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Abstract 

Estimating pain levels is crucial for patients with serious illnesses, those recovering from brain surgery, and those 
receiving intensive care etc. An automatic pain intensity estimator is proposed in this study that gathers information 
about pain and intensity from the user’s expressions. The faces in the database are first cropped using a ‘Chehra’ face 
detector, which performs well even in wildly uncontrolled environments with a wide range of lighting and position 
fluctuations. The suggested technique extracts the beneficial and distinct patterns from facial expressions using novel 
Statistical Frei-Chen Mask (SFCM)-based features and DenseNet-based features. As it offers quick as well as accurate 
pain identification and pain intensity estimation, the Radial Basis Function Based Extreme Learning Machine (RBF-
ELM) is employed for pain recognition and pain intensity level estimation using the characteristics. All the data is kept, 
updated and protected in the cloud because availability and high-performance decision-making are so important 
for informing physicians and auxiliary IoT nodes (such as wearable sensors). In addition, cloud computing reduces 
the time complexity of the training phase of Machine Learning algorithms in situations where it is possible to build 
a complete cloud/edge architecture by allocating additional computational resources and memory in use. The 
facial expression images from the UNBC-McMaster Shoulder Pain Expression Archive and 2D face dataset are used 
to test the proposed method. The measurement of pain intensity uses four stages. When compared to the results 
from the literature, the proposed work attains enhanced performance.
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Introduction
Internet of Things (IoTs) has become extremely popular 
in recent years. IoT has therefore been used in automated 
driving, smart housing, and traffic congestion monitor-
ing. The Internet of Things (IoT) can be utilized in Arti-
ficial Intelligence (AI) with a healthcare framework. The 
healthcare sector is crucial for creating jobs, funding 
medical facilities, generating revenue, and contributing 
to a civilized society in smart cities. Clinical trials, hospi-
tals, telemedicine, outpatient clinics, medical equipment, 

health insurance, nurses, physicians, and other healthcare 
professionals are some of these industries [1]. The intro-
duction of mobile health and electronic health facilities 
in a new technological era has improved the healthcare 
sectors. Patients in critical condition and those who have 
experienced surgery require ongoing observation. The 
self-reports of the patients are used by medical profes-
sionals to estimate their pain; however, this information is 
unreliable. Several techniques for measuring pain include 
the Visual Analog Scale (VAS) and clinical interviews. 
Linear Analogue Self-Assessment is another technique 
for assessing pain (LASA). As VAS performs poorly in 
comparison to other techniques, it cannot be used as the 
primary metric for determining the level of pain sever-
ity [1]. Doctors must carefully consider the patient’s level 
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of pain while determining the best course of treatment, 
especially for those with speech disorders. The number of 
levels used to gauge the severity of the pain varies widely. 
The self-reporting method has a number of shortcom-
ings, including poor patient recall, consistency issues, 
and time-based restrictions. Moreover, the self-report-
ing method varies for each patient and is not appropri-
ate for young children. Moreover, it does not apply to 
individuals receiving post-operative treatment who have 
dementia [2]. It is necessary to distinguish between pain 
that is fake and pain that is real, which cannot be done 
using the self-reporting approach [3]. In a critically ill 
patient, an incorrect estimate of pain can have a number 
of negative effects. To evaluate pain, medical profession-
als need specialized expertise. Based on the pain scales, 
there are also variations in the patient’s capacity to report 
[4]. All of these issues can be resolved by an automated 
system, which is also incredibly dependable and strong. 
Using an automated method permits the usage of vari-
ous pain scales. A person’s facial expressions are the best 
way to assess their level of suffering, and they may be 
used in any healthcare system [5]. The characteristics are 
extracted using two different sorts of approaches. Model-
based methods and pixel-based methods are some tech-
niques among them. A model-based technique is the 
Facial Action Coding System (FACS) [6]. It is an effective 
method for assessing pain in people with shoulder pain. 
FACS can distinguish between painful and uncomfort-
able circumstances with ease. Also, the outcomes are 
consistent. This research suggests a system for recogniz-
ing pain and estimating pain intensity level from patient’s 
faces. The system calculates the intensity level of pain. In 
contrast to current methodologies, this uses unique com-
putational intelligence and feature extraction algorithms 
that are less complex, more resilient to random noise, 
and report better performance. The contributions of the 
proposed work are as follows:

• A statistical strategy utilizing Frei-Chen mask filter-
ing and DenseNet features is suggested for feature 
extraction. The methods for pattern recognition are 
novel, straightforward, and reliable.

• The suggested model is adaptable to changes in light-
ing circumstances, facial angles, gender, race, back-
drop settings, and morphological look of persons 
from various geographic places.

• Compared to other filtering methods, Frei-Chen 
masks (FCM) are more effective in detecting edges.

• DenseNet is very good at reducing some parameters, 
improving feature map propagation, and solving the 
gradient vanishing problem.

• The issue of the pain intensity detection is handled 
as a task for image classification in computer vision 

processing using both Statistical Frei-Chen Mask 
(SFCM) -based features and DenseNet-based fea-
tures.

• For quick and accurate pain identification and pain 
intensity level estimation, an Extreme Learning 
Machine and Radial Basis Function-based (ELM-
RBF) classifier is used.

• The proposed work is experimented in both Google 
Colab and distributed computing setups.

• The suggested system can track the expression of 
pain to gauge the degree of treatment in the context 
of smart healthcare.

The structure of the entire paper is as follows. The rel-
evant works are discussed in Related works section, the 
proposed work is illustrated in Proposed method for pain 
detection and pain intensity estimation section, and the 
outcomes are discussed in Results and discussion section. 
The paper is concluded in Conclusion section.

Related works
Pain recognition from facial expressions plays a cru-
cial role in various fields, including healthcare, biom-
etrics, and human-computer interaction. In recent years, 
machine learning techniques, particularly deep learning 
algorithms, have shown promising results in accurately 
detecting and quantifying pain from facial images and 
videos. This literature survey provides an overview of dif-
ferent research papers, highlighting their similarities, dis-
similarities, and contributions to pain recognition using 
machine learning. Early research in the domain of pain 
analysis employed the three machine- techniques as fol-
lows: (i) behavioral-focused on non-verbal external sig-
nifiers of pain, such as paralinguistic vocalization, body 
movements, facial expression, and the sound of moaning 
or crying; (ii) physiological-focused on bioelectric sig-
nals, such as ECG, EOG, and EEG; and (iii) multi-modal-
based on both physiological and behavioral parameters. 
Contact-oriented biosensors are utilized in physiologi-
cally based pain evaluation to gather the appropriate 
physiological data. These biosensors are quite susceptible 
to physiological or physical disturbances, which amplify 
and tamper with the original signal. To increase the SNR 
ratio, an extra, effectively constructed filter is necessary. 
Moreover, it has an issue of patient discomfort during a 
long-term recording [5].

Since they use non-contact-driven monitoring tech-
nologies like the digital camera, behaviorally based pain 
indicators are preferred. Moreover, behaviorally related 
parameters may be constantly tracked for the required 
period without the patient experiencing significant dis-
comfort. In addition, relative to various behavioral mark-
ers, facial movements are persistently linked to pain and 
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carry the majority of pain-oriented data [6]. Deep learn-
ing algorithms have lately been shown to be a crucial 
tool in the field of picture classification. The analysis of 
these results reveals that deep neural networks have just 
been used in pain recognition because they were more 
successful in feature selection and feature extraction, as 
well as in improving pre-training techniques and trans-
fer learning algorithms. In this study, both DenseNet and 
Extreme Learning Machine has been applied for pain 
identification.

Multi-modal pain assessment systems are believed 
to be more accurate. It is inconvenient for patients and 
more cost-effective than systems based on video-based 
modalities. Hence, to build an effective pain evaluation 
method, researchers are concentrating more on behavio-
ral factors. While some studies have demonstrated that 
it is more accurate to detect pain from facial gestures [7, 
8], the task of assessing pain from facial pictures is highly 
difficult owing to the wide range of facial expressions and 
head posture. Traditional machine learning techniques 
use the manual and time-consuming process of carefully 
choosing and extracting characteristics. The method of 
active appearance extracts properties from frames and 
uses a Support Vector Machine (SVM) classifier to con-
struct automatic pain evaluation strategies [9–11]. Later, 
a comparison between SVM with some additional classi-
fiers such as random forest, decision tree, and Euclidean 
distance based 2 nearest neighbors was proposed. Their 
approach involves detecting the face in a chassis, dividing 
it in the horizontal direction, and employing the respec-
tive two partitions as the two inputs. The model then 
uses the two inputs to create a distinct representation of 
the face from a Pyramid Histogram of Oriented Gradi-
ents (PHOG) and the appearance data from a Pyramid 
Local Binary Pattern (PLBP). Multimodal pain detection 
techniques are also available in literature. Some tech-
niques can also interpret pain even from images with 
facial deformations [12–15]. Long Short-Term Memory 
(LSTM) [9] is used in few existing approaches for the 
pain categorization. The Scale-Invariant Feature Trans-
form (SIFT) features and a Classification algorithm are 
combinedly used after using the Supervised Descent 
Method (SDM) to extract landmark spots from facial 
photos. The authors in [16] noticed that there might be 
a distortion in the features of the face during the discom-
fort and suggested that non-rigid and rigid deformity of 
attributes may be differentiated by employing a linear 
spline approach.

In [17] supervised techniques are used and pain sever-
ity identification is done while part of the labeled frames 
is employed to provide intensities in a supervised man-
ner. The majority of currently reported research largely 
makes use of traditional machine-learning techniques. 

Traditional techniques of machine learning involved the 
manual and time-consuming process of carefully choos-
ing and extracting characteristics. Deep learning-based 
methods are more effective in solving these challenges 
of visual categorization and pattern identification [18]. 
With this, the authors in ref [13]. extracted temporal 
characteristics using a classifier based on Recurrent 
Convolution Neural Networks (RCNN). A pre-trained 
VGG-16 network with LSTM was used by the authors 
in ref [20]. to recover both temporal and spatial proper-
ties for pain severity recognition. While Convolutional 
models have successfully been used for pain evaluation 
[19, 20], these approaches suffer from overfitting [21] and 
excessive computing costs due to enormous number of 
learnable parameters. Moreover, LSTM and RNN-based 
models were additionally been applied recently, which 
adds to the computational difficulty because weights 
must be modified over time using backpropagation [22]. 
A 3D profound convolutional network-based technique 
for determining pain severity was put out by Tavakolian 
[23]. The extremely large computational cost of using 3D 
integration is, however, the main issue [24]. Even though 
a classifier with just one descriptor might yield good 
results. The choice of a collection of appropriate descrip-
tors, however, can considerably enhance the efficiency of 
such a network. The basic concept is that by fusing latent 
representations that have been recovered, the unique 
strengths of these various descriptors may be used to 
complement one another. Deep convolution network-
based fusion techniques have been widely employed 
recently for a variety of image classification applications, 
and their effectiveness has yielded encouraging results. 
The faces are often detected from the background before 
classification [25, 26].

Moreover, the recent tools for assessing pain employ 
neural networks. For example [5], employed two shal-
low neural networks like the Spatial Appearance Network 
(SANET) and Shape Descriptor Network (SDNET) and 
numerous [6] dual models that integrated CNNs. Dif-
ferent issues develop during the storage and processing 
of big data due to time constraints and data scalability. 
The facility for parallel and distributed computing aids 
in resolving all these issues [27]. Computation offloading 
is the best way to handle massive data while managing 
the demanding computations. A system based on brain 
computer interface has been proposed by Zao et al. [28] 
to track human cognition. A multi-tier distributed com-
puting system is employed by the system. Near the end, 
desktop PCs served as the servers and mobile phones 
served as the user interfaces. The servers at the far-end 
were made up of a few computer clusters from the Tai-
wan National Centre. To cut down on time without sac-
rificing quality, Dong et  al.‘s [29] parallel processing of 
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image processing methods has been suggested. The pro-
cessing of static input of photos and handling of dynamic 
input of images are handled by two different sorts of 
frameworks. In the former, algorithms are applied to 
photographs that have already been stored; in the latter, 
images are received completely fresh. The research found 
that processing large-scale photos has good stability. The 
speed of image retrieval and classification is also good. To 
handle the complex computations required for process-
ing huge data, the overall processing time is decreased. 
Image processing on distributed platform has been pro-
posed by Liu et  al. [30]. It utilises a Hadoop cluster. It 
achieves the mining of LBP characteristics from photos, 
and the operations have been greatly sped up as a result. 
As a result, in the proposed work, the computationally 
intensive feature extraction, and machine learning meth-
ods are handled using a distributed computing strategy. 
While running the algorithms in parallel, the effective-
ness and correctness of the performance are examined.

In line with past studies, the DenseNet, SFCM, and 
Extreme Learning Machine were employed in this 
study to categorise different pain severity levels. Both 
DenseNet and SFCM have been utilised in this work to 
extract features from the sample photos. In the classifi-
cation stage, the calculated Gaussian noise is added to 
the transformed variables. This study introduced Gauss-
ian noise to the framework that was proposed because 
numerous studies have successfully used noise in similar 
models that have been proposed over a lengthy period of 
time. The majority of them concentrated on adding noise 
to neural network training as an auxiliary tool to increase 
a classification algorithm’s generalization potential and 
convergence speed.

Here, several approaches are used in literature like (i) 
statistically based feature representation and machine 
learning-based classification techniques (ii) denseNet-
based feature representation and machine learning-based 
classification techniques and (iii) extreme learning-
based approaches used to extract useful and distinguish-
ing characteristics. These strategies have been used 
separately. The outcomes of each strategy are combined 
to determine the final choice for the suggested system. 
The proposed method’s robustness is increased together 
with performance because of the performance fusion. 
The specifics and a general explanation of the suggested 
framework are provided in the section below.

Proposed method for pain detection and pain 
intensity estimation
Cloud and distributed computing setup
Cloud computing updates and services when used with 
Machine Learning (ML) algorithms have numerous chal-
lenges, one of which is efficiently storing, processing, and 

updating data. Researchers and developers still favor the 
conventional approach using the local host. The idea of 
cloud services, enables developers and researchers to 
access programs and data remotely in a platform with 
a significant amount of storage space and computation 
power. This addresses locally distributed host issues. Ben-
efits of storing and processing data in the cloud include:

• Increasing the security of code and data and defend-
ing them from hacker attacks.

• Making things accessible. In this instance, data can 
be accessed at any time and from any location.

• Providing additional computational resources, which 
could lead to reduced time complexity.

The cloud service gives programmers the ability to 
increase the privacy and flexibility of their code and, in 
some situations, lower the system’s time complexity and 
power requirements. On the other side, cloud comput-
ing can make it easier to process remote end-user data 
quickly and securely. As an example, intelligent sen-
sors gather health data from users, such as blood pres-
sure and heart rate, and then transfer that data to the 
cloud for additional processing, where machine learning 
algorithms are used. The training data can be periodi-
cally updated using the cloud-based updates to provide 
predictions and decisions that are more accurate. With 
cloud-based control, even a human specialist can be 
brought in to handle delicate scenarios like the accurate 
foretelling of a heart attack. In order to run Python code 
in Jupyter Notebook format, this work employed Google 
Colab, a free cloud service. In addition to the justification 
given above, it is another usage of the cloud. Moreover, 
taking into account its cloud capabilities, Google Cloud 
ML APIs can be used for additional processing as in 
Fig. 1(a).

The algorithms are also executed on a cluster of 
computers with the help of the MATLAB Distributed 
Computing Server. The MATLAB Parallel Computing 
Toolbox can be used to run the methods in parallel. The 
suggested system, which includes one client, one sched-
uler, and three workers, is depicted in Fig. 1(b).

Client
The client is a representation of the user who wants to 
categorize pain and non-pain indications and determine 
the level of pain from face picture data. In the suggested 
approach, the client downloads the dataset’s face image 
and handles it to the scheduler. Thus, the client must 
perform two tasks: (i) classify the symptoms of pain and 
non-pain; and (ii) determine the degree of pain. These 
need to be processed, among other things. These involve 
a number of activities, including feature extraction, 
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preprocessing and ELM-RBF that is used for dimension 
reduction and categorization. It is able to use up to 12 
workers to complete the jobs using the Parallel Comput-
ing toolbox. All jobs are password-protected, making it 
impossible for other people to access them as in Fig. 1.

Scheduler
The MATLAB Job Scheduler (MJS) aids in task coordina-
tion and execution. All of the duties are divided among 

the three workers by the scheduler. It carries out the task 
scheduling in the designated order.

Workers
The employees prepare the training and test photos by 
preprocessing and feature extraction. One worker is only 
linked to one MJS at a time. The workers use the ELM-
RBF-based classification technique to categorize pain 
and non-pain symptoms as well as the intensity level of 
the pain. The Distributed Computing server assesses the 

Fig. 1 Cloud setup and distributed computing
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tasks among the workers and informs the scheduler of 
the successes. The client system receives the classification 
results for pain detection and pain intensity level estima-
tion from the scheduler.

Proposed work
The client system includes the facial expression images. 
In order to complete the planned work, only a few frames 
obtained from the video sequences are used. For face 
detection in literature, the “Viola Jones” [25] technique 
is frequently employed. There are classifiers arranged in 
cascade. When a new sample is received, each classifier 

is dependent upon the preceding classifier. The exist-
ing literature is mostly based on Haar characteristics. In 
the proposed study, the ‘Chehra’ [26] face identification 
technique is employed, and incremental training is car-
ried out on the generic model by means of regression 
functions as fresh examples are received. When there are 
many different poses, the “Chehra” face detecting algo-
rithm performs well. Its foundation is SIFT characteris-
tics. The faces have been downsized and the background 
has been trimmed as in Fig. 2.

Figure 3 shows the overall layout of the suggested facial 
expression recognition system. It begins by analyzing the 

Fig. 2 Before and after pre-processing using ‘Chehra’

Fig. 3 Overall view of the proposed work
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photos to determine the degree of pain. Deep features 
are extracted from the various CNN layers through addi-
tional processing. They are then used to train an ELM 
classifier to identify different pain levels together with the 
proposed FC characteristics. The structure of the ELM is 
optimized using the structural risk reduction approach, 
and regularization is applied for precise prediction. The 
generalization of ELM is improved by this principle. All 
the operations are experimented on both distributed 
computing and cloud-based approach [27–30]. The sub-
sequent sections provide more explanations of these 
steps.

Using feature descriptors, the features are extracted 
from the cropped images. The suggested feature extrac-
tion algorithm uses an edge-based approach [31]. The 
features in this case are extracted using two innova-
tive feature descriptors. It is based on the edge detec-
tion method developed by Frei-Chen (FC) [32] and the 
features obtained from DenseNet. There are three main 
steps in both feature descriptors: Filtering with four-
directional FC compass masks, creating a code image 
with the maximum response, and creating a histogram 
and feature vector are all examples of filtering. Then the 
DenseNet-derived features are aggregated with SFCM 
features. The acquired feature descriptors are then used 
as input by ELM to identify pain and estimate pain 
intensity.

FC features extraction
There are total of nine convolution masks when using 
the Frei-Chen edge detector, which likewise operates 
on a 3 × 3 texel footprint as in Fig. 4. Unique masks that 
include all of the basic vectors are called Frei-Chen 

masks. This indicates that the weighted sum of the nine 
Frei-Chen masks shown below can represent a 3 × 3 
image area. Four of the Frei-Chen masks listed above 
are used to represent edges, four more to depict lines, 
and the last mask is used to represent averages. In the 
proposed SFCM-based pattern recognition, the colour, 
texture, and edge-based features are extracted from the 
facial images. The parameters in the proposed study 
can be obtained from the RGB colour space and used 
as input to the classifier to forecast the level of discom-
fort. All of the RGB colour spaces provide accurate col-
our differentiation. The SFCM operator can be used to 
extract both texture data and the RGB colour space. In 
the suggested method, each colour channel in an RGB 
image receives a distinct application of the SFCM oper-
ator. To collect different colour patterns, several col-
our channel pairs are used. Pixels for the epicentre and 
location are selected using a variety of colour channels. 
The centre pixel in a 3 × 3 rectangle in  SFCMR, G is con-
structed with pixels from R and the surrounding pixels 
from G. In this R-channel image  Rc,d is the pixel at the 
center and  Rc,d,  Rc+1,d,  Rc−1,d,  Rc−1,d+1,  Rc,d+1,  Rc+1,d+1, 
 Rc−1,d−1,  Rc,d−1,  Rc+1,d−1 are the eight nearby pixels 
in a block. In this G-channel image  Gc,d is the center 
pixel and  Gc,d,  Gc+1,d,  Gc−1,d,  Gc−1,d+1,  Gc,d+1,  Gc+1,d+1, 
 Gc−1,d−1,  Gc, d−1,  Gc+1,d−1 are the pixels present at eight 
neighboring sides in a block. In this B-channel image 
 Bc, d is the pixel at the center and  Bc, d,  Bc+1,d,Bc−1,d, 
 Bc−1,d+1,  Bc, d+1,  Bc+1,d+1,  Bc−1,d−1,  Bc, d−1,  Bc+1,d−1 are the 
pixels present at eight aneighboring sides in a block. 
 SFCMR,R,  SFCMG,G,  SFCMB,B,  SFCMR,G,  SFCMR,B and 
 SFCMG,B are the combined channel images. Here each 
3 × 3 block is formed with the subsequent equations.

(1)

SFCMR,R (p, q, θ) = < center pixel(Rc,d) , neighbours (Rc+i,d+j) >

SFCMG,G (p, q, θ) = < center pixel (Gc,d) , neighbours (Gc+i,d+j) >

SFCMB,B (p, q, θ) =< center pixel (Bc,d) , neighbours (Bc+i,d+j) >

SFCMR,G (p, q, θ) = < center pixel (Rc,d) , neighbours (Gc+i,d+j) >

SFCMR,B (p, q, θ) = < center pixel (Rc,d) , neighbours (Bc+i,d+j) >

SFCMR,B (p, q, θ) = < center pixel (Rc,d) , neighbours (Bc+i,d+j) >

Fig. 4 Frei-Chen mask
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Where for a 3 × 3 block 1 ≥ p ≤ 4 and 1 ≥ q ≤ T, T is the 
total number of blocks in each image.

The edge magnitude is calculated using the highest 
value that was discovered following the convolution 
of the mask and the image. The direction of the edge 
is determined by the mask that generates the larg-
est magnitude. The feature vector is created using the 
various channel combinations of the pictures  SFCMR,R, 
 SFCMG,G,  SFCMB,B,  SFCMR,G,  SFCMR,B and  SFCMG,B. 
The feature extraction process for each channel image 
consists of the following three steps: compass mask 
image filtering, code image production based on the 
maximum response, and feature vector construction. 
The pre-processed photos are taken into account, and 
then FCM masks are coupled with them to analyse the 
pattern using the suggested SFCM. The picture is pro-
jected onto the required four FCM masks to obtain 
SFCM features for edge detection, as shown in Fig. 5.

Comparatively to the structural and transformed-
based methodologies, the statistical analysis of the tex-
ture pattern is more practical and convenient. This 
method of analysis assesses additional data from the 
pixel intensity values. The collection and presentation 
of appearance-based features from an image is help-
ful. Both regular and irregular patterns could be seen 
in image. Therefore, statistically based methodologies 
are better suited to analyse both regular and irregular 
patterns.

Both global and local to global feature representation 
techniques have been taken into consideration here dur-
ing feature computation. The proposed method uses the 
first four masks on the different channels R, G and B 
to obtain the four responses (RF) from which the Code 
Image (CI) is obtained using Eq. (3).

The code image CI obtained from R channel is divided 
horizontally and then vertically to form four equal halves 
(horizontally and then vertically) CI1, CI2, CI3andCI4 . The 
final feature vector is created by concatenating the nor-
malised histograms obtained for each of the N grids of 
equal size gi, 1 ≤ i ≤ N from that divided code image 

(2)
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i = 1, j = 1 where θ = 45◦

i = 1, j = −1 where θ = 315◦

i = −1, j = −1 where θ = 225◦

i = −1, j = 1 where θ = 135◦

i = 0, j = −1 where θ = 270◦

i = 0, j = 1 where θ = 90◦

i = 1, j = 0 where θ = 360◦

i = −1, j = 0 where θ = 180◦

(3)CI x, y = max RFθ1 x, y |0 ≤ i ≤ 4

CI1, CI2, CI3andCI4 . The Local-Global Feature vector 
from Red Channel ( FVRLG

 ) is created by aggregation of 
features obtained from four vertical halves of CI as in 
Fig.  5. This indicates the features obtained both locally 
and globally.

The combined histograms of each subregion code 
image serve as the final feature vectors as in Eq. (4). 
FVRLG is created from CI of R channel after creating 
grids on the four equal halves of the code image and 
aggregation of histograms H1,H2 . . . . . . .HN.

where N is how many smaller grids there are overall in 
the code image. The information of the smaller to larger 
edges and corners of the face can be extracted using this 
feature vector creation technique. Similarly, feature vec-
tor is collected for the remaining channels also as FVGLG 
and FVBLG.

Feature extraction using DenseNet and final feature vector 
creation
High, medium, and low-level features of an instructor’s 
face can be extracted using dense deep learning mod-
els’ layered architecture, which learns features at various 
layers (hierarchical representations of layered features). 
Sequential networks and directed acyclic graphs (DAG) 
are two different forms of networks that are examined 
[33]. Layers in a serial network are arranged consecu-
tively, similar to AlexNet, which has 8 levels and accepts 
227 × 227 2-dimensional input.

A DAG network, on the other hand, contains layers 
that take the shape of directed acyclic graphs, process-
ing numerous layers concurrently to produce effective 
results. Examples of DAG models include GoogleNet, 
DenseNet201, ResNet50, ResNet18, ResNet101, and 
Inceptionv3 [34–38], each of which has a depth of 22, 
201, 50, 18, 101, and 44 layers, respectively. Features are 
retrieved from the convolution, pooling, and regularisa-
tion layers rather than simply the top layer. It is empiri-
cally assessed how well different deep network layers 
performed. Features are retrieved from DenseNet201 
using the conv4_block9_1_bn layer.

Features are taken from drop7, pool5 drop 7 × 7 s1, 
activation 94 relu, and avg pool, respectively, for AlexNet, 
GoogleNet, Inceptionv3, and ResNet50. We choose pool5 
for ResNet101 and ResNet18. The goal of the DenseNet 
architecture was to maximise information flow between 
network layers. Each layer receives the feature maps cre-
ated by all earlier levels, which are subsequently trans-
ferred into later layers. All layers are physically related 
to one another [39]. In contrast to ResNets, features are 

(4)
Feature Vector(FVRLG ) =< H1,H2 . . . . . . .HN >



Page 9 of 17Alphonse et al. Journal of Cloud Computing          (2024) 13:142  

concatenated here rather than summarised before being 
passed into a layer. As a result, the inputs for the  lth layer 
are the feature maps from all of the convolutional blocks 
before it.

All L − 1 layers receive its unique feature maps. In 
contrast to conventional topologies, which have L con-
nections, an L-layer network has L(L + 1)/2 direct con-
nections. The l th layer receives the feature maps  xl of all 
layers that came before it, in the format: x0, . . . , xl−1 . 
x0 = HL([x0, . . . , xl−1]) , where x0, x1. . . , xl−1 are the 
feature maps concatenated in the 0,., l − 1th layers. Hl 
(.) is a composite function made up of three operations: 

a 3 × 3 convolution, a Rectified Linear Unit (ReLU), and 
batch normalisation (BN) [40, 41].

The size of the feature maps is cut in half in pooling 
layers that follow layers in conventional deep CNNs. The 
change in feature maps would, therefore, cause the con-
catenation operation employed in Eq. (1) to be incorrect. 
Convolutional networks, though, must have downsam-
pling layers. Transition layers are introduced and numer-
ous densely connected dense blocks are created using 
DenseNets to make consistent downsampling possible 
[38]. Convolution and pooling layers, which are present 
between dense blocks, make up the transition layers. The 
feature maps are contained in layer conv4_block9_1_bn, 
which is related to convolution layer conv4_block9_1_ 

Fig. 5  Statistical Frei-Chen Mask (SFCM)-based features
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conv[0][0]. Due to the extensive connection, DenseNet 
requires fewer parameters than conventional convolu-
tional networks because redundant feature mappings do 
not need to be re-learned.

In conventional deep CNNs, a pooling layer that cuts 
the size of the feature maps in half comes after each layer. 
Convolutional networks must, however, have down-
sampling layers. The network is divided into numerous 
densely connected dense blocks using DenseNets, and 
transition layers are used to enable consistent down-
sampling [39]. Between thick blocks, transition layers 
made up of convolution and pooling layers are shown. 
DenseNet needs fewer parameters because of this dense 
connectedness because there is no need to memorise it. 
There are 3 dense blocks and next to next transition lay-
ers. The concatenated feature maps are indicated by the 
solid lines in the Fig.  6. The interconnection between 
the different layers is represented by the dashed lines. 
A set of features are finally given as the output from the 
DenseNet. DenseNet has more diversified characteris-
tics and generally has richer patterns because each layer 
receives input from all preceding levels. In DenseNet, 
the classifier employs features of all levels of complexity. 
It frequently provides more consistent decision bounda-
ries. It also explains why DenseNet performs well in 
the absence of enough training data. The network can 
be made smaller and thinner with fewer channels since 
each layer receives feature maps from all layers that came 
before it. The growth rate k is the additional number of 
channels for each layer. As a result, its processing and 
memory efficiency are higher. The concept of concatena-
tion during forward propagation is depicted in the fol-
lowing Fig. 6.

The Final Features (FF) are created by aggregation of 
SFCM features and the output features of DenseNet (DR) 
as in Eq. (5).

Subsequently, for the purpose of sensing pain or 
assessing its intensity level, the SFCM features and the 

(5)FF =< FVRLG, FVGLG, FVBLG,DR >

reduced-dimension features from the light CNN are 
combined. For the classification of testing data, the RBF-
ELM classifier usages the intermediate training data 
results that have been stored. The personnel are divided 
among the several computations. Figure  2 depicts the 
general steps in the proposed model. The proposed 
SFCM-based features are more reliable and straightfor-
ward. Using a face detector, the images of the faces are 
first separated from the backdrop. SFCM-based features 
use the pixel intensity data from the maximum response 
after finding the maximum response from four FC masks 
on the images. While detecting pain and calculating four 
pain intensity levels, ELM-RBF ensures a quick execu-
tion. The next section discusses the classification.

Classification using RBF‑ELM
ELM provides good classification performance in Single 
Hidden Layer Feed Forward Neural Networks (SLFNs) 
at a low computational cost as in Fig. 7. Using ELM, the 
samples are divided into two or numerous categories [39, 
40]. Random numbers are used to determine the weights 
between the input and the buried layer. They learn far 
faster than back-propagation networks and are good gen-
eralizers. In the ELM model.

where W1 is the weight matrix between the input and 
hidden layer, W2 is the weight matrix between the hid-
den layer and the output layer, and σ is the activation 
function. The resultant vector, h (x), is thus equal to h 
(x)= [h1(x)h2(x) . . . .hn(x)] , where n indicates the total 
number of neurons present in the hidden layer. The h(x) 
maps the input “x” onto the ELM feature space. As seen 
in Fig. 7, the ultimate product is represented as Oi.

Addition of Gaussian noise
During the training of the suggested SFCM-DenseNet-
ELM framework, the Gaussian noise computed from 
PCA was introduced to the dense layer outputs. Accord-
ing to several research, adding noise to neural network 

(6)Y = W2σ (W1X)

Fig. 6 Architecture of DenseNet
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training can speed up convergence and increase gener-
alisation capacity. According to earlier research, adding 
random noise with a Gaussian distribution to new input 
patterns boosted generalisation power as long as the 
noise was kept at a level that had no negative effects on 
the desired output. As a result, the quantity of Gaussian 
noise added to the PCA components is calculated using 
Python’s Numpy.STD library and then added to the dense 

layer outputs. The Standard Deviation is calculated via 
Numpy.STD. The computed quantity and the STD of the 
Python Keras library were added to the dense layer out-
puts. The Standard Deviation (SD) of the supplied data 
is calculated using Numpy.STD. The data distribution in 
the given data set is used to calculate SD.

(7)
Here, Standard Deviation =

√

Mean(abs(x − x.mean())2

Algorithm 1 SFCM-DenseNet-ELM algorithm

Algorithm  1 summarises the specifics of the pro-
posed SFCM-DenseNet-ELM model. 48 batches were 
used to test and train the proposed algorithm over five 
epochs. The ELM classifies the features into different 

pain intensity levels. With the help of the cloud service, 
programmers can increase the security and adaptabil-
ity of their code and, in some cases, reduce the system’s 
time and energy requirements. Cloud computing makes 

Fig. 7 General extreme learning machine architecture
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it possible to process dispersed end-user data quickly 
and securely. To produce more accurate predictions 
and judgements, a routine updating of the training data 
utilising cloud-based updates is done. A cloud-based 
control can also be used to call in a human expert to 
handle delicate situations, such as accurately predicting 
a heart attack.

Results and discussion
The client and MJS are both installed on a local host that 
has Windows 7, 8GB of RAM, MATLAB R2014a, an 
Intel core (TM) i5-4460 CPU running at 3.20 GHz, and a 
64-bit operating system. Three systems with similar set-
ups are utilised to set up the workforce. The distributed 
computing/private cloud setup of one MJS and 3 workers 
is used to run all of the experiments. To verify the time 
efficiency attained utilising MATLAB distributed com-
puting, the experiments are also conducted using just one 
system. To implement the configuration, the MATLAB 
Parallel Computing toolbox is used. For executing the 
code in python Google Colab is used in the experiments.

Dataset
Sixty-six females and 63 males having shoulder pain were 
included in the tests using the UNBC-McMaster Shoul-
der Pain expression archive dataset [41]. It contains a 
big dataset of images. The movies are captured in both 
active and passive modes. In the active mode, the patient 
moves his or her own arm, while in the passive mode, a 
therapist moves the patient’s arm. For the investigation, 
25 participants, 200 sequences, and 48,398 photos were 
employed. The video has a resolution of 320 by 240 pix-
els, with a 140 × 200-pixel face span. The PSPI (Prkachin 

and Solomon Pain Intensity) values provided with the 
dataset are taken into account for determining the pain 
intensity level. 16 different pain levels exist in the dataset 
[42–47]. The 2D Face Set Database with Pain-expression 
Set [46] is the second database that is being used. 599 
photos from 10 men and 13 women subjects make up 
this database. This database typically has a 2-class issue. 
There are 298 photos with the expression “No-pain” and 
298 with the expression “Pain”.

In Fig. 8, some sample images from the dataset are pre-
sented. The count of photos that are available for each 
degree of pain severity is shown in Table  1. In order to 
conduct the pain detection studies, the pain detection 
issue is viewed as a binary classification issue. The 2 
classes taken into account for the trials are no pain (PSPI 
value = 0), and discomfort (PSPI value 1). Images with an 
intensity level of 0 are classed as having no pain, whereas 
images with a level of 0 are labelled as having pain for 
pain detection. The collection contains 8369 photos of 
pain and 40,029 images of no discomfort. 1/5 of the avail-
able photographs in the pain category are involved in 
the experiment to balance the quantity of images in each 
class. Also, the trials are carried out using the 10-fold 
cross-validation technique. The average of the perfor-
mance measurements is taken into consideration after all 
experiments are repeated ten times. Thus, only four lev-
els are used in the experiments using the suggested work 
concerning pain intensity level detection. Level 3 is the 

Fig. 8 Sample images

Table 1 Distribution of the samples in the UNBC dataset

Level 0 Level 1 Level 2 Level 3

Number of frames 12503 1263 1239 1652
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fourth level, which includes all images with pain intensity 
levels greater than 3. The features are delivered to ELM 
after being extracted utilising the suggested patterns and 
features of DenseNet. There are two phases to the tests. 
The first stage involves pain detection. There are two lev-
els of pain detection (no pain, pain). The four levels of 
pain severity are estimated in the second phase. The data 
distribution is taken as described by Hammal and Cohn 
[42]. Level 0 indicates no pain, level 1 indicates traces of 
pain, level 2 indicates weak pain and level 3 indicates a 
stronger level of pain.

The confusion matrices for the proposed technique 
that were used to detect pain are shown in Tables 2 and 
3. Little expression changes can often lead to confusion 
between the categories of no discomfort and pain.

The results of the suggested feature descriptors and 
those already found in the literature are compared in 
Table 4 for classification accuracy. The resilience and bet-
ter illustration of structural data of the suggested feature 
descriptors make them superior to others, as shown in 
the table. The existing feature descriptors Local Binary 
Pattern, Pyramid Histogram of Oriented Gradients, and 
Gabor [35, 47] are affected by noise and lighting arte-
facts in comparison to the proposed patterns. Table  4 
shows an analysis of the suggested feature descriptors’ 

performance with various image sizes and shows that 
higher resolution can lead to greater accuracy.

Four classes are taken into account for pain intensity level 
estimation (PSPI = 0, 1, 2, and 3). In order to prevent find-
ings from being skewed, intensity level 0 has 500 images 
per subject, whereas the other categories have the same 
image distribution as the dataset. The size of the images 
is 162 × 122. The experiments make advantage of 10-fold 
cross-validation. There are ten iterations of the experi-
ments. The outcome is then determined by averaging the 
performance metrics. Consideration is given to different 
performance criteria as in Fig. 9. P is the quantity of sam-
ples from a given class. N  is the number of samples that did 
not belong to that specific class.

(8)T = P + N

(9)Tpr =
tp

P

(10)Tnr =
tn

N

(11)Classification_accuracy(Acc) =
tp + tn

T

(12)Sensitivity(Sens) = tpr

(13)Specificity(Speci) = tnr

(14)Precision =
tp

tp + fp

Table 2 Confusion matrix for 2 class pain detection on UNBC

Pain No Pain

Pain 97.0 1.5

No Pain 0 99.0

Table 3 Confusion matrix for 2 class pain detection on 2D face 
dataset

Pain No Pain

Pain 97.0 3.0

No Pain 6.0 94.0

Table 4 Performance comparison of proposed features with 
other descriptors while detecting pain/no-pain on UNBC

Local Binary Pattern 86.5

Local Directional Pattern 87.5

GABOR 91.1

Pyramid Histogram of Oriented Gradients 87.5

Local Directional Texture Pattern 85.5

Local Directional Number Pattern 91.0

SFCM 98.0

Fig. 9 Performance metrics for the proposed approach for 4 pain 
intensity level estimation on UNBC
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(15)Recall = Sensitivity

(16)

F_measure(F −meas) = 2 ∗
Precision ∗ Recall

Precision + Recall

where fp stands for false positive and tp for true posi-
tive. The estimated performance metrics are shown as a 
graph in Fig. 9. The confusion matrices in Table 4 dem-
onstrate that the images categorised as belonging to pain 
intensity levels 2 and ≥ 3 are more accurately classified 
than the images classified as belonging to levels 0 and 1. 
Table 5 represents the confusion matrix attained for four 
pain intensity levels.

A Gaussian white noise with constant mean and vari-
ance is aggregated to the facial images, and all the trials 
were iterated, to ensure the robustness of the suggested 
patterns to noise. However even with the addition of 
noise, both of the unique patterns that are proposed 
still produce good outcomes. This is due to the SFCM’s 
effective structural encoding capability and the convolv-
ing stages, which eliminates all noisy edges. Because of 
its use of direction numbers for encoding, SFCM-based 
features are also effective for noisy images. The outcomes 
are shown in Fig. 10.

The efficacy of the suggested technique with proposed 
feature descriptors [39–42] has been shown in Table 6.

To demonstrate that our model is computationally 
more effective than other deep learning models, we ran 
an experiment. The comparison between Densenet-201 
and other models is shown in Table  7 in terms of the 
number of parameters, precision, size, and time com-
plexity. Results reveal that Densenet-201 has the highest 
accuracy of 98.6% with the fewest parameters. A good 
accuracy rate was also attained by the DenseNet201.

(17)Gmean = sqrt(tpr ∗ tnr)Table 5 Obtained confusion matrix for pain intensity level 
estimation on UNBC

Level 0 Level 1 Level 2 Level ≥ 3

Level 0 97.0 1.5 1.0 1.5

Level 1 0 99.0 0.5 0.5

Level 2 0 0 99.2 0.8

Level ≥ 3 0 0 0.9 99.1

Fig. 10 Classification accuracy obtained for different pain intensity 
levels using different descriptors replaced for SFCM-based features 
on UNBC

Table 6 Comparison with the state-of-the art approaches

ICC Intra-class Correlation Coefficient, RCNN Region-based Convolutional Neural Network, SVM Support Vector Machine, PCC Pearson Correlation Coefficient, MAE 
Mean Absolute Error, AUC  Area Under Curve, MSE Mean square Error, PCC Pearson Correlation Coefficient, SVR Support Vector Regression

Methods Technique Total number of 
classes

Metric Value

Rathee and Ganotra [47] Multiview-based Distance learning 4 Accuracy 75.00

P.Rodriguez et al. [48] Long Short-Term Memory Networks 2 Accuracy 83.00

Zhou et al. [49] Real-time regression and RCNN 16 MSE
PCC

1.54
0.65

Semwal and Londhe [50] Multi-view fusion 4 Accuracy 94.00

Zhao et al. [51] LBP, Gabor ICC
MAE
PCC

0.56
0.82
0.61

Florea et al. [52] Merged SVR 16 AUC 80.59

Vaish and Sagar [53] Kaze Features 4 Accuracy 91.87

Hammal and Cohn [42] SVM Accuracy 83.0

Bargshady et al. [4] EJH-CNN-BiLSTM 4 Accuracy 85.0

Proposed approach (UNBC) SFCM-DenseNet-ELM 4 Accuracy 98.58

Proposed approach (2D face) SFCM-DenseNet-ELM 2 Accuracy 95.52
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In comparison to other edge detectors, the SFCM-
based approach has superior accuracy, lower overhead, 
the ability to detect corners alongside edges, and is less 
susceptible to noise. Like the Sobel filter, the SFCM 
algorithm operates on a 3*3-pixel portion of a pic-
ture, but instead of using two masks, it employs four. 
The four unique masks of this filter can be mentioned 
as essential attributes. A suitable mask is chosen and 
applied to the image for edge detection. The limitations 
of the proposed work are that it had not been applied 
on multi-channel images and tested and the fact that 
DenseNet consumes larger execution time. The pro-
posed work will be applied on multi-channels in the 
future works.

Each image’s total processing time for determining 
the level of pain is calculated. Table 8 shows the overall 
amount of time spent testing with a single local host. 
Table 8 also illustrates how employing distributed com-
puting for the computations reduces the amount of time 
needed. Thus, time efficacy which is crucial in a health 
care system is increased by job parallelization. The algo-
rithm’s time complexity was greatly reduced by assum-
ing Cloud storage and Google Cloud, and, on average, 
just 40% of the ideal amount of time was needed to per-
form the techniques. It means that applying the idea of 
the Cloud enables programmers to design algorithms 
more effectively, in addition to the fact that the develop-
ment of approaches is valuable for researchers and medi-
cal professionals. As a future enhancement, intelligent 
sensors can also be used to collect user-provided health 

information, such as blood pressure and heart rate, and 
then send that information to the cloud for further pro-
cessing using machine learning algorithms.

Conclusion
Remote patient monitoring is handled by an intelligent 
healthcare system. Smart devices that work with under-
the-skin sensors implanted in diabetic patients continu-
ously check their glucose levels. Similar to this, a smart 
imaging gadget can track several emotions to determine 
the dose amount, including anxiety, depression, and 
drug addiction. The facial region is used in this paper in 
order to predict the sentimental pain intensity level. In 
this work it is suggested to use a unique pattern based 
on Frei-Chen masks. When compared to the current pat-
terns, they are more resilient and compact. The suggested 
work achieves high classification accuracy for a both pain 
recognition and pain intensity level estimation. The arti-
ficial intelligence technique created in this study may be 
beneficial for the development of automatic pain manage-
ment techniques for use by physicians and other medical 
researchers, as well as other fields of medical diagnosis. 
The suggested model outperformed previous approaches 
for face photos with distinct orientations, accurately clas-
sifying pain intensity levels from frontal face images. 
Future works will utilise the suggested material on sev-
eral channels. In the upcoming project, a model will be 
created that can perform better when evaluating covered 
faces with occlusions and cross-corpora data. Addition-
ally, it is intended to develop a unique dataset to test the 
effectiveness of our upcoming technique in real-time.
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Table 7 Comparison of existing CNN models on UNBC

Existing CNN models MAE Accuracy Model size Parameters

NasNet-mobile [54] 96.5% 20 MB 5.30 M

Inception-v3 [54] 94.5% 89 MB 23.9 M

Inception ResNetV2 [54] 96.9% 209 MB 55.9 M

Attention CNN [55] 51.1% 229 MB 59.9 M

Hybrid Neural Network 
[56]

0.73 - 292 MB 69.2 M

Parallel CNN [57] 95.1% 152 MB 54.3 M

Densenet-201 98.6% 77 MB 20.0 M

Table 8 Comparison of time (seconds) with different setups for 
processing a image

Image size With distributed 
computing

Local host Google colab

42 × 62 0.20 0.51 0.23

102 × 102 0.32 0.62 0.36

162 × 122 0.42 0.81 0.46

242 × 242 0.55 1.00 0.62
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