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Abstract 

Coverage-guided fuzzing is one of the most popular approaches to detect bugs in programs. Existing work 
has shown that coverage metrics are a crucial factor in guiding fuzzing exploration of targets. A fine-grained coverage 
metric can help fuzzing to detect more bugs and trigger more execution states. Cloud-native applications that writ-
ten by Golang play an important role in the modern computing paradigm. However, existing fuzzers for Golang still 
employ coarse-grained block coverage metrics, and there is no fuzzer specifically for cloud-native applications, which 
hinders the bug detection in cloud-native applications. Using fine-grained coverage metrics introduces more seeds 
and even leads to seed explosion, especially in large targets such as cloud-native applications.

 Therefore, we employ an accurate edge coverage metric in fuzzer for Golang, which achieves finer test granular-
ity and more accurate coverage information than block coverage metrics. To mitigate the seed explosion problem 
caused by fine-grained coverage metrics and large target sizes, we propose smart seed selection and adaptive task 
scheduling algorithms based on a variant of the classical adversarial multi-armed bandit (AMAB) algorithm. Extensive 
evaluation of our prototype on 16 targets in real-world cloud-native infrastructures shows that our approach detects 
233% more bugs than go-fuzz, achieving an average coverage improvement of 100.7%. Our approach effectively 
mitigates seed explosion by reducing the number of seeds generated by 41% and introduces only 14% performance 
overhead.

Keywords Coverage-guided fuzzing, Cloud-native application, Fine-grained coverage metric, Scheduling algorithm, 
Exploration-exploitation problem

Introduction
Fuzzing is one of the most successful vulnerability detec-
tion techniques. Coverage-guided greybox fuzzing, a 
state-of-the-art category of fuzzing, is the most popular 
and effective approach to finding bugs in various soft-
ware and hardware. For example, as a classic coverage-
guided fuzzer, AFL [1] has found thousands of security 
bugs and has been optimized in various aspects by aca-
demic researchers. Most existing fuzzers focus on finding 
memory corruption bugs in targets written in low-level 

languages like C or C++. With the development of fuzz-
ing, some solutions such as go-fuzz [2], python-afl [3], 
and RULF [4], pay attention to fuzzing in high-level 
languages.

Most coverage-guided greybox fuzzing can be mod-
elled as a fuzzing loop that mutates a selected seed to 
generate new inputs, as shown in Fig. 1. First, the target 
application is analyzed and probes are instrumented to 
monitor code coverage. As the instrumented application 
is executed, the probes will modify the data structure 
(typically a fixed-size bitmap) that maps the execution 
space of the target to reflect the coverage. This mecha-
nism is called the coverage metric. Then, the new inputs 
are executed as test cases in the instrumented applica-
tion. Depending on the coverage metrics applied, the 
fuzzing loop stores interesting test cases as new seeds 
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in the corpus for future iterations. For coverage-guided 
fuzzing, coverage measurement is a critical metric for 
distinguishing outstanding test cases. Code coverage 
quantitatively measures the degree of testing for the tar-
get application, which is used to select seeds that trigger 
new execution states. The simplest coverage metric is 
block coverage. A typical block coverage metric maps all 
basic blocks to a fixed-size bitmap and records the hit of 
blocks by enabling the corresponding bit of the triggered 
block. However, it cannot track the order of blocks, espe-
cially when a block has multiple precedents, resulting in 
a loss of coverage information. Meanwhile, the fixed size 
bitmap may not be sufficient to represent all the blocks, 
especially for large applications. Unfortunately, existing 
fuzzers for Golang (such as go-fuzz and Go Fuzzing [5]) 
still use coarse-grained block coverage metrics, which 
hampers the effectiveness of fuzzing.

As the fuzzing loop iterates, new seeds are continu-
ously added to the corpus, waiting to be scheduled for 
future mutations. The more sensitive the coverage met-
rics applied, the more frequently new seeds are added. In 
most fuzzers, a scheduled seed is mutated and executed 
in a fixed pattern, which determines the process capabil-
ity of a fuzzer. Therefore, with a high-sensitive coverage 
metric, a sequential seed scheduler will be faced with 
too many new seeds to select the best seeds, i.e., the seed 
explosion problem.

A selected seed is mutated to generate inputs that can 
trigger new execution states. But simple random-based 
mutation leads to limited exploration of the test cases. 
Some work has employed adaptive mutation strategies to 
improve the efficiency of exploration [6–9]. For example, 
as shown in Fig.  1, go-fuzz uses three mutation strate-
gies to help fuzzing break hard branches such as CRC32 
checksum. Specifically, go-fuzz uses a mutation strategy 
called sonar to find associations between input bytes and 
unique branching behaviors, and uses a mutation strat-
egy called versify to generate structural inputs. However, 

go-fuzz employs a fixed manner to arrange three muta-
tion strategies for each seed, which is unsuitable for all 
seeds and thus limits the exploitation of the seeds.

Wang et  al. [10] propose a concept of sensitivity to 
estimate the impact of a coverage metric on bug detec-
tion. The evaluation result of [10] shows that more sen-
sitive coverage metrics do not always give better results, 
although a sensitive coverage metric distinguishes more 
states. A more sensitive coverage metric will generate 
more seeds to select, which may exceed the fuzzer’s abil-
ity to schedule. Similarly, using more complex mutation 
strategies results in higher overhead and more seeds, 
which reduces the scheduling ability of the fuzzers. Espe-
cially, the larger the size of the target to be tested, the 
more seeds in the corpus, leading to a more serious seed 
explosion problem. Wang et al. [11] model the fuzzing as 
a multi-armed bandit problem and propose a hierarchi-
cal scheduler to solve the seed explosion caused by highly 
sensitive coverage metrics. Unfortunately, this work does 
not consider more smart mutation strategies to solve 
hard branch of targets.

Our observation is that cloud-native applications are 
much larger than the normal test targets written by Gol-
ang. Existing coverage metrics of fuzzers for Golang [2, 5] 
are simple block coverage metrics implemented with fixed 
size bitmaps, resulting in the coarse test granularity and 
inaccurate coverage information. Gan et al. [12] point out 
that inaccurate coverage results in loss of code coverage 
and even misses potential vulnerabilities. In this work, 
we propose an accurate edge coverage metric to optimize 
the test granularity of fuzzers for Golang. Specifically, we 
apply a hashing scheme similar to CollAFL [13], which 
considers the control flow information of all edges, and 
design an adaptive bitmap to capture accurate coverage 
information.

On the one hand, the accurate edge coverage metric 
leads to many more seeds and even seed explosion, espe-
cially for large targets such as cloud-native applications. 

Fig. 1 The main fuzzing process of coverage-guided fuzzing. The components in yellow represent the focus of our solution. The green elements 
signify the inputs to the fuzzing process
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On the other hand, applying more complex mutation 
strategies further reduces the processing capability of 
the fuzzers, resulting in more severe seed explosion. In 
order to address the seed explosion problem, we regard 
the fuzzing loop as an adversarial multi-armed ban-
dits problem [14], and propose smart seed and adaptive 
task schedulers to balance exploration and exploitation. 
More specifically, our smart seed scheduler selects a seed 
achieved high coverage to trigger more code region as 
exploitation and a fresh seed to discover surprising new 
branches as exploration. The adaptive task scheduler 
arranges flexible task strategies to mutate and execute 
seeds that generate new test cases tending towards explo-
ration or exploitation.

To validate and evaluate our solution, we implemented 
a prototype, CloudFuzz based on go-fuzz. We performed 
a series of evaluation experiments on 16 targets from 
real-world cloud-native infrastructures. Compared to go-
fuzz, CloudFuzz can find more bugs in real-world cloud-
native applications. CloudFuzz achieved better coverage 
in all targets and improved coverage by more than 50% 
in most of targets. And CloudFuzz can achieve the same 
coverage faster than go-fuzz. Compared to go-fuzz with 
our accurate edge coverage metric, our seed and task 
schedulers significantly reduce the number of seeds in 
the corpus, mitigating the seed explosion problem caused 
by fine-grained coverage metrics.

Contributions. Our main contributions are:

• We propose and implement an accurate edge cover-
age metric that can achieve finer-grained and precise 
fuzzing in greybox fuzzers for Golang.

• We design smart seed selection and adaptive task 
scheduling algorithms based on a variant of the clas-
sical AMAB algorithm that balances exploration and 
exploitation for fuzzing, mitigating the seed explo-
sion problem caused by highly sensitive coverage 
metrics.

• We implement our prototype CloudFuzz based on 
go-fuzz, which is suitable for bug detection in large 
cloud-native applications.

• We evaluate CloudFuzz on 16 targets from real-
world cloud-native applications. The results show 
that CloudFuzz can detect more bugs and achieve 
higher code coverage, and effectively mitigate seed 
explosion in the process of fuzzing cloud-native 
applications. Compared to go-fuzz, CloudFuzz intro-
duces only about 14% performance overhead.

Motivation
Coverage‑guided fuzzing in cloud‑native application
Fuzzing detects vulnerabilities in applications by feed-
ing collected or generated random data into a target. 

Coverage-guided fuzzing is one of the most popular 
techniques for finding bugs. Coverage-guided fuzzing 
utilizes a heuristic scheduling algorithm to select inter-
esting seeds for higher code coverage. Figure 1 illustrates 
the coverage-guided fuzzing process in more detail. 
Given a program and an initial corpus, the fuzzing pro-
cess involves a sequence of fuzzing loops. In each fuzz-
ing loop, the seed scheduler selects an interesting seed 
to mutate. The scheduled seed will be mutated to gener-
ate different test cases. The fuzzing process captures the 
coverage through instrumentation when a new test case 
is tested. If a test case triggers new coverage, it will serve 
as a seed for future rounds. However, there is a serious 
problem in the above fuzzing process, which is the seed 
explosion problem.

The seed explosion problem in fuzzing refers to a situ-
ation where the number of new seeds increases dra-
matically and uncontrollably. More specifically, a single 
mutation of a seed consists of multiple variation opera-
tors (such as bitflip operator, arithmetic operator, splicing 
operator, havoc operation and so on), which generates 
a large number of test cases. If the coverage metric is 
too fine-grained, a slight difference in execution will be 
measured as new coverage, resulting in most of these test 
cases triggering new coverage and being served as new 
seeds. In addition, if the size of the target application is 
too large, there will be too many execution states of the 
target, which will also result in many test cases being 
served as new seeds. These are the two potential causes 
of the seed explosion problem. Thus, a single mutation 
can add multiple seeds to the corpus, causing the num-
ber of new seeds to grow unrestrainedly, even exponen-
tially, making it difficult to manage or prioritize seeds. In 
Fig. 2, to better illustrate the seed explosion problem, we 
show the growth curve of seeds in the corpus when go-
fuzz (using a fine-grained coverage metric) tests cloud-
native applications within 24 hours. In these targets, the 
number of new seeds continues to grow without a trend 
towards convergence.

There are many practical coverage-guided fuzzers for 
unsafe languages such as C or C++. The concept of fuzz-
ing is useful for type-safe languages such as Golang. The 
fuzzers for C/C++ detect memory corruption vulner-
abilities, such as heap overflow, Use-after-Free, and so on, 
which can be exploited to cause security problems such 
as code execution or privilege escalation. The fuzzers for 
Golang try to find bugs like out-of-bounds, null pointers 
and so on. Since Golang is memory-safe language, these 
bugs cannot lead to serious security issues, but can cause 
the unexpected behaviors/results of applications. In most 
cases, the fuzzer for Golang are used for unit testing. The 
fuzzing results demonstrate that go-fuzz is an effective 
tool for finding bugs in a single function or a group of 
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functions in a unit. However, the situation is quite differ-
ent for cloud-native applications. Although the majority 
of cloud-native applications are composed of type-safe 
languages like Golang. But the large size and multiple 
component interactions of cloud-native applications 
bring about new problems for most fuzzing techniques.

Firstly, most fuzzers for Golang use block coverage 
metrics, which is an appropriate metric for a test unit. 
But some research [10, 13] have shown that fine-grained 
coverage metrics like edge coverage metrics make fuzz-
ers more sensitive and thus find more vulnerabilities. 
Second, the large size of cloud-native applications leads 
to severely inaccurate coverage measurement by cover-
age metric implementations, as demonstrated by [13]. 
Thirdly, numerous execution states frequently generate 
new seeds, exceeding the scheduling capabilities of fuzz-
ers. These factors affect the effectiveness and efficiency of 
greybox fuzzing in cloud-native applications.

Coverage metrics for greybox fuzzing
As aforementioned, coverage-guided greybox fuzzing 
detects bugs or vulnerabilities via a feedback loop. The 
fuzzing process preserves test cases that trigger new cov-
erage in the corpus and selects new seeds from the cor-
pus to mutate and generate test cases for higher coverage. 
In the feedback loop, coverage is the most important 
indicator to measure the quality of test cases. There are 
many research works on new solutions for coverage met-
rics [11, 13, 15]. Go-fuzz [2] and VUzzer [16] utilize block 
coverage metrics to track whether new basic blocks are 
triggered. AFL-families [1, 17, 18] use edge coverage met-
rics to achieve more sensitivity. Wang et al. [10] proposed 

a formal definition of sensitivity to evaluate the impact of 
coverage metrics on the fuzzing process. Edge coverage 
metrics are more sensitive than block coverage metrics, 
contain sufficient coverage information, and introduce 
less overhead than more sensitive coverage metrics.

In fact, edge coverage metrics lead to finding more 
bugs than block coverage metrics, and finding bugs faster 
than block coverage metrics. In general, edge coverage 
metrics will increase the acceptable memory overhead 
and runtime overhead more than block coverage met-
rics. Edge coverage metrics strike a balance between effi-
ciency and sensitivity [13]. Other more sensitive coverage 
metrics will cause more memory overhead and runtime 
overhead, but gain limited improvement in vulnerability 
detection. The previous research [10] shows that there is 
no grand slam coverage metric that can beat the others. 
In addition, we need to consider the more serious perfor-
mance overhead caused by coverage metrics for fuzzing 
large cloud-native applications. Therefore, we apply an 
edge coverage metric to optimize go-fuzz for better vul-
nerability discovery capability.

Problem of coverage measurement
Coverage information is utilized to construct a fuzzing feed-
back loop. Inaccurate coverage information will reduces the 
effectiveness of the fuzzing feedback loop. Researchers have 
designed coverage metrics that take into account different 
critical objectives, such as memory access [19] or context 
information [20, 21]. Unfortunately, the implementation of 
coverage metrics is often limited. For instance, AFL applies 
a 64KB bitmap to capture all triggered edges during the 
fuzzing process. CollAFL [13] described the serious hash 

Fig. 2 The growth curve of the number of seeds in the corpus when fuzzing the real-world cloud-native application within 24 hours. Each subplot 
shows time on the horizontal axis and the number of seeds in the corpus on the vertical axis
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collision problem since the implementation of coverage 
measurement in AFL. AFL-sensitive [10] proposed several 
coverage metrics that considered multiple aspects of code 
and memory. However, the implementation of these cover-
age metrics still relies on different hash algorithms to repre-
sent the coverage in a fixed bitmap.

In popular fuzzers for Golang such as go-fuzz, the 
implementation of the coverage metric is similar to AFL. 
Go-fuzz uses a 64KB bitmap to calculate block cover-
age. As discussed above, the code coverage information 
measured by this approach is non-deterministic due to 
hash collisions. The larger the target size, the higher the 
hash collision rate in go-fuzz. Especially, for cloud-native 
applications, the size of most cloud-native applications 
far exceeds the coverage measurement capabilities of go-
fuzz. As shown in Table 1, to accurately assess the hash 
collision problem in cloud-native applications, we calcu-
lated the hash collision rate of go-fuzz in typical cloud-
native applications. The results show that if we fuzz the 
common targets in Table  1 using go-fuzz, the average 
of the hash collision rates in coverage measurement is 
72.39%, which means that the measured coverage infor-
mation is very inaccurate. The number of basic blocks 
for all targets is much larger than the bitmap size of go-
fuzz. In kubelet internals components, the hash collision 
rate of the bitmap even exceeds 90% . The hash collision 
problem causes the accuracy of coverage to decrease to 
only one-tenth. Therefore, we employ an adaptive cover-
age measurement approach to avoid inaccurate coverage 
through the hash collision problem.

Scheduling strategy in greybox fuzzing
Fuzzers maintain a seed queue, scheduling interesting 
seeds one by one, and executing them to trigger bugs. 
The processing capability of a fuzzer is limited, so it is 
essential to prioritize some favored seeds to maximize 
code coverage. In other words, the fuzzer must schedule 

appropriate seeds to traverse as much code as possible 
in a limited amount of time. There are two factors that 
affect the scheduling ability of a fuzzer. First, the sensitiv-
ity of applied the coverage metric determines the num-
ber of new test cases generated. The more sensitive the 
coverage metric, the more test cases will be reserved in 
a round of the fuzzing loop. Secondly, the processing 
capability of a fuzzer determines how many test cases can 
be tested in a given time, i.e. the thoughput. The higher 
the thoughput, the higher the scheduling capability of a 
fuzzer. The above two factors will be more obvious for 
large fuzzed targets. Obviously, a larger fuzzed target will 
generate a larger seed queue and introduce more perfor-
mance overhead. In cloud-native applications, this prob-
lem can significantly affect the scheduling capability of 
go-fuzz, as most cloud-native applications are too large 
to effectively select appropriate seeds for fuzzing.

To address the side effects of excessive seeds generated 
by the fuzzer, some work has attempted to model seed 
scheduling as an exploration and exploitation problem, and 
to utilize learning approaches to solve this problem. To be 
specific, the seed scheduler should select some fresh seeds 
to explore whether these new seeds could lead to crucial 
new coverage, and should also prioritize the exploration 
of some valuable seeds that have brought more new cov-
erage in recent rounds than others. Wang et al. [11] mod-
elled the fuzzing process as a multi-armed bandit problem 
and utilized a classical UCB1 algorithm to optimize the 
seed scheduler. The scheme regarded the generated seeds 
as arms and calculated the reward of each seed for seed 
scheduling. However, there are two problems that need 
attention in this scheme. First, the traditional MAB prob-
lem assumes a fixed number of arms, but the number of 
generated seeds increases as the fuzzer progresses. Second, 
the reward probability of each arm is fixed, which is differ-
ent from the fuzzing process, where the probability of find-
ing a new coverage decreases. EcoFuzz [22] proposed to 

Table 1 Statistics of components in the common cloud-native applications

Statistics includes the number of basic blocks and the corresponding collision ratio in go-fuzz’s bitmap

Application Component Basic blocks Collision

argo-cd util-db 473259 86.15%

argo-cd project 530052 87.64%

containerd config 88782 26.18%

etcd api_marshal 166591 60.66%

etcd etcdserver 159082 58.80%

kubernetes apiextension 159919 59.02%

kubernetes api_marshal 366502 82.12%

kubernetes api_roundtrip 274873 76.16%

kubernetes kubelet 741863 91.17%

kubernetes kublet-server 509396 87.13%
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model the process of searching seeds and assigning energy 
as a variant of the Adversarial MAB (AMAB) problem. In 
the AMAB problem, it is assumed that the reward of each 
arm is arbitrary during each play, which is similar to the 
probability of discovering a new path during the fuzzer 
processing. SYZVEGAS [23] applied reinforcement learn-
ing to kernel fuzzing by modelling the fuzzing process as an 
AMAB problem. It proposed an automated way to identify 
the most promising task and invoked the best seed associ-
ated with the task. Overall, a sophisticated seed scheduler is 
essential for establishing the coverage-guided fuzzing feed-
back. It should balance the trade-off between fresh seed 
exploration and high coverage seed exploitation. Our con-
tribution is to apply reinforcement learning to cloud-native 
applications for fuzzing processing and attempt to make 
use the AMAB model to schedule the most important tasks 
and the most promising seeds during the fuzzing feedback.

Design
We propose CloudFuzz, a dynamic fuzzing approach that 
applies a fine-grained coverage metric to improve the bug 
detection capacity of go-fuzz, which is suitable for cloud-
native applications, by selecting appropriate seeds and 
scheduling optimal tasks.

Accurate fine‑grained coverage metric
As aforementioned, coverage is one of the most impor-
tant indicators to guide a fuzzer in exploring target appli-
cations and detecting bugs. Applying a proper coverage 
metric could help the fuzzing process to better under-
stand the execution states of the fuzzed target. It is deter-
mined by appropriate coverage granularity and accurate 
coverage measurements.

Typical coverage solutions
The coverage metric a critical factor in coverage-guided 
fuzzing. A better coverage metric can improve the effec-
tiveness of fuzzers. From the perspective of test granular-
ity, there are three common types of coverage metrics, 
i.e., block coverage, edge coverage and path coverage. 
Many fuzzers use block coverage, such as VUzzer, lib-
Fuzzer, etc., because block coverage is the simplest way 
to measure. But, as mentioned above, block coverage 
loses the precedent information of a block. Edge coverage 
addresses this common situation, where a block has mul-
tiple precedents blocks. The edge coverage metric tracks 
the hit count of edges consisting of two adjacent blocks 
during program execution. Edge coverage is widely used 
by many fuzzers, such as the famous AFL. However, edge 
coverage cannot infer the execution order of each edge, 
which loses some of the coverage information. The path 
coverage metric tracks the order of edges, including the 

most complete coverage information. Another important 
factor in determining which coverage metrics to apply 
in our fuzzer is the performance overhead of measur-
ing coverage. Although path coverage provides the most 
complete coverage information, but storing and captur-
ing path coverage information will introduce an unac-
ceptable overhead. Therefore, it is not a wise choice to 
apply path coverage to a common fuzzer. Edge coverage 
metrics achieve a trade-off between efficiency and cov-
erage information. Many studies have shown that edge 
coverage metrics are a proven and reliable solution. Some 
work [10, 13] proposed the hash collision problem in the 
implementation of edge coverage in AFL. Furthermore, 
AFL utilizes a 64KB bitmap to represent all triggered 
edges during fuzzing. A triggered edge A → B is mapped 
into the bitmap by a simple hash formula as follows:

The edge_trans is used as the key to index into the bitmap 
to access the hit count of this edge. prev and cur are the 
key values of the blocks A and B that make up edge A → B. 
This oversimplified hash formula and the too small bit-
map setting bring about a serious hash collision problem.

Go-fuzz uses a regular block coverage metric in go-fuzz. 
Similar to AFL, go-fuzz also employs a 64KB bitmap to cap-
ture all blocks and computes the hash for block A as follows:

The cur is the key value of block A. Go-fuzz utilizes 
the sha1 algorithm to hash this buffer and translates the 
hashed data into a 32-bit unsigned integer that is used 
as the index of block A in the bitmap.

CloudFuzz’s solution
Since an accurate edge coverage measurement will 
improve the effectiveness and efficiency of fuzzers, we 
argue that avoiding hash collisions in coverage track-
ing is a proper approach to address the fuzzing solution 
in cloud-native applications. In summary, we propose 
a solution that applies an accurate edge coverage met-
ric to optimize the coverage tracking feature of go-fuzz 
and absolutely avoids inaccurate coverage due to com-
promised implementations. One observation is that the 
hash of an edge is determined by the current block and 
its precedents. Obviously, since an edge of a program is 
directed, if two edges end with different current blocks, 
they must be different edges. Moreover, if two edges 
end with the same current block, the necessary infor-
mation to distinguish them is the difference between 
them, i.e., the precedents of the current block. There-
fore, we discuss the edge coverage as two cases.

(1)edge_trans = (prev ≪ 1)⊕ cur.

(2)block_trans = sha1{cur | cur ≫ 8 | cur ≫ 16 | cur ≫ 24}.
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Algorithm 1 CloudFuzz’s Coverage Solution

Case 1: Blocks with a single precedent. If a block has 
only one precedent, we could directly assign a identifier 
to this edge. Since the triggering the ending block of this 
edge belongs to only one situation, we do not need to 
distinguish which block is the precedent. We only need 
to find and assign a unique identifier to the block with 
a single precedent. To reduce the runtime overhead of 
coverage tracking, the unique identifier of blocks could 
be resolved as a constant at compile-time. In this case, 
the hit count of an edge can be recorded with only one 
array access operation, which greatly reduces the runtime 
overhead compared to AFL’s hash calculation.

Case 2: Blocks with multiple precedents. If a block 
A has multiple precedents, we are unable to rely only 
on block A to distinguish edges ending up with block A. 
We have to compute the hashes of edges ending up with 
block A depending on block A and its execution prece-
dent at runtime. If we use a fixed hash formula to com-
pute the hashes of all edges, it is difficult to guarantee 

that we will definitely avoid the hash collision problem. 
Therefore, similar to [13], we utilize a dynamic hash 
formula to calculate the hashes of the edges as follows:

where (x, y, z) are parameters to be determined, which 
may be different for different edges. The (x, y) parameters 
heuristically explore the bitmap to find unmapped space, 
then the z parameter is used to trim the proper bits for 
the block with multiple precedents. We use a heristical 
algorithm to traverse bitmap to find suitable parameters 
as Algorithm 1. If we cannot find the correct parameters 
for the edges within a certain window period to avoid a 
hash collision, we use the indexes of the free bits to assign 
identifiers to these edges. Specifically, we utilize a sepa-
rate dictionary to record the identifiers (as the value) of 
these edges (as the key). In this case, coverage tracking 
involves two steps: searching for relevant identifier as an 
index and recording the hit count in the bitmap.

Overall. Algorithm  1 gives an overview of this solu-
tion. It starts by parsing the the Abstract Syntax Tree 
(AST) of the target application to extract the Control 
Flow Graph (CFG), assigning unique identifiers to each 
block, and counting the number of edges. This infor-
mation is used to define the size of the bitmap and to 
distinguish between blocks with a single predeces-
sor (SingleBB) or those with multiple predecessors 
(MultiBB). The exploration space required for coverage 
tracking is then determined (line 2). Next, the algorithm 
focuses on MultiBBs and computes appropriate hash 
parameters to facilitate efficient coverage tracking (lines 
4 ∼11). We design a function to refine the hash param-
eters selection process (lines 13∼29). This function 
starts by extracting (x, y) parameters from the explora-
tion space (line 15) and continues by constraining the 
z parameter within a given window based on the lower 
half-space of block b’s identifier (line 17). It proceeds 
to assess all incoming edges to block b, ascertaining if 
the corresponding bits defined by the (x, y, z) tuple are 
unoccupied. If the bits are available, CalcParas returns 
the (x, y, z) tuple as the block’s hash parameters and 
adds block b into the SolvBB set (line 9). In the event 
that suitable hash parameters are not found within the 
specified window, block b is placed into the UnsolvBB 
collection (line 7). Then, the algorithm seeks unused 
bits in the bitmap to track hit count of these blocks. 
It ensures that the remaining free bits are allocated to 
blocks within a single precedent. Finally, the algorithm 
inserts probes with varied parameters into each block 
type, culminating in the generation of the instrumented 
application. This process optimizes the allocation of bit-
map space, ensuring that each basic block is monitored 
accurately for execution during testing.

(3)edge_trans = (cur ≪ x)⊕ (prev ≪ y)+ z.
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It is worth noting that the goal of this solution is to 
analyzes and insert probes into the target application. 
Furthermore, it only requires to update the size of the 
bitmap by modifying the corresponding variable of the 
instrumentation library. This means that the fuzzer itself 
does not need to be recompiled. Once the edges of the 
target application are defined and the corresponding bit-
map size is set, only the instrumented target application 
needs to be recompiled. This process ensures that the 
fuzzer remains unchanged, while the target application is 
adapted to reflect the new instrumented probes.

Gain and cost assessment
As mentioned above, we model the fuzzing process as an 
AMAB problem, where the seeds in the corpus are consid-
ered to be arms of bandits. In the AMAB problem, the costs 
and gains incurred in the round depend on which arm is 
chosen. On the one hand, during the fuzzing loop, when a 
seed is selected to participate in the next round, the results 
of various tasks based on this seed determine the gain of 
this seed selection. On the other hand, the execution time 
of these scheduled tasks implies a cost of this seed selection. 
In order to model and solve the AMAB problem of fuzzing, 
we need to reasonably estimate the costs and gains of a seed 
selection and assign a reward to each seed selected.

First, there is no doubt that coverage is the most impor-
tant factor in determining the effectiveness of coverage-
guided fuzzing. Thus, in CloudFuzz, we consider the new 
edge coverage(i.e., the number of new edges covered) 
triggered by a seed as a factor that affects round-specific 
gains. It is worth noting that vulnerabilities in real-world 
applications can be caused by a number of factors. These 
factors would help fuzzers to improve their ability to 
detect bugs. Our solution does not include these factors 
in the seed gain calculation, as we focus on solving the 
most fundamental and critical AMAB model to explore 
the approach to the optimal scheduling of fuzzing. Our 
solution can be easily be extended to cover these factors. 
Furthermore, the execution time of the seeds is the most 
critical factor to decide the efficiency of coverage-guided 
fuzzing. Similarly, we consider the execution time of a 
seed as the cost of it in a given round.

Gain estimation
Based on the above two factors, we estimate the gain 
of a seed in a given round. Let csi be the number of new 
edges covered (i.e., the coverage improvement) by the 
seed si selected in the ith round, and tsi be the time cost 
in the ith round. Thus, the total coverage is denoted as 
C = n

i=1 csi , and the total elapsed time as T =
∑n

i=1 tsi . 
We can calculate the average energy efficiency ratio 
for discovering a new path as ē = C

T
 . According the 

parameters ē , we can estimate the expected coverage 

improvement in the ith round is ē · tsi . In summary, we 
define the gain of the seed si in the ith round as:

through the actual coverage improvement minus the 
expected coverage improvement. However, the average 
energy efficiency ratio ē does not accurately describe the 
complexity of finding new paths in any one phase.

The reasons are as follows: 1) the number of total paths 
that can be executed of a program is finite; 2) the prob-
ability of a test case triggering a new path will decreases 
as the number of paths discovered increases. As a result, 
the energy efficiency ratios of finding a new path at dif-
ferent phases varies greatly. [22] proposed a relationship 
between the number of paths and the number of total 
executions in a typical fuzzing. During an actual fuzz-
ing process, the trend in the number of paths found by 
a fuzzer is similar to the Curve S in Fig.  3. In the early 
phase ( 0 ∼ t1 ), the fuzzer quickly discovered a number of 
paths. Then, in the next phase ( t1 ∼ t2 ), the probability of 
a test case finding a new path was decreasing until a criti-
cal seed makes a breakthrough (at time t2 ). The Curve S 
( t2 ∼ t4 ) then repeats the trend of the above two stages 
until all paths are found or the coverage upper limit of 
the fuzzer is reached.

In order to precisely calculate the energy efficiency 
ratio at a given moment, we consider the Curve S as a 
function between total paths and total executions. Cal-
culating the energy efficiency ratio at a moment ti will 
translate into solving for the derivative of the function S 
at ti . The energy efficiency ratio gti at ti is calculated as:

Unfortunately, when fuzzing real-world programs, it 
is impossible to calculate the energy efficiency ratio at 
all moment precisely. Therefore, we use a compromising 

(4)gi = csi − ē · tsi .

(5)gti = lim
t→ti

S(t)− S(ti)

t − ti
.

Fig. 3 A relationship between the number of paths and execution 
time during the fuzzing process
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solution that defining a variable average energy efficiency 
ratio ê . The initial ê is calculated as

Then, updating ê with ê = e(n, n+ k ·�T ) when the 
following conditions are satisfied:

where the current ê = e(m,n) and the parameters π could 
be configured to adjust the runtime overhead. Finally, we 
calculated the gain of seed si as:

In the fuzzing process of go-fuzz, a seed could be used 
for triage, mutation, verifier and sonar tasks. Depend-
ing on task scheduling strategies, different seeds may 
go through different handling processes, but they must 
accomplish the four tasks listed above without excep-
tion. Based on the results of these tasks, we utilize Eq. 8 
to estimate the rewards of the seeds over their life cycle.

Triage
First, a newly generated seed would be added to triage 
queue and await triage processing. The triage task con-
tains two steps: minimization and smashing. The mini-
mization step attempts to trim some bytes from seeds 
to reduce the size of the seeds while maintain the same 
coverage. Reducing the size of seeds saves some of the 
execution time in subsequent tasks. That is, in our model, 
minimization could cut off some of cost in subsequent 
executions, but there is no concern about a negative 
impact on the gain of seeds. Let the execution time of 
a seed s′ (i.e., the cost of s′ ) is ts

′

exec , then s′ is minimized 
to a new seed s in one execution as �ts

′

exec = ts
′

exec − tsexec . 
Obviously, reducing the size of seed s′ has benefits for all 
tasks that involve seed s′ , saving the cost of those tasks. 
All types tasks involve handling seeds with correspond-
ing approach and executing them. For example, a muta-
tion task mutates a seed firstly and then executes the 
generated test case. The smaller size of seeds also saves 
significant cost arising from handling. Cost savings in 
one handling of seeds are positively correlated with seed 
size reduction. It is not possible or necessary to accu-
rately calculate the cost savings for each handling. We 
estimate the cost savings of seed s in one handling as 
�tsexec = σ(ts

′

exec − tsexec) , where σ ∈ (0,+∞) is a weight in 
order to indicate the correlation between handling cost 
and execution cost. Formally, we estimate the total cost 
savings resulting from minimization the seed s′ as

(6)ê = e(0,�T ) =
S(�T )− S(0)

�T
.

(7)
|ê − e(n,n+k·�T )|

ê
≥ π .

(8)gi = csi − ê · tsi .

where m denotes the total times of handling seed s and 
n denotes the total times of executing seed s. In terms of 
calculating the gain of minimizing a seed S, we convert 
the cost savings into the desired coverage improvement 
using the parameters ê and esmin(m, n) . In contrast, we 
should consider the cost savings of minimization as the 
gains of minimization. Let tsmin be the cost of minimiza-
tion seed s. Finally, we calculate the total gain from mini-
mizing the seed s′ after m times handling and n times 
execution as:

Another step in the triage phase is smashing. Smashing is 
a type of high-priority mutation that gives each new seed a 
minimal amount of attention. It is worth noting that smash-
ing performs multiple deterministic mutating algorithms 
on a fresh seed, which is more efficient than absolute ran-
dom mutating in the mutation phases. As a result, the gain 
of smashing is usually higher than the gain of mutation. Let 
cssmh(i) be the gain (i.e., the number of new edges covered) 
of seed s in the ith variation of the smashing phase, tssmh be 
the total cost of smashing seed s. The total gain of smashing 
is the sum of the gains from each variation in the smashing 
phase. Formally, we calculate the total gain from smashing 
the seed s after n times variations as:

Finally, we calculate the total gain from triage for any 
one seed s as: gstri = gsmin + gssmh , which quantitatively 
reflects the coverage improvement and runtime overhead 
from triaging one seed s.

Mutation
Mutation is one of the most important and frequent tasks in 
the fuzzing process. According to the definition of fuzzing, 
a fuzzer needs to execute tested targets several times which 
relies on different random data generated by the mutation 
task. Furthermore, in go-fuzz, mutation tasks are performed 
nine times more than verification tasks, and one thousand 
times more often than sonar tasks. Through fresh test cases 
generated by mutating existing seeds, the fuzzing process 
will explore new execution states and trigger new vulner-
abilities. Therefore, when a test case covers new edges, it 
indicates that a mutation task has produced a valuable test 
case, which serves as an important factor in measuring the 
gain of mutation tasks. More specifically, a mutation task 
consists of two operations: first, mutating a scheduled seed 

(9)
esmin(m, n) = m ·�tshld + n ·�tsexec

= (m · σ + n)(ts
′

exec − tsexec).

(10)gsmin = ê · esmin(m, n)− ê · tsmin.

(11)gssmh =

(
n∑

i=1

cssmh(i)

)
− ê · tssmh.
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from the corpus to generate a new test case; second, execut-
ing the new test case in the target application, measuring 
coverage information and whether a crash occurs.

Let tS
mut1

(i) be the cost of step 1 in ith round of muta-
tion tasks on seed s, and tS

mut2
(i) be the cost of step 2 in ith 

round of mutation tasks on seed s. The cost of a mutation 
task in ith round tSmut(i) = tS

mut1
(i)+ tS

mut2
(i) . In theory, 

what really makes a difference to the coverage improve-
ment is the mutation operation on the seeds (the first 
step). Executing test cases generated by mutations is used 
to check whether the test cases have improved cover-
age. In essence, the execution operation (step 2) does not 
improve coverage. Let csmut(i) be the coverage improve-
ment of ith mutating the seed s, in a narrow sense, the 
gain of ith mutating the seed s can be calculated as:

In this formula, we only consider the cost of the true 
mutation operation and do not include the execution 
operation, which only serves as a check. In this approach, 
our policy favours mutating seeds to explore the tar-
get application more often. Otherwise, in a generalized 
sense, we consider the execution operation in a mutation 
task to define the gain of ith mutating the seed s as:

In this approach, our policy incorporates the expense 
of executions due to mutate a seed, which focuses on a 
balance of exploration and exploitation. In summary, 
we calculate the total gain from mutation tasks when n 
mutations are made to seed s as:

where tS(i) is decided on our policy, which could be tS
mut1

(i) 
(based on formula 12) or tSmut(i) (based on formula 13).

Versify and sonar
Versify and sonar serve a similar purpose and apply anal-
ogous ideas to achieve their goals. The versify task uses 
a heuristic algorithm to recognize internal structures of 
seeds in the corpus and generate new test cases contain-
ing similar structures. The experimental results shows 
that versify task could help go-fuzz find more seeds and 
cover more basic blocks. Unlike the mutation task, the 
versify task only performs a series of continuous variant 
operations on the current seed. This allows us to estimate 
the gain of a versify task as a whole. Let cSver be coverage 
improvement of seed S in a versify task, and tSver be the 
total cost of versifying seed S. We calculate the grow of 
versifying seed S as: gsver = csver − ê · tSver.

(12)gsmut = cSmut(i)− ê · tS
mut1

(i).

(13)gsmut = cSmut(i)− ê · tSmut(i).

(14)gsmut =

n∑

i=1

csmut(i)− ê · tS(i).

Similar to the versify task, a sonar task includes a series 
of constant variant operations. A sonar task consists of 
two phases of operations. The sonar task identifies cru-
cial comparison statements where both operands are 
dynamic and marks these statements as sonar sites at 
complier-time, replacing the left value of a sonar site with 
its right value at runtime. Fortunately, most of the cost of 
a versify task is caused by its first phase, namely the cost 
in complier-time, which has no impact on the runtime 
overhead. Thus, we do not need to take into account the 
overhead of the first phase when calculating gains. Let 
cSsor be coverage improvement of seed S in a sonar task, 
and tSsor2 be the runtime cost of the second phase in the 
corresponding sonar task. We calculate the grow of sonar 
a seed S as: gssor = cSsor − ê · tSsor2.

Smart seed selection policy
Existing seed selection policies
Seed selection is a crucial step in determining which 
seeds will be prioritized for the next rounds. Existing 
studies have shown that, a good seed selection policy 
could improve the efficiency of the fuzzer and find more 
bugs in finite fuzzing rounds. There are two major cate-
gories of seed selection policies: constant feature policies 
and feedback-based trade-off policies.

First, constant feature policies cause the fuzzer to pref-
erentially select seeds according to some runtime fea-
tures that are of interest to the established policies. For 
instance, VUzzer [16] believed that deeper basic blocks 
are more difficult to be triggered and prioritized seeds 
which traversed deeper blocks. FIFUZZ [24] proposed a 
context-sensitive SFI-based approach to guide fuzzing 
exploring error handling code. Policy in this category typ-
ically direct fuzzers to exercise paths with fixed features 
that are considered prone to producing bugs or vulner-
abilities. Related works have theoretically demonstrated 
that these proposed features do correlate to some degree 
with the occurrence of bugs, and have shown experimen-
tally a positive correlation with bugs. However, these poli-
cies applied to the fuzzers limit the accessible, interesting 
regions of the target application. The fuzzers focus on 
exploring only the specified regions that are defined in the 
applied policies, but igonre valuable regions that are not 
defined in the applied policies, reducing the fuzzers’ abil-
ity to find bugs.

Second, feedback-based trade-off policies make the 
fuzzer to select a few high-quality seeds that have exer-
cised significantly more new coverage in historical 
rounds as exploitation, and to select fresh seeds that have 
rarely been selected but may lead to surprising new cov-
erage as exploration. The most important objective of 
policies in this category is to strike a balance between 
exploitation and exploration. For instance, AFLFast [18] 



Page 11 of 22Yang et al. Journal of Cloud Computing          (2024) 13:118  

attempted to assign different energy to different seeds 
based on the frequency at which the seeds were chosen 
and the distribution density of the paths exercised by the 
seeds, thus avoiding excessive exercise of high-freqnency 
paths. EcoFuzz [22] proposed a scheme that models seed 
selection as a variant of adversarial MAB problem, which 
assigns different energies to seeds by estimating their 
reward probabilities, assigning the appropriate energy 
to each arm to achieve a trade-off between exploita-
tion and exploration. Similarly, SYZVEGAS [23] applied 
an Exp3-IX-like algorithm to solve the AMAB problem 
of seed selection. Unlike constant feature policies, feed-
back-based trade-off policies not only explot seeds with 
expected features, but also explore fresh seeds to achieve 
unintended but valuable new coverage. Recent work 
has shown that feedback-based trade-off policies utiliz-
ing learning-based algorithms to address seed selection, 
modelled as an exploitation and exploration problem, are 
effective and efficient, improving the speed of exercise 
applications and bug detection.

Algorithm 2 Seed Selection Algorithm

CloudFuzz’s seed selection policy
As aforementioned, feedback-based seed selection poli-
cies can obviously improve fuzzer’s ability to detect 
bugs. Based on this observation, we construct a feedback 
mechanism between the historical gain of the selected 
seeds and the preference of the selection strategies, 
which helps CloudFuzz to select proper seeds to strike a 
balance of exploration and exploitation. Similar to exist-
ing work [22, 23], we model the seed selection process 
as an Adversarial MAB (AMAB) problem. Each seed in 
the corpus is regarded as an arm of bandits, and the goal 
of seed selection is to obtain the maximum of the sum 
of the gains from all the selected seeds. Fortunately, the 
Exp3 algorithm is a proven solution for complex AMAB 
problems. In this work, we have adapted the typical Exp3 
algorithm to suit our gain assessment method, as shown 
in Algorithm 2.

The Exp3 algorithm assigns a weight to each arm 
in every round (line 6). The weights determine which 
arm will be selected for next round (line 10). Then, the 
weights will change depending on the reward earned in 
each game (line 20). In a word, we have implemented 
a feedback loop between the choices of arms and the 
rewards of arms. The core step of seed selection algo-
rithm is to draw a seed it to participate the next round 
according to the distribution {p1(t), p2(t), ..., pi(t)} that 
is the distribution of estimated reward probabilities for 
each seed in round t (line 10). Then, we calculate the total 
reward of the selected seed it from achieved all tasks in 
round t (line 11). The CalcGain function in Algorithm 2 
consists of two steps: 1. Calculate cumulatively the total 
reward of seed it in round t; 2. Normalize the total reward 
of seed it . Following formulas in the previous section, 
we calculate the total reward git (t) of a seed it through 
accumulating the gains of all tasks (including mutation, 
versify and sonar, in the case of fresh seed ti , a triage task) 
in round t. The total reward git (t) can take values from 
( −∞,+∞ ). However, the Exp3 algorithm requires the 
reward of each arm to take values in the range [0, 1]. So, 
the second step of CalcGain function is normalizing the 
total reward git (t) to [0, 1]. We apply a common logistic 
function to normalize the total reward as follows:

In this step, we excluded the most common Z-score 
normalization or max-min normalization, because these 
methods require maintenance and traversal of the histor-
ical gain data, which can cause a significant performance 
overhead. In addition, we calculate the estimated reward 

(15)Git (t) =
1

1+ e−git (t)
.
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Ĝi(t) for each seed i based on its reward and reward 
probability (line 12∼16). The estimated reward of each 
seed will affect the weight of each seed in the next round 
(line 20), which achieves the feedback mechanism.

Adaptive task scheduling strategy
As mentioned earlier, go-fuzz contains four tasks for 
different goals: triage, mutation, versify and sonar. In 
go-fuzz, it assigns different weights to the seeds in the 
corpus to select the appropriate seeds for the next round 
fuzzing. However, there is no scheduling algorithm that 
can judge which tasks should be given priority. Some 
work has pointed out that allocating different amounts of 
energy to the task being performed based on the cover-
age features of the seeds could result in significant energy 
savings.

Similar to seed selection, the task scheduler can be 
modelled as a series of exploitation and exploration 
behaviours. For exploitation, we should prioritize tasks 
that generate more high-value seeds, which will promise 
the fuzzing process attains a higher coverage in a short 
period of time. For exploration, we should also attempt to 
make use of high-cost but potentially effective tasks that 
may help the fuzzing process break through bottlenecks 
that are being experienced (e.g., hard-to-guess branches, 
etc.). Invoking different tasks for the same seed will result 
in the seed triggering diverse coverage and execution 
results. We are concerned with a trade-off task schedul-
ing strategy that accomplishes as high coverage as pos-
sible with finite resources and time.

In order to ensure the robustness of CloudFuzz, we 
reuse the exploitation-exploration strategies decision unit 
to reduce the redundant and complexity of CloudFuzz. 
More specifically, we also utilize the Exp3 algorithm to 
achieve the adaptive task scheduling strategy. The Exp3 
algorithm is a classic and useful approach of addressing 
the trade-off between exploitation and exploration. Com-
pared to the Exp3 algorithm in the seed selection, there 
are two differences with the Exp3-like algorithm in the 
task scheduling. First, the number of arms in the task 
scheduling scenario is a constant as there are only four 
fixed tasks. But in the case of the seed selection, since the 
number of seeds is increasing, the number of arms is also 
escalating. Second, the calculation of rewards is differ-
ent for each arm when it is selected. In the seed selec-
tion scenario, the rewards of seeds are assigned as the 
sum of reward from all tasks in current round. But in the 
task scheduling scenario, the reward of the task fits per-
fectly with our novel gain assessment approach. Our gain 
assessment is built on the increased coverage and time 
cost per task.

Implementation
We implemented CloudFuzz on top of go-fuzz, as go-
fuzz still one of the most popular fuzzers for Golang. Our 
implementation consists of approximately 2,000 lines of 
code. It is worth noting that, our coverage metric solu-
tion and AMAB-based exploration &exploitation strate-
gies could be applied to any coverage-guided fuzzer for 
Golang. Existing work shows that these approaches could 
improve the efficiency of fuzzers for the C language.

As aforementioned, at compiler-time, our implemen-
tation obtains the number of nodes in ASTs (Abstract 
Syntax Tree) of fuzzed targets and traverses these nodes 
to build appropriate instrumented functions for differ-
ent coverage cases, as shown in Accurate fine-grained 
coverage metric section. It is different from the fixed size 
bitmap in go-fuzz’s implementation, we make use of a 
dynamically sized slice as the coverage bitmap to adapt 
to our coverage metric. In addition, we rebuilt the instru-
mented runtime library using Golang assembly, which 
improves the execution efficiency of CloudFuzz.

We implemented an Exp3-like algorithm to achieve 
an AMAB-based seed slection policy and task schedul-
ing strategy. As shown in Gain and cost assessment sec-
tion when a seed T is tested, we will estimate its gains by 
counting the coverage improvement and runtime over-
head caused by seed T. In order to achieve fine-grained 
task scheduling, we will also collect information on the 
coverage increasing and time spent from seed T at differ-
ent stages of the fuzzing process. Eventually, our Exp3-
like algorithm allows CloudFuzz to balance exploration 
and exploitation behaviors through the smart seed selec-
tion policy and the adaptive task scheduling strategy.

Evaluation
In this section, we evaluate our prototype CloudFuzz, to 
validate whether our improvement have boosted fuzzing 
performance. Considering with our improvement solu-
tions, we conducted a series of experiments in CloudFuzz 
with different configurations on various cloud-native 
applications to answer following questions.

• RQ1: Can CloudFuzz achieve higher coverage than 
the baseline on cloud-native applications?

• RQ2: How much overhead of an impact does our 
improvement compared to the baseline?

• RQ3: Can CloudFuzz detect more bugs than the 
baseline on cloud-native applications?

• RQ4: How effective is our smart seed selection policy 
in solving the state explosion problem in cloud-native 
application?

• RQ5: Can our task scheduling strategy improve the 
fuzzing performance compared to the baseline?
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Experiments setup. We fuzzed each target for 24 hours 
(on two cores) and repeated each experiment 10 times 
to reduce the effects of randomness. All evaluation 
experiments were done on 64-bit machine with 24-core, 
48-thread CPU@2.1GHz, 64GB of RAM, and Ubuntu 
20.04 as server OS. The version of Golang is 1.18.

Dataset. Our dataset includes 16 real-world cloud-
native utilities. These utilities were selected from 
cncf-fuzzing test suits based on the importance of the 
cloud-native infrastructure, popularity in the community 
and diversity of categories. See Table 2 for details of the 
dataset.

Fuzzers. We selected four different fuzzers for our 
experimental evaluation. These include the baseline 
fuzzer and variants that belong to our CloudFuzz frame-
work. The CloudFuzz variants enable different optimi-
zations, which separately and intuitively evaluate the 
impact of the proposed optimizations on the testing pro-
cess described in this paper. See Table 3 for details of the 
fuzzers in the following evaluation.

Code coverage in CloudFuzz
Results from the analysis of experiments results on 16 
real-world cloud-native applications demonstrates that 
CloudFuzz outperforms existing fuzzers in terms of 
code coverage. In particular, CloudFuzz consistently 
overcomes coverage bottlenecks that often hinder the 
baseline fuzzer, allowing for more comprehensive code 

exploration. In addition, CloudFuzz quickly reaches the 
coverage upper limit of the baseline compared to the 
baseline fuzzer.

Code coverage is one of the important metrics to eval-
uate the effectiveness of the coverage-guided fuzzer. We 
ran CloudFuzz and go-fuzz on 16 cloud-native applica-
tions for 24 hours, and compared their coverage metrics 
and path exploration capabilities.

Total coverage improvement
Table 4 shows the mean maximum coverage achieved by 
different fuzzers within 24 hours on targets of Table  2. 
The results of Table 4 show that CloudFuzz significantly 
improve the maximum coverage achieved by fuzzers on 
real-world targets compared to go-fuzz. In the last col-
umn of Table 4, it indicates the coverage increase rate of 
CloudFuzz compared to go-fuzz. Experimental results 
show that compared to go-fuzz, CloudFuzz achieved an 
average coverage improvement of 100.7% on the 16 tar-
gets, meaning that CloudFuzz outperformed go-fuzz. In 
addition, CloudFuzz achieved at least 50% higher code 
coverage on most of the 16 real-world targets. With the 
exception of the No 10 target, where CloudFuzz achieved 
a 5.16% improvement in code coverage, the remaining 
targets showed significant coverage gains. For all other 
targets, CloudFuzz delivered coverage improvements 
in excess of 30%. Impressively, for more than a third of 
the targets, CloudFuzz achieved maximum coverage that 
were over 100% higher than the baseline.

Furthermore, the third column illustrates the maxi-
mum coverage achieved by go-fuzz-well. Go-fuzz-well 
employed the identical seed selection algorithm and 
task scheduling strategy as go-fuzz. Thus, a comparison 
between go-fuzz and go-fuzz-well can see the impact of 
the coverage metric that employs an adaptive bitmap.

The results demonstrate that the use of our coverage 
metric in go-fuzz-well leads to significant improvements 
in code coverage. On average, go-fuzz-well consistently 
outperforms go-fuzz across most targets. For instance, 
in target No 2, go-fuzz-well achieves a coverage improve-
ment of 33.08% over go-fuzz. Notably, target No. 14 dem-
onstrates a remarkable increase in coverage of 46.68%, 
indicating that our coverage metrics can yield substantial 
enhancements in specific scenarios. In the majority of 
targets (10 out of 16), go-fuzz-well achieves more than a 
10% increase in coverage.

This analysis highlights the importance of adopting 
advanced coverage metrics in fuzzing tools to achieve 
superior results. Moreover, when compared to go-fuzz-
well, CloudFuzz and CF-seed exhibit even more sig-
nificant coverage improvements. This indicates that 
the smart seed selection and adaptive task scheduling 

Table 2 The dataset from cncf-fuzzing

This table contains the tested functions as the targets in the last column, 
the corresponding components and version information in the cloud-native 
applications where these targets are located. To facilitate the description of 
the evaluation results, we assign a number to each target, as shown in the first 
column

Number Application Version Component Function

No 1 argo-cd 2.5.11 db CreateRepoCertificate

No 2 argo-cd 2.5.11 diff StateDiff

No 3 argo-cd 2.5.11 normalizer Normalize

No 4 argo-cd 2.5.11 server CreateToken

No 5 argo-cd 2.5.11 server ValidateProject

No 6 containerd 1.6.18 docker ParseHostsFile

No 7 etcd 3.5.7 api api_marshal

No 8 etcd 3.5.7 server V3Server

No 9 istio 1.17.0 mesh ParseMeshNetworks

No 10 istio 1.17.0 mesh ValidateMeshConfig

No 11 kubernetes 1.24.10 apiextension ConvertToTable

No 12 kubernetes 1.24.10 api api_marshal

No 13 kubernetes 1.24.10 api api_roundtrip

No 14 kubernetes 1.24.10 kubelet HandlePodCleanups

No 15 kubernetes 1.24.10 kubelet Server

No 16 kubernetes 1.24.10 kubelet SyncPod
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proposed in this study result in more effective coverage 
enhancements.

In total, empirical evidence shows that CloudFuzz out-
performs go-fuzz in terms of state exploration. Our solu-
tion is specifically designed to excel in testing scenarios 
within cloud-native applications, enabling CloudFuzz to 
uncover a greater number of execution states, thereby 
enhancing its effectiveness in detecting potential bugs.

Coverage growth over time
Figure  4 shows the coverage growth of various fuzzers 
within 24 hours on 16 targets from Table 2. It reveals an 

interesting fact via the coverage growth curve. On the 
one hand, we can observe that the coverage of Cloud-
Fuzz grows faster than go-fuzz in the early stages of fuzz-
ing. Figure 4 shows how quickly CloudFuzz reaches the 
upper coverage limit of the baseline fuzzer in 24 hours. 
We can see that, with the exception of two targets (No 3, 
No 10), CloudFuzz achieved the same coverage in 1 hour 
as go-fuzz did in 24 hours for all the remaining targets 
in Table 2. For target No 10, CloudFuzz did not open a 
significant gap with go-fuzz in terms of coverage growth. 
Overall, CloudFuzz exhibits faster coverage growth than 
go-fuzz, and even in the short term, CloudFuzz triggers a 

Table 3 The fuzzers used in the evaluation experiments and the optimizations they enabled

This table presents the selected fuzzers for evaluation in the first column, the corresponding optimizations in the middle column, the goals and the reasons for their 
selection in the last column. The “Optimizations” column includes three optimizations proposed in this paper: fine-grained coverage metric (denoted as Cov), smart 
seed selection (denoted as Seed), and adaptive task scheduling (denoted as Task)

Fuzzer Optimizations Description

Cov Seed Task

go‑fuzz Using go-fuzz as the baseline fuzzer because go-fuzz is a common fuzzer for Golang and we implemented 
CloudFuzz by enabling optimizations on top of go-fuzz.

go‑fuzz‑well ✔ A variant of go-fuzz that enables our coverage solution to observe the influence of our fine-grained coverage 
metric.

CF‑seed ✔ ✔ A variant of CloudFuzz that enhances seed selection optimization based on go-fuzz-well to evaluate the effec-
tiveness of our seed selection strategy.

CloudFuzz ✔ ✔ ✔ The prototype of our solution that enables all optimizations proposed in our paper to evaluate the effectiveness 
and efficiency of our solution. Especially, compared with CF-seed to evaluate the impact of the task scheduling 
optimization.

Table 4 The mean of the maximum coverage in evaluation experiments

The maximum coverage achieved by CloudFuzz, CF-seed, go-fuzz-well, and go-fuzz on the targets listed in Table 2. The coverage increase rates for CloudFuzz, CF-seed 
and go-fuzz-well over go-fuzz are denoted as Cov Inc CloudFuzz, Cov Inc CF-seed and Cov Inc go-fuzz-well, respectively

Num go‑fuzz go‑fuzz‑well Cov Inc 
go‑fuzz‑well

CF‑seed Cov Inc CF‑seed Cloud‑Fuzz Cov Inc CloudFuzz

No 1 2015 2341 16.18% 2676 32.80% 4318 114.29%

No 2 1578 2100 33.08% 5950 277.06% 5658 258.56%

No 3 4439 4984 12.28% 6381 43.75% 6877 54.92%

No 4 3391 3728 9.94% 7551 122.68% 8421 148.33%

No 5 503 665 32.21% 991 97.02% 1073 113.32%

No 6 1296 1411 8.87% 1743 34.49% 1924 48.46%

No 7 15541 19025 22.42% 24559 58.03% 25932 66.86%

No 8 3905 4117 5.43% 4869 24.69% 11509 194.72%

No 9 3573 4075 14.05% 4741 32.69% 6957 94.71%

No 10 6317 6317 0.00% 6316 -0.02% 6643 5.16%

No 11 2890 3011 4.19% 3118 7.89% 4135 43.08%

No 12 40210 45800 13.90% 52694 31.05% 66631 65.71%

No 13 36729 47862 30.31% 69555 89.37% 70762 92.66%

No 14 1823 2674 46.68% 3468 90.24% 3671 101.37%

No 15 5262 5418 2.96% 5683 8.00% 7249 37.76%

No 16 1473 2203 49.56% 4289 191.17% 4003 171.76%
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greater number of execution states than go-fuzz triggers 
over a longer period of time, as our scheduling strategy 
tends to apply exploitation at an early stage to achieve 
higher coverage quickly.

On the other hand, we can observe that for most tar-
gets go-fuzz discovered more new coverage in the early 
stages, but go-fuzz’s coverage growth rate decreased over 
time. Eventually, go-fuzz’s coverage growth rate con-
verges to zero, i.e., go-fuzz has reached its coverage bot-
tleneck and can no longer find new coverage. Instead, it 
is evident that in the 75% of the targets CloudFuzz has 
been able to break through the previous bottlenecks and 
has explore more new coverage. For instance, in target 
No 16, we observe that go-fuzz was unable to trigger 
the true working logic of the target’s code, as evidenced 
by the low coverage of go-fuzz, whereas CloudFuzz fre-
quently triggered new coverage (i.e., new code regions) in 
all phases of fuzzing, suggesting that CloudFuzz’s explo-
ration strategies were effective. For example, in target No 
4, we can see that CloudFuzz reached the first bottleneck 
at around 2 hours into the run, which CloudFuzz broke 
it after 3 hours of exploration, and then broke the bot-
tlenecks twice in a row. Eventually, CloudFuzz achieved 
an improvement in coverage of almost 100% compared to 
the coverage of the first bottle.

CloudFuzz’s coverage growth curves reflect the balance 
of exploitation and exploration attained by our solution, 
demonstrating the effectiveness and efficiency of our 
AMAB-based seed selection and task scheduling solu-
tion. In the early stages of fuzzing, CloudFuzz tends to 
exploit interesting seeds to trigger as many code regions 
as possible. When it encounters a puzzle that has pre-
vented the fuzzer from finding new coverage, CloudFuzz 
turns back to exploration, looking for fresh seeds to cover 
new features.

Bug detection in CloudFuzz
In order to address RQ1, we conducted a series of experi-
ments using real-world cloud-native applications. The 
experiments conducted on our dataset 2 demonstrated 
that CloudFuzz outperformed the baseline by identifying 
a greater number of unique crashes. In particular, Cloud-
Fuzz successfully crashed all target applications, whereas 
the baseline fuzzer fail to detect crashes in most of the 
evaluated targets.

In these experiments, we evaluate the ability of fuzz-
ers to detect unknown bugs in real-world applications. 
Table  5 shows the number of crashes in cloud-native 
applications observed over ten iterations of the experi-
ments. It is important to emphasize that the targets 

Fig. 4 The average coverage growth on targets from Table 2 discovered by each fuzzer over 24 hours
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tested in our experiments represent the latest versions 
of the respective products. These cloud-native applica-
tions have been extensively tested by the vendors, either 
through the CNCF-fuzzing project or by using the Gol-
ang’s fuzzing functionality. On average, go-fuzz only 
detects crashes in two targets, while CloudFuzz suc-
cessfully crashes all targets. In the two targets that are 
crashed by go-fuzz, the number of crashes triggered by 
CloudFuzz significantly surpasses that of go-fuzz. Specif-
ically, in targets of Kubernetes, CloudFuzz found nearly 
ten times as many unique crashes compared to go-fuzz. 
In targets of etcd, CloudFuzz detected 233% more unique 
crashes than go-fuzz. The unique crashes identified by 
go-fuzz in these two specified targets were also observed 
within the unique crashes triggered by CloudFuzz. In 
the remaining targets, CloudFuzz detected 160 unique 
crashes, while go-fuzz found no bugs in these targets.

It should be emphasized that the programs in which 
these targets reside perform a critical infrastructure 
functions within the cloud-native ecosystem, such as 
kubernetes and etcd, among others. Finally, we analyzed 
these unique crashes, and found that CloudFuzz found 
10 bugs in real-world targets and go-fuzz only found 3 
bugs in same targets. CloudFuzz detected 233% more 
bugs than go-fuzz. The bugs identified by CloudFuzz 
have the potential to precipitate Denial of Service attacks 
on cloud-native systems. The results obtained show that 
our seed scheduling and task scheduling approaches 
effectively identify more bugs than the baseline in cloud-
native applications. This implies that our proposed solu-
tion skilfully balances exploration and exploitation. As a 
result, CloudFuzz outperforms the baseline in detecting 
unique bugs in critical cloud-native applications.

Performance overhead in CloudFuzz
Results on real-world applications show that the over-
head of our AMAB-based seed selection and task sched-
uling solution is acceptable. Surprisingly, CloudFuzz is 
slightly more efficient and better than go-fuzz in terms 
of overhead and throughput when we enable only the 
smart seed selection optimization on CloudFuzz. When 
CloudFuzz is set to enable both seed selection and task 

scheduling optimizations, CloudFuzz introduces only a 
means of 15% runtime overhead. The CloudFuzz’s over-
head is very competitive considering its excellent cover-
age improvement effects.

Performance overhead is a important factor for fuzzers as 
it directly determines the fuzzing throughput. In essence, 
it determines the level of iteration achieved during the 
fuzzing process. In CloudFuzz, the performance overhead 
comes from two sources: 1) collecting and computing more 
accurate and finer-grained coverage measurements which 
are required by our coverage metric and 2) measuring 
and computing gains and probabilities for each seed and 
updating the energies for different tasks. In addition, our 
seed selection and task scheduling strategies improve the 
execution efficiency of the CloudFuzz process, which off-
sets some of the overhead from the above aspects. There-
fore, when enabling seed selection and/or task scheduling 
optimization, we should consider the overall overhead and 
throughput of CloudFuzz at this point, rather than just the 
overhead that comes with the optimization.

Overhead of coverage metrics
To quantify the positive and negative impact on per-
formance overhead for our AMAB-based solution, we 
should understand the overhead difference between the 
coverage metric of go-fuzz and CloudFuzz. First, we 
investigated the proportion of the overhead caused by 
our fine-grained coverage metric. The results on targets 
of our dataset are shown in Fig. 5a, where the x-axis rep-
resents the individual runs of the targets (10x×16=160 in 
total) and the y-axis represents the overhead proportion 
of the coverage metrics applied by the fuzzers. For most 
targets, our coverage metric solution introduces a runt-
ime overhead of less than 40%. For about one in five tar-
gets, the overhead proportion for our more accurate and 
finer-grained coverage metric is above 60%, but below 
140%. The average of the overhead proportion for our 
coverage metric is around 35%, as shown in the box plot 
on the right-hand side of Fig. 5a.

Overhead of seed selection
Next, we measured the performance overhead of CF-
seed versus go-fuzz on Table 2 by the throughput of the 
fuzzers. Figure 5b shows the ratio of the increase in the 
overhead of CF-seed in an ascending order, which is 
the difference in throughput between go-fuzz and CF-
seed as a proportion of the throughput of go-fuzz. It is 
worth noting that if the throughput of CF-seed is greater 
than the average throughput of go-fuzz, then the differ-
ence between the average throughput of go-fuzz minus 
the throughput of CF-seed will be a negative number, in 
which case the increased overhead of CF-seed will show 
up as a negative number based on our calculation.

Table 5 Number of unique crashes detected by go-fuzz and 
CloudFuzz

Application go‑fuzz CloudFuzz

argo-cd 0 124

containerd 0 24

etcd 6 20(233%)

istio 0 12

kubernetes 55 566(929%)
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As shown in Fig. 5b, the throughput of CF-seed exceeds 
that of go-fuzz on a third of the targets. More specifically, 
CF-seed has a throughput improvement of more than 
50% on about 10% of the targets, and improves runtime 
performance by more than 25% on a fifth of the targets. 
The total overhead of CF-seed is less than 25% on more 
than 80% of the targets. The average of overhead ratio 
for CF-seed is negative 3%, as shown in the box plot of 
Fig. 5b. This means that CF-seed achieves better overall 
throughput in 160 runs of 16 real-world targets.

Overhead of task scheduling
Similar to the overhead measurement for CF-seed, we 
measured the overhead of CloudFuzz, which enables 
two AMAB-based optimizations. Figure  5c shows the 
overhead ratio of CloudFuzz over 160 runs, which is cal-
culated in the same way as Fig. 5b. We can see that Cloud-
Fuzz achieved more throughput than go-fuzz on about 
30% of the targets. And CloudFuzz introduced below 25% 
runtime overhead on half of the targets. On the remain-
ing targets, CloudFuzz bring about more overhead than 
CF-seed. CloudFuzz increased overhead by more than 
50% on a third of the targets. The average overhead ratio 
of CloudFuzz is about 14%, which is higher than the over-
head ratio of CF-seed but lower than that of go-fuzz-well. 
It is easy to see that our task scheduling optimization 
needed to measure and record finer-grained coverage 
information at each stage of fuzzing, which caused more 
overhead than the seed selection optimization. Accord-
ing to the average overhead caused by the seed selection 
optimization, the average overhead caused by the task 
scheduling optimization is approximately 17%.

Effectiveness of smart seed selection
Experiment results on dataset I show that our smart seed 
selection optimization significantly improves the capabil-
ity and efficiency of fuzzing. More specifically, our smart 
seed selection optimization helps the fuzzer to achieve 
higher code coverage faster and reducees the number 
of seed candidates caused by highly sensitive coverage 
metrics.

Code coverage
First, we evaluate the impact of smart seed selection on 
code coverage. Figure  4 illustrates the coverage growth 
trends through the green curves marked as CF-seed. 
Intuitively, CF-seed achieves higher coverage than go-
fuzz across all targets. Table 4 Columns 2 and 3 list the 
maximum coverage achieved by CF-seed and the specific 
coverage increase rates compared with go-fuzz, respec-
tively. The results demonstrate a consistent increase in 
maximum coverage, thereby evidencing the enhanced 
effectiveness of the smart seed selection optimization. 
With a few exceptions, CF-seed shows significant gains 
over go-fuzz, as is particularly evident in test cases such 
as No. 2 and No. 14, where the increase exceeds 90%.

On the other hand, CF-seed achieves slightly lower 
maximum coverage than CloudFuzz on three out of four 
of the targets. However, CF-seed achieves higher cover-
age than CloudFuzz on targets No. 2 and No. 16, possi-
bly due to higher throughput. As previously mentioned, 
CF-seed also achieves a higher throughput than both go-
fuzz and CloudFuzz. For these targets, the coverage gains 
derived from task scheduling optimization are less than 
the detrimental effects caused by the task scheduling 

Fig. 5 Performance overhead rate caused by different optimizations of CloudFuzz
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overhead. In the case of target No. 13, CF-seed achieved 
the same coverage as CloudFuzz, but CloudFuzz reached 
the coverage upper limit faster. In terms of code cover-
age, our smart seed selection optimization enables the 
fuzzer to discover more interesting states and explore 
wider regions of the code, thereby increasing the likeli-
hood of finding more bugs in the targets.

Seed in the corpus
Second, we investigate the number of seeds gener-
ated by the fuzzers to deduce whether the smart seed 
selection optimization can find more execution states 
than the baseline and can also inhibit the seed explo-
sion problem caused by highly sensitive coverage met-
rics. Figure 6 shows the statistics of the seeds generated 
by the fuzzer over 160 (16×10) runs in the targets of 
Table 2, and we have labelled the average of them. On 
the one hand, the number of seeds in CF-seed’s corpus 
is almost 3 times than that of go-fuzz, illustrating that 
CF-seed can trigger more execution states than go-
fuzz. Similarly, go-fuzz-well produced almost 4 times 
as many seeds as go-fuzz. However, given the inferior 
throughput of go-fuzz-well, too many seeds put a heavy 
load on a fuzzer’s scheduler. On the other hand, CF-
seed reduced the number of seed candidates by about 
22%, mitigating the burden on the scheduler. From the 
results of 24 hours, we can see that CF-seed has solved 
the seed explosion problem that can occur in go-fuzz-
well. Through the above analysis of seeds generated by 
fuzzers, we explain that our smart seed selection opti-
mization can inhibit the seed explosion problem caused 
by high-sensitive coverage metrics.

Effectiveness of adaptive task scheduling
Experiments results on our dataset show that our adap-
tive task scheduling optimization significantly improves 
the upper bound of code coverage. Furthermore, com-
pared to CF-seed, seeds generated by CloudFuzz opti-
mized with adaptive task scheduling achieve higher code 
coverage at the same cost.

Code coverage
Table  6 shows the statistics of the target applications 
tested by CF-seed (denoted as CFs) and CloudFuzz 
(denoted as CF). First, we compare the coverage incre-
ment to evaluate the impact of adaptive task scheduling 
in terms of code coverage. On most of targets (14/16), 
the coverage of CloudFuzz is better than that of CF-
seed. It means that our adaptive task scheduling opti-
mization can help fuzzers to trigger more code based 
on CF-seed. On half of the targets, our task scheduling 
optimization could improve coverage by at least 10% over 
CF-seed with smart seed selection optimization enabled. 
Compared with CF-seed, the average coverage incre-
ment brought by adaptive task scheduling optimization 
is 23.5%. In particular, CloudFuzz triggered over 60% 
more code regions than CF-seed on target No 1, No 8. 
The results of the code coverage experiments show that 
our task scheduling optimiation using a finer-grained 
gain estimation solution could more accurately guide the 
fuzzing process to balance exploration and exploitation. 
Compared to CloudFuzz, CF-seed only coarsely balances 
exploration and exploitation. As a result, CloudFuzz out-
performs CF-seed in terms of coverage.

Average‑cost
As aforementioned, CloudFuzz achieved higher coverage 
than baseline fuzzers, and improved the overall efficiency 
of the fuzzing process. Since the seeds have a direct effect 
on fuzzers, our AMAB-based optimization affects fuzz-
ers by controlling the process associated with seeds. 
Therefore, we focused on the number of seeds generated 
by fuzzers and the quality of the seeds to evaluate the 
efficiency of our task scheduling optimization.

As shown in Fig. 5c, though task scheduling optimiza-
tion, CloudFuzz further mitigates the number of seeds to 
solve the seed explosion problem. In total, compared to 
go-fuzz-well, CloudFuzz’s solution reduced the number 
of seeds by 41%. Compared to CF-seed, our adaptive task 
schedluing optimization reduces the number of gener-
ated seeds by about 10%. Our task scheduling optimiza-
tion has a positive impact on controlling the size of the 
corpus. In order to quantitatively assess the quality of 
seeds generated by fuzzers, we calculated the average-
cost of the CloudFuzz (denoted as AC CF) and that of 
CF-seed (denoted as AC CFs) in different targets. The 

Fig. 6 Average number of seeds generated by different fuzzers 
on the 16 targets in Table 2
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average-cost is defined as the average coverage improved 
by a single seed. In the last column of Table 6, it shows 
the average-cost of CloudFuzz and demonstrating the 
improvement of average-cost compared to CF-seed. For 
more than 60% of the targets, the average-cost of Cloud-
Fuzz is better than that of CF-seed. On target No 7, No 8, 
and No 14, the average-cost of CloudFuzz was more than 
100% and even 770% than that of CF-seed. Although CF-
seed outperformed CloudFuzz on average cost for some 
targets, CloudFuzz achieved better coverage.

Related work
Coverage‑guided greybox fuzzing
Coverage-guided fuzzing is one of the most effective and 
popular techniques for finding bugs in practice. AFL [1], 
LIBFUZZER [25] and honggfuzz [26] are widely used in 
the OSS-Fuzz [27] service, which has detected over 8800 
vulnerabilities and 28800 bugs across 850 open source 
projects. As its effectiveness and simplicity, coverage-
guided fuzzing has been optimized by academic research 
in several areas. On the one hand, some work has applied 
program analysis to understand the behaviour of tested 
targets, which helps fuzzing to adapt different programs. 
For instance, taint analysis [16, 20, 28], concolic execution 
[6, 29, 30], static analysis [31–33], deep learning [34, 35] 
and reinforcement learning [11, 22, 36] are used to boost 
fuzzer performance. On the other hand, some work has 
attempted to transform fuzzing to better test specific 
types of targets, such as JIT compilers [37–40], OS kernel 
[23, 41–43], protocol [44, 45], rounter [46, 47], and smart 

contracts [48, 49]. For example, to find JIT compiler vul-
nerabilities, some fuzzers use an abstract syntax tree to 
represent and generate JavaScript code as seeds. Cloud-
Fuzz utilizes an accurate fine-grained coverage metric, 
which has been proven to be more effective in improving 
fuzzer’s performance. Meanwhile, for the cloud-native 
application of Golang targets, CloudFuzz proposes an 
AMAB-based seed and task scheduler to help fuzzing bal-
ance exploration and exploitation in large targets.

Coverage metric for fuzzing
Coverage metrics as one of the most important factors 
for coverage-guided fuzzing, which guides fuzzers to gen-
erate and select proper seeds to test as much of the code 
as possible. VUzzer [16] considered fundamental prop-
erties of the application as a part of the coverage metric 
to implement an application-aware strategy to maximize 
coverage. However, the block coverage metric used by 
VUzzer provides much less information than edge cov-
erage metrics and cannot even distinguish between 
blocks with different predecessors. AFL [1] achieved an 
efficient edge coverage metric, making AFL as the most 
successful fuzzer. Thus, a lot of work have improved cov-
erage metrics based on the edge coverage metric. Angora 
[20] found the edge coverage metric of AFL is context-
insensitive, and proposed a context-sensitive edge cov-
erage metric to distinguish the same edge in different 
contexts. Matryoshka [31] combined the edge coverage 
metric with different types of conditional statements to 
find inputs that satisfy deeply nested branches. However, 

Table 6 Maximum coverage and average-cost value of CF-seed and CloudFuzz on targets in Table 2

The 2nd and 3rd columns of this table show the maximum coverage achieved by CF-Seed and CloudFuzz respectively. The 4th and 5th columns show the number of 
new seeds discovered by CF-Seed and CloudFuzz respectively, while the last two columns illustrate the average costs for CF-Seed and CloudFuzz

No Cov CFs Cov CF Seeds CFs Seeds CF AC CFs AC CF

No 1 2676 4318(61.36%) 35 62 76.45 69.65(-8.9%)

No 2 5950 5658(-4.91%) 2025 2726 2.93 2.08(-29.16%)

No 3 6381 6877(7.77%) 2344 2778 2.72 2.48(-8.99%)

No 4 7551 8421(11.52%) 184 104 41.03 80.97(97.35%)

No 5 991 1073(8.27%) 288 164 3.44 6.54(90.19%)

No 6 1743 1924(10.38%) 233 615 7.48 3.13(-58.18%)

No 7 24559 25932(5.59%) 9696 4933 2.53 5.26(107.54%)

No 8 4869 11509(136.37%) 515 226 9.45 50.92(438.64%)

No 9 4741 6957(46.74%) 952 1733 4.98 4.01(-19.39%)

No 10 6316 6643(5.18%) 1237 1875 5.11 3.54(-30.61%)

No 11 3118 4135(32.62%) 1764 1278 1.77 3.24(83.05%)

No 12 52694 66631(26.45%) 17180 15720 3.07 4.24(38.19%)

No 13 69555 70762(1.74%) 838 738 83.00 95.88(15.52%)

No 14 3468 3671(5.85%) 404 49 8.58 74.92(772.75%)

No 15 5683 7249(27.56%) 55 53 103.33 136.77(32.37%)

No 16 4289 4003(-6.67%) 335 278 12.80 14.40(12.47%)
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they did not implement a solution to address the poten-
tial seed explosion problem when applying the more 
sensitive coverage metrics. CollAFL [13] found the hash 
collision problem in AFL and proposed an accurate solu-
tion for edge coverage metrics, and their results showed 
a significant improvement. FAIRFUZZ [50] defined the 
concept of rare branches that are rarely hit by inputs, and 
guided fuzzing through the rare branch coverage metric. 
Jiang, et  al. [21] proposed a context-sensitive concur-
rency coverage metric to detect specific data races that 
are difficult to find using context-insensitive coverage. 
Wang, et al. [15] proposed a coverage accounting based 
on memory operations to evaluate security impacts of 
coverage. These papers introduced different factors of 
bug detection and code exploration and demonstrated 
these coverage metrics are effective.

Wang, et  al. [10] evaluated multiple coverage metrics 
and showed that there is no grand slam coverage metric 
that can beat others. The normal edge coverage metric 
can still beat more sensitive coverage metrics on some 
targets. Thus, considering the overhead of additional 
analysis by more sensitive edge coverage metrics, Cloud-
Fuzz employs an accurate edge coverage metric for large 
cloud-native applications. Our coverage metrics strike 
a balance between the coverage information and cover-
age measurement overhead. Wang, et al. [11] proposed a 
multi-level coverage metric to collect coverage informa-
tion and introduced the MAB model to mitigate the seed 
explosion problem. It was shown that fuzzing should 
consider scheduling algorithms, especially when highly 
sensitive coverage metrics are applied. This is because 
more sensitive coverage metrics introduced more seeds 
and overhead, which created a more serious seed explo-
sion problem. Therefore, CloudFuzz introduces the 
AMAB-based scheduling algorithm to mitigate too many 
seeds needed to handle.

Improving power scheduling
Some work has paid attention to power scheduling, 
assigning different powers to seeds and tasks, which 
helps fuzzing make the most correct decision at differ-
ent phases. AFLFAST [18] regarded the fuzzing pro-
cess as a Markov chain model and assigned more power 
to seeds that triggered low-frequency paths. Similarly, 
VUzzer [16] observed that a large percentage of seeds fell 
into the error-handling code and allocated less power to 
these seeds, reducing the energy of high-frequency paths. 
Mopt [51] focused on the scheduling strategies for muta-
tion operations, selecting different mutation operations 
for different seeds. CollAFL [13] prioritized the seeds 
with untouched neighbour descendants to mutate, which 
has a higher probability of exploring untouched paths.

Woo, et  al. [52] modelled the scheduling problem as 
an instance of the classical Multi-Armed Bandit (MAB) 
problem to maximize the number of unique bugs in time. 
However, this work ignored the fact that in the classic 
MAB the number of arms is fixed, but the number of 
seeds is increased during fuzzing, which is different from 
the classic MAB problem. Wang, et al. [11] also modelled 
the seed scheduling problem as the classical MAB prob-
lem, but they introduced the rareness of seeds as a factor 
in the reward calculation to resolve the above contradic-
tion. EcoFuzz [22] used a variant of the Adversarial MAB 
model to schedule seeds, but prioritized exploitation 
rather than balancing exploration and exploitation, thus 
failing to address the seed exploration problem. Consid-
ering the features of kernel fuzzing, Syzvegas [23] applied 
the AMAB model for seed scheduling and task schedul-
ing stages respectively. MobFuzz [36] modeled multiple 
objective optimizations as a multi-player multi-armed 
bandit problem to allocate energy for objective combina-
tion and seeds.

Conclusion
Coverage metrics play an important role in coverage-
guided fuzzing. Accurate and fine-grained cover-
age metrics could help fuzzing to find more bugs and 
achieve higher coverage. Unfortunately, fine-grained 
coverage metrics lead to more seeds to select, and 
even seed explosion. Existing fuzzers for Golang still 
use simple and coarse-grained block coverage met-
rics, which hinders detect bugs in cloud-native appli-
cations written with Golang. In this work, we apply an 
accurate edge coverage metric with go-fuzz to achieve 
fine-grained testing for cloud-native applications. To 
mitigate the seed explosion problem caused by fine-
grained coverage metrics and large targets, we pro-
pose smart seed selection and adaptive task scheduling 
algorithm based on a variant of the classical AMAB 
algorithm. The results of evaluation experiments show 
that our approach significantly outperforms go-fuzz on 
real-world targets.

Abbreviations
AMAB  Adversarial multi-armed bandit
MAB  Multi-armed bandit
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