
Yuan et al. Journal of Cloud Computing (2024) 13:116
https://doi.org/10.1186/s13677-024-00676-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Multiple time servers timed‑release
encryption based on Shamir secret sharing
for EHR cloud system
Ke Yuan1,2, Ziwei Cheng1, Keyan Chen1,3, Bozhen Wang1, Junyang Sun1, Sufang Zhou1* and Chunfu Jia1,3 

Abstract 

Electronic health record (EHR) cloud system, as a primary tool driving the informatization of medical data, have
positively impacted both doctors and patients by providing accurate and complete patient information. However,
ensuring the security of EHR cloud system remains a critical issue. Some patients require regular remote medical
services, and controlling access to medical data involving patient privacy during specific times is essential. Timed-
release encryption (TRE) technology enables the sender to preset a future time T at which the data can be decrypted
and accessed. It is a cryptographic primitive with time-dependent properties. Currently, mainstream TRE schemes
are based on non-interactive single time server methods. However, if the single time server is attacked or corrupted,
it is easy to directly threaten the security applications of TRE. Although some research schemes “distribute” the single
time server into multiple ones, they still cannot resist the single point of failure problem. To address this issue, we
propose a multiple time servers TRE scheme based on Shamir secret sharing and another variant derived from it. In
our proposed schemes, the data receiver does not need to interact with the time servers; instead, they only need
to obtain the time trapdoors that exceed or equal the preset threshold value for decryption, which ensures the iden-
tity privacy of the data sender and tolerates partial downtime or other failures of some time servers, significantly
improving TRE reliability. Security analysis indicates that our proposed schemes demonstrate data confidentiality, veri-
fiability, anti-advance decryption, and robust decryption with multiple time trapdoors, making them more practical.
Efficiency analysis indicates that although our schemes have slightly higher computational costs than most efficient
existing TRE schemes, such differences are insignificant from a practical application perspective.

Keywords  Timed-release encryption, Multiple time servers, Shamir secret sharing, Provable security, Electronic health
record

Introduction
With the advent of the information age, healthcare insti-
tutions are rapidly evolving towards informatization, giv-
ing rise to electronic health record (EHR) cloud system

[1]. EHR cloud system significantly enhances produc-
tivity in resource sharing, providing robust support
for healthcare professionals. Including comprehensive
patient information, EHR cloud system enables medical
teams to have a more holistic understanding of patients’
medical history, facilitating in-depth assessments and
faster diagnoses. By digitizing and centrally managing
patient medical information, healthcare personnel can
easily access necessary data to support decision-making
and the execution of medical plans [2, 3].

Cloud computing, a computing paradigm based on
the internet, plays a crucial role in healthcare data

*Correspondence:
Sufang Zhou
zsf@henu.edu.cn
1 School of Computer and Information Engineering, Henan University,
Kaifeng 475004, Henan, China
2 Henan Province Engineering Research Center of Spatial Information
Processing, Henan University, Kaifeng 475004, Henan, China
3 College of Cybersecurity, Nankai University, Tianjin 300350, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00676-y&domain=pdf

Page 2 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

management by providing secure and reliable solutions
for storing and processing large-scale medical data [4–6].
Cloud computing facilitates rapid access, sharing, and
analysis of medical data, offering comprehensive support
for healthcare decision-making. Additionally, the elas-
tic and automated features of cloud computing enable
healthcare institutions to adjust resources according to
needs, improving data management efficiency and foster-
ing innovation in medical research and patient care.

Despite the flexibility and efficiency brought by cloud
computing to healthcare data management, security
remains a critical concern. Particularly in the handling
of patient privacy data, cloud storage, and access services
may pose risks of data leakage, leading to the unauthor-
ized disclosure of sensitive patient information [5]. For
example, in the case of patients with chronic diseases
like diabetes, who regularly upload data through remote
monitoring devices, there is a potential for unauthorized
data access if this physiological data is stored on a EHR
cloud system. In such scenarios, a cryptographic tech-
nology that can control the decryption time becomes a
key technology to ensure patient privacy. Timed-release
encryption (TRE) allows users to preset decryption time,
and access is only permitted after the decryption time,
effectively preventing unauthorized privacy infringe-
ments. For instance, a medical cloud system could use
a multiple time servers scheme to encrypt the physi-
ological data of each patient and set a specific decryption
time. At the designated weekly decryption time, doctors
can decrypt and analyze the patient’s physiological data
for regular remote assessments. This periodic assessment
helps doctors better understand the patient’s health con-
dition. Such a security measure not only provides more
reliable privacy protection for patients but also ensures
the security of sensitive medical data on the EHR cloud
system.

The setting of specific decryption time is not just for
security; it is based on a series of reasonable consid-
erations. Firstly, it helps prevent patients from exces-
sive anxiety, as they know that doctors will only review
the data in the specific time, allowing them to focus on
daily life during this period and alleviate unnecessary
worries. Secondly, this method encourages patients to
actively participate in their health management, show-
casing better physiological data. Moreover, it avoids pre-
mature intervention in medical decisions, ensuring that
doctors make accurate medical decisions with sufficiently
stable data. Lastly, this security measure simultaneously
upholds patient privacy rights by limiting access to data,
reducing the risk of data misuse or improper use, and
providing more reliable privacy protection for patients.
This periodic assessment not only helps doctors bet-
ter understand the patient’s health condition but also

ensures the security of sensitive medical data on the EHR
cloud system while safeguarding patient privacy.

Therefore, TRE with specific decryption times is cru-
cial in medical practice, not only ensuring security but
also promoting the patient recovery process, becoming
an important and meaningful component of medical
data management. This paper aims to propose a multiple
time servers TRE scheme based on Shamir secret sharing
for EHR cloud system. The data receiver only needs to
obtain time trapdoors published by time servers exceed-
ing or equal to the threshold value. This ensures that the
decryption process can be completed even in the event
of time server failures or other faults, enhancing the sys-
tem’s fault tolerance and the reliability of data decryption.

Related work
TRE [7, 8] is a cryptographic primitive that can control
the decryption time. Its core idea is to introduce the
time factor into the general encryption scheme so that
the receiver can only decrypt the ciphertext at a speci-
fied time in the future. TRE is suitable for solving many
time-dependent real-world and virtual applications, such
as sealed bidding, timed release of electronic documents,
and electronic voting blockchain applications [9], etc.

The TRE technology was first proposed in May [7]. In
1996, Rivest et al. [10] proposed two foundational TRE
construction schemes: one based on time-lock puz-
zles (TLP) that relies on the factorization problem and
another involving sender-proxy interactions for time and
message release. These laid the theoretical foundation for
sustained research in the field of TRE. Currently, TRE
construction schemes include TLP methods [11–16],
proxy methods [17–22], and other methods [23–29]. In
the TLP-based TRE schemes, the decryption key is hid-
den in a mathematical formula. After the sender sends
the ciphertext, the receiver needs to perform a large num-
ber of calculations. Among the TRE schemes based on
other methods (network methods, quantum methods),
for example, Unruh et al. [27] achieved revocable TRE
based on quantum cryptography without trusted parties.
Li et al. [26] explored a timed-release data scheme based
on the blockchain network’s smart contracts, recruiting
several network nodes as middlemen (each middleman
needs to pay a deposit) to send decryption keys to receiv-
ers at specified decryption time T. Chae et al. [28] pro-
posed a timed-release blockchain scheme that combines
blockchain PoW algorithms with TLP algorithms. Com-
pared with schemes proposed by Liu et al. [25] and Mala-
volta et al. [29], it employs standard encryption without
requiring additional computational work, and its feasibil-
ity has been evaluated in an electronic voting application
system.

Page 3 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

Currently, most TRE schemes are constructed based
on the time server approach. Depending on whether
the receiver needs to interact with the time server, they
can be divided into interactive and non-interactive time
server modes. The former requires users to interact
with the time server, which cannot guarantee user ano-
nymity and may easily lead to denial-of-service attacks
causing system paralysis, thus limiting the scalability of
the scheme. In contrast, in TRE schemes constructed
using the latter approach, the time server does not need
to interact with users and may even be unaware of their
existence. It only needs to calculate and broadcast a short
signature-formatted time trapdoor at a specified time,
ensuring the anonymity of user information and better
scalability. Researchers have attempted to construct mul-
tiple time servers TRE schemes to prevent single-point
attacks or corruption by attackers to reduce the risk of
attackers breaking the entire TRE model. In 2021, Yuan
et al. [30] proposed a non-interactive multiple time serv-
ers TRE scheme (MTSTRE scheme), which is the most
efficient multiple time servers scheme. However, if one of
the time servers fails, the data receiver will fail to decrypt
the data normally at the specified time T. Therefore, this
scheme has some defects in practicability.

Secret sharing techniques [31–34] can split a secret
into multiple secret shares, allowing partial secret shares
to reconstruct the complete secret. By appropriately uti-
lizing this technology, this paper integrates the Shamir
secret sharing technique into the MTSTRE scheme and
designs a non-interactive TRE model for multiple time
servers based on secret sharing (SS-MSTRE). This model
allows for partial time trapdoor failure while still ena-
bling data receivers to decrypt promptly, thus improving
practicality.

Our contributions
We address the issue of the single point of failure prob-
lem in plain multiple time servers TRE schemes and
propose a more practical SS-MSTRE scheme. Our main
contributions are as follows:

•	 We migrate the Shamir secret sharing technique
from prime fields to elliptic curve groups, enabling its
use in cryptographic scheme constructions based on
bilinear pairing-related hard problems.

•	 We integrate Shamir secret sharing over elliptic
curve groups into the construction of multiple time
servers TRE cryptographic schemes, designing a
more practical SS-MSTRE model and constructing
a provably secure concrete scheme and its variants.
When the specified decryption time arrives, even if
some time trapdoors fail, the data receiver can still
decrypt the ciphertext on time using time trapdoors

exceeding or equal to the threshold. In addition, it
increases the cost of attacking or bribing the time
server to decrypt the data received by the receiver or
attacker in advance.

•	 We employ identity-based encryption (IBE) technol-
ogy to encrypt key shares to ensure secure and highly
efficient distribution and transmission of key shares.

•	 In real-world scenarios, there may be situations
where the time server management organization
is not trusted. If the private key of the time server
management organization is compromised, it could
lead to obtaining the master time trapdoor, allowing
for premature decryption of ciphertexts. Therefore,
the key shares provided directly by the time server
management organization cannot be used as the
time server’s private key. So, we further propose the
SS-MSTRE2 scheme. In the SS-MSTRE2 scheme, the
time server’s private key is jointly generated by the
time server management organization and a random
number, thus enhancing the security of the scheme.

Preliminary
In this section, we present the key notations involved in
our schemes and briefly review the basic content of bilin-
ear pairing, bilinear Diffie-Hellman (BDH) assumption,
Shamir secret sharing algorithm, and the identity-based
encryption scheme.

Key notations
For the convenience of understanding, we have given the
key notations used in our schemes in Table 1.

Bilinear pairing
We give a form of bilinear pair and its properties, as
follows.

Definition 1  Suppose G1 is an elliptic curve discrete
logarithmic problem(ECDLP) additive group over a finite
field, G2 is a discrete logarithmic problem(DLP) multipli-
cative group over a finite field, and the order of G1 and
G2 is a prime number q. Using the bilinear pairing tech-
nique, the ECDLP additive group over a finite field can
be reduced to the DLP multiplicative group over a finite
field. The bilinear map is e : G1 × G1 −→ G2 , satisfying
the following properties:

(1)	 Bilinear. For any P,Q,R ∈ G1 , there are

(1)
e(P + Q,R) = e(P,R)e(Q,R)

e(P,Q + R) = e(P,Q)e(P,R)

Page 4 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

(2)	 Nondegeneracy. If g is a generator of G1 , then e(g, g)
is a generator of G2.

(3)	 Computability. For any P,Q ∈ G1 , there is an effec-
tive algorithm to calculate e(P, Q).

From the above properties, we can further deduce
the property that the coefficients of bilinear pair ele-
ments can move freely, that is, e(aP, bQ) = e(abP,Q) =

e(p, abQ) = e(bP, aQ) = e(P,Q)ab . Admissible bilinear
pairings can be constructed via the Weil and Tate pair-
ings [35, 36].

BDH assumption
The bilinear Diffie-Hellman (BDH) assumption plays a
crucial role in the design of TRE schemes.

Definition 2  Given P, aP, bP, cP ∈ G1 , where a, b, c ∈ Z
∗
p

are unknown, the goal is to calculate e(P,P)abc , where e is
a bilinear mapping and P is a generator of G1 as defined in
Definition 1.

If Pr[A(P, aP, bP, cP) = e(P,P)abc] ≥ ε , then the advan-
tage of the adversary A to overcome the BDH assumption
is ε , and ε is negligible.

Shamir secret sharing
Our schemes use the Shamir secret sharing algorithm to
deal with the failure of partial time trapdoors when the
specified decryption time comes. In the following, we
give the basic flow of Shamir secret sharing algorithm
and the definition of its access structure.

(1)	 Protocol initialization algorithm . The distributor of
confidential information randomly selects n differ-
ent non-zero elements x1, x2, x3, ..., xn from the finite
field GF(p) as the unique identification numbers
corresponding to n participants Pi (i = 1, 2, ..., n) , p
is prime and p ≫ n.

(2)	 Secret distribution algorithm . The distributor selects
the secrets to be distributed, randomly selects (t − 1)
elements a1, a2, ..., at−1 from the finite field GF(p),
and constructs the secret sharing polynomial

f (x) = s +
t−1

i=1

aix
i mod p , calculates si = f (xi)

and sends it to the corresponding participant pi
(i = 1, 2, ..., n ) as a secret share.

(3)	 Secret reconstruction algorithm . If any t of n participants
shows their secret shares (x1, s1), (x2, s2), · · · , (xt , st) ,
the Lagrange interpolation polynomial can be recon-
structed as follows:

Table 1  Key notations

Symbol Description

EHR Electronic health record

TRE Timed-release encryption

T Preset decryption time by the data
sender

t The preset threshold value

SS-MSTRE A non-interactive TRE model
for multiple time servers based
on secret sharing

IBE Identity-based encryption

C The ciphertext

M The plaintext

k The security parameter during sys-
tem initialization

� The security parameter during pri-
vate key generator initialization

sk The time server management
organization’s private key

paramstsmo The time server management
organization’s system parameters

p,p Prime orders

G1,G1 ECDLP additive groups

G2,G2 DLP multiplicative groups

P,P Random generators

e, e Bilinear mappings

n The length of the message

H1,H2,H1,H2,H3,H4 Secure hash functions

MSK The private key generator’s secret
key

MPK The private key generator’s public
key

paramspkg The private key generator’s system
parameters

IDs N time servers’s identity identifiers

TSi The ith time server

temp
(i)
priv

The time server TSi ’s temporary
private key

temp
(i)
pub

The time server TSi ’s temporary
public key

ts
(i)
priv

The time server TSi ’s private key

ts
(i)
pub

The time server TSi ’s public key

usk The data receiver’s private key

upk The data receiver’s public key

tinstance Time instance

S
(i)
T

The time trapdoor generated
by the ith time server TSi

UT The time trapdoor calculated
by the data receiver

Xs The corresponding set of identifica-
tion numbers for the time servers

Page 5 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

where

and the secret s = L(0) can be calculated.

Definition 3  Access structure. Suppose the set of n
participants is P = {pi|i = 1, 2, ..., n} and Ŵ is an access
structure on set P, where Ŵ ⊆ 2|p| , 2|p| represents all sets
of non-empty subsets on set P, satisfying the following
properties.

① If A ∈ Ŵ , A ⊆ B ⊆ Ŵ , then B ∈ Ŵ.
② Participants in set Ŵ can reconstruct the secret.

Identity‑based encryption
We use identity-based encryption (IBE) technology to
ensure the security of key shares during transmission
between different devices and to provide verifiable attrib-
utes for these key shares. Compared to other encryption
methods, IBE significantly simplifies key management
operations. Its advantages include the elimination of
the need to associate public keys with extensive public
key infrastructure (PKI), no requirement for digital cer-
tificates, no reliance on online certificate authority (CA),
reduced key lengths, and enhanced security.

Definition 4  ξIBE={IBE.Setup, IBE.Extract, IBE.Encrypt,
IBE.Decrypt}. The IBE.Encrypt algorithm and the IBE.
The decrypt algorithm satisfies the consistency constraint.
Namely, given any plaintext M, ciphertext C can be obtained
by IBE.Encrypt algorithm, and we can also decrypt and
recover plaintext M by IBE.Decrypt algorithm.

IBE.Setup(1k) . Given a security parameter 1k , this
algorithm outputs public parameters PP and the master
secret key mk.

IBE.Extract (PP, mk, ID). Given a unique identifier
ID ∈ {0, 1}∗ that can distinguish user identity informa-
tion, the master key mk, and the public parameters PP,
this algorithm outputs the corresponding private key dID.

(2)
L(x) = s1

(x − x2)(x − x3) · · · (x − xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)
+ s2

(x − x1)(x − x3) · · · (x − xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+ st
(x − x1)(x − x2) · · · (x − xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)
=

t
∑

i=1

siδi(x)mod p

(3)
δi(x) =

∏

1 ≤ j ≤ t
j �= i

x − xj

xi − xj

IBE.Encrypt (PP, ID, M). Given plaintext M, public
parameters PP, and an identifier ID that can distinguish
user identity information, this algorithm outputs the cor-
responding ciphertext C.
IBE.Decrypt(PP,C , dID) . Given ciphertext C, public

parameters PP, and the user’s private key dID , this algo-
rithm outputs the corresponding plaintext M.

System and security model
System model
The design goal of the proposed schemes is that the
receiver can decrypt the ciphertext C normally at the
decryption time specified by the sender. In this section,
we introduce a common time server management organ-
ization to the system and further present our TRE system
model based on Shamir secret sharing, as shown in Fig. 1.
The system consists of five entities: the time server man-
agement organization, N time servers, the private key
generator, the data sender, and the data receiver.

Time server management organization. The time
server management organization is a fully trusted entity
in the SS-MSTRE1 scheme, while it is a semi-trusted
entity in the SS-MSTRE2 scheme. It is responsible for
generating system parameters to initialize the system
and using the Shamir secret sharing algorithm to gener-
ate key shares of N time servers. Simultaneously, utilizing
the IBE.Encrypt algorithm defined in Definition 4, sends
the key shares to the corresponding time servers as their
respective private keys.
N time servers. N time servers are semi-trusted enti-

ties responsible for providing an accurate time reference
to the data receiver. In the proposed schemes, there is no
need for interaction between N time servers and the data
receiver, and they are responsible for broadcasting time
trapdoors at a fixed frequency, such as every five minutes.

Private key generator. The private key generator is
trusted for all N time servers. It is responsible for cor-
rectly executing each calculational task for every time
server, including using the IBE.Extract the algorithm
defined in Definition 4 to generate temporary public-pri-
vate key pairs for N time servers. These temporary keys
are used for data transmission between the time servers
and the time server management organization.

Data sender. The data sender is a user who wishes
the encrypted data to be decrypted at a specified time
and is responsible for specifying the decryption time T,

Page 6 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

encrypting the plaintext M, and sending the ciphertext
(C, T) to the data receiver.

Data receiver. The data receiver is a user who can only
decrypt C at a specified time T by the data sender. To com-
plete decryption, they must select at least t valid time trap-
doors from multiple servers’ published time trapdoors.

Security model
In this paper, we make the following assumptions:

(1)	 The private key generator is entirely trustworthy
and can accurately perform computational tasks for
each time server.

(2)	 The system has sufficient time servers operating nor-
mally to ensure that decryption can proceed normally.

(3)	 N time servers are honest but curious, meaning
that they will follow the rules for providing ser-
vices. However, they may save the input and output
results to infer information related to decrypting
the ciphertext sent by the sender.

The proposed schemes possess data confidentiality, veri-
fiability, anti-advance decryption, and robust decryption
with multiple time trapdoors. We will provide a detailed
analysis in Security analysis section.

(1)	 Data confidentiality. It should be ensured that
attackers cannot illegally analyze the key informa-

tion required for decrypting the ciphertext before
the specified decryption time T.

(2)	 Verifiability. It should use some algorithms or
methods to verify the validity and correctness of
intermediate data to detect any tampering with the
intermediate data.

(3)	 Anti-advance decryption. It should prevent dishon-
est receivers from decrypting EHR before the speci-
fied decryption time.

(4)	 Robust decryption with multiple time trapdoors.
It should be ensured that even if some time serv-
ers fail or are attacked, the data receiver can still use
other sufficient time trapdoors for decryption.

Algorithm definition

Definition 5  Our non-interactive SS-MSTRE system
includes five entities: the time server management organ-
ization, N time servers, the private key generator PKG,
the data sender, the data receiver, and algorithm 10-tuple
ESS−MSTRE = {TSMO_Setup,PKG_Setup,TempKey_Extract,

KeySharing ,TS_KeyGen,User_KeyGen,Enc,TS_Rel,US_Rel,Dec}.

TSMO_Setup(k). It is a probabilistic initialization algo-
rithm. Given a security parameter k, this algorithm out-
puts the private key sk of the time server management
organization and the system parameters paramstsmo.

Fig. 1  SS-MSTRE system

Page 7 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

PKG_Setup(�). Given a security parameter � , this algo-
rithm outputs the master secret key MSK, the public key
MPK, and the system parameters paramspkg of the pri-
vate key generator.
TempKey_Extract(IDs, paramspkg,MSK). Given a set of

identity identifiers for N time servers IDs, the private key
generator’s system parameters paramspkg , and the pri-
vate key generator’s secret key MSK, this algorithm out-
puts a temporary public-private key pairs set temp for N
time servers.
KeySharing(sk , temp,MPK , paramspkg). Given the pub-

lic key sk of the time server management organization,
a temporary public-private key pairs set temp of N time
servers, the public key MPK of the private key genera-
tor, and the system parameters paramspkg , this algorithm
outputs N key share ciphertexts {C1,C2, . . . ,CN }.
TS_KeyGen

(

Ci, temp
(i)
priv , paramspkg, paramstsmo

)

.
Given the key share ciphertext Ci corresponding to the
time server TSi , the temporary private key temp

(i)
priv of the

time server TSi , the private key generator’s system param-
eters paramspkg , and system parameters paramstsmo , this
algorithm outputs the public key ts(i)pub and private key
ts
(i)
priv of the time server TSi.
User_KeyGen(paramstsmo). This is a probabilistic algo-

rithm for key generation. Given the system parameters
paramstsmo , this algorithm outputs the data receiver’s
private key usk and public key upk.
Enc

(

M,upk , ts
(i)
pub(i = 1, 2, ...,N),T , paramstsmo

)

 . This
is a probabilistic encryption algorithm. Given an EHR
record M, receiver’s public key upk, time servers’ public
key ts(i)pub(i = 1, 2, ...,N) , decryption time T specified by
the data sender, and system parameters paramstsmo , this
algorithm outputs the ciphertext C.
TS_Rel

(

ts
(i)
priv , tinstance, paramstsmo

)

. This is a probabil-
istic algorithm for generating time trapdoors. Given the
time server TSi ’s private key ts(i)priv , time instance tinstance ,
and system parameters paramstsmo , this algorithm out-
puts the corresponding time trapdoor S(i)T .
US_Rel(usk ,T , paramstsmo). This is a probabilistic

algorithm for generating the user’s time trapdoor. Given
the data receiver’s private key usk, specified decryption
time T, and system parameters paramstsmo , this algo-
rithm outputs the time trapdoor UT of the data receiver.
Dec(C , STs,Xs,T ,UT , paramstsmo). This is a determin-

istic algorithm for joint decryption. Given the cipher-
text C, the set of effective time trapdoors STs chosen
by the data receiver, the set of identification numbers
Xs corresponding to time servers, specified decryption
time T, the data receiver’s time trapdoor UT  , and sys-
tem parameters paramstsmo , this algorithm outputs the
plaintext M or ⊥.

Concrete schemes of SS‑MSTRE
This section constructs two concrete SS-MSTRE schemes
based on whether the time server management organization
is trusted: SS-MSTRE1 and SS-MSTRE2 . In SS-MSTRE1 ,
we assume that the time server management organization
is trusted. In SS-MSTRE2 , we assume that the time server
management organization is semi-trusted.

Construction of SS-MSTRE1

Our non-interactive SS-MSTRE1 works as follows:

	 (1)	 (paramstsmo, sk) ← TSMO_Setup(k) . The time server
management organization runs the TSMO_Setup
algorithm to generate the system initialization
parameters. The time server management organi-
zation selects the security parameter k and per-
forms the following operations:

① Selects a prime order p, G1 and G2 are a p-order
ECDLP additive group and DLP multiplicative
group respectively.
② Selects a random generator P ∈ G1.
③ Selects a bilinear mapping e : G1 × G1 → G2
satisfies Definition 1.
④ Select two secure hash functions: H1:{0, 1}∗ → G1
and H2:G2 → {0, 1}n , where n represents the length
of the message.
⑤ Selects a random number s ∈ Z∗

p as its private
key sk = s ∈ Z∗

p .
⑥ Defines a threshold value t.
⑦ Outputs the system parameters paramstsmo =
{p,P,G1,G2, e,H1,H2, n, t} and the private key sk.

	 (2)	 (paramspkg,MPK ,MSK) ← PKG_Setup(�). The
private key generator runs the PKG_Setup algo-
rithm to generate its initialization parameters. The
private key generator selects the security param-
eter � and performs the following operations:

① Selects a prime order p , G1 and G2 are a p-
order ECDLP additive group and DLP multiplica-
tive group respectively.
② Selects a random generator P ∈ G1.
③ Selects a bilinear mapping e : G1 ×G1 → G2
satisfies Definition 1.
④ Selects four secure hash functions: H1:{0, 1}∗ → G1 ,
H2:G2 → {0, 1}n , H3:{0, 1}n × {0, 1}n → Z∗

p , H4:{0, 1}n → {0, 1}n.
⑤ Selects a random number a ∈ Z∗

p as its master
secret key MSK = a ∈ Z∗

p and calculates its mas-
ter public key MPK = aP.

Page 8 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

⑥ Outputs the private key generator’s system
parameters paramspkg = {G1,G2,n,p, e,P,H1,H2,H3,H4,MPK }
and the master secret key MSK.

	 (3)	 temp ← TempKey_Extract(IDs, paramspkg,MSK) . The
private key generator runs the TempKey_Extract
algorithm to generate a set of temporary public-
private key pairs for N time servers. The follow-
ing steps are required:

① Calculates the set of temporary public-private
key pairs temp =

{

temp
(i)
pub, temp

(i)
priv

}

i=1,2,..,N
 for

N time servers using their identity identifier set
IDs = {ID1, ID2, ..., IDN } , where temp

(i)
priv = MSK ·H1(IDi) = aH1(IDi) ,

temp
(i)
pub = H1(IDi) , IDi ∈ IDs.

	 (4)	 (C1,C2, ...,CN) ← KeySharing(sk , temp,MPK , paramspkg)   .
The time server management organization runs the
KeySharing algorithm to generate secret key shares
for N time servers. The following steps are required:

① The time server management organization selects
secret sharing polynomial coefficients a1, a2, a3, . . . , at−1 ∈ Z∗

p
to construct Shamir secret sharing polynomial
f (x) =

(

s +
t−1
∑

i=1

aix
i

)

mod p , generate secret key share

si = f (xi) for time server TSi (i = 1, 2, ...,N) , where
xi = i is the identification number of time server TSi.
② The time server management organization selects a
random number σ ∈ {0, 1}n and uses the IBE.Encrypt
algorithm defined in Definition 4 to get the ciphertext
Ci , which is sent to time server TSi using the tempo-
rary public key temp

(i)
pub , where i = 1, 2, ...,N  .

	 (5)	
(

ts
(i)
pub , ts

(i)
priv

)

← TS_KeyGen
(

Ci , temp
(i)
priv , paramspkg, paramstsmo

)

  .
The time server TSi runs the TS_KeyGen algo-
rithm to obtain its public key ts(i)pub and private
key ts(i)priv . The following steps are required:

① The time server TSi(i = 1, 2, ...,N  ) receives the
ciphertext Ci from the time server management
organization. It decrypts the ciphertext Ci using its
temporary private key temp

(i)
priv to obtain its private

key ts(i)priv . The time server TSi then calculates its
public key ts(i)pub .

(4)Ci =< U ,V ,W >=< rP, σ ⊕H2

(

e
(

MPK , temp
(i)
pub

)r)

, si ⊕H4(σ) >,

r = H3(σ , si)

(5)

ts
(i)
priv = W ⊕H4(σ) = si , σ = V ⊕H2(e(temp

(i)
priv ,U))

ts
(i)
pub = ts

(i)
privP = siP

	 (6)	 (usk ,upk) ← User_KeyGen(paramstsmo). The data
receiver runs the User_KeyGen algorithm to
obtain its private key usk and its public key upk.
The following steps are required:

① The data receiver selects a random number
u ∈ Z∗

p as its private key usk = u , and calculates its
public key upk = uP.

	 (7)	 C ← Enc
(

M,upk , ts
(i)
pub(i = 1, 2, ...,N),T , paramstsmo

)

  .
The data sender runs the Enc algorithm using the
data receiver’s public key upk, and arbitrarily
selects at least t public keys from N time servers’
public keys ts(i)pub to form a set tspub . Xs is the cor-
responding set of identification numbers for the
time servers. The data sender specifies a decryp-
tion time T ∈ {0, 1}∗ to encrypt M. The following
steps are required:

① Calculates

② Selects a random number r ∈ Z∗
p and calculates

K = e(rH1(T),upk + tk).
③ Outputs the ciphertext C =< X = rP,Y = M ⊕H2(K) > .

	 (8)	 S
(i)
T ← TS_Rel

(

ts
(i)
priv , tinstance

)

 . The time server
runs the TS_Rel algorithm at a fixed frequency
(for example, every five minutes) to broadcast the
time trapdoor. The following steps are required:

① On the time instance tinstance ∈ {0, 1}∗ , the

time server TSi calculates and periodically broad-
casts the time trapdoor

 to all system users using its private key.
	 (9)	 UT ← US_Rel(usk ,T , paramstsmo) . The data receiver

uses the decryption time T specified by the
data sender and their private key usk to run the
US_Rel algorithm and obtain their time trapdoor.
The following steps are required:

① At the specified decryption time T, the
data receiver calculates the time trapdoor
UT = usk ·H1(T) = uH1(T) using the private
key usk.

(6)

tk =
∑

ts
(i)
pub ∈ tspub

ts
(i)
pub

∏

xj ∈ Xs , xj �= xi

−xj

(xi − xj)
= sP

(7)S
(i)
T = ts

(i)
privH1(tinstance) = siH1(tinstance)

Page 9 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

	 (10)	 M ← Dec(C , STs,Xs,T ,UT , paramstsmo) . The
data receiver runs the Dec algorithm to recover
the plaintext M. The following steps are required:

① At the decryption time T specified by the data
sender, each of the N time servers sends the corre-
sponding time trapdoor ST so that there are N time
trapdoors STs. The data receiver randomly selects a
set of valid time trapdoors STs from the time trap-
doors published by N time servers, ensuring that
|STs| ≥ t . Xs is the corresponding set of identification
numbers for the time servers. Calculate the main time
trapdoor S′T =

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

.
② Calculates K ′ = e(X , S′T + UT).
③ Recovers the plaintext M = Y ⊕H2(K

′).

	 Assume that the ciphertext is C = �X ,Y � , the
decryption time is T, the set of valid time trap-
doors is STs = {S

(1)
T , S

(2)
T , . . . , S

(t)
T } , the correspond-

ing set of identification numbers for the time serv-
ers is Xs = {x1, x2, . . . , xt} , and the user’s trapdoor
is UT  . The correctness of decryption is verified as
follows:

Construction of SS-MSTRE2

In the real world, the time server management organiza-
tion may be semi-trusted, so it is not possible to directly use
the key shares published by the time server management
organization as private keys for time servers. To solve this

(8)

S′T =
∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj

xi − xj

= s1H1(T) ·
(0− x2)(0− x3) · · · (0− xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)

+ s2H1(T) ·
(0− x1)(0− x3) · · · (0− xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+ stH1(T) ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

=

(

s1 ·
(0− x2)(0− x3) · · · (0− xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)
+

s2 ·
(0− x1)(0− x3) · · · (0− xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+st ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

)

·H1(T)

= sH1(T)

K ′ = e(X , S′T + UT)

= e(rP, sH1(T)+ uH1(T))

= e(rH1(T),upk + tk)

= K

Y ⊕H2(K
′) = Y ⊕H2(K)

= M ⊕H2(K)⊕H2(K)

= M

problem, it is necessary to improve the SS-MSTRE1 scheme.
The difference between the improved scheme and the
SS-MSTRE1 scheme is that each time server, after decrypt-
ing the key share ciphertext obtained using the IBE.Decrypt
algorithm defined in Definition 4, does not directly use the
obtained key share itself as its private key. Instead, N time
servers first “negotiate” a shared random number. Each
time server then uses this shared random number and the
decrypted key share to generate a new private key. The spe-
cific improvement method is as follows:

① At system initialization (ensuring that N time
servers are all in normal working state), N time serv-
ers need to specify a particular time server TSj to
generate a random number R ∈ Z∗

p . Then, using the
IBE.Encrypt algorithm defined in Definition 4, the
time server TSj sends the random number R to the
other time servers TSi , where i = j . The time server
TSi then uses the IBE.Decrypt algorithm defined in
Definition 4 to obtain the shared random number R.
② The time server runs the TS_KeyGen algorithm to
obtain si and uses the shared random number R to
calculate its private key ts(i)priv = siR , then calculates
its public key ts(i)pub = ts

(i)
privP = siRP.

Correspondingly, the Enc algorithm is modified as
follows:
C ← Enc(M,upk , ts

(i)
pub(i = 1, 2, ...,N),T , paramstsmo  ) .

The data sender runs the Enc algorithm using the data
receiver’s public key upk, and arbitrarily selects at least t
public keys from N time servers’ public keys ts(i)pub to form
a set tspub . Xs is the corresponding set of identification
numbers for the time servers. The data sender specifies a
decryption time T ∈ {0, 1}∗ to encrypt the data M. The
following steps are required:

① Calculates

② Selects a random number r ∈ Z∗
p and calculates

K = e(rH1(T),upk + tk).
③ Outputs the ciphertext C =< X = rP,Y = M ⊕H2(K) > .

Correspondingly, the TS_Rel algorithm is modified as
follows:
S
(i)
T ← TS_Rel(ts

(i)
priv , tinstance) . The time server runs the

TS_Rel algorithm at a fixed frequency (for example, every
five minutes) to broadcast the time trapdoor. The follow-
ing steps are required:

(9)

tk =
∑

ts
(i)
pub∈tspub

ts
(i)
pub

∏

xj∈Xs ,xj �=xi

−xj

(xi − xj)
= sRP.

Page 10 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

① On the time instance tinstance ∈ {0, 1}∗ , the time
server TSi calculates and periodically broadcasts the time
trapdoor S(i)T = ts

(i)
privH1(tinstance) = siRH1(tinstance) to

all system users using its private key.

Correspondingly, the Dec algorithm is modified as
follows:
M ← Dec(STs,Xs,T ,UT , paramstsmo) . The data receiver

runs the Dec algorithm to recover the plaintext M. The fol-
lowing steps are required:

① At the decryption time T specified by the data
sender, the data receiver randomly selects a set of
valid time trapdoors STs from the time trapdoors
published by N time servers, ensuring that |STs| ≥ t .
Xs is the corresponding set of identification num-
bers for the time servers. Calculate the main time
trapdoor S′T =

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

.
② Calculates K ′ = e(X , S′T + UT).
③ Recovers the plaintext M = Y ⊕H2(K

′).

Assume that the ciphertext is C = �X ,Y � , the decryp-
tion time is T, the set of valid time trapdoors is
STs = {S

(1)
T , S

(2)
T , . . . , S

(t)
T } , the corresponding set of identifi-

cation numbers for the time servers is Xs = {x1, x2, . . . , xt} ,
and the user’s trapdoor is UT . The correctness of decryption
is verified as follows:

(10)

S′T =
∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj

xi − xj

= s1RH1(T) ·
(0− x2)(0− x3) · · · (0− xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)
+

s2RH1(T) ·
(0− x1)(0− x3) · · · (0− xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+ stRH1(T) ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

= (s1 ·
(0− x2)(0− x3) · · · (0− xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)
+

s2 ·
(0− x1)(0− x3) · · · (0− xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+ st ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)
) · RH1(T)

= sRH1(T)

K ′ = e(X , S′T +UT)

= e(rP, sRH1(T)+ uH1(T))

= e(rH1(T),usk + tk)

= K

Y ⊕H2(K
′) = Y ⊕H2(K)

= M ⊕H2(K)⊕H2(K)

= M

Security and efficiency analysis
Security analysis
The security properties of our proposed schemes are ana-
lyzed as follows.

(1)	 Data confidentiality. The attacker aims to illegally ana-
lyze key-related information necessary for decrypting
the ciphertext before the specified time T. Assume
that the attacker may attempt to crack the time server
management organization’s private key sk (SS-
MSTRE2 scheme is the parameter sR) and the user’s
private key usk through the time servers’ public keys
ts
(i)
pub and the user’s public key upk, this is equivalent to

solving the ECDLP, which is currently considered
infeasible, making it difficult for an attacker to effec-
tively crack. Assume that time server TSi stores many
plaintext-ciphertext pairs, that is, one-way irreversible
hash function calculation values of decryption time
H1(T

∗)-time trapdoor S∗T pair, it is difficult for an
attacker to attack the time server TSi ’s private key ts(i)priv
through the known-plaintext attack. The attacker can
only obtain the corresponding private key by attacking
t or more time servers to recover the main time trap-
door. However, this type of attack requires extremely
high computational resources and time costs, making
the probability of a polynomial-time attacker success-
fully breaking the ciphertext negligible.

(2)	 Verifiability. The time server obtains si through the
TS_KeyGen algorithm, calculates r∗ = H3(σ , si) ,
and U∗ = r∗P , and then compares U∗ with the
ciphertext Ci to detect whether si is legal and has not
been tampered with. The time trapdoor is generated
by combining a public hash function and the time
server’s private key with the security of the time serv-
er’s private key depending on the ECDLP. When the
time server TSi sends the time trapdoor S(i)T to the
data receiver, the data receiver can also choose to use
bilinear pairing technology to calculate and compare
whether e(ts

(i)
pub,H1(T)) and e(P, S(i)T) are equal, to

detect whether S(i)T is legal and has not been tam-
pered with. The verifiability of the intermediate
ciphertext data can effectively detect whether the
original data is damaged due to noise and other fac-
tors when transmitting ciphertext data over a public
network and can also resist attackers intercepting
and tampering with data to a certain extent.

(3)	 Anti-advance decryption. Assume that a dishonest
receiver wants to decrypt the data before the specified
decryption time. As long as the ECDLP and BDH are
still difficult problems at the current stage, it is a very
difficult task, or almost impossible for the receiver

Page 11 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

to decrypt the ciphertext based on the existing time
server public keys, the specified decryption time T , its
private key, and the public system parameters.

(4)	 Robust decryption with multiple time trapdoors.
Our schemes employ Shamir secret sharing for key
distribution to construct the main time trapdoor.
The data receiver only needs to obtain time trap-
doors that equal or exceed the threshold value to
complete decryption. Consequently, even if some of
the time servers fail or are attacked, the data receiver
can still use a sufficient number of time trapdoors
for decryption, significantly enhancing the reliability
of the multiple time server TRE scheme.

We further provide proof that the SS-MSTRE1 scheme
is semantically secure against adaptive CPA [22].

Theorem 1  Assume that adversary A has an advantage
of ǫ in breaking the SS-MSTRE1 scheme. Meanwhile, let the
probability of challenger B overcoming the BDH assumption
defined in Definition 2 be at least ǫ′ = ǫ/eqTqH2 , where e is
the base of the natural logarithm, qH2 is the maximum num-
ber of queries that A can make to the random oracle H2 , and
qT is the maximum number of queries that A can make to
the time trapdoors of users and time servers.

Proof
Assume that there is an adversary A with advantage ǫ in
breaking the SS-MSTRE1 scheme. A is limited to making
no more than qH2 queries to the random oracle H2 and no
more than qT queries to the time trapdoors of user and
time servers, where qT and qH2 are both positive. Let B be
a challenger who can overcome the BDH assumption with
a probability of at least ǫ′ = ǫ/eqTqH2 . Therefore, if the
BDH assumption holds in G1 , then ǫ′ can be considered
negligible, and the advantage of A in breaking the SS-
MSTRE1 scheme can also be considered negligible. B sim-
ulates as the challenger and interacts with A as follows:

Preparation : Let G1 be an ECDLP additive group of
prime order q, G2 be a DLP multiplicative group of prime
order q, and let the bilinear mapping e : G1 × G1 → G2 sat-
isfy Definition 1. Give the challenger B the public parameters
P, P1 = aP = uP + (

∑t
i=1 siP · (

∏

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p)), P2 = bP and P3 = cP .

The goal of the challenger B is to output v = e(P,P)abc ∈ G2 ,
where P is the generator of G1 and a, b, c ∈ Z

∗
p.

Setup : Challenger B gives adversary A the data receiv-
er’s public key upk = u and the time server’s public key
ts
(i)
pub = siP (i=1,2,...,N).

Initialization : The adversary A outputs the target of
the attack, a pair of decryption time points (T ∗

0 ,T ∗
1).

Phase 1 : The adversary A initiates 1, 2, . . . ,m que-
ries, and the challenger B responds to each of them. The
response process of the i-th query is as follows:

The adversary A initiates a query to the random oracle
H1 . Challenger B maintains an initially empty tuple list
H list
1 :< Tj, hj,mj, nj > . When the adversary A initiates a

query for the time trapdoor to the random oracle H1 at a
time point Ti , the challenger B responds as follows:

① If the tuple information < Ti, hi,mi, ni > contain-
ing Ti is already present in H list

1  , then the challenger
B responds with H1(Ti) = hi ∈ G1.
② If the tuple information < Ti, hi,mi, ni > con-
taining Ti is not present in H list

1  , then the challenger
B randomly generates a bit ni ∈ {0, 1} such that
Pr[ni = 0] = 1/(qT + 1).
③ The challenger B chooses a random number
mi ∈ Z

∗
q . If ni = 0 , then B calculates hi = P2 +miP ,

otherwise, calculates hi = miP.
④ The challenger B adds the tuple < Ti, hi,mi, ni >
to H list

1 and responds with H1(Ti) = hi . The value of
hi is uniformly distributed in G1 and independent of
the adversary A.

Similarly, adversary A initiates a query to the random
oracle H2 . the challenger B maintains an initially empty
tuple list H list

2  , and responds as follows:

① When the adversary A queries H2 for H2(Ki) and
there is no information containing Ki in the list, the
challenger B responds by choosing a new random
value Vi ∈ {0, 1}log2 q and adding (Ki,Vi) to the tuple
list H list

2 .
② If the tuple list H list

2 contains (Ki,Vi) , then the
challenger B takes (Ki,Vi) from H list

2 as the response
value to the adversary A.

When the adversary A initiates a time trapdoor query at
a time point Ti /∈ {T ∗

0 ,T
∗
1 } , the challenger B responds as

follows:

① The challenger B runs the above H1 query algo-
rithm and obtains H1(Ti) = hi . Then, B makes the
tuple < Ti, hi,mi, ni > as the corresponding element
in the tuple list H list

1 .
② If ni = 0 , the challenger B reports an error and
terminates the entire simulation game.
③ If ni = 1 , then hi = miP.

Page 12 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

Let Tui = mi · upk and TTi
= mi · (

∑t
i=1 siP · (

∏

1 ≤ j ≤ t

j �= i
0−xj
xi−xj

mod p)) . We can also obtain Tui = uH1(Ti) and
TT = (

∑t
i=1 si

∏

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p) ·miP = sH1(Ti) by

transforming the formulas. Here, Tui represents the
legitimate user’s time trapdoor at time point Ti and TTi
represents the main time trapdoor at time point Ti . The
challenger B returns Tui and TTi to the adversary A.

Challenge : The target of challenge for the adversary
A is a pair of decryption time points (T ∗

0 ,T
∗
1) . The chal-

lenger B produces the challenge ciphertext, and the
response process is as follows:

① The challenger B performs two H1 query algo-
rithms to obtain h∗0 and h∗1 ∈ G1 , and obtains
H1(T

∗
0) = h∗0 and H1(T

∗
1) = h∗1 , which correspond

to < T ∗
0 , h

∗
0,m

∗
0, n

∗
0 > and < T ∗

1 , h
∗
1,m

∗
1, n

∗
1 > respec-

tively in H list
1

 . If n∗0 = n∗1 = 1 , the challenger B
reports an error and terminates the entire simula-
tion game.
② If either n∗0 or n∗1 is 0, the challenger B chooses a
random number ♭ ∈ {0, 1} such that n∗♭ = 0.
③ The challenger B responds with the ciphertext
C∗
♭ = [P3, J] , where J ∈ {0, 1}log2q . Let

 Namely,

(11)
J = H2















e
�

H1

�

T ∗
♭

�

, c · upk
�

· e















H1

�

T ∗
♭

�

, c ·















t
�

i=1

siP ·















�

1 ≤ j ≤ t
j �= i

0− xj

xi − xj
mod p

























































(12)

J = H2















e
�

H1

�

T ∗
♭

�

,upk
�c

· e















H1

�

T ∗
♭

�

,















t
�

i=1

siP ·















�

1 ≤ j ≤ t
j �= i

0− xj

xi − xj
mod p











































c













= H2

�

e
�

H1

�

T ∗
♭

�

, (u+ s)P
�c�

= H2

�

e
�

P2 +m∗
♭ , (u+ s)P

�c�

= H2

�

e(P,P)

�

c(u+s)
�

b+m∗
♭

���

Therefore, C∗
♭ = [P3, J] is the true and valid ciphertext

corresponding to the time T ∗
♭ .

Phase 2 : The adversary A initiates time trapdoor que-
ries for the user’s time trapdoor and the time servers’
time trapdoors from m+ 1 to num again. The chal-
lenger B responds in the same way as in Phase 1.

Guess : The adversary A outputs a guess of ♭ , denoted as
♭′ ∈ {0, 1} , and guesses whether the ciphertext C∗

♭ con-
structed by the challenger B in the Challenge phase is

Enc









upk ,









�t
i=1 siP ·









�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p

















,T ∗
0









 or

Enc













upk ,













�t
i=1 siP ·













�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p

























,T ∗
1













 . At this point,

the challenger B randomly chooses (Kj,Vj) from H list
2 and

outputs K/e











upk ,











�t
i=1 siP ·











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p





















,P3











m∗
♭

as a guess for v = e(P,P)abc . If the adversary A has
previously queried one of the items in

H2











e











cH1

�

T ∗
0

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































 or

Page 13 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

H2











e











cH1

�

T ∗
1

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































 ,

then the tuple list H list
2

 has a 1/2 probability of containing
the tuple (Kj,Vj) , where

If the challenger B chooses the tuple (Kj,Vj) from H list
2  ,

then K/e















upk +















�t
i=1 siP ·















�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p





























,P3















m∗
♭

= e(P,P)abc.

The entire simulation game ends at this point. Next,
we calculate the probability value ǫ′ of the challenger B
correctly outputting v = e(P,P)abc , and assume that the
simulation game can continue to the Guess phase with-
out any termination in between. To this end, we will
begin by defining the following events:

Event E1 : the challenger B does not terminate the
game during the phase when the adversary A queries
the time trapdoor.

Event E2 : the challenger B does not terminate the
game during the Challenge phase.

The probability of events E1 and E2 occurring is suffi-
ciently high, and the following four claims are provided:

Claim 1  During the phase when the adversary A queries
the time trapdoor, the probability of the challenger B not
terminating the game is at least 1/e, with Pr[E1] ≥ 1/e.

Proof
Assume that the adversary A will not query the same time
point twice. The response obtained from querying H1 indi-
cates that the probability of the challenger B terminating
the game after one time trapdoor query by the adversary A
is 1/(qT + 1) . However, the adversary A can query the time
trapdoor up to qT times. Therefore, the probability of the
challenger B not terminating the game after qT time trapdoor
queries by the adversary A is (1− 1/(qT + 1))qT ≥ 1/e.

Claim 2  In the Challenge phase, the probability of the
challenger B not terminating the game is at least 1/qT ,
with Pr[E2] ≥ 1/qT.

(13)

Kj = H2(e(cH1(T
∗
♭),upk + (

t
∑

i=1

siP · (
∏

1 ≤ j ≤ t

j �= i

0− xj

xi − xj
mod p))))

= H2(e(P,P)
c(u+s)(b+m∗

♭))

Proof
Assume that the adversary A can generate a pair of
designated decryption time points (T ∗

0 ,T
∗
1) with the

property n∗0 = n∗1 = 1 , then the challenger B termi-
nates the game in the Challenge stage. Since the adver-
sary A has not queried the time trapdoors for T ∗

0 and
T ∗
1  , the values of n∗0 and n∗1 are not correlated with

the adversary A . Therefore, Pr[n∗♭ = 0] = 1/(qT + 1)
and Pr[n∗0 = n∗1 = 1] = (1− (1/(qT + 1)))2 ≤ 1− 1/qT  .
It follows that the probability of the challenger B not
terminating the game in the Challenge phase is at least
1− (1− 1/qT) = 1/qT .

During the game process, the adversary A is not
allowed to query the time trapdoors for T ∗

0 and T ∗
1  . There-

fore, the events E1 and E2 are independent of each other,
and it can be obtained that Pr[E1 ∩ E2] ≥ 1/eqT .

Assume that in the real attack game, the adversary A
possesses the public key upk = uP of the data receiver
and the public keys ts(i)pub = siP of the time servers
(i = 1, 2, ...,N) . The adversary A sends a pair of decryp-
tion time points (T ∗

0 ,T
∗
1) to the challenger B , and the

challenger B generates a challenge ciphertext C∗
♭ = [P3, J]

in response.

Claim 3  In the real attack game, the adversary A has a
probability of at least ǫ to initiate an H2 query for either

H2











e











cH1

�

T ∗
0

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































or H2











e











cH1

�

T ∗
1

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































.

Prior to presenting the proof, we will first provide the
definitions for the following events:

Event E3 : In the real attack game, the adversary A
does not initiate an H2 query for either

H2











e











cH1

�

T ∗
0

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































or H2











e











cH1

�

T ∗
1

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































.

Event E4 : In the Guess phase, the adversary A outputs
the correct guess value ♭′ , where ♭ = ♭′.

Page 14 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

Proof
When event E3 occurs, it can be seen from the bit ♭ ∈ {0, 1}
that the ciphertext C∗

♭ constructed by the challenger B is
unrelated to the adversary A . Therefore, the probability of
event E4 occurring is at most Pr[E4] =1/2. In a real attack,
the adversary A has an advantage ε , where Pr[E4]−
(1/2)≥ ε . This also indirectly indicates that Pr[¬E3] ≥ 2ε .
The proof process of Pr[¬E3] ≥ 2ε is as follows:

From formula (14), it is known that ε ≤ |Pr[E4]−

(1/2)| ≤(1/2)Pr[¬E3] , which implies Pr[¬E3] ≥ 2ε.

Assume that the challenger B does not terminate the
game, it means that in the simulated real game pro-
cess, the adversary A has queried either

Enc









upk ,









�t
i=1 siP ·









�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p

















,T ∗
0









 or

Enc









upk ,









�t
i=1 siP ·









�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p

















,T ∗
1









  .

Therefore, Pr[¬E3] ≥ 2ε.

Claim 4  The probability of the challenger B success-
fully solving the BDH assumption in the Challenge stage
is ε/qH2.

Proof
Assuming that the events described in Claim 3 occur,
the value of one of the two possible cases of

e















cH1

�

T ∗
♭

�

,upk +















�t
i=1 siP ·















�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p





























 will be stored

in the tuple list H list
2

 . Therefore, in the Challenge phase,
the challenger B will have a probability of 1/qH2 to select

(14)

Pr[E4] = Pr[E4|E3] · Pr[E3] + Pr[E4|¬E3] · Pr[¬E3]

≤ Pr[E4|E3] · Pr[E3] + Pr[¬E3]

≤
1

2
· Pr[E3] + Pr[¬E3]

≤
1

2
+

1

2
Pr[¬E3]

Pr[E4] ≥ Pr[E4|E3] · Pr[E3]

≥
1

2
Pr[E3]

≥
1

2
−

1

2
Pr[¬E3]

the correct e













H1

�

T ∗
♭

�

,upk +













�t
i=1 siP ·













�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p





































from H list
2  . If the challenger B does not terminate the

simulation game, the probability of successfully solving
the BDH assumption is ε/qH2 . According to Claims 1
and 2, during the simulation game process, the proba-
bility that the challenger B does not terminate the game
is at least ε/eqT  . And by Claim 4, if the challenger B
does not terminate the simulation game, the probability
of successfully solving the BDH assumption is ε/qH2.

In summary, through the above security simulation game,
the probability of the challenger B successfully solving the
BDH assumption is ε/eqTqH2 . Theorem 1 is proven.

The above proof is equally applicable to the SS-
MSTRE2 scheme.

Efficiency analysis
In this section, we calculate the time consumption
of our proposed SS-MSTRE schemes and only count
the time consumption of Enc,TS_Rel and Dec algo-
rithms (the two proposed SS-MSTRE schemes are basi-
cally consistent in operation), not count costs of the
TSMO_Setup,PKG_Setup,TempKey_Extract,KeySharing ,

TS_KeyGen,User_KeyGen and US_Rel algorithms (all of
these can be done in advance and are not included in the
statistical scope). Among them, the supersingular elliptic
curve of the finite field Fp (p is a 512-bit prime number)
is defined as y2 = x3 + 1(mod p) , the prime order q is
160 bits, and the bilinear mapping adopts Tate pairs. BP
stands for bilinear pairing operation; PMec and PAec rep-
resent point multiplication and point addition operations
in group G1 ; Add , Sub , Mul and Div represent modular
addition, modular subtraction, modular multiplication,
and modular division operations in Z∗

q ; H1 represents a
hash function that maps a binary string composed of 0
and 1 of any length to an element in G1 ; H2 represents a
hash function that maps an element G2 to a binary string
composed of 0 and 1 of log2q length.

We implement the above basic operations based
on the open source large number operation function
library MIRACL in cryptography and uses the approxi-
mate ratio method relative to the PMec basic operations
to record the time consumed by other basic operations
and obtain the relative time-consuming table of basic
operations, as shown in Table 2. The running environ-
ment is Intel(R) Core(TM) i5-7500 CPU 3.40GHz pro-
cessor, 64-bit PC host, 8GB memory, and Microsoft
visual studio 2017. 987654321 is used as the random

Page 15 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

number seed, and after running the program, one PMec
operation takes about 1.5208 ms.

In the Enc algorithm, the data sender needs to complete
the following operations: two PMec and one H1 for rP and
rH1(T) , one BP and one PAec for K ′ = e(rH1(T),upk + tk)
(tk can be precalculated and is not counted here), one H2
for M ⊕H2(K

′) ; in the TS_Rel algorithm, the time server
needs to complete the following operations: one H1 and
one PMec for S(i)T = ts

(i)
priv ·H1(T) ; in the Dec algorithm,

the data receiver needs to complete the following opera-
tions: t · (t − 1)· Sub, 2t · (t − 2)· Mul, t Div, t PMec , and
(t − 1) PAec for

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

 . Addi-
tionally, one BP and one PAec for K ′ = e(X , S′T + UT) ,
and one H2 for M = Y ⊕H2(K

′).Therefore, we compare
the calculation time of the MTSTRE scheme in literature
[30] with our SS-MSTRE schemes, as shown in Table 3.

It can be seen from Table 3 that the differences in
computation time consumption between the MTS-
TRE scheme in literature [30] and our two SS-MSTRE
schemes are mainly reflected in the Enc and Dec algo-
rithms. In the Enc algorithm, the MTSTRE scheme in
literature [30] requires N PAec , while our SS-MSTRE
schemes only require one PAec ; in the Dec algorithm,
the MTSTRE scheme in literature [30] also needs N
PAec , while our SS-MSTRE schemes need to complete
t · ((t − 1) · Sub+ 2(t − 2) ·Mul+ Div+ PMec + PAec)
operations when using lagrange interpolation polyno-
mial to reconstruct the main time trapdoor. Assume that
there are m data senders in a certain application scenario.
To compare the calculation cost of the two schemes, the

calculation time of the MTSTRE scheme in the literature
[30] may be expressed as follows:

the calculation of the SS-MSTRE schemes is expressed as
follows:

Generally speaking, the value range of the secret shar-
ing threshold t belongs to the interval [⌊

N

2
⌋ + 1,N] and

the different setting of the threshold t will also affect the
computational efficiency of our schemes. We will add a
detailed application example to illustrate the case in
Application example section.

Application example
Suppose the tenderer A is conducting a bidding pro-
cess for a specific project, with the bid opening sched-
uled at “8:00 AM on March 8, 2023”. Five bidders
( B1,B2,B3,B4,B5 ) are invited to participate in the bid-
ding, and the number of time servers is set to 10. Ten-
derer A establishes a time trapdoor threshold value of t
for decrypting the submitted bids. We need to evalu-
ate the computational costs of the Enc algorithm for the
five bidders, the TS_Rel algorithm for the ten time serv-
ers, and the Dec algorithm for tenderer A to decrypt the
five bids. The resulting comparison of the computational
overhead in the sealed bidding application scenario is
shown in Table 4.

When the threshold value t is set to 6, 7, and 8, the
computation time of the proposed schemes in this paper
is 82.1954, 87.3649, and 92.5554, respectively. Although
these computational costs are higher than those of the
MTSTRE scheme proposed in reference [30], the differ-
ence is negligible from a practical application perspective.
Specifically, on an ordinary computer (such as the device
environment used in this paper), the proposed schemes
consume only an additional 0.04543(s), 0.05329(s), and
0.06119(s) compared to the MTSTRE scheme, making
the difference imperceptible at the human perception
level.

(15)

�1 = mEnct + TS_Relt +mDect

= m(0.0074N + 6.1868)+ 1.3214 +m(0.0074N + 3.8654)

(16)
�2 = mEnct + TS_Relt +mDect

= 6.1942m+ 1.3214 +m(0.0021t2 + 1.0066t + 3.8654)

Table 2  Calculation cost of related basic operations relative to
the PMec operation

Basic operation Notation Relative cost

Bilinear pairing BP 3.7870

Point multiplication in G1 PMec 1

Point addition operation in G1 PAec 0.0074

Modular addition in Z∗
q Add 0.0005

Modular subtraction in Z∗
q Sub 0.0005

Modular multiplication in Z∗
q Mul 0.0008

Modular division in Z∗
q Div 0.0029

H1 function:{0, 1}∗ → G1 H1 0.3214

H2 function:G2 → {0, 1}log2q H2 0.0784

Table 3  Comparison of time consumption between MTSTRE scheme and our SS-MSTRE schemes

Scheme Enc TS_Rel Dec Total

MTSTRE 2PMec + BP+ N · PAec + H1 + H2 PMec + H1 BP+ N · PAec + H2 0.0148N+11.3736

SS-MSTRE 2PMec + BP+ PAec + H1 + H2 PMec + H1 t · ((t − 1) · Sub+ 2(t − 2) ·Mul+ Div+ BP+ H2 + PMec + PAec) 0.0021t2 + 1.0066t + 11.3810

Page 16 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116

Conclusions
This paper proposes a multiple time servers SS-MSTRE
model based on Shamir secret sharing and presents two
secure construction schemes. Our proposed schemes
enable the receiver to recover EHR using any number
of time trapdoors greater than or equal to a predefined
threshold value when the preset decryption time arrives,
which addresses the issue of single-point failure com-
monly found in traditional multiple time servers TRE
schemes. We conduct security analysis of our schemes,
provide a semantic secure proof against adaptive CPA
based on the random oracle model, and employ the MIR-
ACL big number arithmetic library to experimentally val-
idate the efficiency of our schemes.

In future work, we will consider introducing other enti-
ties to complete the research on the TRE scheme with
time-limited update key calculation and release together
with the time server. Unlike the research idea of simply
increasing the number of time servers, we aim to design
other algorithms to construct a new encryption mecha-
nism that solves the single point of failure problem in sin-
gle time server TRE schemes.

Acknowledgements
The authors express their appreciation to the National Key Research and
Development Program, the National Natural Science Foundation of China, the
Fundamental Research Funds for the Central Universities of China, the Natural
Science Foundation of Tianjin, the Key Specialized Research and Develop-
ment Program of Henan Province, the Basic Higher Educational Key Scientific
Research Program of Henan Province, and the Innovation Training Program for
College Students of Henan province.

Authors’ contributions
Ke Yuan put forward the main idea of the schemes, conceived and designed
the experiments, analyzed the data, authored or reviewed drafts of the article,
and approved the final draft. Ziwei Cheng performed the experiments, analyzed
the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft. Keyan Chen prepared figures and tables,
authored or reviewed drafts of the article, and approved the final draft. Bozhen
Wang and Junyang Sun performed the experiments, performed the computa-
tion work, prepared figures and tables. Sufang Zhou proposed suggestions,
analyzed the data and approved the final draft. Chunfu Jia analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Funding
This work was supported by the National Key Research and Develop-
ment Program under Grant 2018YFA0704703, the National Natural Science
Foundation of China under Grant 61972073, 61972215 and 62172238, the
Fundamental Research Funds for the Central Universities of China, the Natural

Science Foundation of Tianjin under Grant 20JCZDJC00640, the Key Special-
ized Research and Development Program of Henan Province under Grant
222102210062 and 222102210007, the Henan Province Science Foundation of
Young Scholars under Grant 242300420678, the Basic Higher Educational Key
Scientific Research Program of Henan Province under Grant 22A413004, the
Innovation Training Program for College Students of Henan province under
Grant 202310475143.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The research has consent by all authors and there is no conflict.

Competing interests
The authors declare no competing interests.

Received: 27 February 2024 Accepted: 24 May 2024

References
	1.	 Shi S, He D, Li L, Kumar N, Khan MK, Choo KKR (2020) Applications of

blockchain in ensuring the security and privacy of electronic health
record systems: A survey. Comput Secur 97:101966. https://​doi.​org/​10.​
1016/j.​cose.​2020.​101966

	2.	 Liu Y, Yu W, Ai Z, Xu G, Zhao L, Tian Z (2023) A blockchain-empowered
federated learning in healthcare-based cyber physical systems. IEEE
Trans Netw Sci Eng 10(5):2685–2696. https://​doi.​org/​10.​1109/​TNSE.​
2022.​31680​25

	3.	 Keshta I, Odeh A (2021) Security and privacy of electronic health records:
Concerns and challenges. Egypt Inf J 22(2):177–183. https://​doi.​org/​10.​
1016/j.​eij.​2020.​07.​003

	4.	 Khoda Parast F, Sindhav C, Nikam S, Izadi Yekta H, Kent KB, Hakak S (2022)
Cloud computing security: A survey of service-based models. Comput
Secur 114:102580. https://​doi.​org/​10.​1016/j.​cose.​2021.​102580

	5.	 Sandhu A (2022) Big data with cloud computing: Discussions and chal-
lenges. Big Data Min Analytics 5:32–40. https://​doi.​org/​10.​26599/​BDMA.​
2021.​90200​16

	6.	 Liu Y, Zhang C, Yan Y, Zhou X, Tian Z, Zhang J (2023) A semi-centralized
trust management model based on blockchain for data exchange in iot
system. IEEE Trans Serv Comput 16(2):858–871. https://​doi.​org/​10.​1109/​
TSC.​2022.​31816​68

	7.	 May T (1992) Timed-release crypto. http://​www.​hks.​net.​cpunks/​cpunks-​0/​
1560.​html. Accessed 2 Mar 2022

	8.	 Cheon JH, Hopper N, Kim Y, Osipkov I (2008) Provably secure timed-
release public key encryption. ACM Trans Inf Syst Secur 11(2). https://​doi.​
org/​10.​1145/​13303​32.​13303​36

	9.	 Baird L, Mukherjee P, Sinha R (2022) i-tire: Incremental timed-release
encryption or how to use timed-release encryption on blockchains? pp
235–248. https://​doi.​org/​10.​1145/​35486​06.​35607​04

	10.	 Rivest RL, Shamir A, Wagner DA (1996) Time-lock puzzles and timed-
release crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute
of Technology (MIT). http://​people.​csail.​mit.​edu/​rivest/​pubs/​RSW96.​pdf

	11.	 Mahmoody M, Moran T, Vadhan SP (2011) Time-lock puzzles in
the random oracle model. In: Advances in Cryptology-crypto-
Cryptology Conference, vol 6841. pp 39–50. https://​doi.​org/​10.​1007/​
978-3-​642-​22792-9_3

	12.	 Bitansky N, Goldwasser S, Jain A, Paneth O, Vaikuntanathan V, Waters B
(2016) Time-lock puzzles from randomized encodings. In: Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer
Science. ITCS ’16. Association for Computing Machinery, New York, pp
345–356. https://​doi.​org/​10.​1145/​28407​28.​28407​45

Table 4  Comparison of time consumption in sealed bidding
application scenario

Scheme Enc TS_Rel Dec Total

MTSTRE 31.304 1.3214 19.6970 52.3224

SS-MSTRE(t = 6) 30.9710 1.3214 49.9030 82.1954

SS-MSTRE(t = 7) 30.9710 1.3214 55.0725 87.3649

SS-MSTRE(t = 8) 30.9710 1.3214 60.2630 92.5554

https://doi.org/10.1016/j.cose.2020.101966
https://doi.org/10.1016/j.cose.2020.101966
https://doi.org/10.1109/TNSE.2022.3168025
https://doi.org/10.1109/TNSE.2022.3168025
https://doi.org/10.1016/j.eij.2020.07.003
https://doi.org/10.1016/j.eij.2020.07.003
https://doi.org/10.1016/j.cose.2021.102580
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.1109/TSC.2022.3181668
https://doi.org/10.1109/TSC.2022.3181668
http://www.hks.net.cpunks/cpunks-0/1560.html
http://www.hks.net.cpunks/cpunks-0/1560.html
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1145/3548606.3560704
http://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1145/2840728.2840745

Page 17 of 17Yuan et al. Journal of Cloud Computing (2024) 13:116 	

	13.	 Liu J, Jager T, Kakvi SA, Warinschi B (2018) How to build time-lock encryp-
tion. Des Codes Crytography 86:2549–2586. https://​doi.​org/​10.​1007/​
s10623-​018-​0461-x

	14.	 Lai WJ, Hsueh CW, Wu JL (2019) A fully decentralized time-lock encryp-
tion system on blockchain. In: 2019 IEEE International Conference on
Blockchain (Blockchain). pp 302–307. https://​doi.​org/​10.​1109/​Block​chain.​
2019.​00047

	15.	 Hiraga D, Hara K, Tezuka M, Yoshida Y, Tanaka K (2021) Security definitions
on time-lock puzzles. In: Hong D (ed) Information Security and Cryptol-
ogy – ICISC 2020, vol 12593. Springer International Publishing, Cham, pp
3–15. https://​doi.​org/​10.​1007/​978-3-​030-​68890-5_1

	16.	 Chvojka P, Jager T, Slamanig D, Striecks C (2021) Versatile and sustainable
timed-release encryption and sequential time-lock puzzles (extended
abstract), vol 12973. Springer, Cham, pp 64–85. https://​doi.​org/​10.​1007/​
978-3-​030-​88428-4_4

	17.	 Chan ACF, Blake IF (2005) Scalable, server-passive, user-anonymous timed
release cryptography. pp 504–513. https://​doi.​org/​10.​1109/​ICDCS.​2005.​72

	18.	 Hwang YH, Yum DH, Lee PJ (2005) Timed-release encryption with pre-
open capability and its application to certified e-mail system. In: Proceed-
ings of the 8th International Conference on Information Security, ISC’05.
Springer-Verlag, Berlin, pp 344–358. https://​doi.​org/​10.​1007/​11556​992_​25

	19.	 Hristu-Varsakelis D, Chalkias K, Stephanides G (2008) A versatile secure
protocol for anonymous timed-release encryption. J Inf Assur Secur
2:80–88

	20.	 Choi G, Vaudenay S (2019) Timed-release encryption with master time
bound key. In: Information Security Applications: 20th International Con-
ference, WISA 2019, Jeju Island, South Korea, August 21-24, 2019, Revised
Selected Papers, vol 11897. Springer-Verlag, Berlin, pp 167–179. https://​
doi.​org/​10.​1007/​978-3-​030-​39303-8_​13

	21.	 Namasudra S (2019) An improved attribute-based encryption technique
towards the data security in cloud computing. Concurr Comput Pract
Experience 31:4364–4364. https://​doi.​org/​10.​1007/​978-3-​030-​39303-8_​13

	22.	 Yuan K, Wang Y, Zeng Y, Ouyang W, Li Z, Jia C, Peng H (2021) Provably
secure security-enhanced timed-release encryption in the random oracle
model. Sec Commun Netw 2021. https://​doi.​org/​10.​1155/​2021/​55933​63

	23.	 Yuan K, Cao H, Zhang S, Zhai C, Du X, Jia C (2023) A tamper-resistant
timed secure data transmission protocol based on smart contract. Sci
Rep 13:11510–11520. https://​doi.​org/​10.​1038/​s41598-​023-​38136-3

	24.	 Yuan K, Wang Z, Chen K, Zhou B, Li Z, Jia C (2024) Timed-release encryp-
tion anonymous interaction protocol based on smart contract 13(1):3–14.
https://​doi.​org/​10.​1186/​s13677-​023-​00536-1

	25.	 Liu J, Garcia F, Ryan M (2015) Time-release protocol from bitcoin and wit-
ness encryption for sat. Korean Circ J 40:530–535

	26.	 Li C, Palanisamy B (2018) "Decentralized Release of Self-Emerging Data
using Smart Contracts," 2018 IEEE 37th Symposium on Reliable Distrib-
uted Systems (SRDS), Salvador, Brazil, pp. 213–220. https://​doi.​org/​10.​
1109/​SRDS.​2018.​00033

	27.	 Unruh D (2015) Revocable quantum timed-release encryption. J ACM
62(6). https://​doi.​org/​10.​1145/​28172​06

	28.	 Chae SW, Kim JI, Park Y (2020) Practical time-release blockchain. Electron-
ics 9(4):672–688. https://​doi.​org/​10.​3390/​elect​ronic​s9040​672

	29.	 Malavolta G, Thyagarajan SAK (2019) Homomorphic time-lock puzzles
and applications. In: Boldyreva A, Micciancio D (eds) Advances in Cryptol-
ogy - CRYPTO 2019, vol 11692. Springer International Publishing, Cham,
pp 620–649

	30.	 Yuan K, Cheng Z, Yang L, Yan Y, Jia C, He Y (2022) Research on timed-
release encryption system based on multiple time servers. J Electron Inf
Technol 44(12):4319–4327. https://​doi.​org/​10.​11999/​JEIT2​11066

	31.	 Shamir A (1979) How to share a secret. Commun ACM 22:612–613
	32.	 Beimel A (2011) Secret-sharing schemes: A survey. In: Chee YM, Guo

Z, Ling S, Shao F, Tang Y, Wang H, Xing C (eds) Coding and Cryptology.
Springer Berlin Heidelberg, Berlin, pp 11–46

	33.	 Porwal S, Mittal S (2021) A novel threshold secret sharing scheme for
cp-abe: A secret sharing approach for cp-abe. In: Proceedings of the 2021
Thirteenth International Conference on Contemporary Computing, IC3-
2021. Association for Computing Machinery, New York, pp 92–98. https://​
doi.​org/​10.​1145/​34741​24.​34741​37

	34.	 Al-Shaarani F, Gutub AAA (2021) Increasing participants using
counting-based secret sharing via involving matrices and practical
steganography. Arab J Sci Eng 47:2455–2477. https://​doi.​org/​10.​1007/​
s13369-​021-​06165-7

	35.	 Liu Y, Zhang Y, Su S, Zhang L, Du X, Guizani M, Tian Z (2024) Blocksc: A
blockchain empowered spatial crowdsourcing service in metaverse while
preserving user location privacy. IEEE J Sel Areas Commun 42(4):880–892.
https://​doi.​org/​10.​1109/​JSAC.​2023.​33454​16

	36.	 Joux A (2002) The weil and tate pairings as building blocks for public key
cryptosystems. In: Proceedings of the 5th International Symposium on
Algorithmic Number Theory, ANTS-V. Springer-Verlag, Berlin, pp 20–32

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1109/Blockchain.2019.00047
https://doi.org/10.1109/Blockchain.2019.00047
https://doi.org/10.1007/978-3-030-68890-5_1
https://doi.org/10.1007/978-3-030-88428-4_4
https://doi.org/10.1007/978-3-030-88428-4_4
https://doi.org/10.1109/ICDCS.2005.72
https://doi.org/10.1007/11556992_25
https://doi.org/10.1007/978-3-030-39303-8_13
https://doi.org/10.1007/978-3-030-39303-8_13
https://doi.org/10.1007/978-3-030-39303-8_13
https://doi.org/10.1155/2021/5593363
https://doi.org/10.1038/s41598-023-38136-3
https://doi.org/10.1186/s13677-023-00536-1
https://doi.org/10.1109/SRDS.2018.00033
https://doi.org/10.1109/SRDS.2018.00033
https://doi.org/10.1145/2817206
https://doi.org/10.3390/electronics9040672
https://doi.org/10.11999/JEIT211066
https://doi.org/10.1145/3474124.3474137
https://doi.org/10.1145/3474124.3474137
https://doi.org/10.1007/s13369-021-06165-7
https://doi.org/10.1007/s13369-021-06165-7
https://doi.org/10.1109/JSAC.2023.3345416

	Multiple time servers timed-release encryption based on Shamir secret sharing for EHR cloud system
	Abstract
	Introduction
	Related work
	Our contributions

	Preliminary
	Key notations
	Bilinear pairing
	BDH assumption
	Shamir secret sharing
	Identity-based encryption

	System and security model
	System model
	Security model

	Algorithm definition
	Concrete schemes of SS-MSTRE
	Construction of
	Construction of

	Security and efficiency analysis
	Security analysis
	Efficiency analysis
	Application example

	Conclusions
	Acknowledgements
	References

