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Abstract 

Cybertwin (CT) is an innovative network structure that digitally simulates humans and items in a virtual environ-
ment, significantly influencing Cybertwin instances more than regular VMs. Cybertwin-driven networks, combined 
with Mobile Edge Computing (MEC), provide practical options for transmitting IoT-enabled data. This research 
introduces a hybrid methodology integrating deep learning with Cybertwin-driven resource allocation to enhance 
energy-efficient workload offloading and resource management in MEC networks. Offloading work is essential in MEC 
networks since several applications require significant resources. The Cybertwin-driven approach considers user 
mobility, virtualization, processing power, load migrations, and resource demand as crucial elements in the decision-
making process for offloading. The model optimizes job allocation between on-premises and distant execution using 
a task-offloading strategy to reduce the operating burden on the MEC network. The model uses a hybrid partitioning 
approach and a cost function to optimize resource allocation efficiently. This cost function accounts for energy con-
sumption and service delays associated with job assignment, execution, and fulfilment. The model calculates the cost 
of several segmentation and offloading procedures and chooses the lowest cost to enhance energy efficiency 
and performance. The approach employs a deep learning architecture called “CNN-LSTM-TL” to accomplish energy-
efficient task offloading, utilizing pre-trained transfer learning models. Batch normalization is used to speed up model 
training and improve its robustness. The model is trained and assessed using an extensive mobile edge comput-
ing public dataset. The experimental findings confirm the efficacy of the proposed methodology, indicating a 20% 
decrease in energy usage compared to conventional methods while achieving comparable or superior performance 
levels. Simulation studies emphasize the advantages of incorporating Cybertwin-driven insights into resource alloca-
tion and workload-offloading techniques. This research enhances energy-efficient and resource-aware MEC networks 
by incorporating Cybertwin-driven techniques.
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Introduction
The rapid advancement of internet-based technologies 
has led to the creation of innovative solutions to man-
age the vast and diverse data generated by ubiquitous 
intelligent devices, such as mobile edge devices [1]. 
These connected applications, including virtual reality, 
augmented reality, vehicle communications, and online 
media, benefit from the technologies mentioned earlier. 
Despite being widely distributed across edge networks, 
cloudlets offer limited resources along with the distant 
cloud. Real workloads can significantly benefit from 
faster connections to MEC facilitated by cloud users, 
reducing the workload on the network’s cloud and 
external cloud servers. Several emerging computational 
ecosystems have been developed to address fundamen-
tal needs like latency, reduced energy consumption, 
and cost-effectiveness, with MEC being one of the most 
popular due to the inherent limitations of such tech-
nologies [2].

MEC brings computing and storage capabilities to 
the network’s edge, enabling services for information-
sharing instances involving multiple wireless end-
points. The number of UEs is rapidly increasing due 

to the rapid expansion of mobile applications, the IoT, 
and intelligent systems [3, 4]. Researchers use MEC 
as a preliminary step for IoT and investigate comput-
ing offload techniques for UEs to address the chal-
lenge of handling high computational and time-limited 
workloads. To achieve fine-grained function by off-
loading work schedules, enabling task parallelization, 
and improving execution speed, researchers identify 
opportunities for UEs to offload tasks to edge serv-
ers for remote processing. Each piece of equipment 
in edge communication can independently decide 
whether to complete an operation on its own or trans-
fer the task to edge servers for remote processing, con-
sidering the energy overhead [5].

Figure  1 illustrates the architecture of multi-hop 
mobile edge communication, consisting of three lay-
ers. The first layer, Tier-1, represents the cloud envi-
ronment, encompassing the cloud server, storage, and 
processing components. Tier 2 comprises the mobile 
edge layers containing communication protocols, 
medium, and connection types. Tier 3, the final layer, 
mainly includes the connection devices of UEs. MEC 
provides data storage and computational capabilities 

Fig. 1  Multi-hop mobile edge communication
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to UEs at the edge of mobile devices. In MEC, UEs 
offload compute-intensive and time-sensitive optimi-
zation techniques to the MES via mobile communica-
tions. This offloading is crucial to reduce disruptions 
in UE serving and energy usage since it is challenging 
for an UE to meet the demands of high computational 
systems with limited processing and storage resources 
[6].

Cybertwin in MEC
Cybertwin technology is a novel approach to net-
work design, especially within the discipline of MEC. 
Cybertwin in MEC mainly generates a virtual duplicate 
of entities like persons, equipment, and procedures 
within a virtual domain. Cybertwins are virtual cop-
ies that can imitate the behaviour and traits of real-life 
entities, allowing them to engage with the MEC net-
work and its services in a way that reflects real-world 
situations [7]. Cybertwin-powered edge computing 
is a viable way to meet high user demand, although 
it brings additional issues. An efficient offloading 
job while managing computing, communication, and 
cache resources is challenging for edge networks. 
Conventional statistical optimization techniques can-
not solve the offloading issue in a dynamic edge com-
puting setting. In general, Cybertwin technology can 
substantially contribute to improving MEC networks’ 
efficacy, performance, and user experience. Cybertwin 
technology, in the broader context of MEC, provides 
numerous advantages and functionalities [8].

•	 Resource Administration: Cybertwin can help 
administer computing resources effectively by 
offering information about customer and device 
behaviour and resource requirements. The infor-
mation gathered can assist in improving the allo-
cation of resources and task offloading choices in 
MEC settings [9].

•	 Workload Offloading: By incorporating Cyber-
twin’s perspectives, mobile edge computing net-
works can make intelligent movements related to 
workload offloading. Cybertwin can assist in deter-
mining the best times and places to delegate work 
to maximize output and efficient use of resources.

•	 Experience of Users: Cybertwin can enhance user 
experience in MEC settings by providing person-
alized and context-aware services. Cybertwin can 
assist in forecasting user behaviour and adjusting 
programs and services accordingly [1–4].

•	 Security and Integrity: Cybertwin can enhance 
security in MEC networks by offering a virtualized 
setting to evaluate security procedures and stand-

ards. They tend to help identify and reduce secu-
rity risks as they occur [5–9].

Deep learning in MEC
Numerous research studies have examined applying deep 
learning techniques, specifically CNNs and LSTM net-
works, to enhance workload offloading in MEC settings. 
The researchers demonstrated how deep learning may 
improve resource allocation, decrease latency, and boost 
the overall performance of MEC systems.

One crucial research [10, 11] focuses on utilizing 
Convolutional Neural Networks for image processing 
applications in Mobile Edge Computing. CNNs have 
effectively been used to transfer demanding image identi-
fication and processing duties from edge devices to fara-
way servers. These researches have demonstrated notable 
enhancements in the efficiency and accuracy of image 
processing in MEC situations by utilizing the hierarchical 
feature extraction capabilities of CNNs. Similarly, LSTM 
networks have been investigated for offloading jobs 
requiring sequential data, such as speech recognition and 
natural language processing [12, 13]. LSTM networks 
excel at capturing distant relationships in sequential data, 
making them perfect for jobs that involve grasping con-
text over time. Research has shown that LSTM networks 
help decrease latency and enhance the accuracy of voice 
recognition and natural language processing tasks in 
MEC systems.

The present research on the utilization of CNNs and 
LSTM networks in MEC workload offloading emphasizes 
the capability of deep learning to improve the effective-
ness and productivity of edge computing systems. Deep 
learning approaches can optimize resource utilization, 
minimize energy consumption, and enhance user expe-
rience in MEC systems by efficiently assigning work 
between edge devices and distant servers.

Problem statement and research motivation
The decentralization of data processing and storage 
resources closer to individual users has considerably 
improved wireless network reliability because of the rapid 
expansion of MEC. However, there are additional issues 
with the conservation of energy and management of 
resources because many MEC applications are resource-
intensive. In response to these problems, this paper pre-
sents a novel approach to maximize energy efficiency 
in MEC networks. Our method, which combines deep 
learning methods with Cybertwin-driven techniques, 
improves work administration and resource allocation by 
utilizing Cybertwin technological advances.
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The investigation is motivated by the potential advan-
tages of improved energy efficiency in MEC relation-
ships. The suggested technique aims to improve the 
overall effectiveness and environmental impact of MEC 
networks by minimizing energy usage and optimizing the 
allocation of resources. Enhancing MEC networks’ intel-
ligence and decision-making skills with the incorporation 
of Cybertwin technology presents a unique possibility 
that promises to enhance the handling of workloads and 
the allocation of resources. This study aims to develop 
energy-efficient and environmentally friendly MEC net-
works, enabling carriers of networks, suppliers of ser-
vices, and consumers.

Key contributions
In our study, we aim to contribute to the field of research 
by introducing a novel approach for energy-efficient 
workload offloading and resource allocation in Cyber-
twin-driven MEC networks. We address the challenge 
of optimizing resource allocation, workload distribu-
tion, and service latency in MEC networks by propos-
ing a deep hybrid transfer learning model coupled with a 
Cybertwin-driven resource allocation strategy. Our main 
contributions can be summarized as follows:

•	 Cybertwin-driven Resource Allocation Model: We 
introduce a novel Cybertwin-driven resource allo-
cation model that leverages digital simulations to 
enhance resource allocation efficiency and reduce 
service latency in MEC networks. By employing 
Cybertwin, which offers real-time adaptability and 
flexibility, our model can dynamically adjust to user 
behaviour and environmental changes, leading to 
improved performance compared to traditional VM-
based execution scenarios.

•	 Hybrid Deep Transfer Learning for Workload Off-
loading: We proposed a hybrid approach for work-
load offloading in MEC networks. Combining CNN 
and LSTM models with transfer learning enhances 
the accuracy and efficiency of task-offloading deci-
sions. This approach allows our model to extract 
advanced features from MEC trace datasets more 
effectively, leading to superior performance com-
pared to existing methods.

•	 Experimental Validation and Analysis: We con-
duct comprehensive simulations to evaluate the 
performance of our proposed model under differ-
ent scenarios. Through extensive experimentation 
and analysis, we demonstrate the effectiveness of our 
approach in achieving better resource utilization, 
energy efficiency, and service latency reduction in 
Cybertwin-driven MEC networks.

By presenting detailed experimental findings and anal-
ysis, we provide insights into our proposed methodol-
ogy’s practical implications and benefits. Our results 
showcase the superiority of the proposed Cybertwin-
driven resource allocation model and hybrid deep trans-
fer learning approach over existing methods, highlighting 
the potential for significant advancements in energy-effi-
cient workload offloading and resource allocation strate-
gies in MEC networks.

Organization of the article
The article is organized to thoroughly discuss the issues 
and solutions related to resource allocation and task 
offloading in energy-efficient MEC networks. The arti-
cle starts with an introduction emphasizing the impor-
tance of MEC and the necessity for energy efficiency. The 
related work section examines current MEC research, 
specifically focusing on workload offloading and alloca-
tion of resources algorithms.

The section on materials and techniques describes a 
deep hybrid transfer learning model that incorporates 
Cybertwin-driven allocation of resources and utilizes the 
MEC trace dataset. The outcomes section displays the 
outcomes of the experiment, which include energy con-
sumption measurements and enhancements in perfor-
mance. The discussion section evaluates the findings and 
explores the implications and constraints of the model. 
The conclusion provides a comprehensive overview of 
the main discoveries and proposes potential areas for 
future research, offering a complete perspective on the 
research’s impact on the field.

Related works
The “Cybertwin” concept is a novel and modern notion 
that has attracted interest in the possibilities of using it 
in MEC. Although a recent notion, there is an increasing 
interest in investigating its relevance to MEC systems. 
The Cybertwin methodology provides computing flexi-
bility for offloaded jobs, considering energy and time lim-
itations, making it a viable method for enhancing MEC 
performance.

Multiple research studies have explored using Cyber-
twin with Mobile Edge Computing to enhance effec-
tiveness. One research [12] suggested an offloading 
paradigm that uses a cloud-based software compo-
nent. The model utilized a cross-compute split strat-
egy and an asynchronous optimization mechanism to 
reduce execution time for all clients. Different research 
[13] concentrated on an energy-efficient offloading 
approach that integrates forward and backward meth-
ods to optimize energy offloading while constraining 
transmission latency.
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Researchers have investigated many methods to 
improve the efficiency of MEC. Research [14] exam-
ined an offloading approach that utilizes multi-
patching procedures to enhance MEC efficiency. This 
approach utilized a connected feature to improve 
energy distribution among various customer access 
points and infrastructure. A different research [15] 
suggested a Markov decision-making approach to 
enhance offload frequency in MEC, considering net-
work connection and a variety of MES. The objective 
was to determine the best offloading window by solv-
ing the MDP with the valuation iteration technique.

Machine learning has been used to offload activities 
in Mobile Edge Computing. The study [16] examined 
a machine learning-driven offloading model designed 
to tackle offloading obstacles and improve energy 
management. Resource scheduling schemes have been 
suggested to enhance MEC performance. Research 
suggested a resource scheduling design that utilizes 
neighbouring static devices to establish a flexible 
computing network, improving overall performance. 
Another research [17] investigated the effectiveness 
and functionality of offloading solutions in mobile 
cloud-based systems. The study explored advanced 
technologies utilizing linked devices and IoT across 
many application areas, highlighting the impact of 
cloud spatial allocation and energy efficiency.

Several offloading strategies in virtualized chan-
nels to decrease energy usage and data transmission 
emissions are discussed in [18]. Research thoroughly 
examined energy-efficient computation offloading 
by addressing the fundamental limitations of offload-
ing value. Workload balancing options utilizing deep 
learning techniques have also been explored. A study 
investigated energy-efficient offload strategies for core 
tasks in a cloud computing platform, introducing an 
active offloading technique to decrease energy usage.

In [19], the researcher concentrated on develop-
ing creative offloading strategies for MEC, utiliz-
ing both traditional and multi-objective optimization 
techniques. One study [20] suggested a paradigm for 
partial offloading in MEC, while another study [21] 
presented a practical work offloading approach for 
mobile devices on mobile network architecture with 
limited energy resources. MEC has distinctive difficul-
ties and possibilities that demand specialized strate-
gies for peak performance. The study [22] examined a 
work-offload architecture designed to decrease energy 
consumption and enhance reaction time by consid-
ering the anticipated processing time and energy 
expended during computational transfer. A different 
research project [23] created preemptive multitasking 

offloading and global offloading strategies based on 
game theory to enhance energy efficiency in MEC.

MEC’s unique features, including tiered server hier-
archy, dynamic attributes of intelligent devices, and 
client device mobility, require specialized strategies 
for best performance. Table  1 presents a comparative 
analysis of various existing research.

Materials and methods
This section presents the materials and methods 
related to the present research. It covers the Cyber-
twin model and the proposed solution for MEC 
architecture.

Introduction to the Cybertwin model
A new technology for MEC was created called Cyber-
twin. As a result, a Cybertwin may additionally be con-
sidered a type of VM designed to act as the customer’s 
MEC network representation. The Cybertwin replaced 
virtual machine services. As a result, it functions as a 
bridge between the MEC network and the customers, 
collecting user requests and providing them with public 
resources to do these.

It also suggests that, inside the Cybertwin architec-
ture, cloud services may not connect with consum-
ers and instead exclusively with its Cybertwin. Since 
cloud servers and clients do not directly communicate, 
regardless of whether the customer turns and assumes 
a unique network identifier, the connection can persist 
as much as Cybertwin maintains the original hostname 
and address. Also, simply telling the client and the serv-
ers the updated Cyber twin location and address in the 
system makes Cybertwin transfer more straightforward 
than the VM server’s migrations. Besides that, this 
complete separation between the server and the user 
implies that Cybertwin mobility is simpler than Virtual 
machine server mobility by notifying all the individuals 
and the web server service of the novel Cyber hostname 
within the cloud infrastructure. Furthermore, including 
a controlling layer in Cybertwin-based systems simpli-
fies sharing and updating intelligence. Cybertwin is 
constructed to continuously communicate to the con-
solidated controller about internet traffic encompass-
ing them, the activity on the servers on which they 
are located, and details about the jobs that customers 
receive individually.

As compensation, the central controller can com-
bine these data to obtain comprehensive knowledge 
about the network to choose the best configuration 
settings, when to move Cybertwin, and where to com-
plete assignments. These judgments are subsequently 



Page 6 of 23Lilhore et al. Journal of Cloud Computing          (2024) 13:126 

communicated to the Cybertwin. This enables optimal 
efficiency through the quickest task execution through 
a stable load among all cloud storage, which is a crucial 
statistic for the quality of experience at MEC. Cyber-
twin additionally possesses the capacity to offload 
duties to any remote server.

Figure 2 represents Cybertwin MEC architecture for 
communication. This architecture includes physical 
cloud servers, a Cybertwin layer with a control panel, 
and Cloud user devices. This architecture concisely 
describes a Cybertwin-based MEC, focusing on how 
the central controller receives signals through every 
Cybertwin to improve task distribution and synchroni-
zation. Other significant benefits of Cybertwin include 
the potential to keep track of critical acts and, if the 
consumer is potential, the opportunity to negotiate the 
transfer of intelligence to involved direct or indirect 
businesses. These details are not particularly relevant 
to the study discussed in this article; however, readers 
are curious about how Cybertwin functions and how 
these additional advantages are directed to secondary 
sources.

Proposed Cybertwin MEC model
This research presents a deep hybrid transfer learning 
with a cybertwin-driven resource allocation model for 
energy-efficient workload offloading and resource allo-
cation for Cybertwin-driven MEC networks. The com-
plete research is divided into two scenarios. Figure  3 
presents the critical goals of the proposed Cybertwin 
MEC model.

The first scenario presents a Cybertwin-driven 
resource allocation model and performance enhance-
ment for Cybertwin-driven MEC networks. This phase 
achieves better resource allocation, workload allocation, 
precise location selection, content caching decisions, 
and less service delay. The second phase achieves bet-
ter results for Cybertwin offloading, energy efficient off-
loading, less delay, high accuracy, and better workload 
allocation.

Phase 1: Cybertwin‑driven resource allocation model
This research aims to assess how the central control-
ler may improve Mobile Edge Computing performance, 
specifically focusing on the issues encountered by 

Table 1  Comparison of various exciting research

References Key method used Service delay Multi-user Energy 
Consumption

Partitioning Multi-Server Deep Learning Cybertwin 
and MEC

[12] Offloading based 
on MDP

No No Yes No No Yes No

[13] Energy Harvesting No Yes Yes No No No No

[14] Energy Model Yes No Yes No Yes Yes No

[15] Conventional offload-
ing Methods

Yes No Yes Yes No No No

[16] Game theory model Yes Yes No No No No No

[17] Energy efficient off-
loading

Yes No Yes No Yes Yes No

[18] Offloading using 
the cost function

Yes No Yes Yes No No No

[19] Machine learning-
based energy model

Yes Yes No No No No No

[24] Offloading using 
a Genetic Algorithm

Yes Yes No No No No No

[20] Reliability-aware 
energy consumption 
model

Yes No Yes Yes No Yes No

[21] Offloading with energy 
efficient model using 
OCR case

Yes Yes No No No Yes No

[22] CNN based offloading Yes Yes Yes No No Yes No

Proposed Model Cybertwin-driven 
resource allocation 
model and CNN-LSTM 
with Transfer Learning

Yes Yes Yes Yes Yes Yes Yes
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Cybertwin in MEC operations. The obstacles involve 
delays in communication across both the data and con-
trol planes and the Cybertwin, in addition to the cur-
rent use of VM server-based strategies, which further 
complicates the shift to Cybertwin and increases costs 
by requiring updates to all cloud-based technologies to 

meet the new standard. Cybertwin must substantially 
improve efficiency to be beneficial.

During this phase, we aim to determine how imple-
menting Cybertwin might decrease service delays. We 
introduce a resource allocation model driven by Cyber-
twin to forecast the anticipated service delay in an MEC 

Fig. 2  Cybertwin MEC architecture

Fig. 3  Key goals of the proposed Cybertwin MEC model
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framework based on Cybertwin. The approach is created 
to tackle the difficulties and intricacies of implementing 
Cybertwin in MEC. Figure 4 displays the interval-based 
divisions that segment the proposed resource allocation 
model powered by Cybertwin. The model operates as 
follows:

•	 Feature Extraction: The framework extracts features 
from the data collected, including workload intensity, 
utilization of resources, and delay in the network.

•	 Cybertwin Integration: The framework incorporates 
Cybertwin towards allocating resources, considering 
its skills and limitations.

•	 Resource Allocation: The framework uses retrieved 
characteristics and Cybertwin connectivity to iden-
tify the most efficient allocation of resources to 
reduce service delays.

•	 Service Delay Prediction: The approach utilizes 
given resources with the Cybertwin-driven allocation 
of resources framework to forecast the anticipated 
service latency for each job or request.

•	 Feedback Loop: The framework constantly analyses 
the MEC ecosystem and adapts the resource distri-
bution approach using the real-time MEC dataset 
and Cybertwin’s input.

•	 Performance Evaluation: The model assesses its suc-
cess by reducing service delays and enhancing overall 
MEC efficiency.

Cybertwin service model  The Cybertwin service 
framework outlines the interactions between Cybertwin 
components and the MEC system for the provision of 
services. According to this approach, every user has a 
Cybertwin that acts as a virtualized version of them in 
the MEC context. Working in conjunction with the cen-
tral controller and additional MEC system components, 
Cybertwin optimizes resource allocation and carries out 
various functions. We have analyzed a situation that 
includes several cloud users, various cloudlets, several 
cloud base stations, and a substantial external server. 
Every user has a Cybertwin, controlled by a unique 
cloud system. Activities are sometimes best completed 
regionally based on the status of cloud servers as well 
as networks of communication. Users of clouds create 
activities and decide whether to process them on their 
local device or in the cloud system.

There are two primary sorts of tasks: a) requests for 
resources and b) the processing of tasks. Particular 
data will be retrieved and returned to the user by cloud 
services upon completion of the needed tasks. The 
microprocessors in the ecological system need to per-
form processing operations in a background environ-
ment where the work is completed. Resource requests 
should be resolved in the cloud but can be handled 
locally if it is more efficient. Queries can be processed 
locally and sent to a base station wirelessly, while jobs 

Fig. 4  Phase 1 service model for Cybertwin MEC
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can be handled on a virtual machine in a cloud-based 
setting.

We are examining a scenario that includes numer-
ous cloud users, various cloudlets, and several cloud 
base stations, including a substantial external server. 
Every user utilizes Cybertwin, which is controlled 
by a unique cloud-based platform. Various factors, 
including the state of the servers in the cloud and 
their communication networks, make it more advan-
tageous to finish tasks in the particular area where 
they are located. Cloud users create activities and 
decide whether to process them locally or within the 
ecosystem.

Tasks are classified into two distinct categories: 
demands for resources and processing of tasks. Cloud-
based services retrieve and transmit back the specific 
data as prompted by activities. Task completion ecosys-
tem microprocessors are required to execute process-
ing duties in the system’s background. Resource queries 
must be resolved in the cloud, although they can be 
performed locally if more practical. The requests can 
be performed locally and sent to a base station wire-
lessly, while activities can be executed in a VM through 
a cloud-based computing system (Algorithm 1).

Algorithm 1. Cybertwin Region Selection Method

Where: 

Symbol Meaning
Tr Task requests from the user

Cli Cloudlet

Pi Processor set

Om Optimum model with a higher capacity

∑cloudlet Capacity Total capacity of all cloudlets

∑ Full capacity Full capacity of the system

Cli for local-level processing Assign Cloudlet for processing tasks 
locally.

Cli to Om Assign Cloudlet to the optimum model.

Modified the capacity of Cli Update the capacity of the Cloudlet 
after the assignment.

Cloud user mobility  Participants can keep moving in 
the Cybertwin MEC environment. If consumers relo-
cate, they might situate themselves far from the cloud 
environment currently hosting they employ through 
Cybertwin, making accessing it more difficult. It ought 
to be taken into account by the network when choos-
ing where or how to maintain the Cybertwin when one 
must relocate it and from where to transmit the activi-
ties for processing. Because customer locations, as well 
as network accessibility mechanisms, can transform, 
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limiting movements could result in inaccurate model-
ling and ineffective solutions. We shall partition time 
further into time frames and characterize motion 
across individual time slots. Suppose many CU cloud 
users are defined (cu0,…, cui).

Also, their ts time-spaces are expressed by (ts0… tsj). 
The customer cui parameters for timeframe tsj can 
then be (x (cui, tsj), y (cui, tsj)). The position shifts each 
time the individual moves around. In the case of a sta-
ble customer, this position is constant across all time 
frames. Given that too many users adhere to set pat-
terns with predicted courses and places, it is reason-
able to presume that the system can retrieve this data 
(Algorithm 2).

Algorithm 2. Cybertwin Content Caching Modelling and User Mobility

Task mapping  Each cloud user uses a Poisson produc-
tion process to build activities, including an optimum 
frequency of (γ) one work per instant. Every action has a 
(φ) probability of getting a resource processor work and 
a (1-φ) probability of getting a resource request activity. 
The customers may request (ζ) particular items, which 

are indicated by (σ0…σi…, σζ) for index i. The chance of 
contents becoming ordered follows directly from the 
concept of Zf variances if we believe  that the elements 
are contained in decreasing rank, so it is the Zf distribu-
tion factor.

In Eq. (1), q represents summation, ζ shows the num-
ber of cloudlets, pi is the set of processors, and β is the 
Zf distribution factor. The task can be executed locally 
in the cloud environment. The task allocation depends 
on the mapping factor ∆, which can be defined by 
Eq. 2.

Here Cl is the number of cloudlets, Pn is the num-
ber of cloud processors, and cu is the number of cloud 
users.

(1)β ∗ (σk) =
k−ϕ

ζ
i=1 ∗ q

−ϕ

(2)f (�) = cln +
∑∞

n=1

(

pn ∗
cu

l
+

σ0(ζ )

q

)
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Here: 

Symbol Description Symbol Description
γ Optimum 

frequency of one 
work per instant 
for each cloud user

φ The probability 
of a cloud user’s 
activity being 
a resource processor 
work

ζ Number of par-
ticular items 
that customers 
may request

σ Index indicating 
particular items 
requested by cus-
tomers

β Zf distribution 
factor

k Index for a specific 
item requested 
by a cloud user

q Summation ζ Number of cloudlets

pi Set of processors ∆ Mapping factor 
determining task 
allocation.

f(∆) Task allocation 
function based 
on the mapping 
factor, number 
of cloudlets, pro-
cessors, and users

Cl Number of cloudlets

Pn Number of cloud 
processors

cu Number of cloud 
users

Phase 2: hybrid deep transfer learning model
The second scenario is based on fractional offload-
ing processes, which estimate the cost for all potential 
segmentation and perhaps even offload strategies and 
then select the fractional and offload system having the 

lowest cost. As a result, despite the substantial compu-
tational complexity, the energy usage and implementa-
tion time are minimal. The proposed model divides a 
task into small sub-tasks. User direction forecasting is 
determined using an LSTM. Figure 5 shows the work-
ing model of the proposed model. The proposed model 
divides tasks into partitions using a task partitioning 
method. The proposed model utilizes two types of task 
processing strategy: one is local execution at the UE 
site, and another is remote execution using an offload-
ing process [25].

A time series forecast problem emerges from the 
mobility data’s non-linear characteristics. To train the 
training algorithm and forecast the future position, the 
LSTM uses primary motion variables, including work, 
speed, and directions, as inputs to a feed technique. We 
utilize the CNN deep learning method to accelerate and 
optimize the strategic decision procedure while prevent-
ing a high computational overhead and complexity. The 
proposed model divides a task into small sub-tasks. User 
direction forecasting is determined using LSTM. Trans-
fer learning is utilized to transfer the learning knowledge 
to the CNN-LSTM model to enhance earning accuracy. 
The proposed model is trained on a comprehensive 
mobile edge computing dataset. The proposed model is 
based on a partial offloading strategy [26].

In which a cumulative work is divided into n partitions, 
p = (p1, p2 . . . pn), before partitioning, researchers pre-
sume the degree of divisions per activity, pn, is normally 
known. As indicated in Fig. 5, all divisions, pi ε p, for (i = 1, 
2, pn)  are sometimes sequentially performed natively or 

Fig. 5  Working of the proposed model
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offloaded onto MES. We add a Boolean value, Bi ε[0,1] to 
express it numerically, its range is [0, 1]. Pi runs imme-
diately as UE when Bi = 0; otherwise, it runs globally via 
MES. As a result, we make predictions, including local 
and distant deployments. The final acquired data for pi 
is denoted simply as i, and the required pi information is 
recorded as i. The number of CPU cycles needed to exe-
cute assignments pi is βi, which directly relies on the cost 
of γi, as βi = (γ i ∗ ni) , where ni shows the number of CPU 
cycles for i iteration per bit [27].

Local task execution strategy
We take into account UEs’ capacity for heterogeneous 
processing. As a result, the overall time required to exe-
cute pi natively, Tdelayi, can only be expressed as [28].

Here FreUE shows the CPU frequency to execute a pro-
cess for partition pi under UES. In a comparable pattern, 
total energy utilization resultant from the localized pro-
cessing of pi, EnergyLocali can only be described as (4). 
Here, ε denotes a constant that depends on the typical 
UE activation component and switches sensitivity. Simi-
lar ζ is a constant energy variable ζ > 2.

Remote task execution strategy
A factor pi may be uploaded by a UE toward the MES for 
processing. Unless the channel employs multi-flexing, 
we may consider its broadcast frequency band. FreqBand 
is partitioned across Subpart Sub-channels [29]. The pos-
sible carrier frequencies are enabling. Trai as well as Reci 
Reci transmissions and receptions, correspondingly, are 
denoted as Subi =(1, 2,3,…, Sub), at which Sub is the 
highest allowable sub-carriers.

Identical to Reci, here Rec indicates the highest range of 
CPU processors at MES and Reci indicates the number of 
CPU processors that are used to handle pi . Reci = 0 sug-
gests that now the systems are occupied, and therefore, 
there is no separate CPU reserved for the element pi . 
We assume additive white Gaussian distortion for both 
downlink and uplink connection speeds [30], which can 
be represented as follows.

(3)Tdelayi =
βi

FreUE

(4)EnergyLocali = TdelayiεFre
ζ
UE

(5)

Uplink =
Subi

Sub
C ∗ log2(1+

TransmissionPower|ChannelFa_uplink_Cofficient |
2

ϕ(SignalUplink_noise)γ
0
i ∗ NoisePower

)

Cost function estimation
The complexity of the algorithms and high compu-
tational costs of traditional optimization algorithms 
with cost functions including limitations. As a result, 
we must create a particular cost function that consid-
ers all relevant variables to generate a trained model 
exclusively [31]. Even though only one computation 
is made throughout the training process, the method 
performance for creating a trained model using such a 
particular cost function is substantial. After the initial 
training, the developed CNN has continuous complex-
ity O (1).

The total functional cost primarily depends on the 
implementation, communication, receiving, task-divi-
sion-related latencies, and specific energy utilization. 
Moreover, the cost model considers the duty cycle, radio 
capabilities, and computational power. The task-divi-
sion action causes the division procedure to take longer 
and use more energy as the number of elements climbs 
[32]. As a result, the assignment latency per element, 
Delay_Taskdivision , can be expressed as follows:

Proposed algorithm for workload offloading
Towards the proposed method, we partition a work-
load across n portions, and afterwards, using the frac-
tional offloading method, the UE offloads parts of the 
parts to MES while others are processed on UE. Nev-
ertheless, there have been nZm entail partition alterna-
tives, as well as 2m Potential offloading possibilities for 
a work of length m, therefore finding the alternative 
only with the lowest cost requires a solution of perfor-
mance O(nZm ∗ 2m).

We build a training sample utilizing the fully compre-
hensive computational formula to calculate the expenses, 
including all mZn2n alternatives, to prevent this cal-
culation overhead with computational complexities. 
Algorithm  3 considers all feasible partitioning (division 
matrix, (P, Par)) with partially offloading strategies (off-
loading strategies matrix, (P, OP)) for quite a workload of 
length m with just a fixed variable Y. where (P, Par) shows 
the predicted partitions, and (P, OP) shows indicated off-
loading policies [33].

(6)

Dnlink =
Subi

Sub
C ∗ log2(1+

TransmissionPower|ChannelFa_down_link_Cofficient |
2

ϕ(Signaldownlink_noise)γ
0
i ∗ NoisePower

)

(7)Delay_Taskdivision = fun1(m) =
(m− 1)

m
ϕdelayed_task_division
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Algorithm 3. Fractional offloading with task partitioning

Where: 

Sym-
bol

Description Symbol Description

n Number of portions βi Bandwidth parameter

γ Fixed variable P Division matrix

o Offloading parameter Par Predicted partitions

si Input data size OP Offloading policies 
matrix

li Computation load e Offloading strategy

md Cost function for local 
processing

nd The cost function 
for offloading

BP* Optimal offloading 
policies

LEC* Lowest energy con-
sumption

p Number of strategies l Loop variable for par-
titions

q Loop variable for off-
loading strategies

k Loop variable for cal-
culating costs

j Exponent for offload-
ing options

index Index of the mini-
mum cost

cost Cost array for different 
strategies

cost_minimum Minimum cost value

Dataset
The MEC (trace files) dataset comprises traces and logs 
documenting different operations and occurrences inside 
a MEC environment [34]. This dataset is commonly 
utilized for research to analyze and assess algorithms, 
models, and systems associated with MEC. The dataset 
mainly contains information such as:

•	 User Activities: Details of user interactions with edge 
services, including task requests, task completions, 
and user mobility patterns.

•	 Resource Usage: Information about utilizing com-
putational resources, such as CPU, memory, and 
storage, at the edge servers and cloud servers.

•	 Network Conditions: The information on network 
efficiency parameters, including latency bandwidth 
and packet loss, among edge servers, cloud servers, 
and consumer devices.

•	 Energy Consumption: Monitoring energy usage of 
edge servers and cloud servers, including devices 
used by users across various tasks.
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•	 Task Offloading: Information on task offloading 
selections specifying the tasks offloaded their desti-
nation and the outcomes of the offloading procedure.

•	 Environment Characteristics: Details on the MEC 
environment, including the quantity and placement 
of edge servers, the specific type of network infra-
structure, and the resource availability.

Data preprocessing
Data preparation for the MEC trace dataset entails many 
essential stages to prepare the data for usage in the CNN-
LSTM approach with transfer learning. The dataset, 
which includes user communications through edge ser-
vices, activity requests, completed tasks, and mobility 
patterns, is initially gathered and processed to exclude 
unnecessary or incorrect data. The data is then converted 
into an appropriate format, which may involve adjust-
ing timestamps and encoding category variables. The 
dataset is divided into training, validation, and test sets. 
Normalization is used to standardize the scale of all char-
acteristics. Data augmentation strategies can be option-
ally employed to expand the dataset size and enhance 
the model’s generalization. The data is sequenced into 
fixed-length sequences to consider its sequential char-
acter before input into the LSTM component. The pre-
processed data is inputted into the model for training, 
validation, and testing.

Feature extraction and hyperparameter tuning
The CNN-LSTM model for the MEC trace dataset has 
two primary components in the feature extraction pro-
cess. The CNN first extracts spatial features. The CNN 
module comprises convolutional layers, ReLU activa-
tion functions, and pooling layers. The layers collabo-
rate to extract spatial information from the incoming 
data, such as pictures or sensor data. Transfer learning 
utilizes pre-trained CNN models like VGG-16, trained 
on extensive datasets like ImageNet. The pre-trained 
models function as feature extractors, extracting high-
level information from the MEC trace dataset. The 
CNN produces feature maps that capture the spatial 
characteristics of the input data, which are subsequently 
forwarded to the LSTM for additional analysis.

Tuning of  hyperparameters is an essential step in 
improving the CNN-LSTM model’s performance on the 
MEC trace dataset. This method entails adjusting the 
hyperparameters, which govern the learning process and 
model structure. Important hyperparameters adjusted 
during tuning include the learning rate, batch size, num-
ber of epochs, and dropout rate.

The learning rate influences the speed at which the 
model learns and reaches the best answer. A greater 
learning rate can accelerate convergence but increase 
the likelihood of overshooting the ideal answer. Adjust-
ing the learning rate optimizes the trade-off between 
velocity and precision. The batch size dictates the 
quantity of samples processed before adjusting the 
model’s weights. Increasing the batch size can accel-
erate the training process but necessitate a higher 
memory capacity. Adjusting the batch size improves 
the training process to enhance efficiency and efficacy. 
Epochs determine the number of times the model goes 
through the entire dataset during training. Insufficient 
epochs can cause underfitting, while excessive epochs 
can result in overfitting.

Adjusting the number of epochs helps determine the 
most effective training period for the model. Dropout rate 
is a regularization method employed to mitigate over-
fitting. It randomly removes some neurons throughout 
training and compels the model to acquire more resilient 
characteristics. Adjusting the dropout rate enhances the 
model’s capacity to generalize. In this research, we utilized 
the grid search method for Hyperparameter tuning. Opti-
mizing the hyperparameters of the CNN-LSTM model can 
enhance its performance and accuracy on the MEC trace 
dataset, resulting in more dependable predictions and 
insights for Mobile Edge Computing applications. Table 2 
presents the CNN LSTM parameters used for simulation.

Performance measuring parameters
The following performance assessment metrics are 
applied to evaluate the proposed hybrid model’s effec-
tiveness [35, 36].

Table 2  CNN, LSTM parameters

Parameter Value

Input Shape (128, 128, 3)

CNN Architecture VGG16

CNN Layers Conv2D(64, (3, 3)), 
ReLU,MaxPooling2D,Conv2D(128, (3, 3)), 
ReLU,MaxPooling2D

Transfer Learning Yes

LSTM Layers LSTM(128), Dropout(0.2), LSTM(64), Dropout(0.2)

Output Units 1

Loss Function Binary Crossentropy

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Number of Epochs 50

Dropout Rate 0.2

Metrics Accuracy, Precision, Recall
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•	 Delay: The latency, communication delay, processing 
delay, and queue  delay are added together to deter-
mine the transmission time delay.

•	 Transmission Delay (TD): The duration needed for a 
datagram to travel from the server toward the com-
munication channel is referred to as the “transmis-
sion delay (TD)”.

•	 Propagation delay (PD): The packet must pass 
across the channel once transferred to the commu-
nication system to achieve its target. So, PD  is just 
the duration for the final bit of a message to reach its 
intended location.

•	 Queuing Delay (QD): The receiver will not 
instantly begin processing the packets after deliv-
ery. It must remain idle in a buffer, which is a row. 
Hence, waiting in the queue is delayed, which 
means the time something takes to get in line 
before getting analyzed.

•	 Processing delay (PrD): The packets will subse-
quently be transferred for a computation procedure 
known as PrD. The processors need some time to 
execute the incoming packets, which is the same 
amount of time intermediary gateways need to select 
where to transmit it, update TTL, and calculate 
header checksums.

•	 Energy Consumption (EC): EC represents the energy 
the infrastructure uses for data gathering, transpor-
tation, and receiving. The evaluations between the 
various methods are primarily based on how much 
energy the multicast group and cluster formation 
edge devices consume.

Experimental results, analysis, and discussion
This section presents the implementation, results, and 
discussion. This research shows a deep hybrid trans-
fer learning with a Cybertwin-driven resource alloca-
tion model for energy-efficient workload offloading 
and resource allocation for Cybertwin-driven MEC 
networks. The complete analysis is divided into two 
scenarios. The implementation of the proposed model 
and the existing model was performed based on the 
two scenarios. The first scenario is for the Cybertwin-
driven resource allocation model, and the second phase 
uses hybrid deep transfer learning workload offload-
ing and resource allocation for Cybertwin-driven MEC 
networks.

(8)TD =
Data Size

Bandwidth

(9)PD =
Distance

Velocity

The modelling tool is MATLAB R2020a, which exe-
cutes at 3.7 GHz over an Intel Core i-7, the company’s 
11th-gen microprocessor. Aside from the existing 
method, these techniques divide a workload of length 
n into eight modelling factors, subsequently performed 
sequentially on UE and via MES. For specific parts, 
every randomized parameter was autonomous [37]. The 
trained model is generated from 45,000 original data, 
which implies that we locally operated our proposed 
methodology on 45,000 assignments of various sizes, 
dispersed randomly throughout [0.0,  2.5] GB, storing 
the results at the most affordable price as labelling for 
the relevant raw data. Table  3 shows the Simulation 
parameters and respective values for each parameter 
used for scenarios one and two.

Simulation results for phase 1
The first scenario presents a Cybertwin-driven resource 
allocation model and performance enhancement for 
Cybertwin-driven MEC networks. This phase achieves 
better resource allocation, workload allocation, precise 
location selection, content caching decisions, and less 
service delay.

In the scenario of VM-based execution, tasks are 
transferred to VMs in the cloud. Although this method 
offers scalability and flexibility, it may lead to higher 
service latency because of the virtualization overhead 
and the requirement to communicate with cloud serv-
ers. On the other hand, the execution scenario using 
Cybertwin allows tasks to be assigned to digital simu-
lations, providing more control and flexibility com-
pared to traditional VMs. Our Cybertwin’s can quickly 

Table 3  Simulation parameters and details

Simulation parameter Value

Time slots 8

Cloud users 5000

Cloud lets 20

The base station (for uplink) 20

A base station (for downlink) 10

Terrain 1000*1000 m

Memory (Cloudlet level) 15 GB

Delay for Cybertwin 1000 ms

Antennas (for uplink BS) 30

Antennas (for Downlink BS) 100

Capacity (Cloudlet) 1000 cloud users

Processor (Local) 5

ZF Distribution 0.75

Processor (Cloudlet) 15
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adjust to user behaviour and adapt to changes in the 
environment.

Figure  6 illustrates how service delay times vary 
from 10,000 to 50,000 users, with service delay times 
expressed in seconds for various user counts across 
four levels: WiFi Meet, Cyber Twin, Remote, and Local. 
With 10,000 users, the Local Level delay is 1000 s, and 
for 50,000 users, it increases linearly to 5000 s, showing 
a consistent decline in performance as the number of 
users increases. Due to remote processing overhead, the 
Remote Level exhibits slightly higher delays, starting at 
1100 s and ending at 5100 s. WiFi Meet performs worse 
than Local Level but better than Remote Level, rang-
ing from 1050 to 5050 s. Cyber Twin Level performs the 
best, with a start time of 950 s and an end time of 4550 s 
for users in the same range. Cyber Twin Level is the 
best option for environments with high user demands 
because of its superior performance, attributed to its 
advanced load balancing, efficient resource allocation, 
enhanced scalability, and decreased latency.

Figure 7 showcases the service delay time for four dif-
ferent methods: Local Level, Remote Level, WiFi Meet, 
and Cyber Twin Level. The graph demonstrates how 

the delay time changes as cloudlets increase from 3 to 
30. The Cyber Twin Level consistently demonstrates 
the lowest delay times, beginning at 4800  s for three 
cloudlets and gradually decreasing to 320 s for 30. On 
the other hand, the Local Level begins at 5000  s and 
drops to 520  s, the Remote Level starts at 5200  s and 
reduces to 720  s, and the WiFi Meet begins at 5100  s 
and decreases to 620 s for the same range of cloudlets. 
Based on the data, it is clear that adding more cloudlets 
generally leads to a decrease in service delay time for all 
methods. Notably, the Cyber Twin Level method shows 
the most substantial improvement. This emphasizes 
the effectiveness of the Cyber Twin Level in optimiz-
ing service delay, making it the most efficient method 
among those compared.

Figure  8 illustrates the correlation between service 
delay and execution time across four different levels: 
Local Level, Remote Level, WiFi Meet, and Cyber Twin 
Level. The service delay ranges from 50 to 500 s, while 
the execution time ranges from 1000 to 10,000  s. As 
the service delay increases, execution times at all lev-
els decrease. At the Local Level, there is a reduction 
from 10,000  s to 1100  s, while at the Remote Level, 

Fig. 6  Service delay vs. no. of users
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the drop is from 9500 to 600 s. Like a pro, the execu-
tion time of the WiFi Meet level drops from 9000 to 
500  s, while the Cyber Twin Level shows the biggest 
improvement, reducing execution time from 8500 to 
350 s. The data fluctuations highlight the varying effi-
ciency levels when increasing service delay. The Cyber 
Twin Level consistently achieves the lowest execution 
times, showcasing its outstanding achievement in han-
dling higher service delays.

For the four scenarios, Local Level, Remote Level, 
WiFi Meet, and Cyber Twin Level, Fig.  9 depict the 
relationship between Service Delay and Remote Execu-
tion Time. In every scenario, Remote Execution Time 
rises tandem with the Service Delay, which goes from 
500 to 5000 s. However, the rate of increase differs for 
every scenario. The Remote Execution Time in the 
Local Level scenario gradually increases since it is 80% 
of the Service Delay. A steeper increase results from 
setting the Remote Execution Time at 120% of the Ser-
vice Delay in the remote-level scenario. The WiFi Meet 
scenario is in the middle, where the Remote Execu-
tion Time is higher for the Service Delay. The Cyber 
Twin Level scenario exhibits superior performance 
than the other scenarios. Its Remote Execution Time is 
only 50% of the Service Delay, indicating a significant 

reduction in execution times. Based on this fictitious 
data, for a given Service Delay, the Cyber Twin Level 
provides the best performance regarding Remote Exe-
cution Time.

Simulation results for phase 2
In the simulation, two results were calculated on the 
MEC trace dataset for existing deep learning models 
CNN, CNN-LSTM, and proposed CNN-LSTM with 
Transfer Learning, and they were compared based on 
various performance measuring parameters. The data-
set is divided into 80% training and 20% testing ratio.

The second phase achieves better results for Cyber-
twin offloading, energy efficient offloading, less delay, 
high accuracy, and better workload allocation. The pro-
posed model CNN + LSTM with transfer learning is 
compared with two existing models: the CNN model 
and CNN with LSTM. Following performance meas-
uring, parameters were calculated for all these three 
moles.

An analysis of service delay times depending on 
different task sizes is shown in Fig.  10. The plot con-
trasts the delay times of a suggested hybrid model with 
those of existing models (CPNs, GCNs, GNNs, RNNs, 
VAEs, GANs, and RL). There are 10 to 100 Mega Bytes 

Fig. 7  Service delay vs. no. of cloudlets
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(MB) in a task. Every model currently in use shows 
increasing delay times as task sizes increase, exhibit-
ing unique patterns influenced by their computational 
complexity. Across a range of task sizes, the suggested 
hybrid model typically provides competitive delay 
times, indicating possible efficiency gains. This analy-
sis offers insights into optimizing service performance 
based on task characteristics, which is important for 
allocating resources and designing systems in comput-
ing environments.

The service delay times for a range of task sizes (10 MP 
to 100 MP) are shown in Fig. 11 for the following mod-
els: RL, CPNs, GCNs, GNNs, RNNs, VAEs, GANs, and 
the suggested hybrid model. The data shows a range of 
performance, representing actual variations in service 
delays. The suggested hybrid model performs margin-
ally better than the others. The efficiency of the hybrid 
model, which combines the best features of BLSTM and 
CNN to process data more effectively, is demonstrated 
by this steady but marginal improvement. The outcomes 
highlight the hybrid model’s potential for faster service 
delivery, especially for larger task sizes, which makes it a 
better option than the current models.

Figure  12 displays the accuracy analysis for various 
models, including RL, CPNs, GCNs, GNNs, RNNs, 
VAEs, GANs, and the suggested hybrid model, for 
varying numbers of components per task (from 100 to 
5000). The suggested model routinely outperforms the 
top-performing current models by 4.8%. This steady 
improvement shows the hybrid model’s superior effi-
ciency, which makes it more appropriate for challeng-
ing tasks requiring greater accuracy. The suggested 
model’s ability to consistently improve performance 
demonstrates how well it works to improve prediction 
accuracy.

The Offloading Decision-Making loss results for the 
suggested and current methods are shown in Fig.  13, 
along with the number of epochs. The procedure entails 
creating epochs ranging from 0 to 100 and allocating fic-
titious loss values to every model that exhibits notable 
fluctuations throughout these epochs. At this stage, we 
have extracted the loss results for each model by con-
centrating on the last epoch (epoch 100). Because of its 
advanced workload offloading and resource allocation 
techniques, along with its optimized architecture, the 
proposed model performs better than existing methods. 

Fig. 8  Service delay vs. local execution
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The suggested model’s capacity to effectively manage 
resources and cut energy consumption is improved by 
integrating deep learning with a Cybertwin-driven meth-
odology, which lowers loss results. This enhancement 
demonstrates how well the suggested approach works in 
Mobile Edge Computing networks to optimize offloading 
choices.

Tradeoff analysis
To measure the performance of the proposed model, we 
have conducted a trade-off analysis between delay and 
total energy consumption concerning various task alloca-
tion strategies [38–41]. Table 4 presents the experimental 
results for tradeoff analysis for the proposed model for 
various task allocation strategies.

Our suggested approach has a definite trade-off 
between time and energy usage, as illustrated in Table 4. 
Increased energy use tends to be necessary to reduce the 
delay and vice versa. Table  4 presents the experimental 
findings from using several task allocation techniques 

as a component of the trade-off evaluation of the Pro-
posed Model. Table  4 displays the differences in the 
percentage of jobs completed locally vs. offloaded jobs 
and how these decisions affect average delay and overall 
energy use. The average latency decreases as activities 
are offloaded, although energy consumption increases, 
indicating the trade-off involved in network optimization 
for Mobile Edge Computing. On the other hand, prior-
itizing local execution lowers energy usage but can result 
in higher  delays. Considering their individual needs 
and goals allows participants to make well-informed 
decisions.

Conclusion and future work
 The research paper presents a new advanced method 
that combines deep hybrid transfer learning with a 
Cybertwin-driven resource allocation model to achieve 
energy-efficient workload offloading in Mobile Edge 
Computing networks. The research is split into two 

Fig. 9  Service delay vs. remote execution
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Fig. 10  Energy consumption analysis

Fig. 11  Service delay analysis based on task size
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Fig. 12  Accuracy analysis for different numbers of components per task

Fig. 13  Offloading decision-making (loss %) vs no of epoch results for existing and proposed
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scenarios, each focusing on distinct characteristics of 
Cybertwin-driven MEC networks. The first scenario 
aims to improve Cybertwin-driven MEC performance by 
using a Cybertwin control panel to handle communica-
tion delays. The second scenario utilizes a hybrid transfer 
learning approach to tackle energy-efficient work-off-
loading challenges in the Cybertwin MEC environment. 
We utilize supervised computational intelligence to dis-
tribute work across several parts and incorporate an 
offload mechanism with low power consumption and 
notable delay overhead.

Our method notably involves CNN-LSTM architecture 
with transfer learning. The cost function considers different 
energy needs and time delays related to communication, 
execution, and job completion. This approach accurately 
replicates the virtual world, making it ideal for realistic 
scenarios. The suggested method employs a trained CNN-
LSTM model to identify the most cost-effective offload 
mechanism and work division compared to existing meth-
ods, i.e., RL, CPNs, GCNs, GNNs, RNNs, VAEs, and 
GANs. This leads to decreased energy usage and opera-
tional interruptions, with a model precision exceeding 10%.

Nonetheless, our methodology is subject to certain 
constraints, including the inability to identify the optimal 
number of components for every assignment and the lim-
itation to programs that necessitate component opera-
tions in succession. Future research might create a robust 
Cybertwin model for Mobile Edge Computing and cloud 
settings to enhance resource utilization and task offload-
ing mechanisms. Future research might investigate how 
to calculate the optimal number of characteristics per 
assignment and create ways to offload tasks in different 
applications to improve the effectiveness of Mobile Edge 
Computing networks.
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