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Abstract 

Cloud environment is a virtual, online, and distributed computing environment that provides users with large-scale 
services. And cloud monitoring plays an integral role in protecting infrastructures in the cloud environment. Cloud 
monitoring systems need to closely monitor various KPIs of cloud resources, to accurately detect anomalies. How-
ever, due to the complexity and highly dynamic nature of the cloud environment, anomaly detection for these KPIs 
with various patterns and data quality is a huge challenge, especially those massive unlabeled data. Besides, it’s 
also difficult to improve the accuracy of the existing anomaly detection methods. To solve these problems, we pro-
pose a novel Dynamic Graph Transformer based Parallel Framework (DGT-PF) for efficiently detect system anomalies 
in cloud infrastructures, which utilizes Transformer with anomaly attention mechanism and Graph Neural Network 
(GNN) to learn the spatio-temporal features of KPIs to improve the accuracy and timeliness of model anomaly detec-
tion. Specifically, we propose an effective dynamic relationship embedding strategy to dynamically learn spatio-
temporal features and adaptively generate adjacency matrices, and soft cluster each GNN layer through Diffpooling 
module. In addition, we also use nonlinear neural network model and AR-MLP model in parallel to obtain better 
detection accuracy and improve detection performance. The experiment shows that the DGT-PF framework have 
achieved the highest F1-Score on 5 public datasets, with an average improvement of 21.6% compared to 11 anomaly 
detection models.
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Introduction
The cloud monitoring systems can monitor the status 
and performance of various resources. These include 
servers, networks, databases and storage. They also pro-
vide real-time alarms to help users find and fix problems 
quickly [1]. It can also closely monitor various KPIs (key 

performance indicators) of cloud resources to accurately 
detect anomalies. These KPIs are heavily influenced by 
user behavior, schedules, etc., and have roughly seasonal 
patterns that occur at regular intervals. Time depend-
ence is an important feature of KPIs, it has a big impact 
on predicting and analyzing data [2]. On the other hand, 
since user behavior may change on different days, the 
shape of the KPIs curve is not exactly the same for each 
repeat cycle. These KPIs instances as shown in Fig.  1, 
with anomalies in red color. Applications and services 
on cloud computing platforms are often large-scale 
and highly concurrent [3]. So, detecting anomalies usu-
ally requires processing many KPIs [4, 5]. In addition, 
the complex and changeable interaction between cloud 
infrastructures also makes abnormal behaviors more 
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elusive [6]. How to accurately and efficiently detect 
abnormal behaviors in cloud infrastructures has also 
become the focus of enterprises and related fields [7]. 
Therefore, it is necessary to detect the anomaly behav-
iors that may exist in cloud infrastructures in time.

Anomaly detection (a.k.a outlier detection) is a hot 
research in the real world. It can be used in various 
fields, like financial fraud detection, network intrusion 
detection, medical diagnosis, etc. Time dependence is 
an important feature of KPIs. It has a big impact on pre-
dicting and analyzing data [8]. According to different 
learning styles, anomaly detection can be divided into 
supervised anomaly detection, semi-supervised anomaly 
detection and unsupervised anomaly detection. Con-
sidering it is tedious and time-consuming to label data 
manually because various anomalies exist, unsupervised 
learning involves picking up interesting structures in the 
data, and learning features without labels is popular [9]. 
Based on this, we focus on unsupervised anomaly detec-
tion for KPIs with various patterns and data quality.

To address the challenge of anomaly detection in cloud, 
researchers and engineers have proposed many new 
methods. These include machine learning, data mining, 
and statistical analysis [10]. Before machine learning, tra-
ditional time series algorithms are usually used to build 
statistical models, such as ARMA [11], ARIMA [12], 
GARCH [13], etc. Remarkably, the relationship presented 
by KPIs is highly complex, and the intrinsic correlation is 
often nonlinear. Some of the traditional statistical mod-
els just simply model the relationships between KPIs in 
the cloud environment, capturing only linear relation-
ships. That’s why researchers need to design smarter and 

better-performing models to detect system anomalies in 
cloud infrastructures [14]. In recent years, deep learning 
is one of the latest trends in machine learning and artifi-
cial intelligence research, and many major breakthroughs 
have been made in this field around the world. Examples 
are CNN [15] and LSTM [16, 17]. These deep learning 
methods are better able to learn data representation and 
feature extraction through a combination of multi-layer 
neural networks and nonlinear activation functions, as 
well as increasing the depth and width of the network. 
They are better at handling nonlinear features than tra-
ditional machine learning models. However, most of 
the existing anomaly detection methods focus on either 
linear, e.g., statistical models including ARMA or non-
linear feature representation, e.g., classic machine learn-
ing and deep learning models including KNN [18], while 
the cloud environment is highly dynamic and complex, 
resulting in KPIs in the cloud environment has both com-
plicated complex linear and nonlinear dependencies. 
Moreover, the existing methods focus more on the tem-
poral dependence and inadequate on the spatial features. 
In the cloud environment, there are complex connections 
and dependencies between nodes, making space depend-
ency unavoidable. The user node communicates with the 
cloud service node through the client node, which in turn 
relies on the network node for data transmission. Cloud 
service nodes rely on infrastructure support provided by 
data centers, but also need to communicate with network 
nodes. Such connections and dependencies between each 
node form a complex cloud environment system. When 
performing anomaly detection, effectively extracting the 
spatial dependency between nodes could contribute to 
better anomaly identification. Therefore, as for anomaly 
detection in dynamic runtime cloud environment, exist-
ing models are still insufficient in terms of detection 
accuracy and real-time performance.

In the latest research, GNN is proved to be suitable 
for spatial dependency learning. It is good at process-
ing the graph structure data and mining the dependency 
between nodes, and can pass the real high expressiveness 
achieved through message passing in effective learning 
graph representation [19]. Transformer stacks multiple 
layers of attention for fast parallel operation. As a result, 
it can better distinguish normal and abnormal fluctua-
tions and better capture long-term time correlations. 
Inspired by combination of GNN and Transformer, we 
leverage GNN, Transformer and attention to extract the 
features of nonlinear parts of KPIs data, use the attention 
mechanism and graph convolution operation to effec-
tively process the complex relationship between nodes 
[20]. We also fuse the relationship between nodes in the 
graph and the dependence relationship between positions 
in the sequence. At the same time, the model captures 

Fig. 1 An example of KPIs, with anomalies in red color
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the spatial and temporal KPIs data and displays high-
dimensional data with complex relationships to improve 
the performance of the model. Using AR-MLP to extract 
the features of the linear part of KPIs data, the AutoRe-
gressive (AR) model can maintain the linear relationship 
between the KPIs, and the nonlinear feature extraction 
capability of Multi-Layer Perceptron (MLP) can improve 
the feature extraction performance of AR model. At the 
same time, it is spatially sensitive, allowing communica-
tion between different spatial locations and operating 
independently on each channel. Therefore, it can bet-
ter adapt to complex anomaly detection tasks. Based on 
these ideas, we propose a novel Dynamic Graph Trans-
former based Parallel Framework (DGT-PF) for effi-
ciently detect system anomalies in cloud infrastructures, 
which get the highest F1-Score on 5 public datasets. It has 
achieved high-precision and real-time anomaly detection 
in a cloud environment.

We design an anomaly attention mechanism to replace 
the self-attention mechanism, and construct an effective 
Transformer with anomaly attention mechanism model 
to extract the time features of KPIs, which contains a 
two-branch structure to model the prior-association 
and series-association of each time point respectively. 
The prior-association employs the learnable Gaussian 
kernel to present the adjacent-concentration inductive 
bias of each time point, while the series-association cor-
responds to the self-attention weights learned from raw 
series. This design can better distinguish between normal 
and abnormal fluctuations and derive temporal correla-
tions between sequences. In addition, in order to fur-
ther extract the spatio-temporal features of the context 
and improve the timeliness of the model, we propose an 
effective dynamic relationship embedding strategy, which 
integrate GNN module and Diffpool module to realize 
the spatio-temporal dependence of the time series and 
make better spatio-temporal prediction. Meanwhile, 
we integrate the AR-MLP model and the above nonlin-
ear model to output the final anomaly detection results. 
Finally, experiments on 5 public datasets verify the accu-
racy and timeliness of our Framework. The main contri-
butions of this paper are as follows:

• In order to learn the spatio-temporal dependence 
of KPIs, we propose a Transformer integrated with 
GNN model to dynamically capture time series fea-
tures to improve the timeliness of the model.

• We propose a dynamic relationship embedding strat-
egy based on graph structure learning to adaptively 
learn the adjacency matrix to simulate potential rela-
tionships in given KPIs.

• In order to better extract all the feature information 
of data and adapt to complex prediction tasks, we 

use AR-MLP model and nonlinear neural network to 
integrate in parallel, and further improve the accu-
racy and robustness of the model.

• We demonstrate that DGT-PF outperforms 11 state-
of-art baseline methods on 5 public datasets, with a 
21.6% improvement in the average F1-score.

The rest of the paper is organized as follows. In the 
related work, we review the existing statistical and deep 
learning methods. In the model part, we introduce the 
DGT-PF model in detail. In the Experimental result sec-
tion, we evaluate the accuracy and timeliness of anomaly 
detection. Finally, the conclusion and future work are 
summarized.

Related works
The research on anomaly detection is being carried out 
rapidly, and methods based on deep learning are widely 
used [21]. This section explores existing methods for 
anomaly detection. They are based on statistics and 
deep learning, with a focus on GNN and Transformer 
methods.

Statistics‑based method
Traditional statistical methods are mainly used on sin-
gle-feature KPIs, and most of them are linear methods. 
ARMA, ARIMA, GARCH and so on are used for time 
series analysis and prediction. The ARMA model [11] is 
an autoregressive moving average model, which assumes 
that KPIs are composed of a linear combination of past 
observations and random error terms. In literature, 
Autoregessive Integrated Moving Average (ARIMA) 
model [12] is used to predict KPIs. Differential operation 
can change non-stationary time series into stationary 
time series, so it is easier to establish models. GARCH 
model [13] is a Generalized AutoRegressive Conditional 
Heteroscedasticity model, which assumes that the vari-
ance of time series changes with time. Chen et  al. [22] 
propose the use of isolated forest and elliptical enve-
lope to detect geochemical anomalies. These methods 
are good for short-term linear KPIs prediction, but not 
so good for long-term KPIs prediction. Moreover, it is 
usually necessary to manually select the features related 
to anomaly detection, which may not cover all the rele-
vant features, resulting in inaccurate anomaly detection 
results. In addition, KPIs tend to be multi-dimensional 
and complicated, and these traditional statistical meth-
ods can no longer meet the current needs [23]. Due to 
the strong expression ability of deep neural networks and 
their better performance in anomaly detection accuracy, 
deep learning methods have received extensive attention 
in the industry in recent years.
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Deep learning‑based method
With the advent of the big data era, anomaly detec-
tion has become an important task in many fields. As 
a powerful machine learning technology, deep learn-
ing provides many new methods and ideas for anomaly 
detection. Therefore, for high-dimensional and unlabeled 
data, more and more researchers use deep learning to 
detect anomalies in KPIs [24]. There are many models 
that are based on the LSTM layer and the stacked CNN 
layer to extract features from time series, and then apply 
the softmax layer to predict label. Complex structures 
such as the recursive skip layer (LSTNet-S), the tempo-
ral attention layer (LSTNet-A) [25]. LSTM-VAE model 
[26] integrates LSTM into VAE for anomaly detection, 
in which LSTM backbone is used for time modeling and 
VAE is used for reconstruction. VAE-GAN [27] based on 
LSTM uses LSTM as encoder, generator and discrimina-
tor to detect anomalies by reconstructing differences and 
discriminating results. TapNet [28] also builds the LSTM 
layer and the stacked CNN layer. Bidirectional molecule 
generation with RNN model [29] improves the prediction 
accuracy of the model by adding a direction to the RNN. 
ELBD (Ensemble Learning-Based Detection) framework 
[30] integrates four existing detection methods for per-
formance anomaly detection and prediction of cloud 
applications. USAD [31] uses an autoencoder with two 
decoders and an adversarial training framework to clas-
sify normal and abnormal data. In addition, some deep 
learning models, including THOC [32] uses RNN with 
jump connections to effectively extract multi-scale time 
features from time series, integrates multi-scale time 
features through hierarchical clustering mechanism, 
and then detect anomalies through multi-layer distance. 
MAD-GAN [33] uses a new anomaly score, DR-score, to 
identify and reconstruct the output of GAN’s generator 
and discriminator, so as to detect anomalies. Although 
anomaly detection models based on deep learning have 
achieved remarkable results in many scenarios, there are 
still some limitations, such as data quality, interpretabil-
ity, and computing resources [34, 35]. They also assume 
the same effects between time series variables, so they 
cannot model pair-dependent relationships between 
variables unambiguously, and anomaly detection accu-
racy is not high enough. However, data in cloud systems 
is highly volatile. So, the needed anomaly detection algo-
rithms require more precise results. Recent studies show 
that GNN combined with Transformer for anomaly 
detection can effectively improve detection accuracy.

The combination of GNN and Transformer architec-
tures offers several advantages. In traditional anomaly 
detection, Transformer can use a self-attention mecha-
nism to capture global dependencies and context infor-
mation of the data, enabling the model to focus more 

on important nodes and edges to capture abnormal 
features. GNN can be used to model relationships and 
dependencies between data. With the advent of Trans-
former in natural language processing and computer 
vision, Embedding the graph structure into the Trans-
former architecture can overcome the limitations of 
local neighborhood aggregation while avoiding strict 
structural induction bias. Graph Transformer [36] intro-
duces the topological structure attribute of graph into 
Transformer, so that the model has a prior of the struc-
ture position in the high-dimensional space. The model 
combines the heart of Transformer with that of GNN. 
It does so by considering global and topological proper-
ties of the graph. It calculates attention near each node, 
not on the whole graph. Whereas the SAN model [37] is 
similar but calculates attention on the entire graph, dis-
tinguishing between real edges and created edges. The 
Graph Attention Network(GAT) [38] is a GNN that uses 
a self-attention mechanism to capture more complex 
relationships between nodes. GAT avoids the problem of 
exploding number of parameters in traditional GCN [39] 
by aggregating the features of nodes into a shared global 
space and using a shared weight matrix to calculate the 
correlation of each node with its neighbors. These mod-
els combine GNN with Transformer to take full advan-
tage of both to design a graph Transformer architecture 
that takes local and global information into account.

While the cloud environment is highly dynamic and 
complex, resulting in KPIs in the cloud environment has 
both complicated complex linear and nonlinear depend-
encies. And the existing methods focus more on the tem-
poral dependence and inadequate on the spatial features.
Therefore, our proposed method can effectively extract 
nonlinear and linear features of dynamically changing 
KPIs. Firstly, we use a Transformer with anomaly atten-
tion to get time features [40]. Then, we propose a strat-
egy for embedding dynamic relationships. It is based 
on learning graph structure to capture spatio-temporal 
features and learn the adjacency matrix. In addition, the 
node embedding vector based on Diffpooling module 
performs soft clustering for each GNN layer, and then 
builds the results of the deep GNN output nonlinear 
module through repeated stacking. Finally, we use the 
AR-MLP model to better extract all the feature informa-
tion of KPIs and adapt the complex anomaly detection 
task. That is, we integrate nonlinear modules and linear 
modules in parallel to improve the accuracy and timeli-
ness of the entire model.

Methodology
Next we will introduce the overall framework and 
detailed modules in detail. The framework diagram 
of the model is shown in Fig.  2. Suppose monitoring a 
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successive system of N measurements and recording 
the equally spaced observations over time. Our input is 
a set of KPIs, defined as X = {x1, x2, ..., xn} , in general, a 
constant time interval between two successive measure-
ments, where xt ∈ RN represents the observed value at 
time t.

Actually, to efficiently capture both nonlinear and lin-
ear features, the overall framework of DGT-PF is a par-
allel structure, which is integrated by nonlinear modules 
and linear modules in parallel. Since the monitoring data 
in the dynamic cloud includes both nonlinear and linear 
features, we consider to extract these two types of fea-
tures independently, then integrate them to achieve bet-
ter detection accuracy.

The upper channel is the nonlinear feature extraction 
module of Transformer integrating GNN, as can be seen 
in Fig. 2(Part 1-4). GNN is able to fuse global and local 
information through multi-layer messaging, and Trans-
former is able to capture temporal dependencies of the 
sequence through attention mechanisms. Combining the 
two parts can fuse the links between nodes in the graph. 
It also fuses the ties between positions in the sequence 
and helps us understand the whole graph structure. At 
the same time, Transformer integrating GNN model can 
capture the spatio-temporal features of KPIs, and display 
high-dimensional data with complex relationships to 
improve model performance. Among it, we also propose 
an effective dynamic relationship embedding strategy 
based on Graph Structure Learning to carry out feature 
learning within each time window. Then, the whole KPIs 
data is processed by sliding time window to capture its 

dynamic evolution process, so as to better spatio-tempo-
ral prediction and effectively mining the dynamic chang-
ing KPIs features, as shown in Fig. 2(Part 2). In addition, 
the node embedding vector based on Diffpooling module 
performs soft clustering for each GNN layer, as shown 
in Fig.  2(Part 3-4), and then builds the results of the 
deep GNN output nonlinear module through repeated 
stacking.

The lower channel is to capture linear regularities, 
consisting of an AR model and a MLP model, as demon-
strated in Fig. 2(Part 5). Adding AR model can maintain 
the linear relationship of KPIs, and the nonlinear feature 
extraction capability of MLP can enhance the feature 
extraction performance of AR model. At the same time, 
it is spatially sensitive, allowing communication between 
different spatial locations, and operates independently on 
each channel. Thus, it can better adapt to the complex 
anomaly detection task. Finally, the output of the non-
linear module and the output of the linear module are 
added by weight to obtain the final anomaly detection 
results xt , which is represented as normal or abnormal.

Transformer with anomaly attention for feature 
representation
As shown in Fig.  2(Part1), considering the limitations 
of traditional Transformer in anomaly detection, we 
design an effective Transformer with anomaly attention 
mechanism. It is characterized by stacking the Anom-
aly-Attention blocks and feed-forward layers alternately. 
This stacking structure is conducive to learning under-
lying associations from deep multi-level features. And 

Fig. 2 The overall architecture of DGT-PF
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it has two branch structures (on the left of Fig. 2(Part1). 
For the prior association, we use learnable Gaussian 
kernel to calculate the prior relative time distance. Due 
to the unimodal nature of its Gaussian kernel, its neigh-
borhood can be better focused and the prior associa-
tion can be adapted to various time series patterns. And 
sequence association is learning association from origi-
nal sequence, which can find the most effective associa-
tion relationship. This section aims to extract temporal 
features and construct the feature matrix X (i) as well as 
to get anomaly attention. The feature matrix for each 
sequence is as follows:

In the anomaly attention module, a learnable Gauss-
ian kernel is first used to calculate the prior relative to 
the relative time distance, and then input node feature 
X is projected onto the query (Q), key (K) and value 
(V) matrix by linear projection. Assume that the model 
contains M layers with length n and input time series 
X ∈ Rn×N . The anomaly attention in layer m is:

where mǫ{1, ...,M} denotes the output of the mth layer with 
Nmodel channels, Q,K ,V ǫRn×Nmodel , generates a prior asso-
ciation PmǫRn×n based on the learning scale σǫRn×1 , and the 
ith element σi corresponds to the ith point in time. Its associ-
ated weight with the jth point is calculated by the Gaussian 

kernel G
(

||j − i||; σi
)

= 1√
2πσi

exp

(

−||j−i||2
2σ 2

i

)

w.r.t. the dis-

tance ||j − i|| , where i, jǫ{1, ..., n} . In addition, Rescale(.) is 
used to transform the associated weights into discrete distri-
butions Pm by partitioning rows. ZmǫRn×n represents 
sequence association, and Softmax(.) represents normaliza-
tion of the attention force along the last dimension.

The module also uses a multi-head attention mecha-
nism, and for H heads, the learning scale is σǫRn×H . 
Qh,Kh,VhǫR

n× Nmodel
H  represents the query, key and value of the 

hth head respectively. The outputs 
{

Zm
h ǫRn×Nmodel

H
1≤h≤H

}

 

from the multiple-head is then connected and the final 
result ZmǫRn×Nmodel is obtained. and the symmetric KL 
difference between prior association and sequence associ-
ation is used for anomaly differences, which represents the 
information gain between these two distributions [41]. Its 
formula is as follows:

(1)X (i) = Embed1(xt) ∈ Rn×N

(2)Pm = Rescale

([

1√
2πσi

exp

(

−
∥

∥j − i
∥

∥

2

2σ 2
i

)])

(3)Zm = Softmax

(

QKT

√
d

)

.V

where KL(.||.) is the KL divergence calculated between 
two discrete distributions corresponding to each row of 
Pm and Zm . Dis(P,Z;X)ǫRn×1 is the point-by-point asso-
ciation difference of X with respect to a prior association 
P and sequence association Z from multiple layers.

Dynamic graph learning
This paper focuses on the problem of system anomaly 
detection in the cloud environment, so we need to con-
sider the dynamic changes and trends of KPIs. Therefore, 
we propose an effective dynamic relationship embedding 
strategy, considering the dynamic modeling and predic-
tion of time sequence information of KPIs. As shown in 
Fig.  2(Part2), the time window is mainly used to process 
the data that is continuous in time, and the GNN model is 
applied to it for feature learning within each time window. 
Then the data of the whole KPIs is processed by sliding the 
time window to capture its dynamic evolution process, so 
as to better spatio-temporal prediction and effectively min-
ing the dynamic changing KPIs features. By using a graph 
structure to learn the temporal correlation between cloud 
monitoring system data, we adopt directed graph connec-
tion features to show the dependencies between different 
measurement systems. The nodes of the graph represent 
the measurement systems, and the edges between nodes 
represent their dependencies. The layer adaptively learns 
the adjacency matrix A(i) ∈ RN×N for sequences passing 
through the Transformer module to simulate potential 
relationships in a given time series sample xt . The learned 
graph structure (adjacency matrix) A(i) is defined as:

We first calculate the similarity matrix between the 
sample time series, the formula is as follows:

where distance represents distance measurements, such 
as Euclidean distance, absolute distance, dynamic time 
warping, etc. The dynamic adjacency matrix A(i)then be 
calculated as:

(4)Y = KL
(

Pm
i , : ||Zm

i , :
)

+ KL
(

Zm
i , : ||Pm

i , :
)

(5)Dis(P,Z;X) = 1

M

M

m=1

Y

i=1,...,N

(6)A(i) = Embed2
(

xt
)

(7)C
(i)
ij =

exp
(

−f
(

distance
(

xi, xj
)))

∑n
p=0 exp

(

−f
(

distance
(

xi, xp
)))

(8)A(i) = f
(

C(i)W1

)
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where W1 is the learnable model parameter and f is the 
activation function. In addition, in order to improve 
training efficiency, reduce noise effects, and make the 
model more robust, set the threshold value b to make the 
adjacency matrix sparse:

Finally, normalization is applied to A(i).

Repeated stack GNNs for spatio‑temporal modeling
As shown in Fig. 2(Part3), the module uses 3 GNN layers 
(G1, G2, G3) on the input graph (expressed as X (i) , A(i) ) to 
model the spatio-temporal relationship. The GNN layer can 
integrate spatial dependence and time patterns to embed 
the features of nodes, and transform the feature dimensions 
of nodes into decoding, The formula is as follows:

where X (i)
encodeǫR

n×Nmodel , A(i)
encodeǫR

n×n is composed of 
graph neural network layer layer and batch normalization 
layer, and i = 1, 2, ..., n . Then, during the pooling phase, 
GNN is trained using classical Diffpool and the soft clus-
ter allocation of nodes at each layer of deep GNN is 
learned. As shown in Fig.  2(Part4), the overall transfor-
mation of a pooling layer is shown in equation (10) and 
the following two equations show the process in the Diff-
pool layer, where W2ǫR

Nmodel×NDiffpool is the trainable 
parameter matrix representing the linear transformation 
and S(i)ǫRnDiffpool×n is the distribution matrix representing 
the projection from the original node to the pooled node 
(cluster). X

(i)
DiffpoolǫR

nDiffpool×NDiffpool and A
(i)
DiffpoolǫR

nDiffpool×nDiffpool 
which has less nodes than the input graph, the parameter 
T represents inverting the matrix S(i).

We generate centroids K (i)ǫRN×nDiffpool×Nmodel based 
on the input graph and then compute and aggre-
gate the relationship between every batch of centroids 
and the encoded graph for assignment matrix S(i) . 
The relationship S

(i)
p ǫRnDiffpool×n(p = 1, 2, ...,N ) and 

K
(i)
p ǫRnDiffpool×Nmodel (p = 1, 2, ...,N ) can be computed. We 

use cosine similarity to evaluate the relationship between 
input node embeddings and centroids, followed by a 
row normalization deployed in the resulting assignment 
matrix.

(9)A(i) =
{

A
(i)
ij A

(i)
ij ≥ b

0 A
(i)
ij < b

(10)X
(i)
encode,A

(i)
encode = GNNs

(

X (i),A(i)
)

(11)X
(i)
Diffpool = σ

(

S(i)X
(i)
encodeW2

)

(12)A
(i)
Diffpool = σ

(

S(i)A
(i)
encode

(

S(i)
)T

)

Then we concatenate S(i)p (p = 1, 2, ...,N ) and perform 
a trainable weighted sum Ŵφ to the concatenated matrix, 
leading to the final assignment matrix S(i).

After stacking several Diffpool, we can pool the origi-
nal graph to a single node and get its graph-level repre-
sentation vector xfinal , as follows:

AR‑MLP model ensembling
Since the monitoring data in the dynamic cloud contains 
nonlinear and linear features, we consider extracting the 
two features separately, and output the anomaly detec-
tion results through two lines into the AR-MLP model 
and the above nonlinear module in parallel, so as to bet-
ter extract all the feature information of the key indica-
tors. AutoRegressive (AR) model is a predictive model 
based on a time series, which assumes that the value of 
the current moment is only related to the value of several 
previous moments [42]. Adding AR model can maintain 
the linear relationship of KPIs, and the nonlinear feature 
extraction capability of MLP can enhance the feature 
extraction performance of AR model. At the same time, 
it is spatially sensitive, allowing communication between 
different spatial locations, and operating independently 
on each channel. Therefore, we propose a model combin-
ing AR model and MLP model to output anomaly detec-
tion results in parallel with the above nonlinear module, 
as shown in Fig.  2(Part5). AR-MLP can better adapt to 
complex anomaly detection tasks and further improve 
the accuracy and robustness of the model.

We first use the output of the above module to get 
the result xfinalǫRn×Nmodel , and at the same time, the 
result obtained by the AR-MLP model is expressed as 
xAMǫRn×Nmodel . Finally, the weighted sum of the two is 
used to get the final result x̂t of DGT-PF. The final anom-
aly score is as follows:

(13)S(i)p = cosine
(

K (i)
p ,X

(i)
encode

)

(14)S(i)p = normalize
(

S(i)p

)

(15)S(i) = Ŵφ





|N |
�

p=1

S(i)p





(16)x
(i)
final = P3

(

P2

(

P1

(

X
(i)
encode

)))

(17)x∗ =
[

∥

∥xt − x̂t
∥

∥

2

2

]

t=1,...,n

(18)Score(X) = Softmax(−Dis(P,Z;X))�
(

x∗
)
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where � is element-by-element multiplication.

Experiments and results
In this section we conduct synthetic experiments on 5 
public datasets. The accuracy and timeliness of anomaly 
detection are evaluated by experiments. We first com-
pare the detection performance of DGT-PF with baseline 
methods on 5 public datasets.Then we provide ablation 
experiments to analyze the importance of modules in 
DGT-PF. Then we plot two-part loss to analysis the con-
vergence of DGT-PF model on 5 datasets during training. 
Finally, the sensitivity test of the experimental param-
eters is carried out.

Datasets
Firstly, to deal with the complex and time-varying sce-
narios in the cloud environment, the experimental data-
sets should be more complex and diverse to be practical. 
Secondly, this paper is designed based on the KPIs data 
in cloud monitoring system, we mainly select public 
datasets related to cloud services to evaluate our propose 
DGT-PF model:

Server Machine Dataset (SMD) [43] is a 5-week real-
time dataset of 28 cloud platform servers, collected from 
a large Internet company, it has 38 dimensions. Pool 
Server Metrics (PSM) [44] is a dataset collected from 
within eBay’s multiple application server nodes and has 
25 dimensions. Mars Science Laboratory Rover (MSL) 
and Soil Moisture Active and Passive Satellite (SMAP) 
[45], are spacecraft datasets provided by NASA in 55 and 
25 dimensions, respectively. These contain remote sens-
ing anomaly data obtained in the Spacecraft monitoring 
System Event Sudden Anomaly Emergency Anomaly 
(ISA) report. Secure Water Treatment (SWAT) [46] is 
obtained from 51 sensors of the critical infrastructure 
system under continuous operations. These three data-
sets are also used as supplementary datasets. Table  1 
shows the statistics details for the experimental datasets. 
Figure  3 describes the one-dimensional feature repre-
sentation of the 5 datasets. And it can be seen that there 
are significant differences in feature distribution among 
them, and also indicates that selected datasets have 
diverse distribution.

Evaluation metrics
In order to measure the accuracy and effectiveness of 
various anomaly detection methods, precision, recall and 
F1-score are used as evaluation indicators to verify the 
anomaly detection performance of the model. Precision 
is about how much of the data detected as anomalies is 
true anomalies, while recall is about how much of the real 
anomaly data is detected as anomalies. The F1-score is a 
function of both precision and recall.

Therefore, we mainly focus on the F1-score for detection 
accuracy.

Baseline model
To fully demonstrate the strength of our model, we 
compare DGT-PF to the following 11 baselines, and we 
choose the first 3 statistical models and the last 8 deep 
learning models as baseline methods to prove that our 
model is due to linear and nonlinear models. Specific 
methods include 3 statistical methods CBLOF, Isola-
tionForest, ARIMA and 3 classical deep learning mod-
els ALAD, OCSVM, SO_GAAL, all of which are derived 
from pyod [47] except ARIMA model [12]. In addition, 
there are 5 recent deep learning models.

USAD [31]: UnSupervised Anomaly Detection on 
Multivariate Time Series, Combine autoencoder and 
adversarial training, the ordinary autoencoder is divided 
into one encoder and two decoders. One decoder pro-
duces fake data and trains the other decoder against it to 
improve its ability to recognize fake data.

LSTM [48]: Long Short-Term Memor, is a neural net-
work model used to process sequence data. It captures 
long-term dependencies in sequence through gating 
mechanism and memory unit, and can solve problems 
such as gradient disappearance and gradient explosion.

MTAD_GAT  [49]: uses two parallel graph attention 
layers to learn timing and feature dependencies between 
multiple time series, and a reconstruction- based 
approach to learn normal data from historical data, in 
which (VAE) models are used to detect anomalies by 
reconstructing probabilities.

Anomaly Transformer [40]: consists of multiple layers 
overlapping anomaly attention modules and Feed For-
ward neural networks, in which anomaly attention has 
two branches: a prior association branch and a sequence 
association branch. Their correlation differences are then 
calculated to create the final outlier score.

(19)F1 = 2 ∗ precision ∗ recall
precision+ recall

Table 1 Details of the experimental baseline datasets. # App 
represents the application of the data sets, ab represents 
the truth abnormal proportion of the whole data sets, and d 
represents the dimension

Dataset #App #Train #Test ab(Truth) d

SMD Server 708405 708420 0.042 38

PSM Server 132481 87841 0.278 25

MSL Space 58317 73729 0.105 55

SMAP Space 135183 427617 0.128 25

SWAT Water 396000 449919 0.121 51
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TRANAD [50]: consists of Transformer and GAN, uses 
score based adaptation to achieve multi-modal feature 
extraction and stability through adversarial training, and 
introduces the idea of adversarial training.

Experimental setup
All experiments are implemented using a single NVIDIA 
GeForce 930MX GPU in python 3.8.15 and Pytorch 
1.9.0+cu111. Experimental details follow Shen et  al. 
[32]. All neural network models are optimized by using 
the Adam optimizer. We set the initial learning rate to 
10−4 , and we mark the point in time as an anomaly if the 
anomaly score is greater than some threshold δ . A thresh-
old of δ is determined so that r proportion of the data in 
the validation dataset is marked as abnormal. Specifically, 

non-overlapping sliding Windows are mainly used to 
obtain a set of sequences, and the size of sliding Windows 
is set to 100. Transformer with anomaly attention has 
3 layers, 512 channels to set hidden state, and H-heads 
attention mechanism. GNN has 3 layers and the output 
dimension of the GNN layer is 128. To train the DGT-PF 
model, we set the epoch to 32, the batch size to 32, r to 1 
% , and the training process to stop early in 10 periods.

Experimental result
Performance of anomaly detection
DGT-PF achieves a consistent up-to-date level across 
all baseline model tests. We present the results of DGT-
PF compared with 11 baseline methods on 5 public 
datasets and analyze their detection performance. We 

Fig. 3 The feature representation for one dimension of SMD, PSM, MSL, SMAP and SWAT datasets
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calculate the precision, recall, and F1-score for each 
model, and compare the results in Table 2. Table 2 shows 
that DGT-PF outperforms all other methods on these 5 
datasets. The F1-score on SMD, PSM, MSL, SMAP and 
SWAT are 92.26%, 98.17%, 95.02%, 96.68% and 93.88%. 
respectively, with an average increase of 23.29%, 21.84%, 
21.24%, 20.47% and 20.95% compared with other meth-
ods. Some recall in the baseline model is higher than 
ours. For example, the recall of TRANAD in the 5 data-
sets has reached 99.99%. This may be due to the over-
fitting caused by the overly complex design of the model 
itself, or the lack of rigorous feature selection, resulting in 
the model’s inability to adapt to the data well. The same 
is true for the USAD and MTAD_GAT methods. How-
ever, precision has consistently achieved the highest lev-
els across all benchmark models. Overall, it is compelling 
to consider the advantages of transformer combined with 
GNN in unsupervised anomaly detection. In addition, in 
terms of average ranking of F1-score, DGT-PF performed 
best across all 5 datasets. As you can see in Fig.  4, this 
means that this is important for real world applications.

Ablation study
The effects of dynamic graph embedding strategy, 
dynamic graph learning and AR-MLP model on DGT-PF 
are analyzed through ablation study. The experimental 
results are shown in Table  3, and the results of the two 
parts of ablation are shown separately in Figs. 5 and 6.

The influence of embedding strategies on anomaly 
detection using dynamic graph. Traditional deep learning 
methods mostly focused on static mining of features in 
KPIs, ignoring the dynamic evolution of KPIs data, and it 

is necessary to consider the dynamic changes and trends 
of KPIs. So, we propose an effective dynamic relation-
ship embedding strategy. It is based on learning graph 
structure. It can better extract dynamic features from 
the KPIs data. From DGT-PF-one and DGT-PF-corr in 
Fig. 5, we can see the influence of dynamic graph embed-
ding strategy on the anomaly detection capability of our 
proposed model. DGT-PF-one is a DGT-PF model with 
an all-in-one adjacency matrix. DGT-PF-corr is a DGT-
PF model with adjacency matrix of correlation coeffi-
cients. DGT-PF model has the dynamic adjacency matrix 
proposed by us. As can be seen in Table 3, DGT-PF-one 
has an average F1-score of 94.29 %, DGT-PF-corr has an 
average F1-score of 94.47 % and ours is 95.20 %. It can 
be seen that different adjacency matrices can be used in 
our DGT-PF model. Also, the all-one matrix performs 
slightly worse than the correlation matrix. Our dynamic 
matrix is the best.

Hybrid Transformer and GNN have higher average 
F1-score than other combinations. It can be seen from 
Fig.  6 that we verify the influence of this module on 
DGT-PF model by removing dynamic graph learning and 
AR-MLP model. DGT-PF-woAM indicates that AR-MLP 
components are removed from the DGT-PF model, and 
DGT-PF-woDG indicates that dynamic graph embed-
ding and graph neural network segments are removed 
from the DGT-PF model. As can be seen in Table  3, 
With an average F1-score of 93.95 % for DGT-PF-woAM 
and 94.44 % for DGT-PF-woDG, the complete DGT-PF 
has the best results across different batch size, indicat-
ing that all components contribute to the effectiveness 
and robustness of the entire model. The performance of 

Table 2 DGT-PF compares the anomaly detection performance of 11 detection methods on 4 public datasets. P, R, and F1-score stand 
for Precision, Recall, and F1-score (expressed in %). For all 3 metrics, higher values indicate better performance, with the best f1-score 
highlighted in bold

Method SMD PSM MSL SMAP SWAT 

P R F1 P R F1 P R F1 P R F1 P R F1

CBLOF 57.20 76.12 49.68 82.91 85.25 61.18 48.92 96.33 64.48 57.29 90.49 70.61 54.29 89.61 65.18

IsolationForest 62.31 73.29 54.94 66.94 92.54 77.55 52.39 89.07 46.43 76.09 92.45 83.48 74.96 91.25 84.15

ARIMA 45.44 90.49 39.72 80.56 60.25 61.64 67.39 79.67 57.30 74.68 81.42 67.90 62.05 74.92 70.11

ALAD 51.99 79.67 35.73 61.15 93.95 74.08 52.58 95.31 68.06 53.34 59.07 56.17 50.49 64.28 51.28

OCSVM 34.34 76.68 55.45 78.52 90.21 83.96 59.96 90.11 65.41 53.91 59.07 56.37 49.73 57.26 54.39

SO_GAAL 78.54 79.66 80.10 46.25 49.59 47.86 89.94 90.34 61.78 67.28 53.30 59.48 60.63 55.07 53.82

LSTM 78.55 85.28 81.78 76.93 89.64 82.80 85.45 82.50 83.95 89.41 78.13 83.39 82.15 73.18 79.64

USAD 80.59 99.99 92.05 79.62 97.29 76.53 97.95 99.12 88.57 81.39 96.27 89.74 80.79 93.82 79.87

TRANAD 88.72 99.99 91.02 81.50 98.99 95.97 96.15 99.99 94.64 80.43 98.72 89.15 81.28 97.72 86.19

MTAD_GAT 76.57 77.37 86.63 76.28 98.33 81.09 76.23 98.24 86.78 75.16 99.91 85.83 73.58 99.99 85.07

Anomaly Transformer 89.32 93.94 91.57 95.20 96.89 97.01 98.46 98.33 94.19 93.54 98.18 96.27 90.31 97.96 92.58

DGT‑PF 89.59 95.85 92.26 97.66 98.72 98.17 98.84 97.60 95.02 94.33 98.90 96.68 91.18 96.41 93.88
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DGT-PF-woDG has decreased, which indicates that add-
ing GNN to dynamically capture temporal features can 
improve the timeliness of the model. DGT-PF-woAM’s 
performance degradation is even more pronounced, 
indicating that AR-MLP components play a crucial role. 
The reason is that AR model can be used to maintain 
the linear relationship of KPIs, and the nonlinear feature 
extraction capability of MLP model can enhance the fea-
ture extraction performance of AR model. Meanwhile, 
it is spatially sensitive and can better adapt the complex 
anomaly detection task. However, if our framework only 
has nonlinear modules, it can not extract all the charac-
teristic information of KPIs well and is not sensitive to 
the input. so it is necessary to add the AR-MLP model 
[51]. The experimental results show that both dynamic 

graph learning and AR-MLP model improve the anomaly 
detection performance of the model.

Convergence analysis
We plot the two-part loss of the model during training, 
as shown in Figs. 7 and 8. The two-part loss can be con-
verged within acceptable iterations on all five real-world 
datasets, and this good convergence is necessary for the 
optimization of the model.

Effect of parameters
We study the effects of window size and batch size on 
the model performance. In the experiment, the win-
dow size is 100 and batch size is 32, which takes into 
account the time information, memory and computing 

Fig. 4 F1-score of DGT-PF and all baseline models

Table 3 Ablation results of DGT-PF (F1-score (%)). Where, DGT-PF-one, DGT-PF-corr, DGformer-woAM and DGT-PF-woDG represent 
neural network modules with full adjacency matrix, adjacency matrix with correlation coefficient, no AR-MLP module and no dynamic 
embedded graph, highest scores are highlighted in bold

Method SMD PSM MSL SMAP SWAT Avg.F1(as%)

DGT-PF-one 92.10 97.68 92.40 96.19 93.08 94.29

DGT-PF-corr 91.69 97.65 92.69 96.50 93.83 94.47

DGT-PF-woAM 91.01 97.29 92.35 95.48 93.62 93.95

DGT-PF-woDG 91.82 97.33 92.82 96.47 93.76 94.44

DGT‑PF 92.26 98.17 95.02 96.68 93.88 95.20
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Fig. 5 Ablation results of dynamic graph embedding strategy

Fig. 6 Ablation results of Hybrid Transformer and GNN

Fig. 7 Change curve of 
∥

∥xt − x̂t

∥

∥

2

2
 in five datasets during the training process
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efficiency. Figure  9 shows the effects of different win-
dow size choices on F1-score. Figure 10 shows the influ-
ence of batch size of different sizes on F1-score. In the 
task of anomaly detection, window size is an important 
parameter, which determines how long the scope of the 
anomaly detection. Different window sizes may have 
an impact on the anomaly detection results, as smaller 

windows may result in higher false positives, while larger 
windows may result in higher false positives. Larger win-
dow sizes represent larger memory overhead and smaller 
slippage numbers, and our model is relatively stable for 
window sizes across a wide range of datasets. In particu-
lar, only performance is considered, and its relationship 
to window size can be determined by the data patterns. 
Therefore, the accuracy of anomaly detection model can 
be improved by selecting a reasonable window size. For 
example, when the window size of MSL, SMAP, PSM and 
SWAT datasets is 100, the F1-score of anomaly detection 
is the highest, and when the window size of SMD data-
set is 50, the F1-score of anomaly detection is the highest. 
Considering the performance of the model comprehen-
sively, we chose the window size of 100 in the experi-
ment. In addition, we find in Fig. 10 that the larger batch 
size is, the better it is. However, with the increase of 
batch size, the performance requirements of computers 
will also increase. Therefore, based on the above consid-
erations, we choose batch size to be 32.

We investigate the performance of the model using 
different anomaly attention layers. We average the out-
lier scores from multiple layers to get the final result. 
As shown in Table  4, the best multi-layer design is 
achieved. This also proves the value of multi-layer 
quantization. Also, we investigate the model’s perfor-
mance and efficiency. This was under different choices 
of layer number M and hidden channel D. The results 
are in Tables 5 and 6. Generally, the use of more com-
putation (e.g. increasing model size, datasets size, or 
training steps) can obtain better results but with larger 
memory and computation costs. Our goal is to achieve 

Fig. 8 Change curve of �Dis(P, S; X)�1 in five datasets during the training process

Fig. 9 Parameter sensitivity for sliding window size

Fig. 10 Parameter sensitivity for batch size

Table 4 DGT-PF model selects different layers of performance 
with anomaly attention. Highest scores are highlighted in bold

Dataset SMD PSM MSL SMAP SWAT 

layer 1 89.95 97.90 93.19 96.33 96.26

layer 2 91.25 95.14 93.66 96.19 93.39

layer 3 90.88 96.93 94.90 96.08 93.41

Multiple-layer 92.26 98.17 95.02 96.68 93.88
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high accuracy and real-time performance. We evaluate 
the model performance under different choices of hid-
den channel numbers. The detection time is the average 
running time to determine whether the incoming sam-
ple is abnormal or not. As shown in Table 6, the detec-
tion of the model is about 2 milliseconds. GPU memory 
utilization for training is also within acceptable range 
of 5.3GB. In general, increasing the size of the model 
yields better results, but requires more memory and 
computational costs. With this in mind, we choose the 
number of layers M to be 3 and the number of hidden 
channels D to be 512. The results above validate our 
model’s sensitivity. This quality is key for applications.

Case study: visualizations
In this section, we’ll use the PSM dataset to visualize the 
Diffpooling process. Figure  11 shows a visualization of 
node assignments in the first and second layers on the 
graph built from the PSM dataset. We use the same color 
to represent nodes in the same cluster. It is worth men-
tioning that the allocation matrix may not assign nodes 
to a specific cluster. The column corresponding to the 
unused cluster has a lower value for all nodes. For exam-
ple, we set the expected number of clusters in the first 
layer to be 15 (more than 8). But, in fact, we get 8 clus-
ters. This reminds us that even if the expected number 
of clusters is defined in advance, our model automatically 
performs clustering to get the best rough result for this 
graph. These features can be adjusted for different inputs, 
so they have a strong ability to generalize.

Experimental summary
Our model DGT-PF is compared with 11 baseline meth-
ods on 5 public datasets, and its F1-score reaches state-
of-the-art results with the highest reaching 98.17%, and 
converges within the acceptable iteration range, which 
indicates the validity of our model. In addition, the abla-
tion experiments prove that all five parts of our model 
play a certain role, and we also do a series of parameter 

Table 5 Model performance under different choices of the 
number of layers M. Highest scores are highlighted in bold

Dataset SMD PSM MSL SMAP SWAT 

M=1 91.35 98.02 95.46 96.24 92.76

M=2 91.71 98.13 94.88 96.21 92.91

M=3 92.26 98.17 95.02 96.68 93.88
M=4 92.45 98.15 95.03 96.33 92.95

Table 6 Model performance under different choices of the number of hidden channels D. Mem is GPU memory utilization for 
training, time is the average running time to determine whether the incoming sample is abnormal or not. Highest scores are 
highlighted in bold

Dataset SMD PSM MSL SMAP SWAT Mem(GB) time(ms)

D=256 91.72 98.05 95.45 96.31 92.44 4.7 2.5

D=512 92.26 98.17 95.02 96.68 93.88 5.3 2.0

D=1024 97.26 97.29 94.37 96.05 92.99 6.8 1.8

Fig. 11 Visualize the Diffpool process, using a sample graph from the PSM dataset that has 25 variables, so the original graph has 25 nodes. The 
nodes at Layer 2 correspond to the cluster at Layer 1. We use the same colors represent nodes in the same cluster, and the dashed lines represent 
different clusters
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sensitivity experiments to optimize our model and make 
the model achieve the best results.

Conclusion
Anomaly detection is the key to ensure the reliabil-
ity of cloud monitoring system. In order to detect sys-
tem anomalies in cloud infrastructures, we propose 
a novel Dynamic Graph Transformer based Parallel 
Framework(DGT-PF). In order to improve the accu-
racy and timeliness of the anomaly detection model, this 
paper proposes several innovations, which are related as 
follows:

In this paper, we propose a new deep learning frame-
work, a novel Dynamic Graph Transformer based Parallel 
Framework (DGT-PF) for efficiently detect system anom-
alies in cloud infrastructures. It overcomes the defects of 
traditional Transformer and GNN, and proposes an effec-
tive model that uses Transformer with anomaly attention 
mechanism to obtain GNN parameters and dynamically 
capture spatio-temporal features through graph structure 
learning. Finally, a parallel AR-MLP model is obtained 
with strong interpretability. DGT-PF has achieved state-
of-the-art results on a detailed set of empirical studies. 
In the experiment, we use 5 public datasets to evaluate 
our model. In terms of F1-score, DGT-PF outperform all 
baseline methods on 5 public datasets.

Our DGT-PF model has been proved to be effective in 
detecting system anomalies in cloud infrastructure by 
experiments. However, our model have also some limita-
tions. First of all, we only do anomaly detection experi-
ments in this paper without anomaly diagnosis and root 
cause localization, and the effective fault diagnosis needs 
to add these parts of content, only doing the anomaly 
detection is not enough, we will intensify these parts of 
our work in the future. Secondly, the basic model of this 
paper is GNN, Transformer and attention mechanism. 
Compared with other models, this model is more com-
plex, which may lead to the increase of time complexity 
and parameters, thus affecting model training. For some 
high real-time applications that require microsecond 
level detection time, the real-time performance of the 
proposed model is still inadequate and needs further 
improvement.

In future work, we also consider three aspects to 
improve the DGT-PF model. Firstly, we consider adding 
experiments for anomaly diagnosis and root cause locali-
zation in the next part of our work. Secondly, to reduce 
the training time and improve the real-time performance 
in the optimization of neural network is also one of the 
focuses of our research. Finally, we hope to explore and 
design a more powerful graph Transformer that can be 

incorporated into our DGT-PF model for better presen-
tation performance.
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