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Abstract 

Cloud computing has become popular among individuals and enterprises due to its convenience, scalability, and flex-
ibility. However, a major concern for many cloud service users is the rising cost of cloud resources. Since cloud com-
puting uses a pay-per-use model, costs can add up quickly, and unexpected expenses can arise from a lack of visibility 
and control. The cost structure gets even more complicated when working with multi-cloud or hybrid environments. 
Businesses may spend much of their IT budget on cloud computing, and any savings can improve their competitive-
ness and financial stability. Hence, an efficient cloud cost management is crucial. To overcome this difficulty, new 
approaches and tools are being developed to provide greater oversight and command over cloud a graph-based 
approach for modelling cost elements and cloud resources and a potential way to solve the resulting constraint 
problem of cost optimisation. In this context, we primarily consider utilisation, cost, performance, and availability. The 
proposed approach is evaluated on three different user scenarios, and results indicate that it could be effective in cost 
modelling, cost optimisation, and scalability. This approach will eventually help organisations make informed deci-
sions about cloud resource placement and manage the costs of software applications and data workflows deployed 
in single, hybrid, or multi-cloud environments.

Keywords Cloud computing, Cost optimisation, Cost modelling, Graph theory, Resource placement

Introduction
Cloud computing has seen an unprecedented surge in 
recent years, becoming integral to many organisations’ IT 
strategies. As predicted by Gartner, by 2025, a staggering 
85% of enterprises are expected to have adopted a cloud-
first approach [46]. The benefits of cloud computing, such 
as scalability and flexibility, are widely recognized. How-
ever, the complexity of managing costs associated with 
cloud computing continues to pose a significant chal-
lenge. Cost optimisation becomes critical as more and 

more enterprises move their computing workloads to the 
cloud. The swift accumulation of cloud resource expenses 
demands proactive management to avert unforeseen and 
potentially costly fees. Navigating hybrid or multi-cloud 
environments adds to this complexity [43]. A thorough 
understanding of resource utilisation and carefully balanc-
ing cost, performance, and availability are prerequisites 
for effective cloud cost management. Accurately pro-
jecting future needs and modifying resource allocation 
appropriately are essential to preventing over- or under-
provisioning problems. Successful cost optimisation can 
improve overall business performance and free up finan-
cial resources for other projects despite its difficulties. 
Significant funding has been allocated to research and 
development in cloud cost optimisation due to the cloud 
computing industry’s exponential growth [13]. Despite 
these initiatives, there is still a critical need for workable 
and efficient solutions that help businesses better control 
the expenses associated with cloud computing.

*Correspondence:
Akif Quddus Khan
akif.q.khan@ntnu.no
1 Norwegian University of Science and Technology, Gjøvik, Norway
2 KTH Royal Institute of Technology, Stockholm, Sweden
3 University of Klagenfurt, Klagenfurt, Austria
4 Robert Bosch LLC, Sunnyvale, CA, USA
5 SINTEF AS, Oslo, Norway
6 OsloMet – Oslo Metropolitan University, Oslo, Norway

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00709-6&domain=pdf


Page 2 of 31Khan et al. Journal of Cloud Computing          (2024) 13:147 

In response to this need, this article proposes an approach 
for modelling cost elements and cloud resources in the form 
of a graph. It further explores potential strategies for solv-
ing the resulting constraint problem of cost optimisation. 
This approach considers various factors, including utilisa-
tion, cost, performance, and availability. The significance of 
this approach is underscored by its potential to aid organi-
sations in making informed decisions about cloud resource 
allocation. Moreover, it offers a practical solution for effec-
tively managing cloud computing costs across a broad spec-
trum of software applications and data workflows [39, 47], 
whether in single, hybrid, or multi-cloud environments. 
This article, therefore, represents a step forward in the field 
of cloud cost optimisation, moving from a theoretical pro-
posal to practical implementation. The work presented in 
this article is an extension of our preliminary work on pro-
posing a graph-based solution for cloud resource placement 
and cost optimisation [25]. More specifically, it significantly 
extends our earlier work by providing:

• an implementation of the proposed graph-based 
approach using Google pricing API1;

• an evaluation of the proposed approach on different 
deployment scenarios of big data pipelines;

• a review of scientific literature related to cost optimi-
sation using cloud resource placement; and,

• a review of the scientific literature related to graph 
theory being used for the optimisation problem.

The rest of the article is organized as follows. “Back-
ground”  section provides the background including vari-
ous cloud computing cost elements and related terms, 
while “Related work” section presents the related scientific 
literature. “Cost optimisation paths”  section discusses a 
set of paths for cloud cost optimisation in general, while 
“Graph-based cloud cost modelling and optimisation” sec-
tion presents the proposed graph-based cloud cost mod-
elling and optimisation approach. “Case study”  section 
discusses a detailed case study for a big data infrastructure 
on which evaluations are performed, and “Evaluation” sec-
tion describes implementation details and evaluations. 
Finally, “Discussion & conclusions” section provides a dis-
cussion and concludes the article.

Background
The section overviews three fundamental areas under-
pinning our cloud cost optimisation solution. The first 
subsection discusses different elements of cloud cost 
structure, highlighting the complexity of cost structure 
in cloud environments and its challenges. The second 

subsection discusses big data pipelines and various ele-
ments such as data ingestion, data warehouses, and data 
marts. The final subsection discusses graph theory and 
related algorithms. The aim is to help understand the 
context and theoretical underpinnings of the proposed 
graph-based cloud cost optimisation approach.

Cloud computing cost
Cloud computing is a model for delivering on-demand 
computing resources over the Internet. This article con-
siders three high-level cost categories: compute, data 
transfer, and storage. Compute cost includes the cost of 
virtual machines, containers, serverless functions, etc. 
Data transfer cost includes transferring data within the 
cloud service providers’ (CSP) network and to/from an 
external network. We consider four categories of cloud 
storage costs: data storage, network usage, transac-
tion, and data replication [27]. Data storage is the cost 
of storing data in the cloud, which is charged on a GB-
per-month basis. Different storage tiers have different 
pricing, and some CSPs offer block-rate pricing, where 
the larger the amount of data, the lower the unit costs. 
Transaction costs are associated with managing, moni-
toring, and controlling a transaction when reading or 
writing data to cloud storage. Cloud storage providers 
charge for the amount of data transferred over the net-
work and the number of operations it takes. Network 
usage cost is based on the amount of data transferred 
over the network. Data replication cost refers to the cost 
of replicating data from on-premises storage to the cloud 
or from one instance to another. By default, three copies 
are generally stored for each chunk of uploaded data to 
achieve high data reliability and better disaster recovery 
[30]. In addition, there are several optional costs, includ-
ing data management, data backup, and data security. 
Users can optimise mandatory cost elements, but they 
cannot avoid them.

In short, understanding the cost structure of cloud 
computing can be a difficult and intricate task due to the 
complex pricing models offered by various CSPs. Com-
paring costs and selecting the most suitable option for 
a particular application can be challenging. Researchers 
have attempted to simplify it to make it easier for users to 
comprehend the complexity of the cloud cost structure, 
e.g., Fig.  1 shows a taxonomy of cloud computing cost 
elements and how they are inter-related and overlapping 
at the same time, see also [35]. Martens et  al. [36] have 
observed that many cloud cost evaluations lack a sys-
tematic approach to cost estimation, which is necessary 
to understand the varying pricing models of cloud ser-
vices. When selecting a CSP, the cost is not the only fac-
tor to consider. Other quality of service (QoS) elements 
exist, such as network performance, data availability, 1 https://cloud.google.com/billing/docs/how-to/get-pricing-information-api
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consistency, security, etc. This gives rise to inevitable 
trade-offs such as storage-computation, storage-cache, 
storage-network, availability-reliability, and cost-per-
formance [30, 35], which means balancing different fac-
tors to make decisions about resource allocation and use. 
These must be considered when deploying applications 
and infrastructure to the cloud. A viable solution should 
be to find the optimal resource placement strategy for 
performance by quantifying the QoS elements.

Big data pipelines
Nowadays, data has become a valuable asset. It is often 
compared to oil due to its potential to drive growth and 
innovation. Data could be bought and sold on data mar-
kets, i.e., platforms where data providers and data con-
sumers come together [8, 9, 44]. These markets enable 
harnessing vast data types in large volumes, enhancing 
the value of the end products or services. The term “big 
data” is widely used but lacks a formal definition. How-
ever, it is commonly characterized by several “Vs”: vol-
ume, velocity, and variety [3]. Volume refers to the sheer 
amount of data generated every second from various 
sources like social media, business transactions, sen-
sors, and more. Velocity pertains to the speed at which 
this data is generated and processed. In many cases, to 
be helpful, the data must be analyzed in near real-time. 
Variety denotes the different types of data, including 
structured data (like databases), unstructured data (like 
text), and semi-structured data (like XML files). Big data 

pipelines are designed to handle these three features. 
They are a series of data processing steps where the out-
put of one step is the input of the next. These pipelines 
are crucial for transforming raw data into insights and 
can include data collection, cleaning, integration, analy-
sis, and visualisation steps. The design of these pipelines 
can vary greatly depending on the specific requirements 
of the big data application. For instance, a pipeline for 
real-time data analytics might prioritize velocity, while a 
pipeline for a machine learning model might focus more 
on volume and variety.

Data ingestion
Data ingestion is the first phase of a big data analytics 
solution. Data ingestion (acquisition) moves data from 
multiple sources, such as databases, IoT devices, web-
sites, streaming services, etc., to a target system to be 
transformed for further processing. Data comes in vari-
ous forms and can be structured or unstructured [6]. The 
process of assembling data from multiple heterogeneous 
sources into a data repository (data lake or data ware-
house) is called data ingestion. This process is essential 
in fields that rely on highly distributed data that needs to 
be appropriately stored in a data repository, such as arti-
ficial intelligence, machine learning, data science, data 
analytics, and knowledge discovery in databases. Despite 
its significance, data ingestion is sometimes viewed as 
a preliminary phase in data analysis and is therefore 
given less weight. On the other hand, it entails highly 

Fig. 1 Cloud computing cost taxonomy [30]
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significant access and integration functions with widely 
distributed data components acquired from various 
operating systems, applications, and hardware. Bringing 
disparate data into a single data repository is the aim of 
data ingestion [21].

Date warehouse
A data warehouse (DW) is a central repository for aggre-
gating data from various sources into a unified, consistent 
format. From a technical standpoint, a data warehouse is 
akin to a relational database optimised for reading, aggre-
gating, and querying large volumes of data. Traditionally, 
DWs primarily contained structured data-information 
neatly arranged in tables. However, modern data ware-
houses have also evolved to accommodate unstructured 
data, including images, PDF files, and audio formats [11]. 
Data warehouses collect and transform data from various 
sources, such as transactional databases, spreadsheets, 
logs, and external APIs. These data sets undergo transfor-
mation, cleansing, and integration, often using Extract, 
Transform, and Load (ETL) techniques to create a cohe-
sive whole. Data warehouses are optimised for analytics, 
enabling complex analytical queries, aggregations, and 
reporting, making them invaluable for business intel-
ligence and decision-making. Modern data warehouses 
can accommodate structured and unstructured data, 
allowing organisations to extract insights from various 
data types. They typically follow a three-tier architecture, 
with the bottom tier housing the data warehouse server, 
the middle tier containing an online analytical processing 
server for fast query speeds, and the top tier providing a 
user interface or reporting tool for ad-hoc data analysis. 
Cloud-based data warehouses have gained prominence, 
offering scalability, elasticity, and cost-effectiveness. The 
benefits of data warehouses include centralized data, 
improved decision-making, performance optimisation, 
and data consistency, making them an essential tool for 
organisations [21].

Data marts
With a typical size of less than 100GB, a data mart is a 
smaller version of a data warehouse. They become essen-
tial when a company’s size and volume of data increase 
to the point where conducting an enterprise data ware-
house search takes too long and is no longer produc-
tive. Rather, data marts are designed to make it simple 
and quick for other departments (such as sales, market-
ing, and the C-suite) to obtain pertinent information. A 
data mart is a type of storage system that holds extremely 
specific information targeted at the needs of workers in 
a particular department or at the main workstream of an 
organisation. It is a component of the data lake concept, 
where data are provided in their original format, making 

analytics and the presentation of aggregated data chal-
lenging. This problem is resolved by using data marts [5]. 
This system represents the environments of stored data. 
The data mart is a small-sized data warehouse focused on 
a specific subject. While a data warehouse is meant for an 
entire enterprise, a data mart is built to address the spe-
cific analysis needs of a business unit. Thus, an enterprise 
usually has many data marts [52].

Data lake
A Data Lake is a relatively new concept in data manage-
ment and big data. It is a system or repository of data 
stored in its natural/raw format, usually object blobs 
or files. The concept of Data Lake was put forward by 
Dixon to face the challenges of big data and the deficien-
cies of Data Warehouses [45, 54]. Data Lake has neither 
a standard definition nor an acknowledged architecture. 
However, some researchers have proposed a complete 
definition and a generic and extensible architecture of a 
data lake [45]. They can quickly process and store data, 
regardless of format and size, from structured tables to 
unstructured text such as emails, images, or videos. Data 
lakes allow various data types and sources to be availa-
ble in one location, supporting statistical discovery [14]. 
They are often designed for low-cost storage, so they can 
house a high volume of data at a relatively low price as 
they require low-cost hardware, and most technologies 
used to manage data in a data lake are open source like 
Hadoop [23]. Moreover, they are highly agile. Data scien-
tists can prepare and analyze data models rapidly [1].

Graph theory
Graph theory, as a mathematical discipline, studies 
graphs, which are mathematical structures used to model 
pairwise relations between objects. A graph in this con-
text refers to a collection of vertices or nodes and a col-
lection of edges that connect pairs of vertices [55]. This 
allows us to model and analyze the structure of a net-
work, providing a robust framework for both quantita-
tive and qualitative approaches [10]. In the context of big 
data application deployment in the cloud environment, 
graph theory can be beneficial. One or more shortest-
path algorithms or graph-neural networks (GNN) can be 
employed to find the optimal solution [50]. These tools 
allow us to navigate the graph most efficiently, identify-
ing the shortest or most cost-effective path between two 
vertices. Shortest path algorithms are specific algorithms 
designed to solve the shortest path problem. The prob-
lem is to find the shortest path or paths from a starting 
point to a destination, given a graph where each edge has 
a length or cost. Some of the most popular shortest path 
algorithms include Dijkstra’s algorithm [19], Bellman-
Ford algorithm [4], A* algorithm [48], Floyd-Warshall 
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algorithm [7], and Johnson’s algorithm [22]. Each of these 
algorithms has its strengths and weaknesses, and the 
choice of algorithm can depend on the specific character-
istics of the graph and the problem at hand. On the other 
hand, GNNs [37] are a type of artificial neural network 
specifically designed to operate on graph-structured 
data. They can process the graph’s topological informa-
tion and the features of its nodes and edges. GNNs have 
shown great promise in various applications, including 
social network analysis, molecular chemistry, and recom-
mendation systems, to name a few. Graph theory offers 
an efficient mathematical framework for modelling and 
analyzing network structures, while shortest path algo-
rithms and GNN provide practical tools for navigating 
these structures and finding optimal solutions. These 
techniques can be particularly valuable in big data and 
cloud computing, where efficient resource allocation and 
data processing are critical.

Related work
The field of cloud cost optimisation has received signifi-
cant attention in recent years, with numerous studies 
exploring different approaches to reducing cloud com-
puting costs. The proposed approach is mainly relevant 
to resource placement and network usage cost optimisa-
tion; hence, scientific literature related to these topics is 
discussed in this section.

Cloud cost optimisation
Cloud cost optimisation is a wide topic and includes 
several different directions. However, in this section, 
the related scientific literature discussed concerns 
cloud cost optimisation techniques for network usage 
cost reduction, either by efficient resource placement, 
caching techniques, or optimising the data replication/
migration process. Khan et  al. [26, 28] developed a 
ranking method for available storage options based on 
five key parameters: cost, proximity, network perfor-
mance, the impact of server-side encryption, and user 
weights and presented the effectiveness in terms of data 
transfer performance and the feasibility of dynamic 
selection of storage option. However, the framework 
primarily focuses on cloud storage and not other ser-
vices. For network cost optimisation, Mansouri et  al. 
[34] proposed an approach to minimize the cost of data 
placement for applications with time-varying work-
loads. Hence, the scope of work is too narrow and can-
not meet diverse application requirements. Zeng et al. 
[57] proposed a method with a slightly different scope, 
i.e., a method to deploy edge servers in wireless met-
ropolitan area networks economically. The proposed 
approach is related to resource placement; however, it 
is only focused on wireless networks. There is another 

approach with a similar scope proposed by Shao et al. 
[51], a data placement strategy for IoT services in wire-
less networks, which considers user distribution density 
to determine optimal edge server deployment locations 
and minimize deployment costs.

Caching techniques can be employed to reduce net-
work usage. Ghoreishi et al. [18] proposed a cost-effective 
caching as a service (CaaS) framework for virtual video 
caching in 5G mobile networks. For evaluation, two vir-
tual caching problems were formulated. Results obtained 
have shown significant performance enhancement of the 
proposed system regarding return on investment, quality, 
offloaded traffic, and storage efficiency. This technique 
focuses solely on using caching to reduce network costs 
and does not involve anything related to resource place-
ment. Another caching approach is proposed by Kumar 
et al. [31]. They presented a framework for cost-efficient 
content placement in a cloud-based content delivery net-
work. The proposed approach uses a cost matrix and a 
crosslinking data structure to minimize replica depend-
encies and optimise content delivery. Data replication 
and migration consume many network resources, result-
ing in high network usage costs. Mansouri et al. [34] sug-
gest two techniques for dynamic replication and data 
migration in cloud data centers (i.e., network cost). The 
first approach uses dynamic and linear programming 
techniques, assuming that accurate information about the 
burden on objects is readily available. The second method 
uses a randomized The “Receding Horizon Control” 
(RHC) approach uses knowledge about potential future 
workloads. Dong et  al. [12] proposed an online, cost-
efficient transmission scheme for cloud users to address 
the issue of selecting high service levels that result in 
unnecessary resource waste. The proposed method uti-
lizes an information-agnostic approach, where long-term 
transmission requests are split into a series of short-term 
ones, allowing for more efficient utilisation of cloud 
resources. In short, techniques such as dynamic replica-
tion, data migration, and heuristic strategies address the 
dynamic nature of network costs. Additionally, content 
delivery networks, caching frequently accessed data, and 
cost-efficient content placement frameworks contribute 
to reducing network infrastructure use. As stated earlier, 
these approaches focus on network usage cost optimisa-
tion; since network cost is a sub-element of total storage 
cost, they impact reducing the overall storage cost in the 
cloud.

Storage selection is an essential step before any appli-
cation deployment. The selection could be done to find 
the cheapest possible option while meeting certain QoS 
requirements. Following are some storage selection 
techniques from the scientific literature. Ilieva et al. [20] 
proposed a new approach for evaluating and ranking 
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cloud services, which combines multi-criteria and fuzzy 
approaches to consider various factors. Oki et  al. [40] 
presented selection models for cloud storage to satisfy 
data availability requirements, and Halimi et al. [38] pro-
posed a QoS-focused approach for storage service allo-
cation that considers various QoS objectives to improve 
the performance and scalability of cloud storage systems. 
Liu and Shen [32] proposed a method for efficient storage 
resource distribution, which includes three enhancement 
strategies to reduce payment cost and service latency. 
These proposed algorithms may not work effectively in 
real-world situations where workloads and prices are 
more dynamic and complex. The data placement strate-
gies may not always reflect user behavior and usage pat-
terns, and the methods for large-scale deployment may 
be unfeasible. Since network usage cost is an integral 
and expensive cost element [24], in practice, one would 
avoid accessing data remotely and instead move the com-
putation close to the data. An example could be having 
the same software application step available in different 
regions, having the data available in different regions, 
and accessing the data locally in the same region by the 
software application (assuming the data passed between 
steps is small compared to the data accessed within a 
step). The comparison presented in [24, 29] indicates 
that storing multiple copies of data is more cost-effec-
tive than repeatedly transferring it over the network for 
processing.

Graph‑theory for optimisation
Graph theory, a powerful decision-making method, has 
been used since 1736 and has found applications in vari-
ous fields to address optimisation problems [49]. Gan-
dhi and Agrawal [16] used graph and matrix approaches 
to carry out failure modes and effects analysis on both 
hydraulic and mechanical systems. They achieved this 
rigor, sensitivity, and impact of imminent failures by sys-
tematically identifying potential failure modes, highlight-
ing impact, and prioritizing them for further corrective 
measures. Similarly, Upadhyay [53] utilized graph theory 
and matrix algebra to construct and analyze the struc-
ture of an intelligent mobile learning environment. This 
approach gave information about dependency and inter-
connections in the learning environment, resulting in 
the design of more effective strategies. In their study, Al-
Hakim et al. [2] used graph theory to illustrate a product 
and connect its parts. It is an illustration of the product’s 
structure, making the identification of weak elements 
easier and helping with improved resource management. 
Pishvaee Mir and Rabbani [41] gave a graph-theoretic 
algorithm that can help design supply chain networks. 
Their algorithm took both shipments and indirect ship-
ments into consideration and was thus able to devise the 

most efficient routes that would result in a more efficient 
supply chain.

Raj et  al. [42] designed a digraph and matrix model 
to investigate the number of obstacles preventing flex-
ible manufacturing systems implementation. Goyal and 
Grover [49] combined graph-theoretical analysis with 
fuzzy theory to choose the most suitable advanced man-
ufacturing system from given options. Their approach 
considered factors such as costs, quality, and system flex-
ibility. This helped companies make informed decisions 
about manufacturing systems. Although graph theory 
has not been expressly utilized for cloud resource place-
ment and cost optimisation, its effectiveness in address-
ing optimisation problems across several fields indicates 
its potential relevance in this particular subject. Graph 
theory’s capacity to represent intricate systems and 
determine the most efficient routes makes it a promis-
ing instrument for addressing the difficulties of allocating 
resources and optimising costs in cloud computing set-
tings. This field is very suitable for research and has the 
potential to produce substantial advantages in the effec-
tive exploitation of cloud resources.

Discussion
The related work demonstrates a growing body of 
research focused on cloud cost optimisation, with vari-
ous optimisation algorithms proposed and evaluated. 
However, these algorithms do not address industry-spe-
cific requirements, and most are not evaluated in real-
world scenarios. Our cost optimisation approach, which 
employs graph theory, represents a new approach to 
cloud cost optimisation. We provide a novel approach to 
cloud cost optimisation by modelling cost elements and 
cloud resources in a graph and quantifying the impact of 
QoS elements to address the trade-offs. Graph theory is 
effective in finding optimised solutions for problems in a 
wide range of domains, including the cloud environment, 
such as data replication [33] and caching [56]; there-
fore, we find it promising for the cloud cost modelling 
and optimisation as well. The proposed approach should 
apply to new and existing applications in the cloud, be 
able to address multiple challenges, such as compute and 
storage resource placement and network cost optimisa-
tion, and incorporate QoS requirements.

Such an optimisation approach is currently miss-
ing in the literature, creating a substantial challenge to 
cloud resources’ economical and effective utilisation. It 
is important to note that implementing the proposed 
approach may necessitate changes to the system’s archi-
tecture and behavior, which could be a trade-off depend-
ing on the changes made. The proposed approach has 
several advantages, including increased efficiency and 
cost savings. According to the proposed approach, a cloud 
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service instance is conceptualized as a node for processing 
or storage in each region. The best path between nodes 
is then found using graph theory, which lowers expenses 
by placing cloud resources as efficiently as possible. The 
information flow between the nodes will be pre-defined, 
and the data transfer cost from one node to another will 
be specified on the edge connecting the two nodes and 
treated as the weight to minimize network usage cost. 
Resources from different regions, such as Europe West, 
Europe East, and possibly the US East, may be included in 
the application architecture. However, CSPs offer various 
options for every location, including EUWest1, EUWest2, 
EUEast1, EUEast2, and so forth. The algorithm will deter-
mine the optimal path between the selected locations 
based on the resources chosen in the designed architec-
ture that outlines cloud resource deployment and data 
flow for a software application, considering resource spec-
ifications, availability, and geographical limitations.

Cost optimisation paths
Cloud cost structure consists of several elements, and 
optimisation can be done by simultaneously targeting 
one or more elements. Hence, we break down the com-
plete process of cloud cost optimisation into six paths, as 
described in what follows. 

1. Optimisation of the network cost by proposing 
new locations for cloud resources: This path focuses 
on identifying the most suitable locations for com-
pute and storage resources to ensure optimal perfor-
mance and cost efficiency. By analyzing data access 
patterns and workload requirements, the solution 
shall suggest new locations for the resources that can 
achieve the best possible balance between perfor-
mance and cost. However, if it is done post-deploy-
ment, migration costs will apply.

2. Optimisation of storage cost by proposing the 
optimal number of storage instances: This path 
expands the optimisation approach to include stor-
age, backup, and archiving. By proposing new loca-
tions and the optimal number of storage instances, 
the system can ensure that data is stored cost-effec-
tively and efficiently. In a hybrid cloud, a storage 
instance is a server and, for the public, a storage 
bucket in a zone/region.

3. Optimisation of compute cost by proposing the 
optimal number of compute resources (VMs, GPU): 
By carefully selecting the number of virtual machines 
and GPUs needed for a specific workload, the overall 
cost of compute resources can be minimized, while 
still ensuring that the application runs smoothly and 
efficiently.

4. Optimisation of compute cost by scaling compute 
resources: This path focuses on optimising the sys-
tem’s compute resources to ensure they are appropri-
ately scaled to meet the workload requirements. Ana-
lyzing the workload patterns and scaling the compute 
resources accordingly can reduce costs and improve 
performance.

5. Optimising storage costs through data migration 
between storage tiers: This path involves migrating 
data between storage tiers to save cost by identify-
ing opportunities to move data to lower-cost storage 
tiers without compromising performance. It can be 
done by analyzing data access patterns and workload 
requirements.

6. Proposing more efficient and cost‑effective resource 
alternatives: This path involves identifying alterna-
tive solutions that can provide the same or better per-
formance while reducing the cost. By analyzing the 
system’s current configuration and workload require-
ments, the proposed solution can suggest better and 
more cost-effective alternatives. These could include 
different CSP or hardware options like spot VMs 
instead of regular VMs, containerisation instead of 
VMs, or serverless computing instead of fixed pro-
visioning. However, this may require changes in the 
architecture/implementation of the system.

An ideal cost optimisation scenario containing all six 
paths is exemplified in Fig.  2. The goal is to show how 
each optimisation path will work when put into action. 
The proposed architecture is not the actual representa-
tion of the optimised scenario. The designed architec-
ture, which could be for a large software application or 
a multi-step big data workflow, has data storage in five 
locations, with compute resources placed at two locations 
near all storage servers. Additionally, a separate data lake 
is deployed for the data archive. After passing through 
the cost optimisation techniques, this architecture gets 
modified based on user requirements, such as required 
resources and their location, as well as data access pat-
terns (i.e., proposed architecture). This scenario can offer 
several benefits. Firstly, moving them closer to the data 
store will significantly reduce data transfer costs, assum-
ing that computing resources only access one data stor-
age. Secondly, centralizing the system status and moving 
the data archive to the same location as the storage will 
reduce overhead costs and improve overall efficiency.

Graph‑based cloud cost modelling 
and optimisation
The proposed approach, shown in Fig.  3, aims to 
find the most suitable placement for cloud service 
instances in terms of storage and compute resources, 
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hence optimising network usage costs (i.e., path 1) 
and can potentially target paths 2 and 3 as described 
in “Cost optimisation paths”  section to optimise com-
pute and storage costs. This involves the development 
of a model that considers the number and location of 
cloud services deployed, the data access patterns, and 
an algorithm to suggest the most efficient location for 
cloud service instances. To implement the proposed 
approach, the following steps are required.

Purpose clarification
The first step is to clarify the purpose of the applica-
tion. It is an essential first step that involves the iden-
tification of both the functional and non-functional 
requirements that are specific to the industry. Func-
tional requirements include the specific tasks that the 
application should be able to perform, such as data 
storage, data processing, data retrieval, and data anal-
ysis. On the other hand, non-functional requirements 

Fig. 2 High-level diagram illustrating an ideal cost optimisation scenario

Fig. 3 Illustration of directed graph data structure based on required cloud resources for big data applications deployed in a cloud environment
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include the quality attributes that the application 
should possess, such as latency, availability, and dura-
bility. Considering these requirements makes it pos-
sible to determine the necessary resources, including 
storage servers and compute resources. The cost-effec-
tiveness of deploying the resources is also influenced 
by the requirements, as the resources must meet the 
necessary functional and non-functional requirements 
while also being cost-efficient.

Designed architecture
An architecture for the software application must be 
designed according to this proposed approach. The 
architecture describes the kinds of cloud resources 
used, where they will be deployed geographically, 
and how the data will flow within the application. It 
will specify the limitations on what resources can be 
moved, how much (within a country, region, or con-
tinent), and the specifications for those resources (the 
quantity of RAM, CPU, and storage space needed). 
The number and location of cloud resources, data 
flow, QoS requirements, and other variables must all 
be considered. The next step’s graph creation will be 
based on the output from this step. Verifying the avail-
ability of cloud resources in designated regions and 
defining the data flow within the application for effec-
tive processing and storage are two crucial aspects that 
must be considered during the design phase to guar-
antee the viability of the architecture. To optimise the 
application for effectiveness and cost, we can use the 
information provided by the designed architecture 
based on graphs to guide our proposed approach.

Graph creation
Creating a graph based on the information gathered 
from the previous steps presents a few challenges. Cloud 
resources can be treated as graph nodes, and the network 
usage cost can be specified as the edge. However, multi-
ple cost elements, such as storage, computing, security, 
and other cloud resource costs, must be considered. As 
seen in Fig. 4, the nodes with labels Cx represent compute 
resources, while the nodes with labels Sx represent stor-
age resources. Figure  3 presents a more detailed exam-
ple where Ca1,Ca2... are the compute resource costs, and 
Sa1, Sa2... are the storage resource costs. We denote the 
edges as ei , representing the weights of the graph and, 
in this case, the costs of services. Storage and comput-
ing costs are not the only factors to be considered when 
finding the cost-optimal solution. To ensure that all costs 
are accounted for, we must also consider the costs of ser-
vices, such as network usage costs. To solve this problem, 
we can treat nij as the network cost between the nodes Ci 
and Sj , hence, eij be as follows:2

To incorporate QoS elements, we assume latency, avail-
ability, and durability as lij , aij (quantified value based 
on the SLAs), and dij (numerical representation of the 
redundancy model), respectively. Similarly, wl , wa , and wd 
are weighted in percentage to define the importance of 
each factor as per requirements and N as the normalizing 

(1)eij = Ci + nij + Sj

Fig. 4 Elements of graph model. Each compute and storage instance is represented as a node and labeled as C and S, respectively. e represents 
the cost of these resources as the cost of network usage for data transfer between any two resources

2 Equation 1 refers to a general formula; multiple variations might be used 
to avoid redundancy in the cost calculation.
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constant. Using a cost-effectiveness ratio (CER), we can 
quantify lij , aij , and dij as:

For example, if the cost of Server A is $150 and its 
latency performance is 0.33, the cost-effectiveness ratio 
would be: 150

(1−0.3)×10
= 21.42 $

sec. . Similarly, if Server B 
has a cost of $200 and a latency performance of 0.2, then 
its cost-effectiveness ratio would be: 200

(1−0.2)×10
= 25 $

sec. . 
In this case, Server A would be more cost-efficient than 
Server B.

Hence, f(QoS) will be:

Putting Eqs. 1, 2 and 3 together, we will get:

This way, additional costs, such as security and 
encryption, can also be included in the calculation. 
Once the weights are specified on the edges, all pos-
sible resource combinations in a graph can be formed. 
For example, as per Fig.  3, Location A has three com-
pute and two storage instances; similarly, Location B 
has five compute and four storage instances. Assum-
ing only one storage and one compute instance are 
required in each location, the number of resource com-
binations in the graph for just these two locations will be 
Num(S)A × Num(C)B + Num(S)B × Num(C)C , which 
in this case will be (2× 5)+ (3× 4) = 22 . The total 
number of combinations can be calculated using Eq.  5. 
The complexity and the total number can be increased 
when more resources are required in each location.

Implementation process
The implementation of the proposed approach begins 
with the collection and normalisation of input data. The 
following are the details of the execution steps that are 
carried out: 

1. Obtain a list of regions where the desired services are 
available within the specified geographic location. 
This information will be utilized to create the graph 
nodes.

2. Using the CSPs’ “Pricing API”, such as the one 
provided by Google4, for cost estimations of the 

(2)f (CERl |CERa|CERd) =
Cost

(1− (lij |aij |dij)× N )
× w(l|a|d)

(3)f (QoS)ij = f (CERl)ij + f (CERa)ij + f (CERd)ij

(4)eij = Ci + nij + Sj + f (QoS)ij

(5)Total = �n
x=1(Num(S)x × Num(C)x+1)

requested services, the weights of the edges will be 
set.

3. Nodes and edges obtained in the previous steps will 
be combined and transformed into a graph. This data 
structure will serve as the foundation for the next 
step.

4. Find the optimal solution that minimizes the cost 
and satisfies the necessary performance requirements 
by addressing the constraint problem. These include, 
for example, trade-offs, a limit on the amount of stor-
age or compute resources available within a specific 
cloud provider or location, or QoS requirements of 
the applications running on the cloud resources, 
which could impact the selection of suitable cloud 
resources for cost optimisation.

Selected algorithm
Although many algorithms could be used to solve this 
problem, Dijkstra’s algorithm is employed in this article. 
Dijkstra’s algorithm is renowned for finding the shortest 
paths between nodes in a weighted graph. Conceived by 
computer scientist Edsger W. Dijkstra in 1956, the algo-
rithm has found extensive application in areas such as 
network routing protocols [19]. The algorithm works on 
the heuristic that nodes are labeled and that the node 
with the shortest label at each stage is greedily selected. 
It makes the assumption that there is never a negative 
distance between any two nodes. The labels consist of 
two elements: the node that comes before the current 
node in the shortest path and an upper bound on the 
shortest path length from the source node to the node 
in question. Until it discovers the shortest routes from 
the source to all other nodes, the algorithm iteratively 
changes these labels [17]. Although Dijkstra’s algorithm 
is quite old, it is still being studied; most recently, pos-
sibilities have been explored for using it in conjunction 
with predictions from machine learning [15]. Since the 
scenarios addressed in this article do not require exten-
sive computation, this algorithm is suitable as it is simple, 
lightweight, and easy to implement.

User interface
A user interface is provided to demonstrate the imple-
mentation of the approach and the corresponding 
process from the users’ perspective. The interface imple-
mented allows users to select an instance type and 
related parameters, as shown in Fig. 5. It starts with the 
option to select the resource type; based on the selected 
option, further parameters appear, such as total storage, 
storage class, etc. At the bottom of the interface, there 
is an “Architecture Graph”. This graph visually repre-
sents the steps added to the pipeline architecture. In this 

3 Latency performance of 300ms divided by 1000.
4 https://cloud.google.com/billing/docs/how-to/get-pricing-information-api
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scenario, three steps are displayed: a compute instance, 
a storage instance, and an additional compute instance. 
The interface makes it simple for users to choose and 
modify parameters to suit their needs. It offers an orderly 
and transparent method for building a pipeline architec-
ture in a cloud computing setting. The process is made 
even easier to understand by the architecture’s visual rep-
resentation, which is an important step toward improv-
ing the approach’s usability and accessibility through this 
interface.

Case study
To perform evaluations, we provide a case study of the 
data engineering process in this section, utilizing an ETL 
pipeline. Figure  6, which illustrates the steps involved, 
shows the most basic data engineering process. The 

process begins with the ingestion of data from multiple 
sources. Among other things, these sources may be soft-
ware programs, sensors, and IoT devices. Because of the 
variety of sources used, the dataset is rich and diversi-
fied, which can result in more accurate and informative 
studies. In this article, this step is also called the “Data 
Source”, emphasizing its function as the data source to be 
processed. The data is sent to a computing step for pro-
cessing after it has been ingested. This step is referred to 
as “Data Transformation”. The raw data is cleaned, nor-
malized, and essentially ready for analysis at this point 
in the process. This could entail handling missing val-
ues, eliminating outliers, or formatting the data so that 
it can be analyzed. A storage instance is used to store 
the transformed data. Depending on what the project 
requires, this storage might take on a variety of shapes. 

Fig. 5 User interface for creating an architecture to be used as an input for the graph-based cost optimisation model



Page 12 of 31Khan et al. Journal of Cloud Computing          (2024) 13:147 

A data lake is a more contemporary option than a data 
warehouse or a conventional database. Whatever shape 
it takes, the storage instance acts as a storehouse for the 
processed data, ready for additional processing to access 
and examine.

A thorough representation of all the steps in an ETL 
pipeline, combined in one place, is shown in Fig. 6. Data 
collection from a wide range of different sources is the 
first step in the process. After that, the data is kept in a 
specific storage instance and may include unstructured 
text files or organized databases. Acting as a central 
repository, this instance ensures the data is easily avail-
able for the next steps. The transformation of this raw 
data comes next after the data collection. Data transfor-
mation is done using a “compute” step. In this stage, the 
data is put through several procedures to transform it 
into a format better suited for analysis. These processes 
can include normalisation, which involves adjusting data 
to meet a standard scale; aggregation, which involves 
compiling data into a summary form; and cleaning, 
which involves eliminating inaccurate or unnecessary 
data. The data is loaded into a storage instance after it 
has been transformed. This instance is made especially to 
make effective data retrieval easier, guaranteeing that the 
processed data is easily accessible for additional use. The 
transformed data is now ready for consumption, whether 
it is being used for reporting, machine learning tech-
niques, or data analysis.

Figure 7 displays several ETL pipelines tailored to dis-
tinct regions that gather data from diverse sources. This 
data is subsequently put into a central data warehouse 
for processing. The hub-like representation of the data 
warehouse highlights its function as the primary hub for 
data processing and collection. The processed data is sent 
to several data marts from the data warehouse. These 
data marts provide customized information to busi-
ness groups and end customers in different regions. The 
illustration demonstrates the effectiveness and structure 
of this infrastructure, demonstrating how information 
may be gathered from many sources, analyzed centrally, 
and then dispersed in a targeted way. The flow of data in 
a big data infrastructure from the point of origin to the 
end user is depicted by this visualisation. It highlights 
how data marts help provide customized information to 
various business sectors and how ETL pipelines and data 
warehouses process data.

Using graph nodes and edges, Fig.  8 conceptualizes 
the complete big data infrastructure. This conceptualisa-
tion is important to comprehend the complex relation-
ships and connections inside the infrastructure. Several 
directed graphs are involved in the implementation and 
deployment of this big data infrastructure, requiring the 
identification of several paths. The data flow across the 
infrastructure is represented by these paths, which go 
from data ingestion and transformation to data ware-
house storage and, ultimately, data marts for user access.

Fig. 6 Illustration of a simple data engineering process and a representation of an ETL pipeline to be deployed in one single geographic region
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In this context, since there are three regions, hence 
three starting points, the following paths for data flow are 
identified for each region:

For ETL_Region_a:  

• Path 1: 1 → 8

• Path 2: 1 → 7 → 9

• Path 3: 1 → 7 → 10

For ETL_Region_b:  

• Path 4: 15 → 18 → 5 → 8

• Path 5: 15 → 18 → 5 → 7 → 9

• Path 6: 15 → 18 → 5 → 7 → 10

For ETL_Region_c:  

• Path 7: 11 → 14 → 5 → 8

• Path 8: 11 → 14 → 5 → 7 → 9

• Path 9: 11 → 14 → 5 → 7 → 10

In Fig. 8, ETL_Regiona , ETL_Regionb , and ETL_Regionc 
represent data pipelines designed for data ingestion 
and transformation. These pipelines receive raw data, 
process it into a format that can be used for further 
processing, and then forward it to the next step that 

Fig. 7 An illustration of a big data infrastructure including an ETL pipeline, a data warehouse, and multiple data marts

Fig. 8 Directed graph illustrating the flow and transformation of data through ETL pipelines, central data warehouse, and data marts in a big data 
infrastructure
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follows. Regiond refers to a data warehouse, a substantial 
storage facility containing transformed and unprocessed 
data from numerous sources. It acts as a central hub for 
data that has been cleaned, combined, and prepared 
for analysis. Data marts, subsets of the data warehouse, 
are represented by nodes 8, 9, and 10. They are made to 
meet the requirements of particular teams or business 
divisions. Data marts let users access a portion of the 
data warehouse, enabling them to retrieve and examine 
information pertinent to their particular requirements. 
The visual representation in Fig.  8 makes the process 
and resources involved easier to understand with this 
graph-based representation of the big data infrastruc-
ture, which offers a clear and succinct overview of the 
data flow.

Evaluation
This section presents the evaluations of the proposed 
approach. Due to the involvement of multiple parameters 
and the complexity, the approach is evaluated gradually 
in multiple steps.

It evaluates the efficacy and performance of the sug-
gested methodology in a range of scenarios based on the 
case study presented. These scenarios are designed to 
mimic situations expected to occur in real-world con-
texts. This strategy seeks to ensure that the applicability 
and practicality of the approach are not merely theoreti-
cal but also have practical implications. The results of 
this analysis will give a clear picture of the approach’s 
strengths as well as any potential weaknesses. Note that 
the term “region” refers to a specific area within a cloud 
service, for instance, useast1 and useast2. On the other 
hand, “geographic region” pertains to a broader geo-
graphical area like Europe West, which encompasses fur-
ther regions such as euwest1 and euwest2.

Each of the following subsections contains “Require-
ments” section that outlines the specifications and 
regions for the steps involving compute and storage 
instances. It provides detailed information on the number 

of CPUs, memory, and boot disk size5, and other specifi-
cations for each step. This information is used as input 
to the approach based on the estimated prices retrieved 
from the pricing API. When choosing one, the total cost 
of a compute instance can be changed by several factors. 
These include the operating system, the provisioning 
model, the boot disk type, the inclusion of a local SSD, 
and the machine type. In the same way, there are other 
choices for storage instances as well. In addition, latency 
can be measured in real-time for each instance, and its 
impact on the cost (recall Eq. 2) can be included in the 
total cost.

Scenario: three‑step data pipeline
In this scenario, we consider a data pipeline with only 
three steps: compute, storage, and compute. Data moves 
from step one to step three in a unidirectional manner, 
i.e., in a single way. The first computation step needs 
to be deployed in the US Central. After the data is pro-
cessed in the first step, it is moved to the geographic 
region of US East for storage. The data is then extracted 
and moved to the US West area for the final computation 
step. Regarding QoS, the redundancy model is one of the 
QoS considerations. The approach ensures the integrity 
of the data pipeline, ensuring that the data is not lost dur-
ing transfer and that it is still accurate and available. An 
example of this data pipeline may be seen in Fig. 9, which 
shows how data moves from the first computation in the 
US Central geographic region to storage in the US East 
and then to the second computation in the US West geo-
graphic region. This illustration makes it easier to under-
stand the composition and operation of the data pipeline.

Requirements: Table  1 outlines the specifications and 
regions for three steps involving two compute and one 

Fig. 9 A schematic representation of the three-step data pipeline, illustrating the unidirectional flow of data from computation in the US Central 
geographic region, through storage in the US East, to further computation in the US West geographic region

5 A boot disk, or startup disk, is a storage device from which a computer 
can “boot” or “start up1”. This disk contains files required by the boot 
sequence and the operating system, loaded at the end of the startup process.
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storage instance. A single redundancy model is selected 
for Step 2. A graph data structure is constructed after 
retrieving potential locations and their corresponding 
estimated prices, as shown in Fig.  10, which are deter-
mined based on the input requirements. This graph, 
depicted in Fig.  10, represents the interconnections 
between the different steps and their respective regions. 
The primary objective is to identify the shortest path 
from any given region for Step 1 to any region for Step 
3, which necessarily passes through Step 2. Consequently, 
there are three potential starting points in Step 1 and 
three potential ending points in Step 3, thereby offering a 
variety of paths for consideration in the cost optimisation 
approach. This approach ensures a comprehensive analy-
sis of all possible routes, thereby facilitating the identifi-
cation of the most cost-effective path.

Table 1 Requirement specifications for a three-step data 
pipeline, presenting a detailed overview of two compute and a 
storage instance

Step Instance Specifications Geographical region

Step 1 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step2 Storage Storage: 100 TB US East

Redundancy model: Single

Network: 500 TB

Step3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Fig. 10 A visual representation of the graph data structure for the three-step data pipeline for cost optimisation by mapping all possible paths 
across steps and regions. Sx_y represents a cloud resource and arrows show the direction of data flow. The cost on the edges is the total estimated 
cost of cloud resources on the left side of the edge, as well as the cost of data transfer from this resource to the next resource
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Results Table  2 is created based on the information 
retrieved from the Google pricing API. There is one pos-
sible deployment region for Step 1, whereas there are 
three possibilities for Step 2 and four for Step 3. It is also 
interesting to note how prices vary for the same com-
pute instance with similar specifications across differ-
ent regions. Data transfer cost is estimated based on the 
assumption that the data pipeline is deployed using the 
Google Cloud Platform and that data transfer will occur 
in North American regions and within the Google Cloud. 
The graph is implemented, and the Dijkstra algorithm is 
used to find the cheapest deployment model. After set-
ting the weights and running the algorithm, the following 
are the proposed regions for the resource deployment:

Step 1 (US Central 1) → Step 2 (US East 1) → Step 3 
(US West 1).

The proposed deployment approach could lead to sig-
nificant cost savings as more attributes are involved. 
Although, in this case, the focus is on cost optimisa-
tion, by including different QoS factors, the impact on 
performance can also be studied and optimised, such 

as latency, throughput, and the overall performance of 
cloud services.

Scenario: multi‑step data pipeline ‑ two locations
This scenario represents a slightly extended version of the 
first scenario, in which an ETL pipeline is deployed in the 
same geographic region, but the data after transforma-
tion is stored in a warehouse deployed in a different geo-
graphic region. Hence, we are considering a data pipeline 
that consists of three steps: 1) compute, 2) storage, and 3) 
compute. Additionally, a dataware where the data would 
be stored. The data flows unidirectionally from the first 
to the third step. All steps are deployed in the same geo-
graphic region, which in this case is the US West. How-
ever, the data warehouse is deployed in the EU West. 
Moreover, we consider only one resource in the data 
warehouse. It is a slightly unlikely scenario, but it is part 
of the larger big data infrastructure, and it is set up like 
this primarily for assessment purposes. QoS considera-
tions involve the redundancy model in this scenario. This 
model ensures that the data is not lost during transfer 
and remains accessible and accurate, thereby maintain-
ing the integrity of the data pipeline. Figure 11 presents a 
visual representation of this data pipeline, illustrating the 
flow of data from the initial computation in the US West, 
through storage in the same region, and then to the sub-
sequent computation again in the US West. From there, 
the data is transferred to the storage in the EU West. This 
visualisation aids in understanding the structure and 
operation of the data pipeline.

Requirements: Table  3 outlines the specifications and 
regions for three steps involving compute and storage 
instances. A graph data structure is constructed after 
retrieving potential locations and their corresponding 
estimated prices, shown in Fig. 12, which are determined 
based on the input requirements. This graph, depicted 
in Fig.  12, represents the interconnections between the 

Table 2 Cost estimation for three-step data pipeline for steps in 
different regions. All prices are in US Dollars

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) US Central: 148.85 9311.23 9460.08

Step 2 (Storage) US East1: 1862.55 9311.23 11173.78

US East4: 2142.04 11453.27

US East5: 1862.65 11173.78

Step 3 (Compute) US West1: 148.85  148.85

US West2: 179.79 179.79

US West3: 179.79 179.79

US West4: 168.56 168.56

Fig. 11 A schematic representation of the ETL data pipeline, i.e., multi-step data pipeline - two locations, illustrating the unidirectional flow of data 
from computation in the US West into a data warehouse in the EU West
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different steps and their respective regions. The primary 
objective is to identify the shortest path from any given 
region in Step 1 to any region in Step 4, which necessar-
ily passes through Steps 2 and 3. Consequently, there are 
four potential starting points in Step 1 and eight potential 
ending points in Step 4, thereby offering a variety of paths 
for consideration in the cost optimisation approach. This 
approach ensures a comprehensive analysis of all possible 
routes, thereby facilitating the identification of the most 
cost-effective path.

Results Table  4 is created based on the information 
retrieved from the Google pricing API. There are four 
possible deployment regions for Steps 1, 2, and 3, whereas 
there are 8 possibilities for Step 4. It is also interesting 
to note how prices vary for the same compute instance 
with similar specifications across different regions. Data 
transfer cost is estimated based on the assumption that 
the data pipeline is deployed using the Google Cloud 
Platform and that data transfer will occur in the North 
American region and within the Google Cloud. For the 
data transfer between Steps 3 and 4, the estimated cost 
is retrieved for the transfer between the North American 
region and Europe. For 2000TB of data transfer between 
North America, it is approximately 37,250 US Dollars, 
whereas if it is between North America and Europe, it 
is 93,295 US Dollars. The graph is implemented, and the 
Dijkstra algorithm is used to find the cheapest deploy-
ment model. After setting the weights and running the 
algorithm, the following are the proposed regions for the 
resource deployment:

Step 1 (US West 1) → Step 2 (US West 1) → Step 3 (US 
West 1) → Step 4 (EU West 1 or EU West 4).

The deployment model suggested by the algorithm 
accumulates an estimate of 132,538 US Dollars compared 
to the most expensive, 137,536. This reduction mounts to 
approximately 60,000 US Dollars annually, and it occurs 
when the data pipeline is deployed in only two regions 
with a single redundancy model and does not consider 
different storage tiers. The larger the data pipeline with 
more detailed input parameters, the higher the cost 
reduction. Figure  12 shows how the complexity of the 
graph increased by adding just one more step to the data 
pipeline. Moreover, many more options can be included. 
For example, for each node of Steps 2 and 4, there could 
be 4 different variations based on the redundancy model 
selected. In addition, for Steps 1 and 3, committed use 
options can also be selected, such as none, 1 year, and 3 
years, and then the price can be calculated. Last but not 
least, QoS elements such as latency and throughput can 
be measured and, after calculating their impact on cost, 
can be included in the graph.

Scenario: big data infrastructure
In this scenario, we are considering three different ETL 
data pipelines deployed in three different regions that 
consist of three steps each: 1) compute, 2) storage, and 
3) compute. The data flows unidirectionally from the 
first to the third step. We consider a scenario in which 
the first ETL pipeline needs to be deployed in the US 
West geographic region, the second in the US East, and 
the third in the US South geographic region. From each 
ETL data pipeline, the data is transferred and stored in 
the data warehouse, which is deployed in the US Cen-
tral geographic region. Once the data is accumulated 
and processed, it is transferred back to data marts 
deployed in the same regions as the ETL pipelines. QoS 
considerations involve the redundancy model in this 
scenario. This model ensures that the data is not lost 
during transfer and remains accessible and accurate, 
thereby maintaining the integrity of the data pipeline.

Requirements: Table  5 outlines the specifications and 
regions for big data infrastructure involving three ETL 
data pipelines, a data warehouse, and three data marts. 
A graph data structure is constructed after retrieving 
potential locations and their corresponding estimated 
prices, as shown in Fig. 13, which are determined based 
on the input requirements. This graph, depicted in 
Fig. 13, represents the interconnections between the dif-
ferent steps and their respective regions. The primary 
objective is to identify the shortest path from any given 
region in each data pipeline to any region in the respec-
tive data mart, which necessarily passes through Steps 

Table 3 Requirement specifications for each step in the big 
data pipeline, i.e., multi-step data pipeline - two locations, which 
is deployed in two different locations presenting a detailed 
overview of two compute and two storage instances

Step Instance Specifications Geographic region

Step 1 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step2 Storage Storage: 100 TB US West

Redundancy model: Single

Network: 500 TB

Step3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step4 Storage Storage: 1000 TB EU West

Redundancy model: Single

Network: 1000 TB
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Fig. 12 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions 
for the multi-step data pipeline - two locations
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2, 3, 4, 5, and 6. Consequently, there are three potential 
starting points for the first data pipeline in the US East 
region, four for the second data pipeline in the US West 
region, and one for the third data pipeline in the US 
South region. Regarding potential ending points, the US 
East region has three possible ending points, the US West 
has four, and the US South has only one possible ending 
point. Thus offering a variety of paths for consideration 
in the cost optimisation approach. This approach ensures 
a comprehensive analysis of all possible routes, thereby 
facilitating the identification of the most cost-effective 
path.

Results Data is gathered based on the information 
retrieved from the Google Pricing API. There are three 
possible deployment regions for the ETL data pipeline 
in the US East region, four for the ETL data pipeline in 
the US West region, and one for the ETL data pipeline in 
the US South region. Moreover, there is only one possible 
deployment region for the data warehouse in the US cen-
tral region, but two different redundancy models are con-
sidered for the storage in the data warehouse. It is also 
interesting to note the exponential increase in the com-
plexity of graphs as more elements of big data infrastruc-
ture are added. More complexity means more possible 

deployment models, making it challenging to do a cost-
benefit analysis of different deployment options without 
a standard framework and software tool.

Furthermore, data transfer cost is estimated based on 
the assumption that the data pipeline is deployed using 
the Google Cloud Platform and that data transfer will 
occur in the North American region and within the 
Google Cloud. The graph is implemented, and the Dijk-
stra algorithm is used to find the cheapest deployment 
model. After setting the weights and running the algo-
rithm, the following are the proposed regions for the 
resource deployment:

• ETL_Region_e: Step 1 (US East 1) → Step 2 (US 
East 1) → Step 3 (US East 1) → Step 4 (US Central 
1) → Step 5 (US East 1).

• ETL_Region_w: Step 1 (US West 1) → Step 2 (US 
West 1) → Step 3 (US West 1) → Step 4 (US Cen-
tral 1) → Step 5 (US West 1).

• ETL_Region_s: Step 1 (US South 1) → Step 2 (US 
South 1) → Step 3 (US South 1) → Step 4 (US Cen-
tral 1) → Step 5 (US South 1).

This shows that the proposed approach has the capa-
bility, to handle complex multi-region ETL data pipe-
lines effectively by leveraging graph theory to map 
the data flow and identify cost-efficient paths for data 
transfer and storage. Moreover, it is scalable and flex-
ible enough to adapt to various configurations of data 
pipelines and storage options. This adaptability ensures 
that it can be tailored to different organisational needs 
and infrastructure setups, further enhancing its util-
ity in diverse real-world applications. By incorporating 
QoS considerations, such as redundancy models, the 
approach ensured data integrity and accessibility. This 
is critical for maintaining a reliable and accurate data 
pipeline.

Scenario: multi‑regional big data pipeline
In this case, we present a big data pipeline that involves 
multiple steps, each requiring specific compute and stor-
age resources. The deployment spans across three geo-
graphic regions: US West, EU West, and Asia East. The 
first step in the pipeline is data ingestion. This is han-
dled by two compute instances located in the US West 
region. Each instance is equipped with 8 CPUs, 32 GB of 
memory, and a boot disk size of 50 GB. Following data 
ingestion, the data is stored in the US West region. The 
storage instance has a capacity of 200 TB and operates 
on a single-region redundancy model. The third step in 
the pipeline is data processing. This is carried out by four 
compute instances located in the EU West region. Each 

Table 4 Cost estimation for data pipeline steps in different 
regions for the multi-step data pipeline - two locations

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) US West1: 148.85 9313.37 9462.22

US West2: 179.79 9493.16

US West3: 179.79 9493.16

US West4: 168.56 9481.93

Step 2 (Storage) US West1: 1862.55 9313.37 11173.77

US West2: 2142.04 11453.27

US West3: 2142.04 11453.27

US West4: 2142.04 11453.27

Step 3 (Compute) US West1: 148.85 93127.26 93276.11

US West2: 179.79 93307.05

US West3: 179.79 93307.05

US West4: 168.56 93295.82

Step 4 (Storage) EU West1: 18626.45 18626.45

EU West2: 21420.42 21420.42

EU West3: 21420.42 21420.42

EU West4: 18626.45 18626.45

EU West6: 23283.06 23283.06

EU West8: 21420.42 21420.42

EU West9: 21420.42 21420.42

EU West12: 21420.42 21420.42
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Table 5 Requirement specifications for each step in the big data infrastructure presenting a detailed overview of three big data 
pipelines, a data warehouse, and several data marts

Steps Instance Specifications Geographic region

ETL_DataPipeline_w Step 1 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US West

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

ETL_DataPipeline_e Step 1 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US East

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

ETL_DataPipeline_s Step 1 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US South

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Data Warehouse Step 4 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 5 Storage Storage: 100 TB US Central

Redundancy model: Single

Network: 500 TB

Step 6 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Data Marts Step 7 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB
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of these instances has 16 CPUs, 64 GB of memory, and 
a boot disk size of 100 GB. Finally, the data is archived 
in the Asia East geographic region. The storage instance 
used for this purpose has a capacity of 500 TB and oper-
ates on a multi-regional redundancy model. This compre-
hensive and robust pipeline ensures efficient and secure 
handling of big data.

Requirements Table 6 presents the requirements for this 
multi-regional big data pipeline. A graph data structure 
is constructed after retrieving potential locations and 
their corresponding estimated costs, as shown in Fig. 14, 
which are determined based on the input requirements. 
This graph represents the interconnections between the 
different steps and their respective regions. The primary 
objective is to identify the shortest path from any given 
region in Step 1 to any region in Step 4, which necessar-
ily passes through Steps 2, and 3. Consequently, there 
are four potential starting points for the first step in the 
US West geographic region, four for the second step in 
the data pipeline in the US West geographic region, and 
again four for the third step in the EU West geographic 
region. Regarding potential ending points, the Asia East 
geographic region has two possible deployment regions. 
Thus offering a variety of paths for consideration in the 
cost optimisation approach. This approach ensures a 
comprehensive analysis of all possible routes, thereby 
facilitating the identification of the most cost-effective 
path.

Results Table  7 is created based on the information 
retrieved from the Google pricing API. The “Steps” col-
umn lists the different steps involved in the data pipeline. 
These steps are categorized into Compute, Network, and 
Storage. The “Compute/Storage” column provides cost 
estimations for compute and storage resources used in 
each step of the data pipeline for different regions. The 
costs are based on the amount of resources (like CPU, 
RAM, and disk space) consumed during each step, 

which are specified in Table  6. This “Network” pro-
vides the cost estimations for network resources used in 
each step of the data pipeline for different regions. The 
costs are based on the amount of data transferred over 
the network from the given step to the next step in the 
data pipeline. The last column provides the total cost 
estimation for each step of the data pipeline for differ-
ent regions. It is the sum of the “Compute/Storage” and 
“Network” costs. The graph is implemented, and the 
Dijkstra algorithm is used to find the cheapest deploy-
ment model. After setting the weights and running the 
algorithm, the following are the proposed regions for the 
resource deployment:

Step 1 (US West 1 or US West 2) → Step 2 (US West 1) 
→ Step 3 (EU West 1) → Step 4 (Asia East Coldline).

The deployment model suggested by the algorithm 
accumulates an estimate of 225,052 US Dollars com-
pared to the most expensive, 239,066. This reduction 
amounts to approximately 168,000 US Dollars annually, 
and it occurs when the data pipeline is deployed in three 
different geographic regions with a single redundancy 
model and considers only one different storage tier for 
the data archiving step. In usual circumstances, for data 
archival, Archive tier would be first choice, but based on 
data retrieval and storage characteristics, Coldline is sug-
gested to be the most suitable. The larger the data pipe-
line with more detailed input parameters, the higher the 
cost reduction.

Cost comparison with baseline and robustness analysis
We define the baseline as a deployment executed with-
out utilizing any specific cost models. Figure 15 shows 
the annual cost difference between graph-based and 
baseline deployments for the above-discussed four sce-
narios. This difference grows with increasing complex-
ity and resource demands. Efficiency can be further 
enhanced by factoring in the impact of QoS on cost, 
as shown in Eq. 3. It can be seen that even seemingly a 

Table 5 (continued)

Steps Instance Specifications Geographic region

Step 8 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 9 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB
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small difference in total cost ( ∼7-9%) amounts to large 
amounts of sum. For example, for a multi-step data 
pipeline, that contains a very limited number of cloud 
resources, the cost difference is almost 60,000 US Dol-
lars. Similarly, this difference is around 120,000 US Dol-
lars for a big data infrastructure scenario and 170,000 
US Dollars for a multi-regional data pipeline.

We further present a sensitivity analysis to demonstrate 
the robustness of the proposed approach. By examining 
the complexities of basic cloud resource configurations, 
specifically a storage instance and a compute instance, 
and by diving into the operational specifics of these 
instances, we aim to highlight the strengths and potential 
scalability of the proposed approach.

Fig. 13 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions for the big 
data infrastructure (actual cost estimates are not mentioned in the graph due to the limited dimensions of the figure)
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Table  8 outlines the parameters to consider when 
selecting a simple storage instance in Google Cloud. 
For instance, a storage instance with a capacity of 1000 
TB should be deployed in the USWest region. Key con-
siderations include storage tiers (Table 8 lists Standard 
and Nearline due to their similar characteristics), addi-
tional data retrieval costs, redundancy models, avail-
able regional options, and data transfer sources and 
destinations.

The impact of these parameters on the cost is illus-
trated in the following examples:

• Storage cost, shown in Fig. 16.

– Size: 1000TB; tier: standard; redundancy model: 
single - USWest1 = $20,479

– Size: 1000TB; tier: nearline; redundancy model: 
single - USWest1 = $10,240

– Size: 1000TB: tier: standard; redundancy model: 
single - USWest2 = $23,552

– Size: 1000TB; tier: nearline; redundancy model: 
single - USWest2 = $16,384

• Data transfer cost within Google Cloud, shown in 
Fig. 17.

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: North America = $20,478

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Europe = $51,195

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Asia = $81,912

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Indonesia = $102,390

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Middle East = $112,640

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Latin America = $143,346

Additionally, Table  9 lists the key parameters to 
consider when selecting a single compute instance in 
Google Cloud. Some parameters are related to resource 
requirements, such as the number of CPUs, memory 
size, boot disk size, and local SSD capacity (if needed). 
Other parameters are qualitative, including the pro-
visioning model, machine type, extended memory 
requirements, boot disk type, and committed use dis-
count options. These parameters affect either cost, per-
formance or both. Hence, each of the options needs to 
be selected carefully.

The impact of these parameters on the cost is illus-
trated in the following examples, also shown in Fig. 18.

• Cost of a single compute instance in us-central1 
region with different provisioning models:

– No. of vCPUs: 12; memory: 36 GiB; provisioning 
model: regular; committed use option: none = 
$407.60

Table 6 Requirement specifications for each step in the multi-regional big data pipeline presenting a detailed overview of two 
compute and two storage instances

Step Instance Specifications Geographic region

Step 1: Data Ingestion Compute No. of instances: 2 US West

Number of CPUs: 8

Memory: 32 GB

Boot disk size: 50 GB

Step 2: Data Storage Storage Storage: 200 TB US West

Redundancy model: Single

Network: 500 TB

Step 3: Data Processing Compute No. of instances: 4 EU West

Number of CPUs: 16

Memory: 64 GB

Boot disk size: 100 GB

Step 4: Data Archiving Storage Storage: 500 TB Asia East

Redundancy model: Multi

Tier: Archive, Coldline, Nearline

Data retrieval: 300 TB

Data transfer: 700 TB
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– No. of vCPUs: 12; memory: 36 GiB; provision-
ing model: spot; committed use option: none = 
$101.86

• Cost of a single compute instance in us-central1 
region with different committed use options:

– No. of vCPUs: 12; memory: 36 GiB; provision-
ing model: regular; committed use option: none = 
$407.60

– No. of vCPUs: 12; memory: 36 GiB; provisioning 
model: regular; committed use option: 1 year = 
$253.33

Fig. 14 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions 
for the multi-regional big data pipeline (actual cost estimates are not mentioned in the graph due to the limited dimensions of the figure)
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– No. of vCPUs: 12; memory: 36 GiB; provisioning 
model: regular; committed use option: 3 years = 
$183.46

It can be seen that by changing the provisioning 
model, the cost of a compute instance can be signifi-
cantly reduced. For example, switching from a regular 
provisioning model to a spot instance reduces the cost to 
one-fourth, leveraging idle capacity. Additionally, com-
mitted use options play a crucial role in cost manage-
ment. Opting for a 1-year or 3-year commitment can 
further decrease expenses. These examples highlight the 
importance of careful planning and architectural design 
in optimizing application costs. In addition to these two 
parameters, there are other parameters that need to 
be considered before creating a cost-effective compute 
instance. The proposed approach has the ability to incor-
porate and process these additional parameters in a very 
minimal amount of time.

This analysis highlights the complexity of the cost 
structure, demonstrating that costs are influenced by a 

Table 7 Cost estimation for data pipeline steps in different 
regions for the multi-regional big data pipeline

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) USWest1: 598.19 10238 10836.19

USWest2: 598.19 10836.19

USWest3: 720.11 10958.11

USWest4: 675.11 10913.11

Step 2 (Storage) USWest1: 3725.19 25595 29320.19

USWest2: 4284.08 29879.08

USWest3: 4284.08 29879.08

USWest4: 4284.08 29879.08

Step 3 (Compute) EUWest1: 1317.01 81920 83237.01

EUWest2: 1544.12 83464.12

EUWest3: 1544.12 83464.12

EUWest4: 1320.02 83240.02

EUWest6: 1676.91 83596.91

Step 4 (Storage) Archive: 41327.44 71313.84 112641.28

Coldline: 38649.89 62931.94 101581.83

Nearline: 44237.82 71313.84 115551.66

Fig. 15 Comparative analysis of graph-based approach against the baseline cost

Table 8 Range of parameters for selecting a simple storage instance in Google Cloud

Size Storage tiers Additional data 
retrieval cost

Redundancy 
models

Regions (USWest) Source region Destination region

1000 TB Standard No Single USWest1 North America North America

Nearline Yes Dual USWest2 Europe Europe

Multi USWest3 Asia Asia

USWest4 Indonesia Indonesia

Oceania Oceania

Middle East Middle East

Latin America Latin America
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Fig. 16 Difference in storage cost for 1000TB of data based on region and storage tier

Fig. 17 Difference in data transfer cost from destination “North America” and source listed on the x-axes

Table 9 Range of parameters for selecting a simple compute instance with no. of instances set to 1 in Google Cloud

Operation 
system

Provisioning 
model

Machine 
type

No. of CPUs Amount of 
memory

Extended 
memory

Boot disk 
type

Boot disk 
size (GiB)

Local SSD Committed 
use discount 
options

Free Regular General 
purpose

Min: 1 vCPUs 
Max: 96 
vCPUs

Min: 0.6 GiB 
Max: 624 GiB

Yes Standard per-
sistent disk

Min: 0 Max: 
>= 65,536

0 None

Paid Spot 
(Preemptible 
VM)

Compute-
optimized

No Balanced per-
sistent disk

1 x 375 GB 1 year

Memory-
optimized

SSD persistent 
disk

2 x 375 GB 3 years

Accelerator-
optimized

3 x 375 GB

Storage-
optimized

4 x 375 GB

5 x 375 GB

6 x 375 GB

7 x 375 GB

8 x 375 GB

16 x 375 GB

24 x 375 GB
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combination of multiple factors rather than a single ele-
ment. It also showcases the model’s robustness and its 
ability to integrate these factors and generate a model 
almost instantaneously (see the next subsection). Addi-
tionally, performance metrics can be incorporated. For 
instance, latency is crucial for the application’s perfor-
mance. Real-time latency can be monitored using services 
like AWS Latency Monitoring6. The cost-effectiveness 

ratio can be calculated (refer to Eq. 3), ensuring efficient 
deployment.

Qualitative comparison with the state of the art
In this section, a qualitative comparison with the state-
of-the-art is presented. Table  10 presents a compara-
tive analysis of a graph-based approach against existing 
literature in terms of strategy, cost optimization, scal-
ability potential, technology focus, and innovation. The 

Fig. 18 Difference in cost of a single compute instance with 12 vCPUs, 36 GiB memory based on provisioning model and committed use discount 
options

Table 10 A comparison of graph-based approach with existing literature in terms of strategy, cost elements, scalability potential, 
technology focus and innovation

Strategy Cost optimisation Scalability Technology focus Innovation

Grahp-
based 
approach

Data placement using 
graph-theory

Advanced cost optimisa-
tion techniques

Enhanced scalability 
for diverse applications

Platform- & industry 
independent

Use of graph-theory 
to incorporate multiple 
parameters and address 
existing gaps

[26, 28] Smart data placement 
using storage-as-a-
service model

Not explicitly focused High scalability for big 
data pipelines

Storage-as-a-service MCDA-based storage 
selection model

[34] Dynamic replication 
and migration

For replication 
and migration

Scalable replication 
and migration

Cloud data centers Advanced cost optimisa-
tion

[57] Edge server placement Cost-effective placement Scalable edge server 
placement

Wireless metropolitan 
area networks

Novel edge server place-
ment

[51] Edge server placement 
for IoT services

Cost-aware placement 
optimisation

Scalable IoT services Wireless metropolitan 
area networks

Novel IoT service place-
ment

[18] Caching-as-a-Service Cost-driven caching Scalable caching solu-
tions

Cloud-based 5G mobile 
networks

Innovative caching 
approach

[31] Aggregation networks 
for streaming analytics

Cost-aware aggregation Scalable aggregation 
networks

Geo-distributed stream-
ing analytics

Advanced aggregation 
techniques

[12] Transmission scheme 
for inter-datacenter 
networks

Cost-efficient transmis-
sion

Scalable transmission 
schemes

Inter-datacenter net-
works

Novel transmission scheme

[20] Cloud service selection Not explicitly focused Scalable cloud service 
selection

Cloud services Unique fuzzy multi-criteria 
approach

[40] Cloud provider selection Availability requirements Scalable cloud provider 
selection

Cloud storage services Unique provider selection 
model

[38] Intelligent service selec-
tion for IoT

Cost-effective service 
selection

Scalable IoT service 
selection

Cloud providers for IoT Intelligent multi-dimen-
sional selection

6 https://www.cloudping.co/grid
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graph-based approach leverages graph-theory for data 
placement, offering advanced cost optimisation tech-
niques and enhanced scalability across diverse applica-
tions. It is platform and industry-independent, making it 
applicable to a wide range of scenarios and applications. 
It also incorporates multiple parameters, as compared to 
approaches focused solely on data placement, edge server 
placement, and caching techniques.

Computational cost
In this section, we present the computational cost of 
the graph-based approach in terms of processing time. 
Dijkstra’s algorithm has many variants, but in this 
case, we have used the one to find the shortest paths 
from the source node to all other nodes in the graph. 
The time complexity of Dijkstra’s algorithm is O(V 2) 
where V is the number of nodes or vertices. However, 
since we have multiple possible starting nodes, the 
computational time will be higher based on the num-
ber of possible starting nodes. The proposed approach 
is implemented using the Java programming language 
and executed on a machine running MacOS, 32GB of 
RAM, and an Intel Core i7 processor. Figure 19 shows 
the number of nodes on the x-axis, computational time 
in milliseconds, and number of starting nodes on the 
y-axis. The time taken to retrieve data from the pric-
ing API is not included, as that can vary based on the 

network speed; however, the time for creating and load-
ing graph data structures in memory is included along 
with the traversal time. The computational cost of the 
graph-based approach using Dijkstra’s algorithm is 
very minimal and it increases as the number of nodes 
and starting nodes increase. Moreover, the graph in 
Fig.  19 clearly illustrates this trend, showing a steeper 
increase in computational time as the number of nodes 
increases. While Dijkstra’s algorithm is efficient for 
smaller graphs or when the number of nodes is lim-
ited, its computational cost can become significant for 
larger graphs or when there are large numbers of nodes 
with many potential starting nodes. For such scenarios, 
alternative approaches may be necessary to ensure effi-
cient computation within reasonable time frames.

Discussion & conclusions
The graph-based approach proposed in this article pre-
sents a novel and efficient approach to modelling cloud 
cost elements. Its platform independence is a significant 
advantage, allowing for its application across various 
environments and scenarios. This versatility is further 
demonstrated through the evaluations performed on 
generic scenarios. The approach’s applicability is not 
confined to any industry, making it a universally adapt-
able solution for various user scenarios. During the 
evaluations, the approach effectively depicted the 

Fig. 19 Comparison of starting nodes and computation time vs. total number of nodes. This graph illustrates the relationship between the number 
of nodes in a network, the number of starting nodes, and the computation time required in milliseconds
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complexity and variety of cost offerings from a major 
CSP, i.e., Google Cloud. This demonstration highlights 
the approach’s capability to handle diverse cost structures 
and indicates that it can be used with other CSPs offering 
similar patterns in their cost structures. This observation 
suggests the proposed approach would be equally effec-
tive when applied to other CSPs.

The effectiveness of the proposed approach is further 
evidenced by the different paths of graph traversal. These 
paths validate the approach’s effectiveness and open up 
many opportunities for its extension. The approach’s 
adaptability and extensibility make it a promising tool 
for future research and practical applications in cloud 
cost modelling. Moreover, scalability is a crucial aspect 
of any cloud-related solution, and it is relevant in the 
context of the proposed graph-based cloud cost model-
ling and optimisation approach. Computational cost and 
sensitivity analysis is performed to depict the computa-
tional viability and the robustness and scalability of the 
proposed approach. It allows for dynamic resource allo-
cation. As resource demand changes, it can adapt by real-
locating resources across different regions and instances. 
This flexibility can help maintain optimal performance 
and cost-efficiency. Moreover, cloud service costs can 
vary over time due to changes in pricing models or fluc-
tuations in demand. The proposed approach can adapt 
to these changes by recalculating the optimal deploy-
ment model, ensuring that resource allocation remains 
cost-effective.

Regarding future work, there is a limitation in the 
current approach’s applicability, which might be 
addressed by including a wider range of resource 
aspects for additional testing. Furthermore, the eval-
uation of the approach relies on a robust big data 
infrastructure, which is a relatively straightforward 
situation. The practical usefulness of this technology 
may not be fully presented due to the lack of testing in 
more sophisticated, real-world user settings. Another 
constraint exists in the integration of QoS elements. 
Currently, the approach incorporates a pre-selected 
redundancy model for QoS. Expanding the number of 
QoS factors and considering their potential fluctua-
tions might improve the approach’s resilience. In order 
to enhance the usability, improvements and studies on 
user interface could be considered, while extending 
its functionality. This would improve the approach’s 
usability and applicability, increasing its accessibility 
to a broader spectrum of users and scenarios. These 
constraints offer further investigation and innovation 
opportunities to improve the approach’s efficiency and 
relevance.

The proposed approach can be integrated with the cur-
rent cloud management systems, enabling the efficient 

and scalable administration of resources across various 
platforms and services. The graph-based approach pos-
sesses the fundamental characteristic of being extendable, 
which implies that it may be effortlessly enlarged to incor-
porate additional categories of resources or cost-related 
aspects. This feature allows for easy expansion and adap-
tation to future developments and modifications in the 
cloud services industry, making it a flexible and adaptable 
solution. Additionally, the proposed approach can poten-
tially can be integrated with container orchestration sys-
tems like Kubernetes. For example, in terms of resource 
allocation and optimisation, node selection can be done 
for containers as per the output of the proposed approach 
to minimise resource usage costs like CPU and memory. 
In terms of network cost optimisation, Kubernetes clus-
ters often span multiple nodes, regions, or even cloud pro-
viders. The graph-based approach could be used to model 
the network topology and data flows within a Kubernetes 
cluster, thereby optimising data transfer paths.
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