiple data sources poses 
a significant challenge due to the lack of uniformity in 
data formats and standards, increasing the complexity of 
data processing and potentially leading to misinforma-
tion and incorrect audit assessments. Timely updates of 
data and the reliability of its sources are equally impor-
tant in auditing, as outdated or unclear data sources can 
significantly weaken the effectiveness of audit decisions. 
Optimizing knowledge graphs through six evaluation 
indicators in their updates and iterations can greatly 
enhance their quality. Therefore, with the widespread 
application of knowledge graph technology in the audit 
field, addressing data quality issues becomes particularly 
important. This not only can improve the accuracy and 
efficiency of auditing but also can enhance the credibility 
and effectiveness of audit outcomes, thereby providing a 
strong data guarantee for the stable operation and con-
tinuous development of enterprises.

Scalability issues in knowledge graphs
The scalability of knowledge graphs is a crucial feature 
in their design and application, enabling them to con-
tinuously absorb new information, entities, concepts, 

and their relations over time, thus significantly expand-
ing their knowledge base and enhancing the richness 
and accuracy of the information they provide [150]. By 
processing data at the edge of the network, edge com-
puting can absorb and analyze real-time data from vari-
ous devices and sensors in real time, further enhancing 
the real-time updating ability and response speed of 
the knowledge graph. This scalability is evident in sev-
eral dimensions: from the structural flexibility that 
allows for easy integration of new data without affect-
ing existing structures, ensuring adaptability to evolv-
ing information needs and knowledge accumulation, to 
the semantic depth that enables the expression of com-
plex concepts and relations, enhancing data interpret-
ability and application intelligence. Knowledge graphs 
were designed from the outset to integrate with external 
data sources seamlessly, utilizing standardized formats 
and interfaces to amalgamate diverse data types, includ-
ing open datasets, professional databases, and internet 
data, thereby enriching their content continuously. The 
integration of edge computing, especially in iot environ-
ments, enables faster data processing and analysis, ena-
bling the knowledge graph to more effectively adapt and 
reflect the dynamic changes in the real world [127, 151]. 
Advances in AI, machine learning, and NLP have evolved 

Fig. 5 The role of data quality evaluation indicators in workflow
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the construction, updating, and querying processes of 
knowledge graphs, enabling more efficient handling of 
large-scale data and supporting complex analyses and 
applications. As knowledge graphs grow and refine, their 
impact in various applications-from search engine opti-
mization to intelligent question answering [152, 153], 
recommendation systems [154], and risk management 
[155]-continues to expand, making them a powerful tool 
for linking different knowledge domains and support-
ing intelligent services and decision-making. In addition, 
the implementation of edge computing can improve the 
efficiency and accuracy of knowledge graphs when pro-
cessing large amounts of data, especially in scenarios 
that require rapid decision making and automation. The 
ongoing development of technology and its applications 
promises to deepen the construction and utilization of 
knowledge graphs, contributing significantly to the infor-
matization and intelligentization of human society.

In the audit domain, the application of knowledge 
graphs has introduced innovative pathways for data 
organization and analysis, delivering deep insights [156]. 
The rapid growth and diversification of audit data, how-
ever, challenge the scalability of knowledge graphs. This 
challenge is acutely felt across several dimensions: The 
sheer volume of data, encompassing financial informa-
tion, transaction records, and audit logs, necessitates the 
continual integration of new data sources into knowledge 
graphs, raising the bar for their architecture and storage 
capacity to keep pace with data expansion. Effectively 
scaling knowledge graphs to accommodate this growth 
is paramount. Furthermore, the diversity and complexity 
of audit data demand that knowledge graphs can amal-
gamate a variety of data types, including structured, 
semi-structured, and unstructured data. This integra-
tion must not only ensure data accuracy and consistency 
but also maintain scalability, striking a balance between 
accommodating the wide array of audit-related data and 
preserving the integrity and utility of the knowledge 
graph. The need for immediacy in audit activities com-
pels knowledge graphs to support real-time updates and 
data processing, facilitating rapid response and decision-
making. This necessitates that knowledge graphs be 
both scalable and nimble, capable of swiftly incorporat-
ing and processing new information as it becomes avail-
able. Despite the support modern technology provides 
for expanding knowledge graphs, practical challenges 
due to technological and resource limitations remain. 
To effectively implement scalable knowledge graphs that 
can manage the growing and diversifying audit data, 
advanced technologies, alongside significant resources 
for development, maintenance, and expansion, are 
required. Addressing these challenges is crucial for the 
effective use of knowledge graphs in auditing. Solutions 

may involve advanced data integration techniques, more 
flexible knowledge graph architectures, and the applica-
tion of cutting-edge technologies such as AI and machine 
learning for real-time data processing and analysis. Over-
coming these hurdles will further cement the role of 
knowledge graphs as a vital resource in the audit indus-
try, equipped to navigate the complexities of modern 
data-driven auditing environments.

To address these challenges and enhance the scalability 
of knowledge graphs, several strategies can be adopted: 
employing distributed storage and computing technolo-
gies enables knowledge graphs to store and process data 
across multiple servers, significantly improving their scal-
ability and processing efficiency. Xu et al. [157] expanded 
knowledge graph methodologies to systematically and 
comprehensively review distributed ledger technology 
on the Internet of Things, achieving high-performance, 
sustainable, and highly scalable IoT systems. Develop-
ing efficient data updating and maintenance mechanisms 
ensures that knowledge graphs can promptly reflect 
data changes and support real-time processing. Jia et al. 
[158] proposed an adaptive incremental update embed-
ding framework for dynamic knowledge graphs, dynami-
cally updating and maintaining knowledge graphs based 
on a performance review mechanism. Utilizing cloud 
computing resources to dynamically adjust resource 
allocation according to demand supports the dynamic 
expansion of knowledge graphs. Mitropoulou et  al. [98] 
combined knowledge graphs with cloud computing, 
using knowledge graphs to represent computing and 
storage resources and illustrating their relations with the 
applications that utilize them, thus achieving anomaly 
detection in cloud computing. By implementing these 
approaches, the scalability of knowledge graphs can be 
enhanced, thereby addressing the challenges posed by the 
rapid growth and diversification of audit data in the audit 
domain.

Data privacy and security issues
Data privacy and security are two paramount concepts 
in the field of information technology, pivotal to the 
protection, access control, legitimate use, and privacy 
rights of users. Data privacy primarily focuses on the 
lawful use and processing of personal or sensitive data, 
with its essence being the protection of users’ personal 
identifying information, such as names, phone numbers, 
and email addresses, to ensure these are not misused 
or unlawfully processed. On the other hand, the core of 
data security lies in safeguarding data from unauthor-
ized access, disclosure, alteration, or destruction, aiming 
to preserve the integrity, confidentiality, and availabil-
ity of data. Edge computing enhances the confidential-
ity and security of data by processing and analyzing it 
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close to where it is generated, as it reduces the need for 
data to travel across the network, thereby reducing the 
risk of data breach or interception [99, 159]. As knowl-
edge graph technology gains deeper integration into the 
audit domain, issues of data privacy and security become 
increasingly pronounced. The audit process involves han-
dling vast amounts of sensitive financial data and per-
sonal information, where safeguarding this information is 
crucial for maintaining client trust and compliance with 
regulatory requirements. The construction and applica-
tion phases of knowledge graphs pose risks of financial 
details, personal, and business-sensitive information 
leakage, potentially leading to legal liabilities and repu-
tational damage. The open and interconnected nature of 
knowledge graphs further exposes data to external secu-
rity threats, such as data tampering and unauthorized 
access. Edge computing enables stricter security meas-
ures, such as encryption and access control, to be imple-
mented in a localized environment, providing stronger 
data protection [2]. In the face of stringent legal regula-
tions like the GDPR [12], ensuring compliance in data 
processing activities while utilizing knowledge graph 
technology presents a significant challenge. Moreover, 
existing knowledge graph construction and querying 
technologies often lack considerations for privacy pro-
tection, devoid of effective privacy and security mecha-
nisms. The introduction of edge computing can provide 
an additional layer of security to the knowledge graph 
system, ensuring the safe and compliant handling of 
sensitive data through real-time privacy protection and 
security monitoring at the data source point. Address-
ing these challenges requires a comprehensive approach, 
integrating advanced privacy-preserving techniques and 
robust security measures into knowledge graph systems 
to ensure the secure and compliant handling of sensitive 
data.

To protect data privacy and security, implementing 
data de-identification and anonymization measures 
is crucial. Processing sensitive information before its 
integration into knowledge graphs reduces the risk of 
privacy breaches. Enforcing strict data access control to 
ensure that only authorized users can access sensitive 
data, using Role-Based Access Control [160] strategies 
to manage permissions, is essential. Long et  al. [161] 
constructed a financial knowledge graph by de-identify-
ing stock transaction records and public market infor-
mation. They then used the financial knowledge graph 
to explore correlations between stocks and market 
trends, ultimately forecasting stock price movements. 
Zhang et  al. [162] built a large-scale knowledge graph 
for mental and physical disorders detection through 
data de-identification, initially encrypting personal 

information with encryption isolation technology, then 
using content replacement for data de-identification to 
protect data privacy and security. Xia et  al. [163] cre-
ated a knowledge graph by de-identifying MOOC static 
registration records and log information to safeguard 
user privacy and security. By analyzing the knowledge 
graph, they implemented interest dissemination on 
course videos to predict user preferences. Encrypt-
ing data storage and transmission, utilizing advanced 
encryption technologies to prevent data from unau-
thorized access or tampering, is also vital. Throughout 
the entire process of constructing and applying knowl-
edge graphs, strict adherence to data protection regu-
lations and industry standards is mandatory to ensure 
the legality and compliance of data processing activi-
ties. Introducing privacy protection technologies, such 
as differential privacy [164] and homomorphic encryp-
tion [165], can further enhance the capability to protect 
privacy when handling sensitive information. Differ-
ential privacy [166] is a technique aimed at providing 
robust privacy protection by adding a certain amount 
of random noise to the data query results. Its core idea 
is to allow for useful statistical information to be pro-
vided from database queries without disclosing any 
sensitive information about individual records. Homo-
morphic encryption [167] allows for computations to 
be performed on encrypted data, yielding an encrypted 
result that, when decrypted, matches the result of the 
same operations performed on the unencrypted data. 
This means data can be processed and analyzed without 
exposing the original data’s content, thereby enhancing 
privacy and security in knowledge graph applications.

Facing the challenges of data privacy and security 
within the audit domain, adopting these effective pro-
tection measures and technologies not only mitigates 
risks of privacy breaches and data security but also 
ensures the compliance and security of audit activi-
ties. This provides a solid foundation of privacy protec-
tion and data security for the application of knowledge 
graph technology in the audit field. Such strategies 
enhance trust among stakeholders, maintain the integ-
rity of the audit process, and comply with stringent 
regulatory requirements. By integrating advanced pri-
vacy-preserving and security-enhancing technologies, 
organizations can navigate the complex landscape of 
data privacy and security in auditing, leveraging the full 
potential of knowledge graphs to derive insights while 
safeguarding sensitive information. This comprehensive 
approach to privacy and security is essential in today’s 
data-driven audit practices, enabling auditors to har-
ness the power of knowledge graphs effectively and 
responsibly.
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Future trends and opportunities
In this section, we will explore the future trends and 
opportunities of knowledge graph technology. Firstly, 
we will focus on the prospects of machine learning in 
the construction and analysis of knowledge graphs, dis-
cussing its potential applications in this field. Secondly, 
we will delve into the long-term potential of knowledge 
graphs in enhancing audit quality and efficiency, particu-
larly in the context of intelligent audit applications in the 
field of electrical engineering projects. Finally, we will 
discuss the opportunities of knowledge graph technology 
in cross-disciplinary applications, ranging from audit to 
financial reporting and risk management, showcasing its 
widespread utilization across various domains.

Prospects for machine learning in knowledge graphs 
construction and analysis
Machine learning demonstrates vast potential in con-
structing and analyzing knowledge graphs, spanning 
various aspects from automated data mining [168] to 
deep knowledge exploration [169] and intelligent deci-
sion support [170]. Technological advancements have 
enabled machine learning not only to enhance the effi-
ciency of constructing knowledge graphs but also to 
strengthen their analytical capabilities, bringing inno-
vative breakthroughs to different fields. The integration 
of edge computing, through the machine learning pro-
cessing at the data source point, can achieve faster data 
analysis and instant knowledge extraction, thus acceler-
ating the construction and update process of knowledge 
graph. In terms of automated construction and continu-
ous updates, machine learning automates the extraction 
of entities, attributes, and relations from texts and data 
sources, simplifying the manual data organization pro-
cess. This includes text analysis, entity recognition, and 
RE, significantly improving the efficiency of building and 
maintaining knowledge graphs. Machine learning is also 
applied in quality control and knowledge enhancement, 
using algorithms to assess data quality, identify inaccura-
cies, eliminate duplicates, and complete missing infor-
mation, thereby increasing the accuracy and richness 
of knowledge graphs. At the same time, edge comput-
ing can apply these machine learning algorithms at the 
point where the data is generated, further improving the 
real-time quality of data control and the dynamic updat-
ing of the knowledge graph [99]. Through knowledge 
graph completion technology, machine learning algo-
rithms can deeply analyze existing knowledge graphs and 
identify patterns and associations in them. In this way, 
machine learning helps fill in the gaps in the knowledge 
graph, adding new entities and relationships to make 
the knowledge graph more comprehensive and accurate. 

Martinez-Rodriguez et al. [171] utilized OpenIE to gen-
erate binary relations for constructing specific knowl-
edge graphs. They proposed to facilitate the extraction of 
named entities and individuals in knowledge graph and 
the completion of knowledge graph, and to mine more 
useful data information for the construction of knowl-
edge graph. Wu et al. [172] employed a BERT-BiLSTM-
CRF entity extraction model to extract data from safety 
incidents to build a safety incident knowledge graph, aim-
ing to prevent accidents and improve construction safety 
management. Han et al. [173] used a residual dense block 
convolutional neural network to mine entities in the 
Vietnamese corpus. By establishing a Vietnamese corpus 
knowledge graph from the mined information, they con-
ducted an in-depth analysis of Vietnamese grammar and 
morphology. With the addition of edge computing, these 
machine learning techniques can be processed more effi-
ciently in real time at the original location of the data, 
providing a more rapid and accurate updating mecha-
nism for the knowledge graph. These examples highlight 
how machine learning not only accelerates the creation 
and update of knowledge graphs but also enriches their 
utility and application across various domains, making 
it an indispensable tool for advanced data analysis and 
intelligent decision-making in the era of big data.

Deep analysis and knowledge discovery, especially with 
deep learning technologies, have made it possible to per-
form advanced analysis tasks on knowledge graphs, such 
as semantic search, powering recommendation systems, 
and predicting trends [174]. This deepens the under-
standing of complex relations between entities, enabling 
more accurate and personalized services. Ko et al. [175] 
built knowledge of design rules for additive manufactur-
ing based on machine learning and knowledge graphs. 
By analyzing and reasoning over the knowledge graph, 
they enhanced the automation and autonomous con-
struction and improvement of design rules for additive 
manufacturing, better exploring the impact of additive 
manufacturing on part quality. Lovera et  al. [176] con-
ducted sentiment analysis from Twitter data using deep 
learning classification and sentiment knowledge graphs. 
By predicting emotions in short texts, they analyzed 
and mined user profiles, aiding in decision-making and 
preference recommendations for users. Furthermore, 
machine learning has facilitated the integration and 
application of cross-domain knowledge, linking data 
and knowledge from different fields through knowledge 
graphs to support the formulation of complex problem-
solving strategies. This holds immense value for mul-
tidisciplinary research and complex decision support, 
illustrating the transformative impact of machine learn-
ing and deep learning in enhancing the functionality and 
applicability of knowledge graphs across various sectors. 
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Through such integration, knowledge graphs become 
not only a repository of interconnected data but also a 
dynamic tool for insight generation, pushing the bound-
aries of how information is analyzed and utilized in the 
digital age.

The advancements in machine learning and AI technol-
ogies herald the emergence of more innovative methods 
and models to optimize the construction and analysis of 
knowledge graphs. Graph neural networks show excel-
lent ability in processing graph structured data. Because 
graph data often contains complex relationships and con-
nections that traditional neural networks cannot handle 
directly, graph neural networks are specifically designed 
to handle graph data. Graph neural networks can capture 
the complex relationships between nodes directly and 
effectively on the graph structure. Graph neural network 
can analyze the hidden meaning of key nodes in knowl-
edge graph by aggregating the information of neighbor 
nodes. This enables graph neural networks to make pre-
dictions in node-level, edge-level, and graph-level tasks. 
Li et  al. [177] designed a novel graph neural network, 
which uses attention mechanism to embed knowledge 
graph learning, so as to mine hidden information of 
knowledge graph. Li et al. [178] performs representation 
learning of knowledge graph by simplifying heterogene-
ous graph neural network, and fully explores the poten-
tial connections between nodes in knowledge graph. 
Therefore, knowledge graph related technology based on 
graph neural network has become the future develop-
ment trend. The application of machine learning in the 
knowledge graph will further advance the technology 
towards more intelligent, automated and efficient, pro-
viding more powerful and flexible knowledge manage-
ment and decision support.

The potential of knowledge graphs in enhancing audit 
quality and efficiency
Knowledge graphs exhibit significant long-term potential 
in the audit domain, especially for the intelligent audit-
ing of power engineering projects, which are character-
ized by their high complexity, numerous stakeholders, 
and stringent compliance requirements. By processing 
and analyzing data at the location where it is generated, 
edge computing can speed up data integration and 
improve the efficiency and real-time performance of the 
audit process [179]. By integrating and analyzing diverse 
data types from multiple sources, such as project man-
agement tools, financial systems, and compliance data-
bases, knowledge graphs offer a comprehensive view of 
projects, enabling auditors to conduct thorough and 
nuanced audits. The technology facilitates the mapping 
and analysis of complex relations between various project 
entities, automates risk identification through machine 

learning algorithms, and supports real-time monitor-
ing and updates. This capability not only accelerates the 
detection of potential risks, fraud, or compliance issues 
but also enhances decision support, allowing for more 
informed recommendations. Furthermore, the applica-
tion of advanced analytics to knowledge graphs enables 
predictive insights, forecasting potential project delays, 
cost overruns, or compliance breaches before they occur, 
thereby allowing for preemptive risk mitigation meas-
ures. Edge computing further enhances this predictive 
power by analyzing data instantly at the project site, pro-
viding auditors with more timely insights to help them 
develop more effective risk management strategies. As 
knowledge graph technology continues to evolve, its 
sophisticated application in auditing power engineer-
ing projects promises deeper insights, heightened audit 
efficiency, and contributes to the successful manage-
ment and completion of complex projects, representing 
a transformative approach to elevating audit quality, effi-
ciency, and effectiveness.

In enhancing audit quality, knowledge graphs can 
integrate various data sources from power engineer-
ing projects, including but not limited to financial data, 
contract documents, progress reports, supply chain 
information, and compliance materials [180]. This 
comprehensive data integration provides auditors with 
a holistic view, enabling a more complete understand-
ing of project status, thereby improving the accuracy 
and depth of audits. Additionally, by analyzing rela-
tions within the knowledge graph, auditors can identify 
potential risk points, audit anomalies, and non-compli-
ant patterns. For instance, knowledge graphs can reveal 
potential reasons for project cost overruns or incon-
sistencies in contract execution. Knowledge graphs 
also enhance audit efficiency. Using machine learning 
algorithms in conjunction with knowledge graphs can 
automate risk assessment and rapidly identify high-risk 
areas. This automation not only significantly reduces 
the need for human resources but also shortens the 
audit cycle. Moreover, knowledge graph technology 
enables real-time monitoring of power engineering 
projects, providing timely risk alerts. Audit teams can 
adjust their audit focus and resource allocation based 
on real-time data, thereby increasing work efficiency. 
Meng et al. [181] proposed a BERT-based EPAT-BERT 
model to improve the quality and efficiency of auditing 
in the power engineering domain. By predicting words 
and entities in power-related texts through word-level 
and entity-level masked language models, it learns 
the rich morphology and semantics related to elec-
tricity. This model classifies audit texts in power engi-
neering projects to unearth anomalies and risk alerts 
within the audit texts. Li et al. [182] applied knowledge 
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graph algorithms to trace the data ownership systems 
in power engineering, efficiently and accurately aiding 
business personnel in identifying the data owners of 
unknown data fields. Once data owners are identified, 
they can quickly determine the source and responsibil-
ity from the origin, govern the data from its source, and 
control data quality, effectively reducing the costs asso-
ciated with data source management, data governance, 
and data operations.

Knowledge graphs have demonstrated long-term 
potential in enhancing audit quality and efficiency 
within the intelligent audit of power engineering pro-
jects. By comprehensively integrating project-related 
data, uncovering relations and patterns, automating 
risk assessments, and enabling real-time monitoring, 
knowledge graphs not only help audit teams under-
stand project situations more accurately and in-depth 
but also significantly improve the efficiency of audit 
work. As technology advances and its application deep-
ens, knowledge graphs are set to play an increasingly 
important role in the field of intelligent auditing, trans-
forming how audits are conducted and offering innova-
tive solutions to complex audit challenges.

Cross-domain applications
Knowledge graph technology has successfully expanded 
its application scope beyond the audit domain to key 
areas such as financial reporting [161, 183] and risk man-
agement [155], demonstrating its exceptional ability to 
handle complex data and enhance decision support. By 
aggregating multi-source data, this technology has con-
structed a unified and comprehensive information plat-
form for these fields, significantly aiding businesses and 
institutions in risk identification, compliance monitor-
ing, decision optimization, and improving operational 
efficiency. This evolution showcases the versatility and 
impact of knowledge graphs, making them an invaluable 
tool for navigating the complexities of modern business 
landscapes and fostering informed, strategic decision-
making across various sectors. Figure  6 illustrates the 
application of knowledge graphs in financial reporting 
and risk management.

In financial reporting, knowledge graphs integrate 
numerous internal and external data resources, such as 
financial information, market trends, regulatory stand-
ards, and historical records, enabling financial analysts 
to gain deeper insights into financial health and business 

Fig. 6 Application of knowledge graph in financial reporting and risk management
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performance [184]. Liang et al. [185] developed a graph 
network model to establish holistic connections between 
decentralized information, filtering through large, com-
plex datasets in financial reports to unearth key infor-
mation applicable to diverse decision-making scenarios. 
Knowledge graphs are utilized to analyze competitors’ 
financial performance and market movements, thereby 
precisely positioning market status and formulating strat-
egies. Given the complexity and verbosity of financial 
reporting information, manual information extraction 
could diminish the accuracy and timeliness of invest-
ment decisions. Zehra et  al. [123] proposed a financial 
knowledge graph through semantic modeling of annual 
financial reports, using the mined information from 
the financial knowledge graph for decision-making. 
Hou et  al. [86] combined relevant financial reports and 
financial risk characteristics to construct an intelligent 
financial accounting model based on knowledge graphs. 
They explored financial report risk features using various 
knowledge graph analysis techniques, integrating finan-
cial risk characteristics with traditional financial report-
ing cases to achieve financial report risk prediction and 
decision-making. Wen et al. [186] designed a knowledge 
graph that employs analysis techniques to mine rela-
tions between managers and related institutions through 
financial reports, analyzing, and predicting to prevent 
financial fraud events.

In the realm of risk management, knowledge graphs 
offer businesses a comprehensive risk profile, enabling 
the identification and assessment of a wide range of 
internal and external risk factors, including financial, 
operational, market, and compliance risks. By delving 
into these risk elements and their interrelationships, 
businesses can more effectively mitigate risks, imple-
ment risk management strategies, and respond swiftly 
in emergency situations. Wu et al. [3] utilized audit rela-
tions among companies, audit firms, and auditors to 
build an audit information knowledge graph, proposing 
a knowledge graph reasoning framework based on sub-
feature extraction methods capable of detecting poten-
tially fraudulent enterprises. Kosasih et al. [187] designed 
a knowledge graph for supply chain risk management, 
integrating graph neural networks and knowledge graph 
reasoning techniques to proactively identify hidden risks 
within the supply chain. Liu et  al. [188] constructed an 
accident knowledge graph using historical reports. Ini-
tially, entity information within the reports was mined 
using a Bi-LSTM-CRF model, followed by classification 
with random forests to establish the accident knowledge 
graph. Ultimately, the accident knowledge graph was 
used to uncover potential relations between hazards, fail-
ures, and accidents, assisting in the formulation of rail-
way risk prevention measures.

These cross-domain applications highlight the 
immense value of knowledge graphs in enabling enter-
prises to conduct financial reporting and risk manage-
ment more effectively. Through the comprehensive 
analysis and integration of various types of data, knowl-
edge graphs not only optimize decision quality and 
process efficiency but also provide strong support for 
businesses to meet challenges in complex and ever-
changing commercial environments. This demonstrates 
the transformative potential of knowledge graphs in 
enhancing the strategic capabilities of enterprises, 
underscoring their role as a crucial tool in navigating 
the intricacies of modern business practices.

Conclusion
In this paper, we conducted a meticulous investiga-
tion and analysis of the key technologies related to 
knowledge graphs. Subsequently, we delved into the 
applications of knowledge graphs in the field of intel-
ligent auditing and the challenges they face, proposing 
directions for future research. Through comprehen-
sive analysis of the use of knowledge graphs in intelli-
gent auditing processes, we highlighted their immense 
potential in enhancing audit efficiency, accuracy, and 
depth. Future research should focus on several aspects. 
Firstly, researchers should develop more efficient algo-
rithms and tools to increase the automation of knowl-
edge graph construction, reduce manual intervention, 
and optimize their performance in a cloud environ-
ment. Secondly, there is a need to explore more effective 
knowledge representation and reasoning mechanisms 
to enhance the application effectiveness and accuracy 
of knowledge graphs. Additionally, researching how to 
better integrate and utilize heterogeneous data from 
multiple sources, including data stored in the cloud, to 
enrich the content and scope of knowledge graphs is 
also an important direction for future research. Finally, 
considering the importance of data privacy and secu-
rity, addressing how to protect the privacy of individu-
als and businesses in intelligent auditing applications 
should be a key focus of future research.
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