
Lilhore et al. Journal of Cloud Computing (2024) 13:126
https://doi.org/10.1186/s13677-024-00688-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Optimizing energy efficiency in MEC
networks: a deep learning approach
with Cybertwin‑driven resource allocation
Umesh Kumar Lilhore1, Sarita Simaiya1,2*, Surjeet Dalal3, Neetu Faujdar4, Roobaea Alroobaea5, Majed Alsafyani6,
Abdullah M. Baqasah7 and Sultan Algarni8 

Abstract 

Cybertwin (CT) is an innovative network structure that digitally simulates humans and items in a virtual environ-
ment, significantly influencing Cybertwin instances more than regular VMs. Cybertwin-driven networks, combined
with Mobile Edge Computing (MEC), provide practical options for transmitting IoT-enabled data. This research
introduces a hybrid methodology integrating deep learning with Cybertwin-driven resource allocation to enhance
energy-efficient workload offloading and resource management in MEC networks. Offloading work is essential in MEC
networks since several applications require significant resources. The Cybertwin-driven approach considers user
mobility, virtualization, processing power, load migrations, and resource demand as crucial elements in the decision-
making process for offloading. The model optimizes job allocation between on-premises and distant execution using
a task-offloading strategy to reduce the operating burden on the MEC network. The model uses a hybrid partitioning
approach and a cost function to optimize resource allocation efficiently. This cost function accounts for energy con-
sumption and service delays associated with job assignment, execution, and fulfilment. The model calculates the cost
of several segmentation and offloading procedures and chooses the lowest cost to enhance energy efficiency
and performance. The approach employs a deep learning architecture called “CNN-LSTM-TL” to accomplish energy-
efficient task offloading, utilizing pre-trained transfer learning models. Batch normalization is used to speed up model
training and improve its robustness. The model is trained and assessed using an extensive mobile edge comput-
ing public dataset. The experimental findings confirm the efficacy of the proposed methodology, indicating a 20%
decrease in energy usage compared to conventional methods while achieving comparable or superior performance
levels. Simulation studies emphasize the advantages of incorporating Cybertwin-driven insights into resource alloca-
tion and workload-offloading techniques. This research enhances energy-efficient and resource-aware MEC networks
by incorporating Cybertwin-driven techniques.

Keywords  Deep learning, Cybertwin, Mobile edge computing, IoT, CNN, LSTM, Transfer learning, Workload offloading

*Correspondence:
Sarita Simaiya
drcse2023@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00688-8&domain=pdf

Page 2 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

Introduction
The rapid advancement of internet-based technologies
has led to the creation of innovative solutions to man-
age the vast and diverse data generated by ubiquitous
intelligent devices, such as mobile edge devices [1].
These connected applications, including virtual reality,
augmented reality, vehicle communications, and online
media, benefit from the technologies mentioned earlier.
Despite being widely distributed across edge networks,
cloudlets offer limited resources along with the distant
cloud. Real workloads can significantly benefit from
faster connections to MEC facilitated by cloud users,
reducing the workload on the network’s cloud and
external cloud servers. Several emerging computational
ecosystems have been developed to address fundamen-
tal needs like latency, reduced energy consumption,
and cost-effectiveness, with MEC being one of the most
popular due to the inherent limitations of such tech-
nologies [2].

MEC brings computing and storage capabilities to
the network’s edge, enabling services for information-
sharing instances involving multiple wireless end-
points. The number of UEs is rapidly increasing due

to the rapid expansion of mobile applications, the IoT,
and intelligent systems [3, 4]. Researchers use MEC
as a preliminary step for IoT and investigate comput-
ing offload techniques for UEs to address the chal-
lenge of handling high computational and time-limited
workloads. To achieve fine-grained function by off-
loading work schedules, enabling task parallelization,
and improving execution speed, researchers identify
opportunities for UEs to offload tasks to edge serv-
ers for remote processing. Each piece of equipment
in edge communication can independently decide
whether to complete an operation on its own or trans-
fer the task to edge servers for remote processing, con-
sidering the energy overhead [5].

Figure 1 illustrates the architecture of multi-hop
mobile edge communication, consisting of three lay-
ers. The first layer, Tier-1, represents the cloud envi-
ronment, encompassing the cloud server, storage, and
processing components. Tier 2 comprises the mobile
edge layers containing communication protocols,
medium, and connection types. Tier 3, the final layer,
mainly includes the connection devices of UEs. MEC
provides data storage and computational capabilities

Fig. 1  Multi-hop mobile edge communication

Page 3 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

to UEs at the edge of mobile devices. In MEC, UEs
offload compute-intensive and time-sensitive optimi-
zation techniques to the MES via mobile communica-
tions. This offloading is crucial to reduce disruptions
in UE serving and energy usage since it is challenging
for an UE to meet the demands of high computational
systems with limited processing and storage resources
[6].

Cybertwin in MEC
Cybertwin technology is a novel approach to net-
work design, especially within the discipline of MEC.
Cybertwin in MEC mainly generates a virtual duplicate
of entities like persons, equipment, and procedures
within a virtual domain. Cybertwins are virtual cop-
ies that can imitate the behaviour and traits of real-life
entities, allowing them to engage with the MEC net-
work and its services in a way that reflects real-world
situations [7]. Cybertwin-powered edge computing
is a viable way to meet high user demand, although
it brings additional issues. An efficient offloading
job while managing computing, communication, and
cache resources is challenging for edge networks.
Conventional statistical optimization techniques can-
not solve the offloading issue in a dynamic edge com-
puting setting. In general, Cybertwin technology can
substantially contribute to improving MEC networks’
efficacy, performance, and user experience. Cybertwin
technology, in the broader context of MEC, provides
numerous advantages and functionalities [8].

•	 Resource Administration: Cybertwin can help
administer computing resources effectively by
offering information about customer and device
behaviour and resource requirements. The infor-
mation gathered can assist in improving the allo-
cation of resources and task offloading choices in
MEC settings [9].

•	 Workload Offloading: By incorporating Cyber-
twin’s perspectives, mobile edge computing net-
works can make intelligent movements related to
workload offloading. Cybertwin can assist in deter-
mining the best times and places to delegate work
to maximize output and efficient use of resources.

•	 Experience of Users: Cybertwin can enhance user
experience in MEC settings by providing person-
alized and context-aware services. Cybertwin can
assist in forecasting user behaviour and adjusting
programs and services accordingly [1–4].

•	 Security and Integrity: Cybertwin can enhance
security in MEC networks by offering a virtualized
setting to evaluate security procedures and stand-

ards. They tend to help identify and reduce secu-
rity risks as they occur [5–9].

Deep learning in MEC
Numerous research studies have examined applying deep
learning techniques, specifically CNNs and LSTM net-
works, to enhance workload offloading in MEC settings.
The researchers demonstrated how deep learning may
improve resource allocation, decrease latency, and boost
the overall performance of MEC systems.

One crucial research [10, 11] focuses on utilizing
Convolutional Neural Networks for image processing
applications in Mobile Edge Computing. CNNs have
effectively been used to transfer demanding image identi-
fication and processing duties from edge devices to fara-
way servers. These researches have demonstrated notable
enhancements in the efficiency and accuracy of image
processing in MEC situations by utilizing the hierarchical
feature extraction capabilities of CNNs. Similarly, LSTM
networks have been investigated for offloading jobs
requiring sequential data, such as speech recognition and
natural language processing [12, 13]. LSTM networks
excel at capturing distant relationships in sequential data,
making them perfect for jobs that involve grasping con-
text over time. Research has shown that LSTM networks
help decrease latency and enhance the accuracy of voice
recognition and natural language processing tasks in
MEC systems.

The present research on the utilization of CNNs and
LSTM networks in MEC workload offloading emphasizes
the capability of deep learning to improve the effective-
ness and productivity of edge computing systems. Deep
learning approaches can optimize resource utilization,
minimize energy consumption, and enhance user expe-
rience in MEC systems by efficiently assigning work
between edge devices and distant servers.

Problem statement and research motivation
The decentralization of data processing and storage
resources closer to individual users has considerably
improved wireless network reliability because of the rapid
expansion of MEC. However, there are additional issues
with the conservation of energy and management of
resources because many MEC applications are resource-
intensive. In response to these problems, this paper pre-
sents a novel approach to maximize energy efficiency
in MEC networks. Our method, which combines deep
learning methods with Cybertwin-driven techniques,
improves work administration and resource allocation by
utilizing Cybertwin technological advances.

Page 4 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

The investigation is motivated by the potential advan-
tages of improved energy efficiency in MEC relation-
ships. The suggested technique aims to improve the
overall effectiveness and environmental impact of MEC
networks by minimizing energy usage and optimizing the
allocation of resources. Enhancing MEC networks’ intel-
ligence and decision-making skills with the incorporation
of Cybertwin technology presents a unique possibility
that promises to enhance the handling of workloads and
the allocation of resources. This study aims to develop
energy-efficient and environmentally friendly MEC net-
works, enabling carriers of networks, suppliers of ser-
vices, and consumers.

Key contributions
In our study, we aim to contribute to the field of research
by introducing a novel approach for energy-efficient
workload offloading and resource allocation in Cyber-
twin-driven MEC networks. We address the challenge
of optimizing resource allocation, workload distribu-
tion, and service latency in MEC networks by propos-
ing a deep hybrid transfer learning model coupled with a
Cybertwin-driven resource allocation strategy. Our main
contributions can be summarized as follows:

•	 Cybertwin-driven Resource Allocation Model: We
introduce a novel Cybertwin-driven resource allo-
cation model that leverages digital simulations to
enhance resource allocation efficiency and reduce
service latency in MEC networks. By employing
Cybertwin, which offers real-time adaptability and
flexibility, our model can dynamically adjust to user
behaviour and environmental changes, leading to
improved performance compared to traditional VM-
based execution scenarios.

•	 Hybrid Deep Transfer Learning for Workload Off-
loading: We proposed a hybrid approach for work-
load offloading in MEC networks. Combining CNN
and LSTM models with transfer learning enhances
the accuracy and efficiency of task-offloading deci-
sions. This approach allows our model to extract
advanced features from MEC trace datasets more
effectively, leading to superior performance com-
pared to existing methods.

•	 Experimental Validation and Analysis: We con-
duct comprehensive simulations to evaluate the
performance of our proposed model under differ-
ent scenarios. Through extensive experimentation
and analysis, we demonstrate the effectiveness of our
approach in achieving better resource utilization,
energy efficiency, and service latency reduction in
Cybertwin-driven MEC networks.

By presenting detailed experimental findings and anal-
ysis, we provide insights into our proposed methodol-
ogy’s practical implications and benefits. Our results
showcase the superiority of the proposed Cybertwin-
driven resource allocation model and hybrid deep trans-
fer learning approach over existing methods, highlighting
the potential for significant advancements in energy-effi-
cient workload offloading and resource allocation strate-
gies in MEC networks.

Organization of the article
The article is organized to thoroughly discuss the issues
and solutions related to resource allocation and task
offloading in energy-efficient MEC networks. The arti-
cle starts with an introduction emphasizing the impor-
tance of MEC and the necessity for energy efficiency. The
related work section examines current MEC research,
specifically focusing on workload offloading and alloca-
tion of resources algorithms.

The section on materials and techniques describes a
deep hybrid transfer learning model that incorporates
Cybertwin-driven allocation of resources and utilizes the
MEC trace dataset. The outcomes section displays the
outcomes of the experiment, which include energy con-
sumption measurements and enhancements in perfor-
mance. The discussion section evaluates the findings and
explores the implications and constraints of the model.
The conclusion provides a comprehensive overview of
the main discoveries and proposes potential areas for
future research, offering a complete perspective on the
research’s impact on the field.

Related works
The “Cybertwin” concept is a novel and modern notion
that has attracted interest in the possibilities of using it
in MEC. Although a recent notion, there is an increasing
interest in investigating its relevance to MEC systems.
The Cybertwin methodology provides computing flexi-
bility for offloaded jobs, considering energy and time lim-
itations, making it a viable method for enhancing MEC
performance.

Multiple research studies have explored using Cyber-
twin with Mobile Edge Computing to enhance effec-
tiveness. One research [12] suggested an offloading
paradigm that uses a cloud-based software compo-
nent. The model utilized a cross-compute split strat-
egy and an asynchronous optimization mechanism to
reduce execution time for all clients. Different research
[13] concentrated on an energy-efficient offloading
approach that integrates forward and backward meth-
ods to optimize energy offloading while constraining
transmission latency.

Page 5 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

Researchers have investigated many methods to
improve the efficiency of MEC. Research [14] exam-
ined an offloading approach that utilizes multi-
patching procedures to enhance MEC efficiency. This
approach utilized a connected feature to improve
energy distribution among various customer access
points and infrastructure. A different research [15]
suggested a Markov decision-making approach to
enhance offload frequency in MEC, considering net-
work connection and a variety of MES. The objective
was to determine the best offloading window by solv-
ing the MDP with the valuation iteration technique.

Machine learning has been used to offload activities
in Mobile Edge Computing. The study [16] examined
a machine learning-driven offloading model designed
to tackle offloading obstacles and improve energy
management. Resource scheduling schemes have been
suggested to enhance MEC performance. Research
suggested a resource scheduling design that utilizes
neighbouring static devices to establish a flexible
computing network, improving overall performance.
Another research [17] investigated the effectiveness
and functionality of offloading solutions in mobile
cloud-based systems. The study explored advanced
technologies utilizing linked devices and IoT across
many application areas, highlighting the impact of
cloud spatial allocation and energy efficiency.

Several offloading strategies in virtualized chan-
nels to decrease energy usage and data transmission
emissions are discussed in [18]. Research thoroughly
examined energy-efficient computation offloading
by addressing the fundamental limitations of offload-
ing value. Workload balancing options utilizing deep
learning techniques have also been explored. A study
investigated energy-efficient offload strategies for core
tasks in a cloud computing platform, introducing an
active offloading technique to decrease energy usage.

In [19], the researcher concentrated on develop-
ing creative offloading strategies for MEC, utiliz-
ing both traditional and multi-objective optimization
techniques. One study [20] suggested a paradigm for
partial offloading in MEC, while another study [21]
presented a practical work offloading approach for
mobile devices on mobile network architecture with
limited energy resources. MEC has distinctive difficul-
ties and possibilities that demand specialized strate-
gies for peak performance. The study [22] examined a
work-offload architecture designed to decrease energy
consumption and enhance reaction time by consid-
ering the anticipated processing time and energy
expended during computational transfer. A different
research project [23] created preemptive multitasking

offloading and global offloading strategies based on
game theory to enhance energy efficiency in MEC.

MEC’s unique features, including tiered server hier-
archy, dynamic attributes of intelligent devices, and
client device mobility, require specialized strategies
for best performance. Table 1 presents a comparative
analysis of various existing research.

Materials and methods
This section presents the materials and methods
related to the present research. It covers the Cyber-
twin model and the proposed solution for MEC
architecture.

Introduction to the Cybertwin model
A new technology for MEC was created called Cyber-
twin. As a result, a Cybertwin may additionally be con-
sidered a type of VM designed to act as the customer’s
MEC network representation. The Cybertwin replaced
virtual machine services. As a result, it functions as a
bridge between the MEC network and the customers,
collecting user requests and providing them with public
resources to do these.

It also suggests that, inside the Cybertwin architec-
ture, cloud services may not connect with consum-
ers and instead exclusively with its Cybertwin. Since
cloud servers and clients do not directly communicate,
regardless of whether the customer turns and assumes
a unique network identifier, the connection can persist
as much as Cybertwin maintains the original hostname
and address. Also, simply telling the client and the serv-
ers the updated Cyber twin location and address in the
system makes Cybertwin transfer more straightforward
than the VM server’s migrations. Besides that, this
complete separation between the server and the user
implies that Cybertwin mobility is simpler than Virtual
machine server mobility by notifying all the individuals
and the web server service of the novel Cyber hostname
within the cloud infrastructure. Furthermore, including
a controlling layer in Cybertwin-based systems simpli-
fies sharing and updating intelligence. Cybertwin is
constructed to continuously communicate to the con-
solidated controller about internet traffic encompass-
ing them, the activity on the servers on which they
are located, and details about the jobs that customers
receive individually.

As compensation, the central controller can com-
bine these data to obtain comprehensive knowledge
about the network to choose the best configuration
settings, when to move Cybertwin, and where to com-
plete assignments. These judgments are subsequently

Page 6 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

communicated to the Cybertwin. This enables optimal
efficiency through the quickest task execution through
a stable load among all cloud storage, which is a crucial
statistic for the quality of experience at MEC. Cyber-
twin additionally possesses the capacity to offload
duties to any remote server.

Figure 2 represents Cybertwin MEC architecture for
communication. This architecture includes physical
cloud servers, a Cybertwin layer with a control panel,
and Cloud user devices. This architecture concisely
describes a Cybertwin-based MEC, focusing on how
the central controller receives signals through every
Cybertwin to improve task distribution and synchroni-
zation. Other significant benefits of Cybertwin include
the potential to keep track of critical acts and, if the
consumer is potential, the opportunity to negotiate the
transfer of intelligence to involved direct or indirect
businesses. These details are not particularly relevant
to the study discussed in this article; however, readers
are curious about how Cybertwin functions and how
these additional advantages are directed to secondary
sources.

Proposed Cybertwin MEC model
This research presents a deep hybrid transfer learning
with a cybertwin-driven resource allocation model for
energy-efficient workload offloading and resource allo-
cation for Cybertwin-driven MEC networks. The com-
plete research is divided into two scenarios. Figure 3
presents the critical goals of the proposed Cybertwin
MEC model.

The first scenario presents a Cybertwin-driven
resource allocation model and performance enhance-
ment for Cybertwin-driven MEC networks. This phase
achieves better resource allocation, workload allocation,
precise location selection, content caching decisions,
and less service delay. The second phase achieves bet-
ter results for Cybertwin offloading, energy efficient off-
loading, less delay, high accuracy, and better workload
allocation.

Phase 1: Cybertwin‑driven resource allocation model
This research aims to assess how the central control-
ler may improve Mobile Edge Computing performance,
specifically focusing on the issues encountered by

Table 1  Comparison of various exciting research

References Key method used Service delay Multi-user Energy
Consumption

Partitioning Multi-Server Deep Learning Cybertwin
and MEC

[12] Offloading based
on MDP

No No Yes No No Yes No

[13] Energy Harvesting No Yes Yes No No No No

[14] Energy Model Yes No Yes No Yes Yes No

[15] Conventional offload-
ing Methods

Yes No Yes Yes No No No

[16] Game theory model Yes Yes No No No No No

[17] Energy efficient off-
loading

Yes No Yes No Yes Yes No

[18] Offloading using
the cost function

Yes No Yes Yes No No No

[19] Machine learning-
based energy model

Yes Yes No No No No No

[24] Offloading using
a Genetic Algorithm

Yes Yes No No No No No

[20] Reliability-aware
energy consumption
model

Yes No Yes Yes No Yes No

[21] Offloading with energy
efficient model using
OCR case

Yes Yes No No No Yes No

[22] CNN based offloading Yes Yes Yes No No Yes No

Proposed Model Cybertwin-driven
resource allocation
model and CNN-LSTM
with Transfer Learning

Yes Yes Yes Yes Yes Yes Yes

Page 7 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

Cybertwin in MEC operations. The obstacles involve
delays in communication across both the data and con-
trol planes and the Cybertwin, in addition to the cur-
rent use of VM server-based strategies, which further
complicates the shift to Cybertwin and increases costs
by requiring updates to all cloud-based technologies to

meet the new standard. Cybertwin must substantially
improve efficiency to be beneficial.

During this phase, we aim to determine how imple-
menting Cybertwin might decrease service delays. We
introduce a resource allocation model driven by Cyber-
twin to forecast the anticipated service delay in an MEC

Fig. 2  Cybertwin MEC architecture

Fig. 3  Key goals of the proposed Cybertwin MEC model

Page 8 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

framework based on Cybertwin. The approach is created
to tackle the difficulties and intricacies of implementing
Cybertwin in MEC. Figure 4 displays the interval-based
divisions that segment the proposed resource allocation
model powered by Cybertwin. The model operates as
follows:

•	 Feature Extraction: The framework extracts features
from the data collected, including workload intensity,
utilization of resources, and delay in the network.

•	 Cybertwin Integration: The framework incorporates
Cybertwin towards allocating resources, considering
its skills and limitations.

•	 Resource Allocation: The framework uses retrieved
characteristics and Cybertwin connectivity to iden-
tify the most efficient allocation of resources to
reduce service delays.

•	 Service Delay Prediction: The approach utilizes
given resources with the Cybertwin-driven allocation
of resources framework to forecast the anticipated
service latency for each job or request.

•	 Feedback Loop: The framework constantly analyses
the MEC ecosystem and adapts the resource distri-
bution approach using the real-time MEC dataset
and Cybertwin’s input.

•	 Performance Evaluation: The model assesses its suc-
cess by reducing service delays and enhancing overall
MEC efficiency.

Cybertwin service model  The Cybertwin service
framework outlines the interactions between Cybertwin
components and the MEC system for the provision of
services. According to this approach, every user has a
Cybertwin that acts as a virtualized version of them in
the MEC context. Working in conjunction with the cen-
tral controller and additional MEC system components,
Cybertwin optimizes resource allocation and carries out
various functions. We have analyzed a situation that
includes several cloud users, various cloudlets, several
cloud base stations, and a substantial external server.
Every user has a Cybertwin, controlled by a unique
cloud system. Activities are sometimes best completed
regionally based on the status of cloud servers as well
as networks of communication. Users of clouds create
activities and decide whether to process them on their
local device or in the cloud system.

There are two primary sorts of tasks: a) requests for
resources and b) the processing of tasks. Particular
data will be retrieved and returned to the user by cloud
services upon completion of the needed tasks. The
microprocessors in the ecological system need to per-
form processing operations in a background environ-
ment where the work is completed. Resource requests
should be resolved in the cloud but can be handled
locally if it is more efficient. Queries can be processed
locally and sent to a base station wirelessly, while jobs

Fig. 4  Phase 1 service model for Cybertwin MEC

Page 9 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

can be handled on a virtual machine in a cloud-based
setting.

We are examining a scenario that includes numer-
ous cloud users, various cloudlets, and several cloud
base stations, including a substantial external server.
Every user utilizes Cybertwin, which is controlled
by a unique cloud-based platform. Various factors,
including the state of the servers in the cloud and
their communication networks, make it more advan-
tageous to finish tasks in the particular area where
they are located. Cloud users create activities and
decide whether to process them locally or within the
ecosystem.

Tasks are classified into two distinct categories:
demands for resources and processing of tasks. Cloud-
based services retrieve and transmit back the specific
data as prompted by activities. Task completion ecosys-
tem microprocessors are required to execute process-
ing duties in the system’s background. Resource queries
must be resolved in the cloud, although they can be
performed locally if more practical. The requests can
be performed locally and sent to a base station wire-
lessly, while activities can be executed in a VM through
a cloud-based computing system (Algorithm 1).

Algorithm 1. Cybertwin Region Selection Method

Where:

Symbol Meaning
Tr Task requests from the user

Cli Cloudlet

Pi Processor set

Om Optimum model with a higher capacity

∑cloudlet Capacity Total capacity of all cloudlets

∑ Full capacity Full capacity of the system

Cli for local-level processing Assign Cloudlet for processing tasks
locally.

Cli to Om Assign Cloudlet to the optimum model.

Modified the capacity of Cli Update the capacity of the Cloudlet
after the assignment.

Cloud user mobility  Participants can keep moving in
the Cybertwin MEC environment. If consumers relo-
cate, they might situate themselves far from the cloud
environment currently hosting they employ through
Cybertwin, making accessing it more difficult. It ought
to be taken into account by the network when choos-
ing where or how to maintain the Cybertwin when one
must relocate it and from where to transmit the activi-
ties for processing. Because customer locations, as well
as network accessibility mechanisms, can transform,

Page 10 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

limiting movements could result in inaccurate model-
ling and ineffective solutions. We shall partition time
further into time frames and characterize motion
across individual time slots. Suppose many CU cloud
users are defined (cu0,…, cui).

Also, their ts time-spaces are expressed by (ts0… tsj).
The customer cui parameters for timeframe tsj can
then be (x (cui, tsj), y (cui, tsj)). The position shifts each
time the individual moves around. In the case of a sta-
ble customer, this position is constant across all time
frames. Given that too many users adhere to set pat-
terns with predicted courses and places, it is reason-
able to presume that the system can retrieve this data
(Algorithm 2).

Algorithm 2. Cybertwin Content Caching Modelling and User Mobility

Task mapping  Each cloud user uses a Poisson produc-
tion process to build activities, including an optimum
frequency of (γ) one work per instant. Every action has a
(φ) probability of getting a resource processor work and
a (1-φ) probability of getting a resource request activity.
The customers may request (ζ) particular items, which

are indicated by (σ0…σi…, σζ) for index i. The chance of
contents becoming ordered follows directly from the
concept of Zf variances if we believe that the elements
are contained in decreasing rank, so it is the Zf distribu-
tion factor.

In Eq. (1), q represents summation, ζ shows the num-
ber of cloudlets, pi is the set of processors, and β is the
Zf distribution factor. The task can be executed locally
in the cloud environment. The task allocation depends
on the mapping factor ∆, which can be defined by
Eq. 2.

Here Cl is the number of cloudlets, Pn is the num-
ber of cloud processors, and cu is the number of cloud
users.

(1)β ∗ (σk) =
k−ϕ

ζ
i=1 ∗ q

−ϕ

(2)f (�) = cln +
∑∞

n=1

(

pn ∗
cu

l
+

σ0(ζ)

q

)

Page 11 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

Here:

Symbol Description Symbol Description
γ Optimum

frequency of one
work per instant
for each cloud user

φ The probability
of a cloud user’s
activity being
a resource processor
work

ζ Number of par-
ticular items
that customers
may request

σ Index indicating
particular items
requested by cus-
tomers

β Zf distribution
factor

k Index for a specific
item requested
by a cloud user

q Summation ζ Number of cloudlets

pi Set of processors ∆ Mapping factor
determining task
allocation.

f(∆) Task allocation
function based
on the mapping
factor, number
of cloudlets, pro-
cessors, and users

Cl Number of cloudlets

Pn Number of cloud
processors

cu Number of cloud
users

Phase 2: hybrid deep transfer learning model
The second scenario is based on fractional offload-
ing processes, which estimate the cost for all potential
segmentation and perhaps even offload strategies and
then select the fractional and offload system having the

lowest cost. As a result, despite the substantial compu-
tational complexity, the energy usage and implementa-
tion time are minimal. The proposed model divides a
task into small sub-tasks. User direction forecasting is
determined using an LSTM. Figure 5 shows the work-
ing model of the proposed model. The proposed model
divides tasks into partitions using a task partitioning
method. The proposed model utilizes two types of task
processing strategy: one is local execution at the UE
site, and another is remote execution using an offload-
ing process [25].

A time series forecast problem emerges from the
mobility data’s non-linear characteristics. To train the
training algorithm and forecast the future position, the
LSTM uses primary motion variables, including work,
speed, and directions, as inputs to a feed technique. We
utilize the CNN deep learning method to accelerate and
optimize the strategic decision procedure while prevent-
ing a high computational overhead and complexity. The
proposed model divides a task into small sub-tasks. User
direction forecasting is determined using LSTM. Trans-
fer learning is utilized to transfer the learning knowledge
to the CNN-LSTM model to enhance earning accuracy.
The proposed model is trained on a comprehensive
mobile edge computing dataset. The proposed model is
based on a partial offloading strategy [26].

In which a cumulative work is divided into n partitions,
p = (p1, p2 . . . pn), before partitioning, researchers pre-
sume the degree of divisions per activity, pn, is normally
known. As indicated in Fig. 5, all divisions, pi ε p, for (i = 1,
2, pn) are sometimes sequentially performed natively or

Fig. 5  Working of the proposed model

Page 12 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

offloaded onto MES. We add a Boolean value, Bi ε[0,1] to
express it numerically, its range is [0, 1]. Pi runs imme-
diately as UE when Bi = 0; otherwise, it runs globally via
MES. As a result, we make predictions, including local
and distant deployments. The final acquired data for pi
is denoted simply as i, and the required pi information is
recorded as i. The number of CPU cycles needed to exe-
cute assignments pi is βi, which directly relies on the cost
of γi, as βi = (γ i ∗ ni) , where ni shows the number of CPU
cycles for i iteration per bit [27].

Local task execution strategy
We take into account UEs’ capacity for heterogeneous
processing. As a result, the overall time required to exe-
cute pi natively, Tdelayi, can only be expressed as [28].

Here FreUE shows the CPU frequency to execute a pro-
cess for partition pi under UES. In a comparable pattern,
total energy utilization resultant from the localized pro-
cessing of pi, EnergyLocali can only be described as (4).
Here, ε denotes a constant that depends on the typical
UE activation component and switches sensitivity. Simi-
lar ζ is a constant energy variable ζ > 2.

Remote task execution strategy
A factor pi may be uploaded by a UE toward the MES for
processing. Unless the channel employs multi-flexing,
we may consider its broadcast frequency band. FreqBand
is partitioned across Subpart Sub-channels [29]. The pos-
sible carrier frequencies are enabling. Trai as well as Reci
Reci transmissions and receptions, correspondingly, are
denoted as Subi =(1, 2,3,…, Sub), at which Sub is the
highest allowable sub-carriers.

Identical to Reci, here Rec indicates the highest range of
CPU processors at MES and Reci indicates the number of
CPU processors that are used to handle pi . Reci = 0 sug-
gests that now the systems are occupied, and therefore,
there is no separate CPU reserved for the element pi .
We assume additive white Gaussian distortion for both
downlink and uplink connection speeds [30], which can
be represented as follows.

(3)Tdelayi =
βi

FreUE

(4)EnergyLocali = TdelayiεFre
ζ
UE

(5)

Uplink =
Subi

Sub
C ∗ log2(1+

TransmissionPower|ChannelFa_uplink_Cofficient |
2

ϕ(SignalUplink_noise)γ
0
i ∗ NoisePower

)

Cost function estimation
The complexity of the algorithms and high compu-
tational costs of traditional optimization algorithms
with cost functions including limitations. As a result,
we must create a particular cost function that consid-
ers all relevant variables to generate a trained model
exclusively [31]. Even though only one computation
is made throughout the training process, the method
performance for creating a trained model using such a
particular cost function is substantial. After the initial
training, the developed CNN has continuous complex-
ity O (1).

The total functional cost primarily depends on the
implementation, communication, receiving, task-divi-
sion-related latencies, and specific energy utilization.
Moreover, the cost model considers the duty cycle, radio
capabilities, and computational power. The task-divi-
sion action causes the division procedure to take longer
and use more energy as the number of elements climbs
[32]. As a result, the assignment latency per element,
Delay_Taskdivision , can be expressed as follows:

Proposed algorithm for workload offloading
Towards the proposed method, we partition a work-
load across n portions, and afterwards, using the frac-
tional offloading method, the UE offloads parts of the
parts to MES while others are processed on UE. Nev-
ertheless, there have been nZm entail partition alterna-
tives, as well as 2m Potential offloading possibilities for
a work of length m, therefore finding the alternative
only with the lowest cost requires a solution of perfor-
mance O(nZm ∗ 2m).

We build a training sample utilizing the fully compre-
hensive computational formula to calculate the expenses,
including all mZn2n alternatives, to prevent this cal-
culation overhead with computational complexities.
Algorithm 3 considers all feasible partitioning (division
matrix, (P, Par)) with partially offloading strategies (off-
loading strategies matrix, (P, OP)) for quite a workload of
length m with just a fixed variable Y. where (P, Par) shows
the predicted partitions, and (P, OP) shows indicated off-
loading policies [33].

(6)

Dnlink =
Subi

Sub
C ∗ log2(1+

TransmissionPower|ChannelFa_down_link_Cofficient |
2

ϕ(Signaldownlink_noise)γ
0
i ∗ NoisePower

)

(7)Delay_Taskdivision = fun1(m) =
(m− 1)

m
ϕdelayed_task_division

Page 13 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

Algorithm 3. Fractional offloading with task partitioning

Where:

Sym-
bol

Description Symbol Description

n Number of portions βi Bandwidth parameter

γ Fixed variable P Division matrix

o Offloading parameter Par Predicted partitions

si Input data size OP Offloading policies
matrix

li Computation load e Offloading strategy

md Cost function for local
processing

nd The cost function
for offloading

BP* Optimal offloading
policies

LEC* Lowest energy con-
sumption

p Number of strategies l Loop variable for par-
titions

q Loop variable for off-
loading strategies

k Loop variable for cal-
culating costs

j Exponent for offload-
ing options

index Index of the mini-
mum cost

cost Cost array for different
strategies

cost_minimum Minimum cost value

Dataset
The MEC (trace files) dataset comprises traces and logs
documenting different operations and occurrences inside
a MEC environment [34]. This dataset is commonly
utilized for research to analyze and assess algorithms,
models, and systems associated with MEC. The dataset
mainly contains information such as:

•	 User Activities: Details of user interactions with edge
services, including task requests, task completions,
and user mobility patterns.

•	 Resource Usage: Information about utilizing com-
putational resources, such as CPU, memory, and
storage, at the edge servers and cloud servers.

•	 Network Conditions: The information on network
efficiency parameters, including latency bandwidth
and packet loss, among edge servers, cloud servers,
and consumer devices.

•	 Energy Consumption: Monitoring energy usage of
edge servers and cloud servers, including devices
used by users across various tasks.

Page 14 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

•	 Task Offloading: Information on task offloading
selections specifying the tasks offloaded their desti-
nation and the outcomes of the offloading procedure.

•	 Environment Characteristics: Details on the MEC
environment, including the quantity and placement
of edge servers, the specific type of network infra-
structure, and the resource availability.

Data preprocessing
Data preparation for the MEC trace dataset entails many
essential stages to prepare the data for usage in the CNN-
LSTM approach with transfer learning. The dataset,
which includes user communications through edge ser-
vices, activity requests, completed tasks, and mobility
patterns, is initially gathered and processed to exclude
unnecessary or incorrect data. The data is then converted
into an appropriate format, which may involve adjust-
ing timestamps and encoding category variables. The
dataset is divided into training, validation, and test sets.
Normalization is used to standardize the scale of all char-
acteristics. Data augmentation strategies can be option-
ally employed to expand the dataset size and enhance
the model’s generalization. The data is sequenced into
fixed-length sequences to consider its sequential char-
acter before input into the LSTM component. The pre-
processed data is inputted into the model for training,
validation, and testing.

Feature extraction and hyperparameter tuning
The CNN-LSTM model for the MEC trace dataset has
two primary components in the feature extraction pro-
cess. The CNN first extracts spatial features. The CNN
module comprises convolutional layers, ReLU activa-
tion functions, and pooling layers. The layers collabo-
rate to extract spatial information from the incoming
data, such as pictures or sensor data. Transfer learning
utilizes pre-trained CNN models like VGG-16, trained
on extensive datasets like ImageNet. The pre-trained
models function as feature extractors, extracting high-
level information from the MEC trace dataset. The
CNN produces feature maps that capture the spatial
characteristics of the input data, which are subsequently
forwarded to the LSTM for additional analysis.

Tuning of hyperparameters is an essential step in
improving the CNN-LSTM model’s performance on the
MEC trace dataset. This method entails adjusting the
hyperparameters, which govern the learning process and
model structure. Important hyperparameters adjusted
during tuning include the learning rate, batch size, num-
ber of epochs, and dropout rate.

The learning rate influences the speed at which the
model learns and reaches the best answer. A greater
learning rate can accelerate convergence but increase
the likelihood of overshooting the ideal answer. Adjust-
ing the learning rate optimizes the trade-off between
velocity and precision. The batch size dictates the
quantity of samples processed before adjusting the
model’s weights. Increasing the batch size can accel-
erate the training process but necessitate a higher
memory capacity. Adjusting the batch size improves
the training process to enhance efficiency and efficacy.
Epochs determine the number of times the model goes
through the entire dataset during training. Insufficient
epochs can cause underfitting, while excessive epochs
can result in overfitting.

Adjusting the number of epochs helps determine the
most effective training period for the model. Dropout rate
is a regularization method employed to mitigate over-
fitting. It randomly removes some neurons throughout
training and compels the model to acquire more resilient
characteristics. Adjusting the dropout rate enhances the
model’s capacity to generalize. In this research, we utilized
the grid search method for Hyperparameter tuning. Opti-
mizing the hyperparameters of the CNN-LSTM model can
enhance its performance and accuracy on the MEC trace
dataset, resulting in more dependable predictions and
insights for Mobile Edge Computing applications. Table 2
presents the CNN LSTM parameters used for simulation.

Performance measuring parameters
The following performance assessment metrics are
applied to evaluate the proposed hybrid model’s effec-
tiveness [35, 36].

Table 2  CNN, LSTM parameters

Parameter Value

Input Shape (128, 128, 3)

CNN Architecture VGG16

CNN Layers Conv2D(64, (3, 3)),
ReLU,MaxPooling2D,Conv2D(128, (3, 3)),
ReLU,MaxPooling2D

Transfer Learning Yes

LSTM Layers LSTM(128), Dropout(0.2), LSTM(64), Dropout(0.2)

Output Units 1

Loss Function Binary Crossentropy

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Number of Epochs 50

Dropout Rate 0.2

Metrics Accuracy, Precision, Recall

Page 15 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

•	 Delay: The latency, communication delay, processing
delay, and queue delay are added together to deter-
mine the transmission time delay.

•	 Transmission Delay (TD): The duration needed for a
datagram to travel from the server toward the com-
munication channel is referred to as the “transmis-
sion delay (TD)”.

•	 Propagation delay (PD): The packet must pass
across the channel once transferred to the commu-
nication system to achieve its target. So, PD is just
the duration for the final bit of a message to reach its
intended location.

•	 Queuing Delay (QD): The receiver will not
instantly begin processing the packets after deliv-
ery. It must remain idle in a buffer, which is a row.
Hence, waiting in the queue is delayed, which
means the time something takes to get in line
before getting analyzed.

•	 Processing delay (PrD): The packets will subse-
quently be transferred for a computation procedure
known as PrD. The processors need some time to
execute the incoming packets, which is the same
amount of time intermediary gateways need to select
where to transmit it, update TTL, and calculate
header checksums.

•	 Energy Consumption (EC): EC represents the energy
the infrastructure uses for data gathering, transpor-
tation, and receiving. The evaluations between the
various methods are primarily based on how much
energy the multicast group and cluster formation
edge devices consume.

Experimental results, analysis, and discussion
This section presents the implementation, results, and
discussion. This research shows a deep hybrid trans-
fer learning with a Cybertwin-driven resource alloca-
tion model for energy-efficient workload offloading
and resource allocation for Cybertwin-driven MEC
networks. The complete analysis is divided into two
scenarios. The implementation of the proposed model
and the existing model was performed based on the
two scenarios. The first scenario is for the Cybertwin-
driven resource allocation model, and the second phase
uses hybrid deep transfer learning workload offload-
ing and resource allocation for Cybertwin-driven MEC
networks.

(8)TD =
Data Size

Bandwidth

(9)PD =
Distance

Velocity

The modelling tool is MATLAB R2020a, which exe-
cutes at 3.7 GHz over an Intel Core i-7, the company’s
11th-gen microprocessor. Aside from the existing
method, these techniques divide a workload of length
n into eight modelling factors, subsequently performed
sequentially on UE and via MES. For specific parts,
every randomized parameter was autonomous [37]. The
trained model is generated from 45,000 original data,
which implies that we locally operated our proposed
methodology on 45,000 assignments of various sizes,
dispersed randomly throughout [0.0, 2.5] GB, storing
the results at the most affordable price as labelling for
the relevant raw data. Table 3 shows the Simulation
parameters and respective values for each parameter
used for scenarios one and two.

Simulation results for phase 1
The first scenario presents a Cybertwin-driven resource
allocation model and performance enhancement for
Cybertwin-driven MEC networks. This phase achieves
better resource allocation, workload allocation, precise
location selection, content caching decisions, and less
service delay.

In the scenario of VM-based execution, tasks are
transferred to VMs in the cloud. Although this method
offers scalability and flexibility, it may lead to higher
service latency because of the virtualization overhead
and the requirement to communicate with cloud serv-
ers. On the other hand, the execution scenario using
Cybertwin allows tasks to be assigned to digital simu-
lations, providing more control and flexibility com-
pared to traditional VMs. Our Cybertwin’s can quickly

Table 3  Simulation parameters and details

Simulation parameter Value

Time slots 8

Cloud users 5000

Cloud lets 20

The base station (for uplink) 20

A base station (for downlink) 10

Terrain 1000*1000 m

Memory (Cloudlet level) 15 GB

Delay for Cybertwin 1000 ms

Antennas (for uplink BS) 30

Antennas (for Downlink BS) 100

Capacity (Cloudlet) 1000 cloud users

Processor (Local) 5

ZF Distribution 0.75

Processor (Cloudlet) 15

Page 16 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

adjust to user behaviour and adapt to changes in the
environment.

Figure 6 illustrates how service delay times vary
from 10,000 to 50,000 users, with service delay times
expressed in seconds for various user counts across
four levels: WiFi Meet, Cyber Twin, Remote, and Local.
With 10,000 users, the Local Level delay is 1000 s, and
for 50,000 users, it increases linearly to 5000 s, showing
a consistent decline in performance as the number of
users increases. Due to remote processing overhead, the
Remote Level exhibits slightly higher delays, starting at
1100 s and ending at 5100 s. WiFi Meet performs worse
than Local Level but better than Remote Level, rang-
ing from 1050 to 5050 s. Cyber Twin Level performs the
best, with a start time of 950 s and an end time of 4550 s
for users in the same range. Cyber Twin Level is the
best option for environments with high user demands
because of its superior performance, attributed to its
advanced load balancing, efficient resource allocation,
enhanced scalability, and decreased latency.

Figure 7 showcases the service delay time for four dif-
ferent methods: Local Level, Remote Level, WiFi Meet,
and Cyber Twin Level. The graph demonstrates how

the delay time changes as cloudlets increase from 3 to
30. The Cyber Twin Level consistently demonstrates
the lowest delay times, beginning at 4800 s for three
cloudlets and gradually decreasing to 320 s for 30. On
the other hand, the Local Level begins at 5000 s and
drops to 520 s, the Remote Level starts at 5200 s and
reduces to 720 s, and the WiFi Meet begins at 5100 s
and decreases to 620 s for the same range of cloudlets.
Based on the data, it is clear that adding more cloudlets
generally leads to a decrease in service delay time for all
methods. Notably, the Cyber Twin Level method shows
the most substantial improvement. This emphasizes
the effectiveness of the Cyber Twin Level in optimiz-
ing service delay, making it the most efficient method
among those compared.

Figure 8 illustrates the correlation between service
delay and execution time across four different levels:
Local Level, Remote Level, WiFi Meet, and Cyber Twin
Level. The service delay ranges from 50 to 500 s, while
the execution time ranges from 1000 to 10,000 s. As
the service delay increases, execution times at all lev-
els decrease. At the Local Level, there is a reduction
from 10,000 s to 1100 s, while at the Remote Level,

Fig. 6  Service delay vs. no. of users

Page 17 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

the drop is from 9500 to 600 s. Like a pro, the execu-
tion time of the WiFi Meet level drops from 9000 to
500 s, while the Cyber Twin Level shows the biggest
improvement, reducing execution time from 8500 to
350 s. The data fluctuations highlight the varying effi-
ciency levels when increasing service delay. The Cyber
Twin Level consistently achieves the lowest execution
times, showcasing its outstanding achievement in han-
dling higher service delays.

For the four scenarios, Local Level, Remote Level,
WiFi Meet, and Cyber Twin Level, Fig. 9 depict the
relationship between Service Delay and Remote Execu-
tion Time. In every scenario, Remote Execution Time
rises tandem with the Service Delay, which goes from
500 to 5000 s. However, the rate of increase differs for
every scenario. The Remote Execution Time in the
Local Level scenario gradually increases since it is 80%
of the Service Delay. A steeper increase results from
setting the Remote Execution Time at 120% of the Ser-
vice Delay in the remote-level scenario. The WiFi Meet
scenario is in the middle, where the Remote Execu-
tion Time is higher for the Service Delay. The Cyber
Twin Level scenario exhibits superior performance
than the other scenarios. Its Remote Execution Time is
only 50% of the Service Delay, indicating a significant

reduction in execution times. Based on this fictitious
data, for a given Service Delay, the Cyber Twin Level
provides the best performance regarding Remote Exe-
cution Time.

Simulation results for phase 2
In the simulation, two results were calculated on the
MEC trace dataset for existing deep learning models
CNN, CNN-LSTM, and proposed CNN-LSTM with
Transfer Learning, and they were compared based on
various performance measuring parameters. The data-
set is divided into 80% training and 20% testing ratio.

The second phase achieves better results for Cyber-
twin offloading, energy efficient offloading, less delay,
high accuracy, and better workload allocation. The pro-
posed model CNN + LSTM with transfer learning is
compared with two existing models: the CNN model
and CNN with LSTM. Following performance meas-
uring, parameters were calculated for all these three
moles.

An analysis of service delay times depending on
different task sizes is shown in Fig. 10. The plot con-
trasts the delay times of a suggested hybrid model with
those of existing models (CPNs, GCNs, GNNs, RNNs,
VAEs, GANs, and RL). There are 10 to 100 Mega Bytes

Fig. 7  Service delay vs. no. of cloudlets

Page 18 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

(MB) in a task. Every model currently in use shows
increasing delay times as task sizes increase, exhibit-
ing unique patterns influenced by their computational
complexity. Across a range of task sizes, the suggested
hybrid model typically provides competitive delay
times, indicating possible efficiency gains. This analy-
sis offers insights into optimizing service performance
based on task characteristics, which is important for
allocating resources and designing systems in comput-
ing environments.

The service delay times for a range of task sizes (10 MP
to 100 MP) are shown in Fig. 11 for the following mod-
els: RL, CPNs, GCNs, GNNs, RNNs, VAEs, GANs, and
the suggested hybrid model. The data shows a range of
performance, representing actual variations in service
delays. The suggested hybrid model performs margin-
ally better than the others. The efficiency of the hybrid
model, which combines the best features of BLSTM and
CNN to process data more effectively, is demonstrated
by this steady but marginal improvement. The outcomes
highlight the hybrid model’s potential for faster service
delivery, especially for larger task sizes, which makes it a
better option than the current models.

Figure 12 displays the accuracy analysis for various
models, including RL, CPNs, GCNs, GNNs, RNNs,
VAEs, GANs, and the suggested hybrid model, for
varying numbers of components per task (from 100 to
5000). The suggested model routinely outperforms the
top-performing current models by 4.8%. This steady
improvement shows the hybrid model’s superior effi-
ciency, which makes it more appropriate for challeng-
ing tasks requiring greater accuracy. The suggested
model’s ability to consistently improve performance
demonstrates how well it works to improve prediction
accuracy.

The Offloading Decision-Making loss results for the
suggested and current methods are shown in Fig. 13,
along with the number of epochs. The procedure entails
creating epochs ranging from 0 to 100 and allocating fic-
titious loss values to every model that exhibits notable
fluctuations throughout these epochs. At this stage, we
have extracted the loss results for each model by con-
centrating on the last epoch (epoch 100). Because of its
advanced workload offloading and resource allocation
techniques, along with its optimized architecture, the
proposed model performs better than existing methods.

Fig. 8  Service delay vs. local execution

Page 19 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

The suggested model’s capacity to effectively manage
resources and cut energy consumption is improved by
integrating deep learning with a Cybertwin-driven meth-
odology, which lowers loss results. This enhancement
demonstrates how well the suggested approach works in
Mobile Edge Computing networks to optimize offloading
choices.

Tradeoff analysis
To measure the performance of the proposed model, we
have conducted a trade-off analysis between delay and
total energy consumption concerning various task alloca-
tion strategies [38–41]. Table 4 presents the experimental
results for tradeoff analysis for the proposed model for
various task allocation strategies.

Our suggested approach has a definite trade-off
between time and energy usage, as illustrated in Table 4.
Increased energy use tends to be necessary to reduce the
delay and vice versa. Table 4 presents the experimental
findings from using several task allocation techniques

as a component of the trade-off evaluation of the Pro-
posed Model. Table 4 displays the differences in the
percentage of jobs completed locally vs. offloaded jobs
and how these decisions affect average delay and overall
energy use. The average latency decreases as activities
are offloaded, although energy consumption increases,
indicating the trade-off involved in network optimization
for Mobile Edge Computing. On the other hand, prior-
itizing local execution lowers energy usage but can result
in higher delays. Considering their individual needs
and goals allows participants to make well-informed
decisions.

Conclusion and future work
 The research paper presents a new advanced method
that combines deep hybrid transfer learning with a
Cybertwin-driven resource allocation model to achieve
energy-efficient workload offloading in Mobile Edge
Computing networks. The research is split into two

Fig. 9  Service delay vs. remote execution

Page 20 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

Fig. 10  Energy consumption analysis

Fig. 11  Service delay analysis based on task size

Page 21 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

Fig. 12  Accuracy analysis for different numbers of components per task

Fig. 13  Offloading decision-making (loss %) vs no of epoch results for existing and proposed

Page 22 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126

scenarios, each focusing on distinct characteristics of
Cybertwin-driven MEC networks. The first scenario
aims to improve Cybertwin-driven MEC performance by
using a Cybertwin control panel to handle communica-
tion delays. The second scenario utilizes a hybrid transfer
learning approach to tackle energy-efficient work-off-
loading challenges in the Cybertwin MEC environment.
We utilize supervised computational intelligence to dis-
tribute work across several parts and incorporate an
offload mechanism with low power consumption and
notable delay overhead.

Our method notably involves CNN-LSTM architecture
with transfer learning. The cost function considers different
energy needs and time delays related to communication,
execution, and job completion. This approach accurately
replicates the virtual world, making it ideal for realistic
scenarios. The suggested method employs a trained CNN-
LSTM model to identify the most cost-effective offload
mechanism and work division compared to existing meth-
ods, i.e., RL, CPNs, GCNs, GNNs, RNNs, VAEs, and
GANs. This leads to decreased energy usage and opera-
tional interruptions, with a model precision exceeding 10%.

Nonetheless, our methodology is subject to certain
constraints, including the inability to identify the optimal
number of components for every assignment and the lim-
itation to programs that necessitate component opera-
tions in succession. Future research might create a robust
Cybertwin model for Mobile Edge Computing and cloud
settings to enhance resource utilization and task offload-
ing mechanisms. Future research might investigate how
to calculate the optimal number of characteristics per
assignment and create ways to offload tasks in different
applications to improve the effectiveness of Mobile Edge
Computing networks.

Abbreviations
CT	� Cybertwin
MEC	� Mobile Edge Computing
IoT	� Internet of Things
VM	� Virtual Machine
CNN-LSTM-TL	� Convolutional Neural Network-Long Short-Term Memory-

Transfer Learning
PPA	� Partial Partitioning Approach

BN	� Batch Normalization
UEs	� User equipment
MES	� Mobile Edge Server
MDP	� Markov Decision Process
TL	� Transfer Learning
MEC	� Mobile Edge Computing
CC	� Cloud Computing
UEs	� User equipments
VMs	� Virtual Machines
TD	� Transmission Delay
PD	� Propagation delay
QD	� Queuing Delay
PrD	� Processing delay
EC	� Energy Consumption

Authors’ contributions
The authors confirm their contribution to the paper as follows: study concep-
tion and design: UKL, SD, NF, and SS; data collection: RA and MA; analysis and
interpretation of results: UKL and AMB; draft manuscript preparation: UKL, SA
and SD. All authors reviewed the results and approved the final version of the
manuscript. Author names abbreviation’s are as follows: Umesh Kumar Lilhore
(UKL), Sarita Simaiya (SS), Surjeet Dalal (SD), Neetu Faujdar (NF), Roobaea Alroo-
baea (RA), Majed Alsafyani (MA), Abdullah M. Baqasah (AMB), Sultan Algarni (SA).

Funding
The author extends their appreciation to Taif University, Saudi Arabia, for sup-
porting this work through project number (TU-DSPP-2024-17).

Availability of data and materials
Available on personal request.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 School of Computing Science and Engineering, Galgotias University, Greater
Noida, UP, India. 2 Arba Minch University, Arba Minch, Ethiopia. 3 Amity
School of Engineering and Technology, Amity University Haryana, Gurgaon,
Haryana, India. 4 Department of Computer Engineering and Applications, GLA
University, Mathura 281406, India. 5 Department of Computer Science, College
of Computers and Information Technology, Taif University, P. O. Box 11099,
Taif 21944, Saudi Arabia. 6 Department of Computer Science, College of Com-
puters and Information Technology, Taif University, P. O. Box 11099, Taif 21944,
Saudi Arabia. 7 Department of Information Technology, College of Computers
and Information Technology, Taif University, Taif 21974, Saudi Arabia. 8 Depart-
ment of Information Systems, Faculty of Computing and Information Technol-
ogy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Received: 2 March 2024 Accepted: 21 July 2024

References
	1.	 Yu C, Quan W, Gao D, Zhang Y, Liu K, Wu W, Zhang H, Shen X (2021)

Reliable cyber twin-driven concurrent multipath transfer with deep
reinforcement learning. IEEE Internet Things J 8(22):16207–16218

	2.	 Juneja S, Gahlan M, Dhiman G, Kautish S (2021) Futuristic Cybertwin
architecture for 6G technology to support internet of everything. Sci
Program 2021:1–7

	3.	 Rodrigues TK, Liu J, Kato N (2021) Application of cyber twin for offloading
in mobile multi-access edge computing for 6G networks. IEEE Internet
Things J 8(22):16231–16242

	4.	 Violos J, Pagoulatou T, Tsanakas S, Tserpes K, Varvarigou T (2021) Predict-
ing Resource Usage in Edge Computing Infrastructures with CNN and a
Hybrid Bayesian Particle Swarm Hyper-parameter Optimization Model.
https://​doi.​org/​10.​1007/​978-3-​030-​80126-7_​40.

Table 4  Experimental results for tradeoff analysis for the
proposed model

Task Allocation Strategy Average delay
(ms)

Total Energy
Consumption
(joules)

100% Local Execution 50 1200

80% Local, 20% Offloaded 35 1400

50% Local, 50% Offloaded 25 1600

20% Local, 80% Offloaded 15 1800

100% Offloaded 10 2000

https://doi.org/10.1007/978-3-030-80126-7_40

Page 23 of 23Lilhore et al. Journal of Cloud Computing (2024) 13:126 	

	5.	 Du R, Liu C, Gao Y, Hao P, Wang Z (2022) Collaborative cloud-edge-end
task offloading in NOMA-enabled mobile edge computing using deep
learning. J Grid Comput 20(2):14

	6.	 Song S, Ma S, Zhao J, Yang F, Zhai L (2022) Cost-efficient multi-service task
offloading scheduling for mobile edge computing. Applied Intelligence
7(3):1–13

	7.	 Qian Y, Xu J, Zhu S, Xu W, Fan L, Karagiannidis GK (2022) Learning to opti-
mize resource assignment for task offloading in mobile edge computing.
IEEE Commun Lett 26(6):1303–1307

	8.	 Li Z, Qian Y, Tang F, Zhao M, Zhu Y (2022) H-BILSTM: a novel bidirectional
long short term memory network based intelligent early warning
scheme in mobile edge computing (MEC). IEEE Trans Emerg Top Comput
11(1):253–64

	9.	 Zeng X, Zhang X, Yang S, Shi Z, Chi C (2021) Gait-based implicit authen-
tication using edge computing and deep learning for mobile devices.
Sensors 21(13):4592

	10.	 Liu L, Zhao M, Yu M, Jan MA, Lan D, Taherkordi A (2022) Mobility-aware
multi-hop task offloading for autonomous driving in vehicular edge
computing and networks. IEEE Trans Intell Transp Syst 24(2):2169–82

	11.	 Xu H, Wu J, Li J, Lin X (2021) Deep-reinforcement-learning-based cyber-
twin architecture for 6G IIoT: an integrated design of control, communi-
cation, and computing. IEEE Internet Things J 8(22):16337–16348

	12.	 Coffen B, Mahmud MS (2021) Tinydl: Edge computing and deep learning
based real-time hand gesture recognition using wearable sensor. In 2020
IEEE International Conference on E-health Networking, Application &
Services (HEALTHCOM). IEEE, p 1–6

	13.	 Singh S, Sulthana R, Shewale T, Chamola V, Benslimane A, Sikdar B (2021)
Machine-learning-assisted security and privacy provisioning for edge
computing: a survey. IEEE Internet Things J 9(1):236–260

	14.	 Hou W, Wen H, Song H, Lei W, Zhang W (2021) Multiagent deep reinforce-
ment learning for task offloading and resource allocation in cyber twin-
based networks. IEEE Internet Things J 8(22):16256–16268

	15.	 Guan Y, Lu R, Zheng Y, Zhang S, Shao J, Wei G (2021) Toward privacy-
preserving cybertwin-based spatiotemporal keyword query for ITS in 6G
era. IEEE Internet Things J 8(22):16243–16255

	16.	 Chen M, Hao Y (2018) Task offloading for mobile edge computing
in software-defined ultra-dense network. IEEE J Sel Areas Commun
36(3):587–597

	17.	 Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. International
Journal of Communication Systems 13(4):e5154

	18.	 Adhikari M, Munusamy A, Kumar N, Srirama SN (2021) Cybertwin-driven
resource provisioning for IoE applications at 6G-enabled edge networks.
IEEE Trans Industr Inform 18(7):4850–4858

	19.	 Zhang Y, Chen C, Liu L, Lan D, Jiang H, Wan S (2022) Aerial edge comput-
ing on orbit: a task offloading and allocation scheme. IEEE Trans Netw Sci
Eng 10(1):275–85

	20.	 Xu X, Jiang Q, Zhang P, Cao X, Khosravi MR, Alex LT, Qi L, Dou W (2022)
Game theory for distributed iov task offloading with fuzzy neural network
in edge computing. IEEE Trans Fuzzy Syst 30(11):4593–4604

	21.	 Naouri A, Wu H, Nouri NA, Dhelim S, Ning H (2021) A novel framework
for mobile-edge computing by optimizing task offloading. IEEE Internet
Things J 8(16):13065–13076

	22.	 Yang L, Zhang H, Li M, Guo J, Ji H (2018) Mobile edge computing
empowered energy-efficient Task offloading in 5G. IEEE Trans Veh Technol
67(7):6398–6409

	23.	 Sun Y, Guo X, Song J, Zhou S, Jiang Z, Liu X, Niu Z (2019) Adaptive
learning-based task offloading for vehicular edge computing systems.
IEEE Trans Veh Technol 68(4):3061–3074

	24.	 Alfakih T, Hassan MM, Gumaei A, Savaglio C, Fortino G (2020) Task
offloading and resource allocation for mobile edge computing by deep
reinforcement learning based on SARSA. IEEE Access 8:54074–54084

	25.	 Khanna A, Sah A, Choudhury T (2020) "Intelligent mobile edge comput-
ing: A deep learning based approach." In Advances in Computing and
Data Sciences: 4th International Conference, ICACDS 2020, Valletta, Malta,
April 24–25, 2020, Revised Selected Papers 4. Springer, Singapore, p
107–116

	26.	 Xue X, Shanmugam R, Palanisamy S, Khalaf OI, Selvaraj D, Abdulsahib GM
(2023) A hybrid cross layer with Harris-hawk-optimization-based efficient
routing for wireless sensor networks. Symmetry 15:438. https://​doi.​org/​
10.​3390/​sym15​020438

	27.	 Zhao Z, Zhou W, Deng D, Xia J, Fan L (2020) Intelligent mobile edge
computing with pricing in internet of things. IEEE Access 8:37727–37735

	28.	 Zhang J, Hu X, Ning Z, Ngai EC-H, Zhou L, Wei J, Cheng J, Hu B (2017)
Energy-latency trade-off for energy-aware offloading in mobile edge
computing networks. IEEE Internet Things J 5(4):2633–2645

	29.	 Khalaf OI, Abdulsahib GM, Sabbar BM (2020) Optimization of wire-
less sensor network coverage using the Bee Algorithm. J Inf Sci Eng
36(2):377–386

	30.	 Akhila SR, Alotaibi Y, Khalaf OI, Alghamdi S (2022) Authentication and
resource allocation strategies during handoff for 5G IoVs using deep
learning. Energies 15(6):2006–2018

	31.	 Trivedi NK, Anand A, Lilhore UK, Guleria K. (2022) "Deep learning applica-
tions on edge computing." In Machine Learning for Edge Computing.
CRC Press, p 143–168

	32.	 Mustafa E, Shuja J, uz Zaman SK, Jehangiri AI, Din S, Rehman F, Mustafa
S, Maqsood T, Khan AN (2022) Joint wireless power transfer and
task offloading in mobile edge computing: a survey. Clust Comput
25(4):2429–2448

	33.	 Chen Y, Zhao F, Lu Y, Chen X (2022) Dynamic task offloading for mobile
edge computing with hybrid energy supply. Tsinghua Sci Technol
28(3):421–432

	34.	 MEC (trace) dataset. Available at https://​github.​com/​hetia​nzhang/​Edge-​
DataS​et. Accessed 20 June 2023

	35.	 Hamdi AM, Hussain FK, Hussain OK (2022) Task offloading in vehicular fog
computing: state-of-the-art and open issues. Future Gener Comput Syst
133:201–12

	36.	 Lilhore UK, Imoize AL, Li CT, Simaiya S, Pani SK, Goyal N, Kumar A, Lee
CC (2022) Design and implementation of an ML and IoT-based adaptive
traffic-management system for smart cities. Sensors 22(8):2908

	37.	 Dalal S, Manoharan P, Lilhore UK, Seth B, Simaiya S, Hamdi M, Raahemifar
K (2023) Extremely boosted neural network for more accurate multi-
stage Cyber attack prediction in cloud computing environment. J Cloud
Comput 12(1):1–22

	38.	 Sufyan F, Banerjee A (2023) Computation offloading for smart devices in
fog-cloud queuing system. IETE J Res 69(3):1509–1521

	39.	 Sufyan F, Banerjee A (2020) Computation offloading for distributed
mobile edge computing network: a multiobjective approach. IEEE Access
8:149915–149930

	40.	 Sufyan F, Banerjee A (2019) Comparative analysis of network libraries for
offloading efficiency in mobile cloud environment. Int J Adv Comput Sci
Appl 10(2):574–584

	41.	 Banerjee A, Sufyan F, Nayel MS, Sagar S (2018) Centralized framework for
controlling heterogeneous appliances in a smart home environment.
In: International conference on information and computer technologies
(ICICT), Dekalb, IL, USA. pp 78–82

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3390/sym15020438
https://doi.org/10.3390/sym15020438
https://github.com/hetianzhang/Edge-DataSet
https://github.com/hetianzhang/Edge-DataSet

	Optimizing energy efficiency in MEC networks: a deep learning approach with Cybertwin-driven resource allocation
	Abstract
	Introduction
	Cybertwin in MEC
	Deep learning in MEC
	Problem statement and research motivation
	Key contributions
	Organization of the article

	Related works
	Materials and methods
	Introduction to the Cybertwin model
	Proposed Cybertwin MEC model
	Phase 1: Cybertwin-driven resource allocation model

	Phase 2: hybrid deep transfer learning model
	Local task execution strategy
	Remote task execution strategy
	Cost function estimation

	Proposed algorithm for workload offloading
	Dataset
	Data preprocessing
	Feature extraction and hyperparameter tuning

	Performance measuring parameters

	Experimental results, analysis, and discussion
	Simulation results for phase 1
	Simulation results for phase 2
	Tradeoff analysis

	Conclusion and future work
	References

