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Abstract 

Electronic health record (EHR) cloud system, as a primary tool driving the informatization of medical data, have 
positively impacted both doctors and patients by providing accurate and complete patient information. However, 
ensuring the security of EHR cloud system remains a critical issue. Some patients require regular remote medical 
services, and controlling access to medical data involving patient privacy during specific times is essential. Timed-
release encryption (TRE) technology enables the sender to preset a future time T at which the data can be decrypted 
and accessed. It is a cryptographic primitive with time-dependent properties. Currently, mainstream TRE schemes 
are based on non-interactive single time server methods. However, if the single time server is attacked or corrupted, 
it is easy to directly threaten the security applications of TRE. Although some research schemes “distribute” the single 
time server into multiple ones, they still cannot resist the single point of failure problem. To address this issue, we 
propose a multiple time servers TRE scheme based on Shamir secret sharing and another variant derived from it. In 
our proposed schemes, the data receiver does not need to interact with the time servers; instead, they only need 
to obtain the time trapdoors that exceed or equal the preset threshold value for decryption, which ensures the iden-
tity privacy of the data sender and tolerates partial downtime or other failures of some time servers, significantly 
improving TRE reliability. Security analysis indicates that our proposed schemes demonstrate data confidentiality, veri-
fiability, anti-advance decryption, and robust decryption with multiple time trapdoors, making them more practical. 
Efficiency analysis indicates that although our schemes have slightly higher computational costs than most efficient 
existing TRE schemes, such differences are insignificant from a practical application perspective.

Keywords  Timed-release encryption, Multiple time servers, Shamir secret sharing, Provable security, Electronic health 
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Introduction
With the advent of the information age, healthcare insti-
tutions are rapidly evolving towards informatization, giv-
ing rise to electronic health record (EHR) cloud system 

[1]. EHR cloud system significantly enhances produc-
tivity in resource sharing, providing robust support 
for healthcare professionals. Including comprehensive 
patient information, EHR cloud system enables medical 
teams to have a more holistic understanding of patients’ 
medical history, facilitating in-depth assessments and 
faster diagnoses. By digitizing and centrally managing 
patient medical information, healthcare personnel can 
easily access necessary data to support decision-making 
and the execution of medical plans [2, 3].

Cloud computing, a computing paradigm based on 
the internet, plays a crucial role in healthcare data 
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management by providing secure and reliable solutions 
for storing and processing large-scale medical data [4–6]. 
Cloud computing facilitates rapid access, sharing, and 
analysis of medical data, offering comprehensive support 
for healthcare decision-making. Additionally, the elas-
tic and automated features of cloud computing enable 
healthcare institutions to adjust resources according to 
needs, improving data management efficiency and foster-
ing innovation in medical research and patient care.

Despite the flexibility and efficiency brought by cloud 
computing to healthcare data management, security 
remains a critical concern. Particularly in the handling 
of patient privacy data, cloud storage, and access services 
may pose risks of data leakage, leading to the unauthor-
ized disclosure of sensitive patient information [5]. For 
example, in the case of patients with chronic diseases 
like diabetes, who regularly upload data through remote 
monitoring devices, there is a potential for unauthorized 
data access if this physiological data is stored on a EHR 
cloud system. In such scenarios, a cryptographic tech-
nology that can control the decryption time becomes a 
key technology to ensure patient privacy. Timed-release 
encryption (TRE) allows users to preset decryption time, 
and access is only permitted after the decryption time, 
effectively preventing unauthorized privacy infringe-
ments. For instance, a medical cloud system could use 
a multiple time servers scheme to encrypt the physi-
ological data of each patient and set a specific decryption 
time. At the designated weekly decryption time, doctors 
can decrypt and analyze the patient’s physiological data 
for regular remote assessments. This periodic assessment 
helps doctors better understand the patient’s health con-
dition. Such a security measure not only provides more 
reliable privacy protection for patients but also ensures 
the security of sensitive medical data on the EHR cloud 
system.

The setting of specific decryption time is not just for 
security; it is based on a series of reasonable consid-
erations. Firstly, it helps prevent patients from exces-
sive anxiety, as they know that doctors will only review 
the data in the specific time, allowing them to focus on 
daily life during this period and alleviate unnecessary 
worries. Secondly, this method encourages patients to 
actively participate in their health management, show-
casing better physiological data. Moreover, it avoids pre-
mature intervention in medical decisions, ensuring that 
doctors make accurate medical decisions with sufficiently 
stable data. Lastly, this security measure simultaneously 
upholds patient privacy rights by limiting access to data, 
reducing the risk of data misuse or improper use, and 
providing more reliable privacy protection for patients. 
This periodic assessment not only helps doctors bet-
ter understand the patient’s health condition but also 

ensures the security of sensitive medical data on the EHR 
cloud system while safeguarding patient privacy.

Therefore, TRE with specific decryption times is cru-
cial in medical practice, not only ensuring security but 
also promoting the patient recovery process, becoming 
an important and meaningful component of medical 
data management. This paper aims to propose a multiple 
time servers TRE scheme based on Shamir secret sharing 
for EHR cloud system. The data receiver only needs to 
obtain time trapdoors published by time servers exceed-
ing or equal to the threshold value. This ensures that the 
decryption process can be completed even in the event 
of time server failures or other faults, enhancing the sys-
tem’s fault tolerance and the reliability of data decryption.

Related work
TRE [7, 8] is a cryptographic primitive that can control 
the decryption time. Its core idea is to introduce the 
time factor into the general encryption scheme so that 
the receiver can only decrypt the ciphertext at a speci-
fied time in the future. TRE is suitable for solving many 
time-dependent real-world and virtual applications, such 
as sealed bidding, timed release of electronic documents, 
and electronic voting blockchain applications [9], etc.

The TRE technology was first proposed in May [7]. In 
1996, Rivest et  al. [10] proposed two foundational TRE 
construction schemes: one based on time-lock puz-
zles (TLP) that relies on the factorization problem and 
another involving sender-proxy interactions for time and 
message release. These laid the theoretical foundation for 
sustained research in the field of TRE. Currently, TRE 
construction schemes include TLP methods [11–16], 
proxy methods [17–22], and other methods [23–29]. In 
the TLP-based TRE schemes, the decryption key is hid-
den in a mathematical formula. After the sender sends 
the ciphertext, the receiver needs to perform a large num-
ber of calculations. Among the TRE schemes based on 
other methods (network methods, quantum methods), 
for example, Unruh et  al. [27] achieved revocable TRE 
based on quantum cryptography without trusted parties. 
Li et al. [26] explored a timed-release data scheme based 
on the blockchain network’s smart contracts, recruiting 
several network nodes as middlemen (each middleman 
needs to pay a deposit) to send decryption keys to receiv-
ers at specified decryption time T. Chae et al. [28] pro-
posed a timed-release blockchain scheme that combines 
blockchain PoW algorithms with TLP algorithms. Com-
pared with schemes proposed by Liu et al. [25] and Mala-
volta et al. [29], it employs standard encryption without 
requiring additional computational work, and its feasibil-
ity has been evaluated in an electronic voting application 
system.
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Currently, most TRE schemes are constructed based 
on the time server approach. Depending on whether 
the receiver needs to interact with the time server, they 
can be divided into interactive and non-interactive time 
server modes. The former requires users to interact 
with the time server, which cannot guarantee user ano-
nymity and may easily lead to denial-of-service attacks 
causing system paralysis, thus limiting the scalability of 
the scheme. In contrast, in TRE schemes constructed 
using the latter approach, the time server does not need 
to interact with users and may even be unaware of their 
existence. It only needs to calculate and broadcast a short 
signature-formatted time trapdoor at a specified time, 
ensuring the anonymity of user information and better 
scalability. Researchers have attempted to construct mul-
tiple time servers TRE schemes to prevent single-point 
attacks or corruption by attackers to reduce the risk of 
attackers breaking the entire TRE model. In 2021, Yuan 
et al. [30] proposed a non-interactive multiple time serv-
ers TRE scheme (MTSTRE scheme), which is the most 
efficient multiple time servers scheme. However, if one of 
the time servers fails, the data receiver will fail to decrypt 
the data normally at the specified time T. Therefore, this 
scheme has some defects in practicability.

Secret sharing techniques [31–34] can split a secret 
into multiple secret shares, allowing partial secret shares 
to reconstruct the complete secret. By appropriately uti-
lizing this technology, this paper integrates the Shamir 
secret sharing technique into the MTSTRE scheme and 
designs a non-interactive TRE model for multiple time 
servers based on secret sharing (SS-MSTRE). This model 
allows for partial time trapdoor failure while still ena-
bling data receivers to decrypt promptly, thus improving 
practicality.

Our contributions
We address the issue of the single point of failure prob-
lem in plain multiple time servers TRE schemes and 
propose a more practical SS-MSTRE scheme. Our main 
contributions are as follows:

•	 We migrate the Shamir secret sharing technique 
from prime fields to elliptic curve groups, enabling its 
use in cryptographic scheme constructions based on 
bilinear pairing-related hard problems.

•	 We integrate Shamir secret sharing over elliptic 
curve groups into the construction of multiple time 
servers TRE cryptographic schemes, designing a 
more practical SS-MSTRE model and constructing 
a provably secure concrete scheme and its variants. 
When the specified decryption time arrives, even if 
some time trapdoors fail, the data receiver can still 
decrypt the ciphertext on time using time trapdoors 

exceeding or equal to the threshold. In addition, it 
increases the cost of attacking or bribing the time 
server to decrypt the data received by the receiver or 
attacker in advance.

•	 We employ identity-based encryption (IBE) technol-
ogy to encrypt key shares to ensure secure and highly 
efficient distribution and transmission of key shares.

•	 In real-world scenarios, there may be situations 
where the time server management organization 
is not trusted. If the private key of the time server 
management organization is compromised, it could 
lead to obtaining the master time trapdoor, allowing 
for premature decryption of ciphertexts. Therefore, 
the key shares provided directly by the time server 
management organization cannot be used as the 
time server’s private key. So, we further propose the 
SS-MSTRE2 scheme. In the SS-MSTRE2 scheme, the 
time server’s private key is jointly generated by the 
time server management organization and a random 
number, thus enhancing the security of the scheme.

Preliminary
In this section, we present the key notations involved in 
our schemes and briefly review the basic content of bilin-
ear pairing, bilinear Diffie-Hellman (BDH) assumption, 
Shamir secret sharing algorithm, and the identity-based 
encryption scheme.

Key notations
For the convenience of understanding, we have given the 
key notations used in our schemes in Table 1.

Bilinear pairing
We give a form of bilinear pair and its properties, as 
follows.

Definition 1  Suppose G1 is an elliptic curve discrete 
logarithmic problem(ECDLP) additive group over a finite 
field, G2 is a discrete logarithmic problem(DLP) multipli-
cative group over a finite field, and the order of G1 and 
G2 is a prime number q. Using the bilinear pairing tech-
nique, the ECDLP additive group over a finite field can 
be reduced to the DLP multiplicative group over a finite 
field. The bilinear map is e : G1 × G1 −→ G2 , satisfying 
the following properties: 

(1)	 Bilinear. For any P,Q,R ∈ G1 , there are 

(1)
e(P + Q,R) = e(P,R)e(Q,R)

e(P,Q + R) = e(P,Q)e(P,R)
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(2)	 Nondegeneracy. If g is a generator of G1 , then e(g, g) 
is a generator of G2.

(3)	 Computability. For any P,Q ∈ G1 , there is an effec-
tive algorithm to calculate e(P, Q).

From the above properties, we can further deduce 
the property that the coefficients of bilinear pair ele-
ments can move freely, that is, e(aP, bQ) = e(abP,Q) =

e(p, abQ) = e(bP, aQ) = e(P,Q)ab . Admissible bilinear 
pairings can be constructed via the Weil and Tate pair-
ings [35, 36].

BDH assumption
The bilinear Diffie-Hellman (BDH) assumption plays a 
crucial role in the design of TRE schemes.

Definition 2  Given P, aP, bP, cP ∈ G1 , where a, b, c ∈ Z
∗
p 

are unknown, the goal is to calculate e(P,P)abc , where e is 
a bilinear mapping and P is a generator of G1 as defined in 
Definition 1.

If Pr[A(P, aP, bP, cP) = e(P,P)abc] ≥ ε , then the advan-
tage of the adversary A to overcome the BDH assumption 
is ε , and ε is negligible.

Shamir secret sharing
Our schemes use the Shamir secret sharing algorithm to 
deal with the failure of partial time trapdoors when the 
specified decryption time comes. In the following, we 
give the basic flow of Shamir secret sharing algorithm 
and the definition of its access structure. 

(1)	 Protocol initialization algorithm . The distributor of 
confidential information randomly selects n differ-
ent non-zero elements x1, x2, x3, ..., xn from the finite 
field GF(p) as the unique identification numbers 
corresponding to n participants Pi (i = 1, 2, ..., n) , p 
is prime and p ≫ n.

(2)	 Secret distribution algorithm . The distributor selects 
the secrets to be distributed, randomly selects (t − 1) 
elements a1, a2, ..., at−1 from the finite field GF(p), 
and constructs the secret sharing polynomial 

f (x) = s +
t−1

i=1

aix
i mod p , calculates si = f (xi) 

and sends it to the corresponding participant pi
(i = 1, 2, ..., n ) as a secret share.

(3)	 Secret reconstruction algorithm . If any t of n participants 
shows their secret shares (x1, s1), (x2, s2), · · · , (xt , st) , 
the Lagrange interpolation polynomial can be recon-
structed as follows: 

Table 1  Key notations

Symbol Description

EHR Electronic health record

TRE Timed-release encryption

T Preset decryption time by the data 
sender

t The preset threshold value

SS-MSTRE A non-interactive TRE model 
for multiple time servers based 
on secret sharing

IBE Identity-based encryption

C The ciphertext

M The plaintext

k The security parameter during sys-
tem initialization

� The security parameter during pri-
vate key generator initialization

sk The time server management 
organization’s private key

paramstsmo The time server management 
organization’s system parameters

p,p Prime orders

G1,G1 ECDLP additive groups

G2,G2 DLP multiplicative groups

P,P Random generators

e, e Bilinear mappings

n The length of the message

H1,H2,H1,H2,H3,H4 Secure hash functions

MSK The private key generator’s secret 
key

MPK The private key generator’s public 
key

paramspkg The private key generator’s system 
parameters

IDs N time servers’s identity identifiers

TSi The ith time server

temp
(i)
priv

The time server TSi ’s temporary 
private key

temp
(i)
pub

The time server TSi ’s temporary 
public key

ts
(i)
priv

The time server TSi ’s private key

ts
(i)
pub

The time server TSi ’s public key

usk The data receiver’s private key

upk The data receiver’s public key

tinstance Time instance

S
(i)
T

The time trapdoor generated 
by the ith time server TSi

UT The time trapdoor calculated 
by the data receiver

Xs The corresponding set of identifica-
tion numbers for the time servers
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where 

and the secret s = L(0) can be calculated.

Definition 3  Access structure. Suppose the set of n 
participants is P = {pi|i = 1, 2, ..., n} and Ŵ is an access 
structure on set P, where Ŵ ⊆ 2|p| , 2|p| represents all sets 
of non-empty subsets on set P, satisfying the following 
properties.

① If A ∈ Ŵ , A ⊆ B ⊆ Ŵ , then B ∈ Ŵ.
② Participants in set Ŵ can reconstruct the secret.

Identity‑based encryption
We use identity-based encryption (IBE) technology to 
ensure the security of key shares during transmission 
between different devices and to provide verifiable attrib-
utes for these key shares. Compared to other encryption 
methods, IBE significantly simplifies key management 
operations. Its advantages include the elimination of 
the need to associate public keys with extensive public 
key infrastructure (PKI), no requirement for digital cer-
tificates, no reliance on online certificate authority (CA), 
reduced key lengths, and enhanced security.

Definition 4  ξIBE={IBE.Setup, IBE.Extract, IBE.Encrypt, 
IBE.Decrypt}. The IBE.Encrypt algorithm and the IBE. 
The decrypt algorithm satisfies the consistency constraint. 
Namely, given any plaintext M, ciphertext C can be obtained 
by IBE.Encrypt algorithm, and we can also decrypt and 
recover plaintext M by IBE.Decrypt algorithm.

IBE.Setup(1k) . Given a security parameter 1k , this 
algorithm outputs public parameters PP and the master 
secret key mk.

IBE.Extract (PP,  mk,  ID). Given a unique identifier 
ID ∈ {0, 1}∗ that can distinguish user identity informa-
tion, the master key mk, and the public parameters PP, 
this algorithm outputs the corresponding private key dID.

(2)
L(x) = s1

(x − x2)(x − x3) · · · (x − xt)

(x1 − x2)(x1 − x3) · · · (x1 − xt)
+ s2

(x − x1)(x − x3) · · · (x − xt)

(x2 − x1)(x2 − x3) · · · (x2 − xt)
+ · · ·

+ st
(x − x1)(x − x2) · · · (x − xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)
=

t
∑

i=1

siδi(x)mod p

(3)
δi(x) =

∏

1 ≤ j ≤ t
j �= i

x − xj

xi − xj

IBE.Encrypt (PP,  ID,  M). Given plaintext M, public 
parameters PP, and an identifier ID that can distinguish 
user identity information, this algorithm outputs the cor-
responding ciphertext C.
IBE.Decrypt(PP,C , dID) . Given ciphertext C, public 

parameters PP, and the user’s private key dID , this algo-
rithm outputs the corresponding plaintext M.

System and security model
System model
The design goal of the proposed schemes is that the 
receiver can decrypt the ciphertext C normally at the 
decryption time specified by the sender. In this section, 
we introduce a common time server management organ-
ization to the system and further present our TRE system 
model based on Shamir secret sharing, as shown in Fig. 1. 
The system consists of five entities: the time server man-
agement organization, N time servers, the private key 
generator, the data sender, and the data receiver.

Time server management organization. The time 
server management organization is a fully trusted entity 
in the SS-MSTRE1 scheme, while it is a semi-trusted 
entity in the SS-MSTRE2 scheme. It is responsible for 
generating system parameters to initialize the system 
and using the Shamir secret sharing algorithm to gener-
ate key shares of N time servers. Simultaneously, utilizing 
the IBE.Encrypt algorithm defined in Definition 4, sends 
the key shares to the corresponding time servers as their 
respective private keys.
N  time servers. N time servers are semi-trusted enti-

ties responsible for providing an accurate time reference 
to the data receiver. In the proposed schemes, there is no 
need for interaction between N time servers and the data 
receiver, and they are responsible for broadcasting time 
trapdoors at a fixed frequency, such as every five minutes.

Private key generator. The private key generator is 
trusted for all N time servers. It is responsible for cor-
rectly executing each calculational task for every time 
server, including using the IBE.Extract the algorithm 
defined in Definition 4 to generate temporary public-pri-
vate key pairs for N time servers. These temporary keys 
are used for data transmission between the time servers 
and the time server management organization.

Data sender. The data sender is a user who wishes 
the encrypted data to be decrypted at a specified time 
and is responsible for specifying the decryption time T, 
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encrypting the plaintext M, and sending the ciphertext 
(C, T) to the data receiver.

Data receiver. The data receiver is a user who can only 
decrypt C at a specified time T by the data sender. To com-
plete decryption, they must select at least t valid time trap-
doors from multiple servers’ published time trapdoors.

Security model
In this paper, we make the following assumptions: 

(1)	 The private key generator is entirely trustworthy 
and can accurately perform computational tasks for 
each time server.

(2)	 The system has sufficient time servers operating nor-
mally to ensure that decryption can proceed normally.

(3)	 N time servers are honest but curious, meaning 
that they will follow the rules for providing ser-
vices. However, they may save the input and output 
results to infer information related to decrypting 
the ciphertext sent by the sender.

The proposed schemes possess data confidentiality, veri-
fiability, anti-advance decryption, and robust decryption 
with multiple time trapdoors. We will provide a detailed 
analysis in Security analysis section. 

(1)	 Data confidentiality. It should be ensured that 
attackers cannot illegally analyze the key informa-

tion required for decrypting the ciphertext before 
the specified decryption time T.

(2)	 Verifiability. It should use some algorithms or 
methods to verify the validity and correctness of 
intermediate data to detect any tampering with the 
intermediate data.

(3)	 Anti-advance decryption. It should prevent dishon-
est receivers from decrypting EHR before the speci-
fied decryption time.

(4)	 Robust decryption with multiple time trapdoors. 
It should be ensured that even if some time serv-
ers fail or are attacked, the data receiver can still use 
other sufficient time trapdoors for decryption.

Algorithm definition

Definition 5  Our non-interactive SS-MSTRE system 
includes five entities: the time server management organ-
ization, N time servers, the private key generator PKG, 
the data sender, the data receiver, and algorithm 10-tuple 
ESS−MSTRE = {TSMO_Setup,PKG_Setup,TempKey_Extract,

KeySharing ,TS_KeyGen,User_KeyGen,Enc,TS_Rel,US_Rel,Dec}.

TSMO_Setup(k). It is a probabilistic initialization algo-
rithm. Given a security parameter k, this algorithm out-
puts the private key sk of the time server management 
organization and the system parameters paramstsmo.

Fig. 1  SS-MSTRE system
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PKG_Setup(�). Given a security parameter � , this algo-
rithm outputs the master secret key MSK, the public key 
MPK, and the system parameters paramspkg of the pri-
vate key generator.
TempKey_Extract(IDs, paramspkg,MSK ). Given a set of 

identity identifiers for N time servers IDs, the private key 
generator’s system parameters paramspkg , and the pri-
vate key generator’s secret key MSK, this algorithm out-
puts a temporary public-private key pairs set temp for N 
time servers.
KeySharing(sk , temp,MPK , paramspkg). Given the pub-

lic key sk of the time server management organization, 
a temporary public-private key pairs set temp of N time 
servers, the public key MPK of the private key genera-
tor, and the system parameters paramspkg , this algorithm 
outputs N key share ciphertexts {C1,C2, . . . ,CN }.
TS_KeyGen

(

Ci, temp
(i)
priv , paramspkg, paramstsmo

)

. 
Given the key share ciphertext Ci corresponding to the 
time server TSi , the temporary private key temp

(i)
priv of the 

time server TSi , the private key generator’s system param-
eters paramspkg , and system parameters paramstsmo , this 
algorithm outputs the public key ts(i)pub and private key 
ts
(i)
priv of the time server TSi.
User_KeyGen(paramstsmo). This is a probabilistic algo-

rithm for key generation. Given the system parameters 
paramstsmo , this algorithm outputs the data receiver’s 
private key usk and public key upk.
Enc

(

M,upk , ts
(i)
pub(i = 1, 2, ...,N ),T , paramstsmo

)

 . This 
is a probabilistic encryption algorithm. Given an EHR 
record M, receiver’s public key upk, time servers’ public 
key ts(i)pub(i = 1, 2, ...,N ) , decryption time T specified by 
the data sender, and system parameters paramstsmo , this 
algorithm outputs the ciphertext C.
TS_Rel

(

ts
(i)
priv , tinstance, paramstsmo

)

. This is a probabil-
istic algorithm for generating time trapdoors. Given the 
time server TSi ’s private key ts(i)priv , time instance tinstance , 
and system parameters paramstsmo , this algorithm out-
puts the corresponding time trapdoor S(i)T .
US_Rel(usk ,T , paramstsmo). This is a probabilistic 

algorithm for generating the user’s time trapdoor. Given 
the data receiver’s private key usk, specified decryption 
time T, and system parameters paramstsmo , this algo-
rithm outputs the time trapdoor UT of the data receiver.
Dec(C , STs,Xs,T ,UT , paramstsmo). This is a determin-

istic algorithm for joint decryption. Given the cipher-
text C, the set of effective time trapdoors STs chosen 
by the data receiver, the set of identification numbers 
Xs corresponding to time servers, specified decryption 
time T, the data receiver’s time trapdoor UT  , and sys-
tem parameters paramstsmo , this algorithm outputs the 
plaintext M or ⊥.

Concrete schemes of SS‑MSTRE
This section constructs two concrete SS-MSTRE schemes 
based on whether the time server management organization 
is trusted: SS-MSTRE1 and SS-MSTRE2 . In SS-MSTRE1 , 
we assume that the time server management organization 
is trusted. In SS-MSTRE2 , we assume that the time server 
management organization is semi-trusted.

Construction of SS-MSTRE1

Our non-interactive SS-MSTRE1 works as follows: 

	 (1)	 (paramstsmo, sk) ← TSMO_Setup(k) . The time server 
management organization runs the TSMO_Setup 
algorithm to generate the system initialization 
parameters. The time server management organi-
zation selects the security parameter k and per-
forms the following operations:

① Selects a prime order p, G1 and G2 are a p-order 
ECDLP additive group and DLP multiplicative 
group respectively.
② Selects a random generator P ∈ G1.
③ Selects a bilinear mapping e : G1 × G1 → G2 
satisfies Definition 1.
④ Select two secure hash functions: H1:{0, 1}∗ → G1 
and H2:G2 → {0, 1}n , where n represents the length 
of the message.
⑤ Selects a random number s ∈ Z∗

p as its private 
key sk = s ∈ Z∗

p .
⑥ Defines a threshold value t.
⑦ Outputs the system parameters paramstsmo = 
{p,P,G1,G2, e,H1,H2, n, t} and the private key sk.

	 (2)	 (paramspkg,MPK ,MSK ) ← PKG_Setup(�). The 
private key generator runs the PKG_Setup algo-
rithm to generate its initialization parameters. The 
private key generator selects the security param-
eter � and performs the following operations:

① Selects a prime order p , G1 and G2 are a p-
order ECDLP additive group and DLP multiplica-
tive group respectively.
② Selects a random generator P ∈ G1.
③ Selects a bilinear mapping e : G1 ×G1 → G2 
satisfies Definition 1.
④ Selects four secure hash functions: H1:{0, 1}∗ → G1 , 
H2:G2 → {0, 1}n , H3:{0, 1}n × {0, 1}n → Z∗

p , H4:{0, 1}n → {0, 1}n.
⑤ Selects a random number a ∈ Z∗

p as its master 
secret key MSK = a ∈ Z∗

p and calculates its mas-
ter public key MPK = aP.
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⑥ Outputs the private key generator’s system 
parameters paramspkg = {G1,G2,n,p, e,P,H1,H2,H3,H4,MPK } 
and the master secret key MSK.

	 (3)	 temp ← TempKey_Extract(IDs, paramspkg,MSK ) . The 
private key generator runs the TempKey_Extract 
algorithm to generate a set of temporary public-
private key pairs for N time servers. The follow-
ing steps are required:

① Calculates the set of temporary public-private 
key pairs temp =

{

temp
(i)
pub, temp

(i)
priv

}

i=1,2,..,N
 for 

N time servers using their identity identifier set 
IDs = {ID1, ID2, ..., IDN } , where temp

(i)
priv = MSK ·H1(IDi) = aH1(IDi) , 

temp
(i)
pub = H1(IDi) , IDi ∈ IDs.

	 (4)	 (C1,C2, ...,CN ) ← KeySharing(sk , temp,MPK , paramspkg)   . 
The time server management organization runs the 
KeySharing algorithm to generate secret key shares 
for N time servers. The following steps are required:

① The time server management organization selects 
secret sharing polynomial coefficients a1, a2, a3, . . . , at−1 ∈ Z∗

p 
to construct Shamir secret sharing polynomial 
f (x) =

(

s +
t−1
∑

i=1

aix
i

)

mod p , generate secret key share 

si = f (xi) for time server TSi (i = 1, 2, ...,N ) , where 
xi = i is the identification number of time server TSi.
② The time server management organization selects a 
random number σ ∈ {0, 1}n and uses the IBE.Encrypt 
algorithm defined in Definition 4 to get the ciphertext 
Ci , which is sent to time server TSi using the tempo-
rary public key temp

(i)
pub , where i = 1, 2, ...,N  . 

	 (5)	
(

ts
(i)
pub , ts

(i)
priv

)

← TS_KeyGen
(

Ci , temp
(i)
priv , paramspkg, paramstsmo

)

  . 
The time server TSi runs the TS_KeyGen algo-
rithm to obtain its public key ts(i)pub and private 
key ts(i)priv . The following steps are required:

① The time server TSi(i = 1, 2, ...,N  ) receives the 
ciphertext Ci from the time server management 
organization. It decrypts the ciphertext Ci using its 
temporary private key temp

(i)
priv to obtain its private 

key ts(i)priv . The time server TSi then calculates its 
public key ts(i)pub . 

(4)Ci =< U ,V ,W >=< rP, σ ⊕H2

(

e
(

MPK , temp
(i)
pub

)r)

, si ⊕H4(σ ) >,

r = H3(σ , si)

(5)

ts
(i)
priv = W ⊕H4(σ ) = si , σ = V ⊕H2(e(temp

(i)
priv ,U))

ts
(i)
pub = ts

(i)
privP = siP

	 (6)	 (usk ,upk) ← User_KeyGen(paramstsmo). The data 
receiver runs the User_KeyGen algorithm to 
obtain its private key usk and its public key upk. 
The following steps are required:

① The data receiver selects a random number 
u ∈ Z∗

p as its private key usk = u , and calculates its 
public key upk = uP.

	 (7)	 C ← Enc
(

M,upk , ts
(i)
pub(i = 1, 2, ...,N ),T , paramstsmo

)

  . 
The data sender runs the Enc algorithm using the 
data receiver’s public key upk, and arbitrarily 
selects at least t public keys from N time servers’ 
public keys ts(i)pub to form a set tspub . Xs is the cor-
responding set of identification numbers for the 
time servers. The data sender specifies a decryp-
tion time T ∈ {0, 1}∗ to encrypt M. The following 
steps are required:

① Calculates 

② Selects a random number r ∈ Z∗
p and calculates 

K = e(rH1(T ),upk + tk).
③ Outputs the ciphertext C =< X = rP,Y = M ⊕H2(K ) > .

	 (8)	 S
(i)
T ← TS_Rel

(

ts
(i)
priv , tinstance

)

 . The time server 
runs the TS_Rel algorithm at a fixed frequency 
(for example, every five minutes) to broadcast the 
time trapdoor. The following steps are required:

① On the time instance tinstance ∈ {0, 1}∗ , the 

time server TSi calculates and periodically broad-
casts the time trapdoor 

 to all system users using its private key.
	 (9)	 UT ← US_Rel(usk ,T , paramstsmo) . The data receiver 

uses the decryption time T specified by the 
data sender and their private key usk to run the 
US_Rel algorithm and obtain their time trapdoor. 
The following steps are required:

① At the specified decryption time T, the 
data receiver calculates the time trapdoor 
UT = usk ·H1(T ) = uH1(T ) using the private 
key usk.

(6)

tk =
∑

ts
(i)
pub ∈ tspub

ts
(i)
pub

∏

xj ∈ Xs , xj �= xi

−xj

(xi − xj)
= sP

(7)S
(i)
T = ts

(i)
privH1(tinstance) = siH1(tinstance)
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	 (10)	 M ← Dec(C , STs,Xs,T ,UT , paramstsmo) . The 
data receiver runs the Dec algorithm to recover 
the plaintext M. The following steps are required:

① At the decryption time T specified by the data 
sender, each of the N time servers sends the corre-
sponding time trapdoor ST so that there are N time 
trapdoors STs. The data receiver randomly selects a 
set of valid time trapdoors STs from the time trap-
doors published by N time servers, ensuring that 
|STs| ≥ t . Xs is the corresponding set of identification 
numbers for the time servers. Calculate the main time 
trapdoor S′T =

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

.
② Calculates K ′ = e(X , S′T + UT ).
③ Recovers the plaintext M = Y ⊕H2(K

′).

	  Assume that the ciphertext is C = �X ,Y � , the 
decryption time is T, the set of valid time trap-
doors is STs = {S

(1)
T , S

(2)
T , . . . , S

(t)
T } , the correspond-

ing set of identification numbers for the time serv-
ers is Xs = {x1, x2, . . . , xt} , and the user’s trapdoor 
is UT  . The correctness of decryption is verified as 
follows: 

Construction of SS-MSTRE2

In the real world, the time server management organiza-
tion may be semi-trusted, so it is not possible to directly use 
the key shares published by the time server management 
organization as private keys for time servers. To solve this 

(8)

S′T =
∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj

xi − xj

= s1H1(T ) ·
(0− x2)(0− x3) · · · (0− xt )

(x1 − x2)(x1 − x3) · · · (x1 − xt )

+ s2H1(T ) ·
(0− x1)(0− x3) · · · (0− xt )

(x2 − x1)(x2 − x3) · · · (x2 − xt )
+ · · ·

+ stH1(T ) ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

=

(

s1 ·
(0− x2)(0− x3) · · · (0− xt )

(x1 − x2)(x1 − x3) · · · (x1 − xt )
+

s2 ·
(0− x1)(0− x3) · · · (0− xt )

(x2 − x1)(x2 − x3) · · · (x2 − xt )
+ · · ·

+st ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

)

·H1(T )

= sH1(T )

K ′ = e(X , S′T + UT )

= e(rP, sH1(T )+ uH1(T ))

= e(rH1(T ),upk + tk)

= K

Y ⊕H2(K
′) = Y ⊕H2(K )

= M ⊕H2(K )⊕H2(K )

= M

problem, it is necessary to improve the SS-MSTRE1 scheme. 
The difference between the improved scheme and the 
SS-MSTRE1 scheme is that each time server, after decrypt-
ing the key share ciphertext obtained using the IBE.Decrypt 
algorithm defined in Definition 4, does not directly use the 
obtained key share itself as its private key. Instead, N time 
servers first “negotiate” a shared random number. Each 
time server then uses this shared random number and the 
decrypted key share to generate a new private key. The spe-
cific improvement method is as follows:

① At system initialization (ensuring that N time 
servers are all in normal working state), N time serv-
ers need to specify a particular time server TSj to 
generate a random number R ∈ Z∗

p . Then, using the 
IBE.Encrypt algorithm defined in Definition  4, the 
time server TSj sends the random number R to the 
other time servers TSi , where i  = j . The time server 
TSi then uses the IBE.Decrypt algorithm defined in 
Definition 4 to obtain the shared random number R.
② The time server runs the TS_KeyGen algorithm to 
obtain si and uses the shared random number R to 
calculate its private key ts(i)priv = siR , then calculates 
its public key ts(i)pub = ts

(i)
privP = siRP.

Correspondingly, the Enc algorithm is modified as 
follows:
C ← Enc(M,upk , ts

(i)
pub(i = 1, 2, ...,N ),T , paramstsmo  ) . 

The data sender runs the Enc algorithm using the data 
receiver’s public key upk, and arbitrarily selects at least t 
public keys from N time servers’ public keys ts(i)pub to form 
a set tspub . Xs is the corresponding set of identification 
numbers for the time servers. The data sender specifies a 
decryption time T ∈ {0, 1}∗ to encrypt the data M. The 
following steps are required:

① Calculates 

② Selects a random number r ∈ Z∗
p and calculates 

K = e(rH1(T ),upk + tk).
③ Outputs the ciphertext C =< X = rP,Y = M ⊕H2(K ) > .

Correspondingly, the TS_Rel algorithm is modified as 
follows:
S
(i)
T ← TS_Rel(ts

(i)
priv , tinstance) . The time server runs the 

TS_Rel algorithm at a fixed frequency (for example, every 
five minutes) to broadcast the time trapdoor. The follow-
ing steps are required:

(9)

tk =
∑

ts
(i)
pub∈tspub

ts
(i)
pub

∏

xj∈Xs ,xj �=xi

−xj

(xi − xj)
= sRP.
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① On the time instance tinstance ∈ {0, 1}∗ , the time 
server TSi calculates and periodically broadcasts the time 
trapdoor S(i)T = ts

(i)
privH1(tinstance) = siRH1(tinstance) to 

all system users using its private key.

Correspondingly, the Dec algorithm is modified as 
follows:
M ← Dec(STs,Xs,T ,UT , paramstsmo) . The data receiver 

runs the Dec algorithm to recover the plaintext M. The fol-
lowing steps are required:

① At the decryption time T specified by the data 
sender, the data receiver randomly selects a set of 
valid time trapdoors STs from the time trapdoors 
published by N time servers, ensuring that |STs| ≥ t . 
Xs is the corresponding set of identification num-
bers for the time servers. Calculate the main time 
trapdoor S′T =

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

.
② Calculates K ′ = e(X , S′T + UT ).
③ Recovers the plaintext M = Y ⊕H2(K

′).

Assume that the ciphertext is C = �X ,Y � , the decryp-
tion time is T, the set of valid time trapdoors is 
STs = {S

(1)
T , S

(2)
T , . . . , S

(t)
T } , the corresponding set of identifi-

cation numbers for the time servers is Xs = {x1, x2, . . . , xt} , 
and the user’s trapdoor is UT . The correctness of decryption 
is verified as follows:

(10)

S′T =
∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj

xi − xj

= s1RH1(T ) ·
(0− x2)(0− x3) · · · (0− xt )

(x1 − x2)(x1 − x3) · · · (x1 − xt )
+

s2RH1(T ) ·
(0− x1)(0− x3) · · · (0− xt )

(x2 − x1)(x2 − x3) · · · (x2 − xt )
+ · · ·

+ stRH1(T ) ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)

= (s1 ·
(0− x2)(0− x3) · · · (0− xt )

(x1 − x2)(x1 − x3) · · · (x1 − xt )
+

s2 ·
(0− x1)(0− x3) · · · (0− xt )

(x2 − x1)(x2 − x3) · · · (x2 − xt )
+ · · ·

+ st ·
(0− x1)(0− x2) · · · (0− xt−1)

(xt − x1)(xt − x2) · · · (xt − xt−1)
) · RH1(T )

= sRH1(T )

K ′ = e(X , S′T +UT )

= e(rP, sRH1(T )+ uH1(T ))

= e(rH1(T ),usk + tk)

= K

Y ⊕H2(K
′) = Y ⊕H2(K )

= M ⊕H2(K )⊕H2(K )

= M

Security and efficiency analysis
Security analysis
The security properties of our proposed schemes are ana-
lyzed as follows. 

(1)	 Data confidentiality. The attacker aims to illegally ana-
lyze key-related information necessary for decrypting 
the ciphertext before the specified time T. Assume 
that the attacker may attempt to crack the time server 
management organization’s private key sk (SS-
MSTRE2 scheme is the parameter sR) and the user’s 
private key usk through the time servers’ public keys 
ts
(i)
pub and the user’s public key upk, this is equivalent to 

solving the ECDLP, which is currently considered 
infeasible, making it difficult for an attacker to effec-
tively crack. Assume that time server TSi stores many 
plaintext-ciphertext pairs, that is, one-way irreversible 
hash function calculation values of decryption time 
H1(T

∗)-time trapdoor S∗T pair, it is difficult for an 
attacker to attack the time server TSi ’s private key ts(i)priv 
through the known-plaintext attack. The attacker can 
only obtain the corresponding private key by attacking 
t or more time servers to recover the main time trap-
door. However, this type of attack requires extremely 
high computational resources and time costs, making 
the probability of a polynomial-time attacker success-
fully breaking the ciphertext negligible.

(2)	 Verifiability. The time server obtains si through the 
TS_KeyGen algorithm, calculates r∗ = H3(σ , si) , 
and U∗ = r∗P , and then compares U∗ with the 
ciphertext Ci to detect whether si is legal and has not 
been tampered with. The time trapdoor is generated 
by combining a public hash function and the time 
server’s private key with the security of the time serv-
er’s private key depending on the ECDLP. When the 
time server TSi sends the time trapdoor S(i)T  to the 
data receiver, the data receiver can also choose to use 
bilinear pairing technology to calculate and compare 
whether e(ts

(i)
pub,H1(T )) and e(P, S(i)T ) are equal, to 

detect whether S(i)T  is legal and has not been tam-
pered with. The verifiability of the intermediate 
ciphertext data can effectively detect whether the 
original data is damaged due to noise and other fac-
tors when transmitting ciphertext data over a public 
network and can also resist attackers intercepting 
and tampering with data to a certain extent.

(3)	 Anti-advance decryption. Assume that a dishonest 
receiver wants to decrypt the data before the specified 
decryption time. As long as the ECDLP and BDH are 
still difficult problems at the current stage, it is a very 
difficult task, or almost impossible for the receiver 
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to decrypt the ciphertext based on the existing time 
server public keys, the specified decryption time T , its 
private key, and the public system parameters.

(4)	 Robust decryption with multiple time trapdoors. 
Our schemes employ Shamir secret sharing for key 
distribution to construct the main time trapdoor. 
The data receiver only needs to obtain time trap-
doors that equal or exceed the threshold value to 
complete decryption. Consequently, even if some of 
the time servers fail or are attacked, the data receiver 
can still use a sufficient number of time trapdoors 
for decryption, significantly enhancing the reliability 
of the multiple time server TRE scheme.

We further provide proof that the SS-MSTRE1 scheme 
is semantically secure against adaptive CPA [22].

Theorem  1  Assume that adversary A has an advantage 
of ǫ in breaking the SS-MSTRE1 scheme. Meanwhile, let the 
probability of challenger B overcoming the BDH assumption 
defined in Definition 2 be at least ǫ′ = ǫ/eqTqH2 , where e is 
the base of the natural logarithm, qH2 is the maximum num-
ber of queries that A can make to the random oracle H2 , and 
qT is the maximum number of queries that A can make to 
the time trapdoors of users and time servers.

Proof
Assume that there is an adversary A with advantage ǫ in 
breaking the SS-MSTRE1 scheme. A is limited to making 
no more than qH2 queries to the random oracle H2 and no 
more than qT queries to the time trapdoors of user and 
time servers, where qT and qH2 are both positive. Let B be 
a challenger who can overcome the BDH assumption with 
a probability of at least ǫ′ = ǫ/eqTqH2 . Therefore, if the 
BDH assumption holds in G1 , then ǫ′ can be considered 
negligible, and the advantage of A in breaking the SS-
MSTRE1 scheme can also be considered negligible. B sim-
ulates as the challenger and interacts with A as follows:

Preparation : Let G1 be an ECDLP additive group of 
prime order q, G2 be a DLP multiplicative group of prime 
order q, and let the bilinear mapping e : G1 × G1 → G2 sat-
isfy Definition 1. Give the challenger B the public parameters 
P, P1 = aP = uP + (

∑t
i=1 siP · (

∏

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p)), P2 = bP and P3 = cP . 

The goal of the challenger B is to output v = e(P,P)abc ∈ G2 , 
where P is the generator of G1 and a, b, c ∈ Z

∗
p.

Setup : Challenger B gives adversary A the data receiv-
er’s public key upk = u and the time server’s public key 
ts
(i)
pub = siP (i=1,2,...,N).

Initialization : The adversary A outputs the target of 
the attack, a pair of decryption time points (T ∗

0 ,T ∗
1 ).

Phase 1 : The adversary A initiates 1, 2, . . . ,m que-
ries, and the challenger B responds to each of them. The 
response process of the i-th query is as follows:

The adversary A initiates a query to the random oracle 
H1 . Challenger B maintains an initially empty tuple list 
H list
1 :< Tj, hj,mj, nj > . When the adversary A initiates a 

query for the time trapdoor to the random oracle H1 at a 
time point Ti , the challenger B responds as follows:

① If the tuple information < Ti, hi,mi, ni > contain-
ing Ti is already present in H list

1  , then the challenger 
B responds with H1(Ti) = hi ∈ G1.
② If the tuple information < Ti, hi,mi, ni > con-
taining Ti is not present in H list

1  , then the challenger 
B randomly generates a bit ni ∈ {0, 1} such that 
Pr[ni = 0] = 1/(qT + 1).
③ The challenger B chooses a random number 
mi ∈ Z

∗
q . If ni = 0 , then B calculates hi = P2 +miP , 

otherwise, calculates hi = miP.
④ The challenger B adds the tuple < Ti, hi,mi, ni > 
to H list

1  and responds with H1(Ti) = hi . The value of 
hi is uniformly distributed in G1 and independent of 
the adversary A.

Similarly, adversary A initiates a query to the random 
oracle H2 . the challenger B maintains an initially empty 
tuple list H list

2  , and responds as follows:

① When the adversary A queries H2 for H2(Ki) and 
there is no information containing Ki in the list, the 
challenger B responds by choosing a new random 
value Vi ∈ {0, 1}log2 q and adding (Ki,Vi) to the tuple 
list H list

2 .
② If the tuple list H list

2  contains (Ki,Vi) , then the 
challenger B takes (Ki,Vi) from H list

2  as the response 
value to the adversary A.

When the adversary A initiates a time trapdoor query at 
a time point Ti /∈ {T ∗

0 ,T
∗
1 } , the challenger B responds as 

follows:

① The challenger B runs the above H1 query algo-
rithm and obtains H1(Ti) = hi . Then, B makes the 
tuple < Ti, hi,mi, ni > as the corresponding element 
in the tuple list H list

1 .
② If ni = 0 , the challenger B reports an error and 
terminates the entire simulation game.
③ If ni = 1 , then hi = miP.



Page 12 of 17Yuan et al. Journal of Cloud Computing          (2024) 13:116 

Let Tui = mi · upk and TTi
= mi · (

∑t
i=1 siP · (

∏

1 ≤ j ≤ t

j �= i
0−xj
xi−xj

mod p)) . We can also obtain Tui = uH1(Ti) and 
TT = (

∑t
i=1 si

∏

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p) ·miP = sH1(Ti) by 

transforming the formulas. Here, Tui represents the 
legitimate user’s time trapdoor at time point Ti and TTi 
represents the main time trapdoor at time point Ti . The 
challenger B returns Tui and TTi to the adversary A.

Challenge  :   The target of challenge for the adversary 
A is a pair of decryption time points (T ∗

0 ,T
∗
1 ) . The chal-

lenger B produces the challenge ciphertext, and the 
response process is as follows:

① The challenger B performs two H1 query algo-
rithms to obtain h∗0 and h∗1 ∈ G1 , and obtains 
H1(T

∗
0 ) = h∗0 and H1(T

∗
1 ) = h∗1 , which correspond 

to < T ∗
0 , h

∗
0,m

∗
0, n

∗
0 > and < T ∗

1 , h
∗
1,m

∗
1, n

∗
1 > respec-

tively in H list
1

 . If n∗0 = n∗1 = 1 , the challenger B 
reports an error and terminates the entire simula-
tion game.
② If either n∗0 or n∗1 is 0, the challenger B chooses a 
random number ♭ ∈ {0, 1} such that n∗♭ = 0.
③ The challenger B responds with the ciphertext 
C∗
♭ = [P3, J ] , where J ∈ {0, 1}log2q . Let 

  Namely, 

(11)
J = H2















e
�

H1

�

T ∗
♭

�

, c · upk
�

· e















H1

�

T ∗
♭

�

, c ·















t
�

i=1

siP ·















�

1 ≤ j ≤ t
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�
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�
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�c�
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�

e
�

P2 +m∗
♭ , (u+ s)P

�c�

= H2

�

e(P,P)

�

c(u+s)
�

b+m∗
♭

���

Therefore, C∗
♭ = [P3, J ] is the true and valid ciphertext 

corresponding to the time T ∗
♭ .

Phase 2 : The adversary A initiates time trapdoor que-
ries for the user’s time trapdoor and the time servers’ 
time trapdoors from m+ 1 to num again. The chal-
lenger B responds in the same way as in Phase 1.

Guess :  The adversary A outputs a guess of ♭ , denoted as 
♭′ ∈ {0, 1} , and guesses whether the ciphertext C∗

♭  con-
structed by the challenger B in the Challenge phase is 
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 . At this point, 

the challenger B randomly chooses (Kj,Vj) from H list
2  and 

outputs K/e
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as a guess for v = e(P,P)abc . If the adversary A has  
previously queried one of the items in 
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 , 

then the tuple list H list
2

 has a 1/2 probability of containing 
the tuple (Kj,Vj) , where

If the challenger B chooses the tuple (Kj,Vj) from H list
2  , 

then K/e
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



m∗
♭

= e(P,P)abc.

The entire simulation game ends at this point. Next, 
we calculate the probability value ǫ′ of the challenger B 
correctly outputting v = e(P,P)abc , and assume that the 
simulation game can continue to the Guess phase with-
out any termination in between. To this end, we will 
begin by defining the following events:

Event E1 : the challenger B does not terminate the 
game during the phase when the adversary A queries 
the time trapdoor.

Event E2 : the challenger B does not terminate the 
game during the Challenge phase.

The probability of events E1 and E2 occurring is suffi-
ciently high, and the following four claims are provided:

Claim 1  During the phase when the adversary A queries 
the time trapdoor, the probability of the challenger B not 
terminating the game is at least 1/e, with Pr[E1] ≥ 1/e.

Proof
Assume that the adversary A will not query the same time 
point twice. The response obtained from querying H1 indi-
cates that the probability of the challenger B terminating 
the game after one time trapdoor query by the adversary A 
is 1/(qT + 1) . However, the adversary A can query the time 
trapdoor up to qT times. Therefore, the probability of the 
challenger B not terminating the game after qT time trapdoor 
queries by the adversary A is (1− 1/(qT + 1))qT ≥ 1/e.  

Claim 2  In the Challenge phase, the probability of the 
challenger B not terminating the game is at least 1/qT , 
with Pr[E2] ≥ 1/qT.

(13)

Kj = H2(e(cH1(T
∗
♭ ),upk + (

t
∑

i=1

siP · (
∏

1 ≤ j ≤ t

j �= i

0− xj

xi − xj
mod p))))

= H2(e(P,P)
c(u+s)(b+m∗

♭ ))

Proof
Assume that the adversary A can generate a pair of 
designated decryption time points (T ∗

0 ,T
∗
1 ) with the 

property n∗0 = n∗1 = 1 , then the challenger B termi-
nates the game in the Challenge stage. Since the adver-
sary A has not queried the time trapdoors for T ∗

0  and 
T ∗
1  , the values of n∗0 and n∗1 are not correlated with 

the adversary A . Therefore, Pr[n∗♭ = 0] = 1/(qT + 1) 
and Pr[n∗0 = n∗1 = 1] = (1− (1/(qT + 1)))2 ≤ 1− 1/qT  . 
It follows that the probability of the challenger B not 
terminating the game in the Challenge phase is at least 
1− (1− 1/qT ) = 1/qT .

During the game process, the adversary A is not 
allowed to query the time trapdoors for T ∗

0  and T ∗
1  . There-

fore, the events E1 and E2 are independent of each other, 
and it can be obtained that Pr[E1 ∩ E2] ≥ 1/eqT .

Assume that in the real attack game, the adversary A 
possesses the public key upk = uP of the data receiver 
and the public keys ts(i)pub = siP of the time servers 
(i = 1, 2, ...,N ) . The adversary A sends a pair of decryp-
tion time points (T ∗

0 ,T
∗
1 ) to the challenger B , and the 

challenger B generates a challenge ciphertext C∗
♭ = [P3, J ] 

in response.

Claim 3  In the real attack game, the adversary A has a 
probability of at least ǫ to initiate an H2 query for either 
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.

Prior to presenting the proof, we will first provide the 
definitions for the following events:

Event E3 : In the real attack game, the adversary A 
does not initiate an H2 query for either 

H2











e











cH1

�

T ∗
0

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































 

or H2











e











cH1

�

T ∗
1

�

,upk +











�t
i=1 siP











�

1 ≤ j ≤ t

j �= i

0−xj
xi−xj

mod p









































.

Event E4 : In the Guess phase, the adversary A outputs 
the correct guess value ♭′ , where ♭ = ♭′.
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Proof
When event E3 occurs, it can be seen from the bit ♭ ∈ {0, 1} 
that the ciphertext C∗

♭  constructed by the challenger B is 
unrelated to the adversary A . Therefore, the probability of 
event E4 occurring is at most Pr[E4] =1/2. In a real attack, 
the adversary A has an advantage ε , where Pr[E4]−
(1/2)≥ ε . This also indirectly indicates that Pr[¬E3] ≥ 2ε . 
The proof process of Pr[¬E3] ≥ 2ε is as follows:

From formula (14), it is known that ε ≤ |Pr[E4]−

(1/2)| ≤(1/2)Pr[¬E3] , which implies Pr[¬E3] ≥ 2ε.

Assume that the challenger B does not terminate the 
game, it means that in the simulated real game pro-
cess, the adversary A has queried either 
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  . 

Therefore, Pr[¬E3] ≥ 2ε.

Claim 4  The probability of the challenger B success-
fully solving the BDH assumption in the Challenge stage 
is ε/qH2.

Proof
Assuming that the events described in Claim 3 occur, 
the value of one of the two possible cases of 
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 will be stored 

in the tuple list H list
2

 . Therefore, in the Challenge phase, 
the challenger B will have a probability of 1/qH2 to select 

(14)
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

 

from H list
2  . If the challenger B does not terminate the 

simulation game, the probability of successfully solving 
the BDH assumption is ε/qH2 . According to Claims  1 
and 2, during the simulation game process, the proba-
bility that the challenger B does not terminate the game 
is at least ε/eqT  . And by Claim  4, if the challenger B 
does not terminate the simulation game, the probability 
of successfully solving the BDH assumption is ε/qH2.

In summary, through the above security simulation game, 
the probability of the challenger B successfully solving the 
BDH assumption is ε/eqTqH2 . Theorem 1 is proven.

The above proof is equally applicable to the SS-
MSTRE2 scheme.

Efficiency analysis
In this section, we calculate the time consumption 
of our proposed SS-MSTRE schemes and only count 
the time consumption of Enc,TS_Rel and Dec algo-
rithms (the two proposed SS-MSTRE schemes are basi-
cally consistent in operation), not count costs of the 
TSMO_Setup,PKG_Setup,TempKey_Extract,KeySharing ,

TS_KeyGen,User_KeyGen and US_Rel algorithms ( all of 
these can be done in advance and are not included in the 
statistical scope). Among them, the supersingular elliptic 
curve of the finite field Fp (p is a 512-bit prime number) 
is defined as y2 = x3 + 1(mod p) , the prime order q is 
160 bits, and the bilinear mapping adopts Tate pairs. BP 
stands for bilinear pairing operation; PMec and PAec rep-
resent point multiplication and point addition operations 
in group G1 ; Add , Sub , Mul and Div represent modular 
addition, modular subtraction, modular multiplication, 
and modular division operations in Z∗

q ; H1 represents a 
hash function that maps a binary string composed of 0 
and 1 of any length to an element in G1 ; H2 represents a 
hash function that maps an element G2 to a binary string 
composed of 0 and 1 of log2q length.

We implement the above basic operations based 
on the open source large number operation function 
library MIRACL in cryptography and uses the approxi-
mate ratio method relative to the PMec basic operations 
to record the time consumed by other basic operations 
and obtain the relative time-consuming table of basic 
operations, as shown in Table 2. The running environ-
ment is Intel(R) Core(TM) i5-7500 CPU 3.40GHz pro-
cessor, 64-bit PC host, 8GB memory, and Microsoft 
visual studio 2017. 987654321 is used as the random 
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number seed, and after running the program, one PMec 
operation takes about 1.5208 ms.

In the Enc algorithm, the data sender needs to complete 
the following operations: two PMec and one H1 for rP and 
rH1(T ) , one BP and one PAec for K ′ = e(rH1(T ),upk + tk) 
(tk can be precalculated and is not counted here), one H2 
for M ⊕H2(K

′) ; in the TS_Rel algorithm, the time server 
needs to complete the following operations: one H1 and 
one PMec for S(i)T = ts

(i)
priv ·H1(T ) ; in the Dec algorithm, 

the data receiver needs to complete the following opera-
tions: t · (t − 1)· Sub, 2t · (t − 2)· Mul, t Div, t PMec , and 
(t − 1) PAec for 

∑

S
(i)
T ∈STs

S
(i)
T

∏

xj∈Xs,xj �=xi

−xj
(xi−xj)

 . Addi-
tionally, one BP and one PAec for K ′ = e(X , S′T + UT ) , 
and one H2 for M = Y ⊕H2(K

′).Therefore, we compare 
the calculation time of the MTSTRE scheme in literature 
[30] with our SS-MSTRE schemes, as shown in Table 3.

It can be seen from Table  3 that the differences in 
computation time consumption between the MTS-
TRE scheme in literature [30] and our two SS-MSTRE 
schemes are mainly reflected in the Enc and Dec algo-
rithms. In the Enc algorithm, the MTSTRE scheme in 
literature [30] requires N PAec , while our SS-MSTRE 
schemes only require one PAec ; in the Dec algorithm, 
the MTSTRE scheme in literature [30] also needs N 
PAec , while our SS-MSTRE schemes need to complete 
t · ((t − 1) · Sub+ 2(t − 2) ·Mul+ Div+ PMec + PAec) 
operations when using lagrange interpolation polyno-
mial to reconstruct the main time trapdoor. Assume that 
there are m data senders in a certain application scenario. 
To compare the calculation cost of the two schemes, the 

calculation time of the MTSTRE scheme in the literature 
[30] may be expressed as follows:

the calculation of the SS-MSTRE schemes is expressed as 
follows:

Generally speaking, the value range of the secret shar-
ing threshold t belongs to the interval [⌊

N

2
⌋ + 1,N ] and 

the different setting of the threshold t will also affect the 
computational efficiency of our schemes. We will add a 
detailed application example to illustrate the case in 
Application example section.

Application example
Suppose the tenderer A is conducting a bidding pro-
cess for a specific project, with the bid opening sched-
uled at “8:00 AM on March 8, 2023”. Five bidders 
( B1,B2,B3,B4,B5 ) are invited to participate in the bid-
ding, and the number of time servers is set to 10. Ten-
derer A establishes a time trapdoor threshold value of t 
for decrypting the submitted bids. We need to evalu-
ate the computational costs of the Enc algorithm for the 
five bidders, the TS_Rel algorithm for the ten time serv-
ers, and the Dec algorithm for tenderer A to decrypt the 
five bids. The resulting comparison of the computational 
overhead in the sealed bidding application scenario is 
shown in Table 4.

When the threshold value t is set to 6, 7, and 8, the 
computation time of the proposed schemes in this paper 
is 82.1954, 87.3649, and 92.5554, respectively. Although 
these computational costs are higher than those of the 
MTSTRE scheme proposed in reference [30], the differ-
ence is negligible from a practical application perspective. 
Specifically, on an ordinary computer (such as the device 
environment used in this paper), the proposed schemes 
consume only an additional 0.04543(s), 0.05329(s), and 
0.06119(s) compared to the MTSTRE scheme, making 
the difference imperceptible at the human perception 
level.

(15)

�1 = mEnct + TS_Relt +mDect

= m(0.0074N + 6.1868)+ 1.3214 +m(0.0074N + 3.8654)

(16)
�2 = mEnct + TS_Relt +mDect

= 6.1942m+ 1.3214 +m(0.0021t2 + 1.0066t + 3.8654)

Table 2  Calculation cost of related basic operations relative to 
the PMec operation

Basic operation Notation Relative cost

Bilinear pairing BP 3.7870

Point multiplication in G1 PMec 1

Point addition operation in G1 PAec 0.0074

Modular addition in Z∗
q Add 0.0005

Modular subtraction in Z∗
q Sub 0.0005

Modular multiplication in Z∗
q Mul 0.0008

Modular division in Z∗
q Div 0.0029

H1 function:{0, 1}∗ → G1 H1 0.3214

H2 function:G2 → {0, 1}log2q H2 0.0784

Table 3  Comparison of time consumption between MTSTRE scheme and our SS-MSTRE schemes

Scheme Enc TS_Rel Dec Total

MTSTRE 2PMec + BP+ N · PAec + H1 + H2 PMec + H1 BP+ N · PAec + H2 0.0148N+11.3736

SS-MSTRE 2PMec + BP+ PAec + H1 + H2 PMec + H1 t · ((t − 1) · Sub+ 2(t − 2) ·Mul+ Div+ BP+ H2 + PMec + PAec) 0.0021t2 + 1.0066t + 11.3810
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Conclusions
This paper proposes a multiple time servers SS-MSTRE 
model based on Shamir secret sharing and presents two 
secure construction schemes. Our proposed schemes 
enable the receiver to recover EHR using any number 
of time trapdoors greater than or equal to a predefined 
threshold value when the preset decryption time arrives, 
which addresses the issue of single-point failure com-
monly found in traditional multiple time servers TRE 
schemes. We conduct security analysis of our schemes, 
provide a semantic secure proof against adaptive CPA 
based on the random oracle model, and employ the MIR-
ACL big number arithmetic library to experimentally val-
idate the efficiency of our schemes.

In future work, we will consider introducing other enti-
ties to complete the research on the TRE scheme with 
time-limited update key calculation and release together 
with the time server. Unlike the research idea of simply 
increasing the number of time servers, we aim to design 
other algorithms to construct a new encryption mecha-
nism that solves the single point of failure problem in sin-
gle time server TRE schemes.
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