
Khan et al. Journal of Cloud Computing (2024) 13:147
https://doi.org/10.1186/s13677-024-00709-6

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Cost modelling and optimisation for cloud:
a graph-based approach
Akif Quddus Khan1*, Mihhail Matskin2, Radu Prodan3, Christoph Bussler4, Dumitru Roman5,6 and Ahmet Soylu6

Abstract

Cloud computing has become popular among individuals and enterprises due to its convenience, scalability, and flex-
ibility. However, a major concern for many cloud service users is the rising cost of cloud resources. Since cloud com-
puting uses a pay-per-use model, costs can add up quickly, and unexpected expenses can arise from a lack of visibility
and control. The cost structure gets even more complicated when working with multi-cloud or hybrid environments.
Businesses may spend much of their IT budget on cloud computing, and any savings can improve their competitive-
ness and financial stability. Hence, an efficient cloud cost management is crucial. To overcome this difficulty, new
approaches and tools are being developed to provide greater oversight and command over cloud a graph-based
approach for modelling cost elements and cloud resources and a potential way to solve the resulting constraint
problem of cost optimisation. In this context, we primarily consider utilisation, cost, performance, and availability. The
proposed approach is evaluated on three different user scenarios, and results indicate that it could be effective in cost
modelling, cost optimisation, and scalability. This approach will eventually help organisations make informed deci-
sions about cloud resource placement and manage the costs of software applications and data workflows deployed
in single, hybrid, or multi-cloud environments.

Keywords Cloud computing, Cost optimisation, Cost modelling, Graph theory, Resource placement

Introduction
Cloud computing has seen an unprecedented surge in
recent years, becoming integral to many organisations’ IT
strategies. As predicted by Gartner, by 2025, a staggering
85% of enterprises are expected to have adopted a cloud-
first approach [46]. The benefits of cloud computing, such
as scalability and flexibility, are widely recognized. How-
ever, the complexity of managing costs associated with
cloud computing continues to pose a significant chal-
lenge. Cost optimisation becomes critical as more and

more enterprises move their computing workloads to the
cloud. The swift accumulation of cloud resource expenses
demands proactive management to avert unforeseen and
potentially costly fees. Navigating hybrid or multi-cloud
environments adds to this complexity [43]. A thorough
understanding of resource utilisation and carefully balanc-
ing cost, performance, and availability are prerequisites
for effective cloud cost management. Accurately pro-
jecting future needs and modifying resource allocation
appropriately are essential to preventing over- or under-
provisioning problems. Successful cost optimisation can
improve overall business performance and free up finan-
cial resources for other projects despite its difficulties.
Significant funding has been allocated to research and
development in cloud cost optimisation due to the cloud
computing industry’s exponential growth [13]. Despite
these initiatives, there is still a critical need for workable
and efficient solutions that help businesses better control
the expenses associated with cloud computing.

*Correspondence:
Akif Quddus Khan
akif.q.khan@ntnu.no
1 Norwegian University of Science and Technology, Gjøvik, Norway
2 KTH Royal Institute of Technology, Stockholm, Sweden
3 University of Klagenfurt, Klagenfurt, Austria
4 Robert Bosch LLC, Sunnyvale, CA, USA
5 SINTEF AS, Oslo, Norway
6 OsloMet – Oslo Metropolitan University, Oslo, Norway

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00709-6&domain=pdf

Page 2 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

In response to this need, this article proposes an approach
for modelling cost elements and cloud resources in the form
of a graph. It further explores potential strategies for solv-
ing the resulting constraint problem of cost optimisation.
This approach considers various factors, including utilisa-
tion, cost, performance, and availability. The significance of
this approach is underscored by its potential to aid organi-
sations in making informed decisions about cloud resource
allocation. Moreover, it offers a practical solution for effec-
tively managing cloud computing costs across a broad spec-
trum of software applications and data workflows [39, 47],
whether in single, hybrid, or multi-cloud environments.
This article, therefore, represents a step forward in the field
of cloud cost optimisation, moving from a theoretical pro-
posal to practical implementation. The work presented in
this article is an extension of our preliminary work on pro-
posing a graph-based solution for cloud resource placement
and cost optimisation [25]. More specifically, it significantly
extends our earlier work by providing:

• an implementation of the proposed graph-based
approach using Google pricing API1;

• an evaluation of the proposed approach on different
deployment scenarios of big data pipelines;

• a review of scientific literature related to cost optimi-
sation using cloud resource placement; and,

• a review of the scientific literature related to graph
theory being used for the optimisation problem.

The rest of the article is organized as follows. “Back-
ground” section provides the background including vari-
ous cloud computing cost elements and related terms,
while “Related work” section presents the related scientific
literature. “Cost optimisation paths” section discusses a
set of paths for cloud cost optimisation in general, while
“Graph-based cloud cost modelling and optimisation” sec-
tion presents the proposed graph-based cloud cost mod-
elling and optimisation approach. “Case study” section
discusses a detailed case study for a big data infrastructure
on which evaluations are performed, and “Evaluation” sec-
tion describes implementation details and evaluations.
Finally, “Discussion & conclusions” section provides a dis-
cussion and concludes the article.

Background
The section overviews three fundamental areas under-
pinning our cloud cost optimisation solution. The first
subsection discusses different elements of cloud cost
structure, highlighting the complexity of cost structure
in cloud environments and its challenges. The second

subsection discusses big data pipelines and various ele-
ments such as data ingestion, data warehouses, and data
marts. The final subsection discusses graph theory and
related algorithms. The aim is to help understand the
context and theoretical underpinnings of the proposed
graph-based cloud cost optimisation approach.

Cloud computing cost
Cloud computing is a model for delivering on-demand
computing resources over the Internet. This article con-
siders three high-level cost categories: compute, data
transfer, and storage. Compute cost includes the cost of
virtual machines, containers, serverless functions, etc.
Data transfer cost includes transferring data within the
cloud service providers’ (CSP) network and to/from an
external network. We consider four categories of cloud
storage costs: data storage, network usage, transac-
tion, and data replication [27]. Data storage is the cost
of storing data in the cloud, which is charged on a GB-
per-month basis. Different storage tiers have different
pricing, and some CSPs offer block-rate pricing, where
the larger the amount of data, the lower the unit costs.
Transaction costs are associated with managing, moni-
toring, and controlling a transaction when reading or
writing data to cloud storage. Cloud storage providers
charge for the amount of data transferred over the net-
work and the number of operations it takes. Network
usage cost is based on the amount of data transferred
over the network. Data replication cost refers to the cost
of replicating data from on-premises storage to the cloud
or from one instance to another. By default, three copies
are generally stored for each chunk of uploaded data to
achieve high data reliability and better disaster recovery
[30]. In addition, there are several optional costs, includ-
ing data management, data backup, and data security.
Users can optimise mandatory cost elements, but they
cannot avoid them.

In short, understanding the cost structure of cloud
computing can be a difficult and intricate task due to the
complex pricing models offered by various CSPs. Com-
paring costs and selecting the most suitable option for
a particular application can be challenging. Researchers
have attempted to simplify it to make it easier for users to
comprehend the complexity of the cloud cost structure,
e.g., Fig. 1 shows a taxonomy of cloud computing cost
elements and how they are inter-related and overlapping
at the same time, see also [35]. Martens et al. [36] have
observed that many cloud cost evaluations lack a sys-
tematic approach to cost estimation, which is necessary
to understand the varying pricing models of cloud ser-
vices. When selecting a CSP, the cost is not the only fac-
tor to consider. Other quality of service (QoS) elements
exist, such as network performance, data availability, 1 https://cloud.google.com/billing/docs/how-to/get-pricing-information-api

Page 3 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

consistency, security, etc. This gives rise to inevitable
trade-offs such as storage-computation, storage-cache,
storage-network, availability-reliability, and cost-per-
formance [30, 35], which means balancing different fac-
tors to make decisions about resource allocation and use.
These must be considered when deploying applications
and infrastructure to the cloud. A viable solution should
be to find the optimal resource placement strategy for
performance by quantifying the QoS elements.

Big data pipelines
Nowadays, data has become a valuable asset. It is often
compared to oil due to its potential to drive growth and
innovation. Data could be bought and sold on data mar-
kets, i.e., platforms where data providers and data con-
sumers come together [8, 9, 44]. These markets enable
harnessing vast data types in large volumes, enhancing
the value of the end products or services. The term “big
data” is widely used but lacks a formal definition. How-
ever, it is commonly characterized by several “Vs”: vol-
ume, velocity, and variety [3]. Volume refers to the sheer
amount of data generated every second from various
sources like social media, business transactions, sen-
sors, and more. Velocity pertains to the speed at which
this data is generated and processed. In many cases, to
be helpful, the data must be analyzed in near real-time.
Variety denotes the different types of data, including
structured data (like databases), unstructured data (like
text), and semi-structured data (like XML files). Big data

pipelines are designed to handle these three features.
They are a series of data processing steps where the out-
put of one step is the input of the next. These pipelines
are crucial for transforming raw data into insights and
can include data collection, cleaning, integration, analy-
sis, and visualisation steps. The design of these pipelines
can vary greatly depending on the specific requirements
of the big data application. For instance, a pipeline for
real-time data analytics might prioritize velocity, while a
pipeline for a machine learning model might focus more
on volume and variety.

Data ingestion
Data ingestion is the first phase of a big data analytics
solution. Data ingestion (acquisition) moves data from
multiple sources, such as databases, IoT devices, web-
sites, streaming services, etc., to a target system to be
transformed for further processing. Data comes in vari-
ous forms and can be structured or unstructured [6]. The
process of assembling data from multiple heterogeneous
sources into a data repository (data lake or data ware-
house) is called data ingestion. This process is essential
in fields that rely on highly distributed data that needs to
be appropriately stored in a data repository, such as arti-
ficial intelligence, machine learning, data science, data
analytics, and knowledge discovery in databases. Despite
its significance, data ingestion is sometimes viewed as
a preliminary phase in data analysis and is therefore
given less weight. On the other hand, it entails highly

Fig. 1 Cloud computing cost taxonomy [30]

Page 4 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

significant access and integration functions with widely
distributed data components acquired from various
operating systems, applications, and hardware. Bringing
disparate data into a single data repository is the aim of
data ingestion [21].

Date warehouse
A data warehouse (DW) is a central repository for aggre-
gating data from various sources into a unified, consistent
format. From a technical standpoint, a data warehouse is
akin to a relational database optimised for reading, aggre-
gating, and querying large volumes of data. Traditionally,
DWs primarily contained structured data-information
neatly arranged in tables. However, modern data ware-
houses have also evolved to accommodate unstructured
data, including images, PDF files, and audio formats [11].
Data warehouses collect and transform data from various
sources, such as transactional databases, spreadsheets,
logs, and external APIs. These data sets undergo transfor-
mation, cleansing, and integration, often using Extract,
Transform, and Load (ETL) techniques to create a cohe-
sive whole. Data warehouses are optimised for analytics,
enabling complex analytical queries, aggregations, and
reporting, making them invaluable for business intel-
ligence and decision-making. Modern data warehouses
can accommodate structured and unstructured data,
allowing organisations to extract insights from various
data types. They typically follow a three-tier architecture,
with the bottom tier housing the data warehouse server,
the middle tier containing an online analytical processing
server for fast query speeds, and the top tier providing a
user interface or reporting tool for ad-hoc data analysis.
Cloud-based data warehouses have gained prominence,
offering scalability, elasticity, and cost-effectiveness. The
benefits of data warehouses include centralized data,
improved decision-making, performance optimisation,
and data consistency, making them an essential tool for
organisations [21].

Data marts
With a typical size of less than 100GB, a data mart is a
smaller version of a data warehouse. They become essen-
tial when a company’s size and volume of data increase
to the point where conducting an enterprise data ware-
house search takes too long and is no longer produc-
tive. Rather, data marts are designed to make it simple
and quick for other departments (such as sales, market-
ing, and the C-suite) to obtain pertinent information. A
data mart is a type of storage system that holds extremely
specific information targeted at the needs of workers in
a particular department or at the main workstream of an
organisation. It is a component of the data lake concept,
where data are provided in their original format, making

analytics and the presentation of aggregated data chal-
lenging. This problem is resolved by using data marts [5].
This system represents the environments of stored data.
The data mart is a small-sized data warehouse focused on
a specific subject. While a data warehouse is meant for an
entire enterprise, a data mart is built to address the spe-
cific analysis needs of a business unit. Thus, an enterprise
usually has many data marts [52].

Data lake
A Data Lake is a relatively new concept in data manage-
ment and big data. It is a system or repository of data
stored in its natural/raw format, usually object blobs
or files. The concept of Data Lake was put forward by
Dixon to face the challenges of big data and the deficien-
cies of Data Warehouses [45, 54]. Data Lake has neither
a standard definition nor an acknowledged architecture.
However, some researchers have proposed a complete
definition and a generic and extensible architecture of a
data lake [45]. They can quickly process and store data,
regardless of format and size, from structured tables to
unstructured text such as emails, images, or videos. Data
lakes allow various data types and sources to be availa-
ble in one location, supporting statistical discovery [14].
They are often designed for low-cost storage, so they can
house a high volume of data at a relatively low price as
they require low-cost hardware, and most technologies
used to manage data in a data lake are open source like
Hadoop [23]. Moreover, they are highly agile. Data scien-
tists can prepare and analyze data models rapidly [1].

Graph theory
Graph theory, as a mathematical discipline, studies
graphs, which are mathematical structures used to model
pairwise relations between objects. A graph in this con-
text refers to a collection of vertices or nodes and a col-
lection of edges that connect pairs of vertices [55]. This
allows us to model and analyze the structure of a net-
work, providing a robust framework for both quantita-
tive and qualitative approaches [10]. In the context of big
data application deployment in the cloud environment,
graph theory can be beneficial. One or more shortest-
path algorithms or graph-neural networks (GNN) can be
employed to find the optimal solution [50]. These tools
allow us to navigate the graph most efficiently, identify-
ing the shortest or most cost-effective path between two
vertices. Shortest path algorithms are specific algorithms
designed to solve the shortest path problem. The prob-
lem is to find the shortest path or paths from a starting
point to a destination, given a graph where each edge has
a length or cost. Some of the most popular shortest path
algorithms include Dijkstra’s algorithm [19], Bellman-
Ford algorithm [4], A* algorithm [48], Floyd-Warshall

Page 5 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

algorithm [7], and Johnson’s algorithm [22]. Each of these
algorithms has its strengths and weaknesses, and the
choice of algorithm can depend on the specific character-
istics of the graph and the problem at hand. On the other
hand, GNNs [37] are a type of artificial neural network
specifically designed to operate on graph-structured
data. They can process the graph’s topological informa-
tion and the features of its nodes and edges. GNNs have
shown great promise in various applications, including
social network analysis, molecular chemistry, and recom-
mendation systems, to name a few. Graph theory offers
an efficient mathematical framework for modelling and
analyzing network structures, while shortest path algo-
rithms and GNN provide practical tools for navigating
these structures and finding optimal solutions. These
techniques can be particularly valuable in big data and
cloud computing, where efficient resource allocation and
data processing are critical.

Related work
The field of cloud cost optimisation has received signifi-
cant attention in recent years, with numerous studies
exploring different approaches to reducing cloud com-
puting costs. The proposed approach is mainly relevant
to resource placement and network usage cost optimisa-
tion; hence, scientific literature related to these topics is
discussed in this section.

Cloud cost optimisation
Cloud cost optimisation is a wide topic and includes
several different directions. However, in this section,
the related scientific literature discussed concerns
cloud cost optimisation techniques for network usage
cost reduction, either by efficient resource placement,
caching techniques, or optimising the data replication/
migration process. Khan et al. [26, 28] developed a
ranking method for available storage options based on
five key parameters: cost, proximity, network perfor-
mance, the impact of server-side encryption, and user
weights and presented the effectiveness in terms of data
transfer performance and the feasibility of dynamic
selection of storage option. However, the framework
primarily focuses on cloud storage and not other ser-
vices. For network cost optimisation, Mansouri et al.
[34] proposed an approach to minimize the cost of data
placement for applications with time-varying work-
loads. Hence, the scope of work is too narrow and can-
not meet diverse application requirements. Zeng et al.
[57] proposed a method with a slightly different scope,
i.e., a method to deploy edge servers in wireless met-
ropolitan area networks economically. The proposed
approach is related to resource placement; however, it
is only focused on wireless networks. There is another

approach with a similar scope proposed by Shao et al.
[51], a data placement strategy for IoT services in wire-
less networks, which considers user distribution density
to determine optimal edge server deployment locations
and minimize deployment costs.

Caching techniques can be employed to reduce net-
work usage. Ghoreishi et al. [18] proposed a cost-effective
caching as a service (CaaS) framework for virtual video
caching in 5G mobile networks. For evaluation, two vir-
tual caching problems were formulated. Results obtained
have shown significant performance enhancement of the
proposed system regarding return on investment, quality,
offloaded traffic, and storage efficiency. This technique
focuses solely on using caching to reduce network costs
and does not involve anything related to resource place-
ment. Another caching approach is proposed by Kumar
et al. [31]. They presented a framework for cost-efficient
content placement in a cloud-based content delivery net-
work. The proposed approach uses a cost matrix and a
crosslinking data structure to minimize replica depend-
encies and optimise content delivery. Data replication
and migration consume many network resources, result-
ing in high network usage costs. Mansouri et al. [34] sug-
gest two techniques for dynamic replication and data
migration in cloud data centers (i.e., network cost). The
first approach uses dynamic and linear programming
techniques, assuming that accurate information about the
burden on objects is readily available. The second method
uses a randomized The “Receding Horizon Control”
(RHC) approach uses knowledge about potential future
workloads. Dong et al. [12] proposed an online, cost-
efficient transmission scheme for cloud users to address
the issue of selecting high service levels that result in
unnecessary resource waste. The proposed method uti-
lizes an information-agnostic approach, where long-term
transmission requests are split into a series of short-term
ones, allowing for more efficient utilisation of cloud
resources. In short, techniques such as dynamic replica-
tion, data migration, and heuristic strategies address the
dynamic nature of network costs. Additionally, content
delivery networks, caching frequently accessed data, and
cost-efficient content placement frameworks contribute
to reducing network infrastructure use. As stated earlier,
these approaches focus on network usage cost optimisa-
tion; since network cost is a sub-element of total storage
cost, they impact reducing the overall storage cost in the
cloud.

Storage selection is an essential step before any appli-
cation deployment. The selection could be done to find
the cheapest possible option while meeting certain QoS
requirements. Following are some storage selection
techniques from the scientific literature. Ilieva et al. [20]
proposed a new approach for evaluating and ranking

Page 6 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

cloud services, which combines multi-criteria and fuzzy
approaches to consider various factors. Oki et al. [40]
presented selection models for cloud storage to satisfy
data availability requirements, and Halimi et al. [38] pro-
posed a QoS-focused approach for storage service allo-
cation that considers various QoS objectives to improve
the performance and scalability of cloud storage systems.
Liu and Shen [32] proposed a method for efficient storage
resource distribution, which includes three enhancement
strategies to reduce payment cost and service latency.
These proposed algorithms may not work effectively in
real-world situations where workloads and prices are
more dynamic and complex. The data placement strate-
gies may not always reflect user behavior and usage pat-
terns, and the methods for large-scale deployment may
be unfeasible. Since network usage cost is an integral
and expensive cost element [24], in practice, one would
avoid accessing data remotely and instead move the com-
putation close to the data. An example could be having
the same software application step available in different
regions, having the data available in different regions,
and accessing the data locally in the same region by the
software application (assuming the data passed between
steps is small compared to the data accessed within a
step). The comparison presented in [24, 29] indicates
that storing multiple copies of data is more cost-effec-
tive than repeatedly transferring it over the network for
processing.

Graph‑theory for optimisation
Graph theory, a powerful decision-making method, has
been used since 1736 and has found applications in vari-
ous fields to address optimisation problems [49]. Gan-
dhi and Agrawal [16] used graph and matrix approaches
to carry out failure modes and effects analysis on both
hydraulic and mechanical systems. They achieved this
rigor, sensitivity, and impact of imminent failures by sys-
tematically identifying potential failure modes, highlight-
ing impact, and prioritizing them for further corrective
measures. Similarly, Upadhyay [53] utilized graph theory
and matrix algebra to construct and analyze the struc-
ture of an intelligent mobile learning environment. This
approach gave information about dependency and inter-
connections in the learning environment, resulting in
the design of more effective strategies. In their study, Al-
Hakim et al. [2] used graph theory to illustrate a product
and connect its parts. It is an illustration of the product’s
structure, making the identification of weak elements
easier and helping with improved resource management.
Pishvaee Mir and Rabbani [41] gave a graph-theoretic
algorithm that can help design supply chain networks.
Their algorithm took both shipments and indirect ship-
ments into consideration and was thus able to devise the

most efficient routes that would result in a more efficient
supply chain.

Raj et al. [42] designed a digraph and matrix model
to investigate the number of obstacles preventing flex-
ible manufacturing systems implementation. Goyal and
Grover [49] combined graph-theoretical analysis with
fuzzy theory to choose the most suitable advanced man-
ufacturing system from given options. Their approach
considered factors such as costs, quality, and system flex-
ibility. This helped companies make informed decisions
about manufacturing systems. Although graph theory
has not been expressly utilized for cloud resource place-
ment and cost optimisation, its effectiveness in address-
ing optimisation problems across several fields indicates
its potential relevance in this particular subject. Graph
theory’s capacity to represent intricate systems and
determine the most efficient routes makes it a promis-
ing instrument for addressing the difficulties of allocating
resources and optimising costs in cloud computing set-
tings. This field is very suitable for research and has the
potential to produce substantial advantages in the effec-
tive exploitation of cloud resources.

Discussion
The related work demonstrates a growing body of
research focused on cloud cost optimisation, with vari-
ous optimisation algorithms proposed and evaluated.
However, these algorithms do not address industry-spe-
cific requirements, and most are not evaluated in real-
world scenarios. Our cost optimisation approach, which
employs graph theory, represents a new approach to
cloud cost optimisation. We provide a novel approach to
cloud cost optimisation by modelling cost elements and
cloud resources in a graph and quantifying the impact of
QoS elements to address the trade-offs. Graph theory is
effective in finding optimised solutions for problems in a
wide range of domains, including the cloud environment,
such as data replication [33] and caching [56]; there-
fore, we find it promising for the cloud cost modelling
and optimisation as well. The proposed approach should
apply to new and existing applications in the cloud, be
able to address multiple challenges, such as compute and
storage resource placement and network cost optimisa-
tion, and incorporate QoS requirements.

Such an optimisation approach is currently miss-
ing in the literature, creating a substantial challenge to
cloud resources’ economical and effective utilisation. It
is important to note that implementing the proposed
approach may necessitate changes to the system’s archi-
tecture and behavior, which could be a trade-off depend-
ing on the changes made. The proposed approach has
several advantages, including increased efficiency and
cost savings. According to the proposed approach, a cloud

Page 7 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

service instance is conceptualized as a node for processing
or storage in each region. The best path between nodes
is then found using graph theory, which lowers expenses
by placing cloud resources as efficiently as possible. The
information flow between the nodes will be pre-defined,
and the data transfer cost from one node to another will
be specified on the edge connecting the two nodes and
treated as the weight to minimize network usage cost.
Resources from different regions, such as Europe West,
Europe East, and possibly the US East, may be included in
the application architecture. However, CSPs offer various
options for every location, including EUWest1, EUWest2,
EUEast1, EUEast2, and so forth. The algorithm will deter-
mine the optimal path between the selected locations
based on the resources chosen in the designed architec-
ture that outlines cloud resource deployment and data
flow for a software application, considering resource spec-
ifications, availability, and geographical limitations.

Cost optimisation paths
Cloud cost structure consists of several elements, and
optimisation can be done by simultaneously targeting
one or more elements. Hence, we break down the com-
plete process of cloud cost optimisation into six paths, as
described in what follows.

1. Optimisation of the network cost by proposing
new locations for cloud resources: This path focuses
on identifying the most suitable locations for com-
pute and storage resources to ensure optimal perfor-
mance and cost efficiency. By analyzing data access
patterns and workload requirements, the solution
shall suggest new locations for the resources that can
achieve the best possible balance between perfor-
mance and cost. However, if it is done post-deploy-
ment, migration costs will apply.

2. Optimisation of storage cost by proposing the
optimal number of storage instances: This path
expands the optimisation approach to include stor-
age, backup, and archiving. By proposing new loca-
tions and the optimal number of storage instances,
the system can ensure that data is stored cost-effec-
tively and efficiently. In a hybrid cloud, a storage
instance is a server and, for the public, a storage
bucket in a zone/region.

3. Optimisation of compute cost by proposing the
optimal number of compute resources (VMs, GPU):
By carefully selecting the number of virtual machines
and GPUs needed for a specific workload, the overall
cost of compute resources can be minimized, while
still ensuring that the application runs smoothly and
efficiently.

4. Optimisation of compute cost by scaling compute
resources: This path focuses on optimising the sys-
tem’s compute resources to ensure they are appropri-
ately scaled to meet the workload requirements. Ana-
lyzing the workload patterns and scaling the compute
resources accordingly can reduce costs and improve
performance.

5. Optimising storage costs through data migration
between storage tiers: This path involves migrating
data between storage tiers to save cost by identify-
ing opportunities to move data to lower-cost storage
tiers without compromising performance. It can be
done by analyzing data access patterns and workload
requirements.

6. Proposing more efficient and cost‑effective resource
alternatives: This path involves identifying alterna-
tive solutions that can provide the same or better per-
formance while reducing the cost. By analyzing the
system’s current configuration and workload require-
ments, the proposed solution can suggest better and
more cost-effective alternatives. These could include
different CSP or hardware options like spot VMs
instead of regular VMs, containerisation instead of
VMs, or serverless computing instead of fixed pro-
visioning. However, this may require changes in the
architecture/implementation of the system.

An ideal cost optimisation scenario containing all six
paths is exemplified in Fig. 2. The goal is to show how
each optimisation path will work when put into action.
The proposed architecture is not the actual representa-
tion of the optimised scenario. The designed architec-
ture, which could be for a large software application or
a multi-step big data workflow, has data storage in five
locations, with compute resources placed at two locations
near all storage servers. Additionally, a separate data lake
is deployed for the data archive. After passing through
the cost optimisation techniques, this architecture gets
modified based on user requirements, such as required
resources and their location, as well as data access pat-
terns (i.e., proposed architecture). This scenario can offer
several benefits. Firstly, moving them closer to the data
store will significantly reduce data transfer costs, assum-
ing that computing resources only access one data stor-
age. Secondly, centralizing the system status and moving
the data archive to the same location as the storage will
reduce overhead costs and improve overall efficiency.

Graph‑based cloud cost modelling
and optimisation
The proposed approach, shown in Fig. 3, aims to
find the most suitable placement for cloud service
instances in terms of storage and compute resources,

Page 8 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

hence optimising network usage costs (i.e., path 1)
and can potentially target paths 2 and 3 as described
in “Cost optimisation paths” section to optimise com-
pute and storage costs. This involves the development
of a model that considers the number and location of
cloud services deployed, the data access patterns, and
an algorithm to suggest the most efficient location for
cloud service instances. To implement the proposed
approach, the following steps are required.

Purpose clarification
The first step is to clarify the purpose of the applica-
tion. It is an essential first step that involves the iden-
tification of both the functional and non-functional
requirements that are specific to the industry. Func-
tional requirements include the specific tasks that the
application should be able to perform, such as data
storage, data processing, data retrieval, and data anal-
ysis. On the other hand, non-functional requirements

Fig. 2 High-level diagram illustrating an ideal cost optimisation scenario

Fig. 3 Illustration of directed graph data structure based on required cloud resources for big data applications deployed in a cloud environment

Page 9 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

include the quality attributes that the application
should possess, such as latency, availability, and dura-
bility. Considering these requirements makes it pos-
sible to determine the necessary resources, including
storage servers and compute resources. The cost-effec-
tiveness of deploying the resources is also influenced
by the requirements, as the resources must meet the
necessary functional and non-functional requirements
while also being cost-efficient.

Designed architecture
An architecture for the software application must be
designed according to this proposed approach. The
architecture describes the kinds of cloud resources
used, where they will be deployed geographically,
and how the data will flow within the application. It
will specify the limitations on what resources can be
moved, how much (within a country, region, or con-
tinent), and the specifications for those resources (the
quantity of RAM, CPU, and storage space needed).
The number and location of cloud resources, data
flow, QoS requirements, and other variables must all
be considered. The next step’s graph creation will be
based on the output from this step. Verifying the avail-
ability of cloud resources in designated regions and
defining the data flow within the application for effec-
tive processing and storage are two crucial aspects that
must be considered during the design phase to guar-
antee the viability of the architecture. To optimise the
application for effectiveness and cost, we can use the
information provided by the designed architecture
based on graphs to guide our proposed approach.

Graph creation
Creating a graph based on the information gathered
from the previous steps presents a few challenges. Cloud
resources can be treated as graph nodes, and the network
usage cost can be specified as the edge. However, multi-
ple cost elements, such as storage, computing, security,
and other cloud resource costs, must be considered. As
seen in Fig. 4, the nodes with labels Cx represent compute
resources, while the nodes with labels Sx represent stor-
age resources. Figure 3 presents a more detailed exam-
ple where Ca1,Ca2... are the compute resource costs, and
Sa1, Sa2... are the storage resource costs. We denote the
edges as ei , representing the weights of the graph and,
in this case, the costs of services. Storage and comput-
ing costs are not the only factors to be considered when
finding the cost-optimal solution. To ensure that all costs
are accounted for, we must also consider the costs of ser-
vices, such as network usage costs. To solve this problem,
we can treat nij as the network cost between the nodes Ci
and Sj , hence, eij be as follows:2

To incorporate QoS elements, we assume latency, avail-
ability, and durability as lij , aij (quantified value based
on the SLAs), and dij (numerical representation of the
redundancy model), respectively. Similarly, wl , wa , and wd
are weighted in percentage to define the importance of
each factor as per requirements and N as the normalizing

(1)eij = Ci + nij + Sj

Fig. 4 Elements of graph model. Each compute and storage instance is represented as a node and labeled as C and S, respectively. e represents
the cost of these resources as the cost of network usage for data transfer between any two resources

2 Equation 1 refers to a general formula; multiple variations might be used
to avoid redundancy in the cost calculation.

Page 10 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

constant. Using a cost-effectiveness ratio (CER), we can
quantify lij , aij , and dij as:

For example, if the cost of Server A is $150 and its
latency performance is 0.33, the cost-effectiveness ratio
would be: 150

(1−0.3)×10
= 21.42 $

sec. . Similarly, if Server B
has a cost of $200 and a latency performance of 0.2, then
its cost-effectiveness ratio would be: 200

(1−0.2)×10
= 25 $

sec. .
In this case, Server A would be more cost-efficient than
Server B.

Hence, f(QoS) will be:

Putting Eqs. 1, 2 and 3 together, we will get:

This way, additional costs, such as security and
encryption, can also be included in the calculation.
Once the weights are specified on the edges, all pos-
sible resource combinations in a graph can be formed.
For example, as per Fig. 3, Location A has three com-
pute and two storage instances; similarly, Location B
has five compute and four storage instances. Assum-
ing only one storage and one compute instance are
required in each location, the number of resource com-
binations in the graph for just these two locations will be
Num(S)A × Num(C)B + Num(S)B × Num(C)C , which
in this case will be (2× 5)+ (3× 4) = 22 . The total
number of combinations can be calculated using Eq. 5.
The complexity and the total number can be increased
when more resources are required in each location.

Implementation process
The implementation of the proposed approach begins
with the collection and normalisation of input data. The
following are the details of the execution steps that are
carried out:

1. Obtain a list of regions where the desired services are
available within the specified geographic location.
This information will be utilized to create the graph
nodes.

2. Using the CSPs’ “Pricing API”, such as the one
provided by Google4, for cost estimations of the

(2)f (CERl |CERa|CERd) =
Cost

(1− (lij |aij |dij)× N)
× w(l|a|d)

(3)f (QoS)ij = f (CERl)ij + f (CERa)ij + f (CERd)ij

(4)eij = Ci + nij + Sj + f (QoS)ij

(5)Total = �n
x=1(Num(S)x × Num(C)x+1)

requested services, the weights of the edges will be
set.

3. Nodes and edges obtained in the previous steps will
be combined and transformed into a graph. This data
structure will serve as the foundation for the next
step.

4. Find the optimal solution that minimizes the cost
and satisfies the necessary performance requirements
by addressing the constraint problem. These include,
for example, trade-offs, a limit on the amount of stor-
age or compute resources available within a specific
cloud provider or location, or QoS requirements of
the applications running on the cloud resources,
which could impact the selection of suitable cloud
resources for cost optimisation.

Selected algorithm
Although many algorithms could be used to solve this
problem, Dijkstra’s algorithm is employed in this article.
Dijkstra’s algorithm is renowned for finding the shortest
paths between nodes in a weighted graph. Conceived by
computer scientist Edsger W. Dijkstra in 1956, the algo-
rithm has found extensive application in areas such as
network routing protocols [19]. The algorithm works on
the heuristic that nodes are labeled and that the node
with the shortest label at each stage is greedily selected.
It makes the assumption that there is never a negative
distance between any two nodes. The labels consist of
two elements: the node that comes before the current
node in the shortest path and an upper bound on the
shortest path length from the source node to the node
in question. Until it discovers the shortest routes from
the source to all other nodes, the algorithm iteratively
changes these labels [17]. Although Dijkstra’s algorithm
is quite old, it is still being studied; most recently, pos-
sibilities have been explored for using it in conjunction
with predictions from machine learning [15]. Since the
scenarios addressed in this article do not require exten-
sive computation, this algorithm is suitable as it is simple,
lightweight, and easy to implement.

User interface
A user interface is provided to demonstrate the imple-
mentation of the approach and the corresponding
process from the users’ perspective. The interface imple-
mented allows users to select an instance type and
related parameters, as shown in Fig. 5. It starts with the
option to select the resource type; based on the selected
option, further parameters appear, such as total storage,
storage class, etc. At the bottom of the interface, there
is an “Architecture Graph”. This graph visually repre-
sents the steps added to the pipeline architecture. In this

3 Latency performance of 300ms divided by 1000.
4 https://cloud.google.com/billing/docs/how-to/get-pricing-information-api

Page 11 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

scenario, three steps are displayed: a compute instance,
a storage instance, and an additional compute instance.
The interface makes it simple for users to choose and
modify parameters to suit their needs. It offers an orderly
and transparent method for building a pipeline architec-
ture in a cloud computing setting. The process is made
even easier to understand by the architecture’s visual rep-
resentation, which is an important step toward improv-
ing the approach’s usability and accessibility through this
interface.

Case study
To perform evaluations, we provide a case study of the
data engineering process in this section, utilizing an ETL
pipeline. Figure 6, which illustrates the steps involved,
shows the most basic data engineering process. The

process begins with the ingestion of data from multiple
sources. Among other things, these sources may be soft-
ware programs, sensors, and IoT devices. Because of the
variety of sources used, the dataset is rich and diversi-
fied, which can result in more accurate and informative
studies. In this article, this step is also called the “Data
Source”, emphasizing its function as the data source to be
processed. The data is sent to a computing step for pro-
cessing after it has been ingested. This step is referred to
as “Data Transformation”. The raw data is cleaned, nor-
malized, and essentially ready for analysis at this point
in the process. This could entail handling missing val-
ues, eliminating outliers, or formatting the data so that
it can be analyzed. A storage instance is used to store
the transformed data. Depending on what the project
requires, this storage might take on a variety of shapes.

Fig. 5 User interface for creating an architecture to be used as an input for the graph-based cost optimisation model

Page 12 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

A data lake is a more contemporary option than a data
warehouse or a conventional database. Whatever shape
it takes, the storage instance acts as a storehouse for the
processed data, ready for additional processing to access
and examine.

A thorough representation of all the steps in an ETL
pipeline, combined in one place, is shown in Fig. 6. Data
collection from a wide range of different sources is the
first step in the process. After that, the data is kept in a
specific storage instance and may include unstructured
text files or organized databases. Acting as a central
repository, this instance ensures the data is easily avail-
able for the next steps. The transformation of this raw
data comes next after the data collection. Data transfor-
mation is done using a “compute” step. In this stage, the
data is put through several procedures to transform it
into a format better suited for analysis. These processes
can include normalisation, which involves adjusting data
to meet a standard scale; aggregation, which involves
compiling data into a summary form; and cleaning,
which involves eliminating inaccurate or unnecessary
data. The data is loaded into a storage instance after it
has been transformed. This instance is made especially to
make effective data retrieval easier, guaranteeing that the
processed data is easily accessible for additional use. The
transformed data is now ready for consumption, whether
it is being used for reporting, machine learning tech-
niques, or data analysis.

Figure 7 displays several ETL pipelines tailored to dis-
tinct regions that gather data from diverse sources. This
data is subsequently put into a central data warehouse
for processing. The hub-like representation of the data
warehouse highlights its function as the primary hub for
data processing and collection. The processed data is sent
to several data marts from the data warehouse. These
data marts provide customized information to busi-
ness groups and end customers in different regions. The
illustration demonstrates the effectiveness and structure
of this infrastructure, demonstrating how information
may be gathered from many sources, analyzed centrally,
and then dispersed in a targeted way. The flow of data in
a big data infrastructure from the point of origin to the
end user is depicted by this visualisation. It highlights
how data marts help provide customized information to
various business sectors and how ETL pipelines and data
warehouses process data.

Using graph nodes and edges, Fig. 8 conceptualizes
the complete big data infrastructure. This conceptualisa-
tion is important to comprehend the complex relation-
ships and connections inside the infrastructure. Several
directed graphs are involved in the implementation and
deployment of this big data infrastructure, requiring the
identification of several paths. The data flow across the
infrastructure is represented by these paths, which go
from data ingestion and transformation to data ware-
house storage and, ultimately, data marts for user access.

Fig. 6 Illustration of a simple data engineering process and a representation of an ETL pipeline to be deployed in one single geographic region

Page 13 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

In this context, since there are three regions, hence
three starting points, the following paths for data flow are
identified for each region:

For ETL_Region_a:

• Path 1: 1 → 8

• Path 2: 1 → 7 → 9

• Path 3: 1 → 7 → 10

For ETL_Region_b:

• Path 4: 15 → 18 → 5 → 8

• Path 5: 15 → 18 → 5 → 7 → 9

• Path 6: 15 → 18 → 5 → 7 → 10

For ETL_Region_c:

• Path 7: 11 → 14 → 5 → 8

• Path 8: 11 → 14 → 5 → 7 → 9

• Path 9: 11 → 14 → 5 → 7 → 10

In Fig. 8, ETL_Regiona , ETL_Regionb , and ETL_Regionc
represent data pipelines designed for data ingestion
and transformation. These pipelines receive raw data,
process it into a format that can be used for further
processing, and then forward it to the next step that

Fig. 7 An illustration of a big data infrastructure including an ETL pipeline, a data warehouse, and multiple data marts

Fig. 8 Directed graph illustrating the flow and transformation of data through ETL pipelines, central data warehouse, and data marts in a big data
infrastructure

Page 14 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

follows. Regiond refers to a data warehouse, a substantial
storage facility containing transformed and unprocessed
data from numerous sources. It acts as a central hub for
data that has been cleaned, combined, and prepared
for analysis. Data marts, subsets of the data warehouse,
are represented by nodes 8, 9, and 10. They are made to
meet the requirements of particular teams or business
divisions. Data marts let users access a portion of the
data warehouse, enabling them to retrieve and examine
information pertinent to their particular requirements.
The visual representation in Fig. 8 makes the process
and resources involved easier to understand with this
graph-based representation of the big data infrastruc-
ture, which offers a clear and succinct overview of the
data flow.

Evaluation
This section presents the evaluations of the proposed
approach. Due to the involvement of multiple parameters
and the complexity, the approach is evaluated gradually
in multiple steps.

It evaluates the efficacy and performance of the sug-
gested methodology in a range of scenarios based on the
case study presented. These scenarios are designed to
mimic situations expected to occur in real-world con-
texts. This strategy seeks to ensure that the applicability
and practicality of the approach are not merely theoreti-
cal but also have practical implications. The results of
this analysis will give a clear picture of the approach’s
strengths as well as any potential weaknesses. Note that
the term “region” refers to a specific area within a cloud
service, for instance, useast1 and useast2. On the other
hand, “geographic region” pertains to a broader geo-
graphical area like Europe West, which encompasses fur-
ther regions such as euwest1 and euwest2.

Each of the following subsections contains “Require-
ments” section that outlines the specifications and
regions for the steps involving compute and storage
instances. It provides detailed information on the number

of CPUs, memory, and boot disk size5, and other specifi-
cations for each step. This information is used as input
to the approach based on the estimated prices retrieved
from the pricing API. When choosing one, the total cost
of a compute instance can be changed by several factors.
These include the operating system, the provisioning
model, the boot disk type, the inclusion of a local SSD,
and the machine type. In the same way, there are other
choices for storage instances as well. In addition, latency
can be measured in real-time for each instance, and its
impact on the cost (recall Eq. 2) can be included in the
total cost.

Scenario: three‑step data pipeline
In this scenario, we consider a data pipeline with only
three steps: compute, storage, and compute. Data moves
from step one to step three in a unidirectional manner,
i.e., in a single way. The first computation step needs
to be deployed in the US Central. After the data is pro-
cessed in the first step, it is moved to the geographic
region of US East for storage. The data is then extracted
and moved to the US West area for the final computation
step. Regarding QoS, the redundancy model is one of the
QoS considerations. The approach ensures the integrity
of the data pipeline, ensuring that the data is not lost dur-
ing transfer and that it is still accurate and available. An
example of this data pipeline may be seen in Fig. 9, which
shows how data moves from the first computation in the
US Central geographic region to storage in the US East
and then to the second computation in the US West geo-
graphic region. This illustration makes it easier to under-
stand the composition and operation of the data pipeline.

Requirements: Table 1 outlines the specifications and
regions for three steps involving two compute and one

Fig. 9 A schematic representation of the three-step data pipeline, illustrating the unidirectional flow of data from computation in the US Central
geographic region, through storage in the US East, to further computation in the US West geographic region

5 A boot disk, or startup disk, is a storage device from which a computer
can “boot” or “start up1”. This disk contains files required by the boot
sequence and the operating system, loaded at the end of the startup process.

Page 15 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

storage instance. A single redundancy model is selected
for Step 2. A graph data structure is constructed after
retrieving potential locations and their corresponding
estimated prices, as shown in Fig. 10, which are deter-
mined based on the input requirements. This graph,
depicted in Fig. 10, represents the interconnections
between the different steps and their respective regions.
The primary objective is to identify the shortest path
from any given region for Step 1 to any region for Step
3, which necessarily passes through Step 2. Consequently,
there are three potential starting points in Step 1 and
three potential ending points in Step 3, thereby offering a
variety of paths for consideration in the cost optimisation
approach. This approach ensures a comprehensive analy-
sis of all possible routes, thereby facilitating the identifi-
cation of the most cost-effective path.

Table 1 Requirement specifications for a three-step data
pipeline, presenting a detailed overview of two compute and a
storage instance

Step Instance Specifications Geographical region

Step 1 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step2 Storage Storage: 100 TB US East

Redundancy model: Single

Network: 500 TB

Step3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Fig. 10 A visual representation of the graph data structure for the three-step data pipeline for cost optimisation by mapping all possible paths
across steps and regions. Sx_y represents a cloud resource and arrows show the direction of data flow. The cost on the edges is the total estimated
cost of cloud resources on the left side of the edge, as well as the cost of data transfer from this resource to the next resource

Page 16 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Results Table 2 is created based on the information
retrieved from the Google pricing API. There is one pos-
sible deployment region for Step 1, whereas there are
three possibilities for Step 2 and four for Step 3. It is also
interesting to note how prices vary for the same com-
pute instance with similar specifications across differ-
ent regions. Data transfer cost is estimated based on the
assumption that the data pipeline is deployed using the
Google Cloud Platform and that data transfer will occur
in North American regions and within the Google Cloud.
The graph is implemented, and the Dijkstra algorithm is
used to find the cheapest deployment model. After set-
ting the weights and running the algorithm, the following
are the proposed regions for the resource deployment:

Step 1 (US Central 1) → Step 2 (US East 1) → Step 3
(US West 1).

The proposed deployment approach could lead to sig-
nificant cost savings as more attributes are involved.
Although, in this case, the focus is on cost optimisa-
tion, by including different QoS factors, the impact on
performance can also be studied and optimised, such

as latency, throughput, and the overall performance of
cloud services.

Scenario: multi‑step data pipeline ‑ two locations
This scenario represents a slightly extended version of the
first scenario, in which an ETL pipeline is deployed in the
same geographic region, but the data after transforma-
tion is stored in a warehouse deployed in a different geo-
graphic region. Hence, we are considering a data pipeline
that consists of three steps: 1) compute, 2) storage, and 3)
compute. Additionally, a dataware where the data would
be stored. The data flows unidirectionally from the first
to the third step. All steps are deployed in the same geo-
graphic region, which in this case is the US West. How-
ever, the data warehouse is deployed in the EU West.
Moreover, we consider only one resource in the data
warehouse. It is a slightly unlikely scenario, but it is part
of the larger big data infrastructure, and it is set up like
this primarily for assessment purposes. QoS considera-
tions involve the redundancy model in this scenario. This
model ensures that the data is not lost during transfer
and remains accessible and accurate, thereby maintain-
ing the integrity of the data pipeline. Figure 11 presents a
visual representation of this data pipeline, illustrating the
flow of data from the initial computation in the US West,
through storage in the same region, and then to the sub-
sequent computation again in the US West. From there,
the data is transferred to the storage in the EU West. This
visualisation aids in understanding the structure and
operation of the data pipeline.

Requirements: Table 3 outlines the specifications and
regions for three steps involving compute and storage
instances. A graph data structure is constructed after
retrieving potential locations and their corresponding
estimated prices, shown in Fig. 12, which are determined
based on the input requirements. This graph, depicted
in Fig. 12, represents the interconnections between the

Table 2 Cost estimation for three-step data pipeline for steps in
different regions. All prices are in US Dollars

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) US Central: 148.85 9311.23 9460.08

Step 2 (Storage) US East1: 1862.55 9311.23 11173.78

US East4: 2142.04 11453.27

US East5: 1862.65 11173.78

Step 3 (Compute) US West1: 148.85 148.85

US West2: 179.79 179.79

US West3: 179.79 179.79

US West4: 168.56 168.56

Fig. 11 A schematic representation of the ETL data pipeline, i.e., multi-step data pipeline - two locations, illustrating the unidirectional flow of data
from computation in the US West into a data warehouse in the EU West

Page 17 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

different steps and their respective regions. The primary
objective is to identify the shortest path from any given
region in Step 1 to any region in Step 4, which necessar-
ily passes through Steps 2 and 3. Consequently, there are
four potential starting points in Step 1 and eight potential
ending points in Step 4, thereby offering a variety of paths
for consideration in the cost optimisation approach. This
approach ensures a comprehensive analysis of all possible
routes, thereby facilitating the identification of the most
cost-effective path.

Results Table 4 is created based on the information
retrieved from the Google pricing API. There are four
possible deployment regions for Steps 1, 2, and 3, whereas
there are 8 possibilities for Step 4. It is also interesting
to note how prices vary for the same compute instance
with similar specifications across different regions. Data
transfer cost is estimated based on the assumption that
the data pipeline is deployed using the Google Cloud
Platform and that data transfer will occur in the North
American region and within the Google Cloud. For the
data transfer between Steps 3 and 4, the estimated cost
is retrieved for the transfer between the North American
region and Europe. For 2000TB of data transfer between
North America, it is approximately 37,250 US Dollars,
whereas if it is between North America and Europe, it
is 93,295 US Dollars. The graph is implemented, and the
Dijkstra algorithm is used to find the cheapest deploy-
ment model. After setting the weights and running the
algorithm, the following are the proposed regions for the
resource deployment:

Step 1 (US West 1) → Step 2 (US West 1) → Step 3 (US
West 1) → Step 4 (EU West 1 or EU West 4).

The deployment model suggested by the algorithm
accumulates an estimate of 132,538 US Dollars compared
to the most expensive, 137,536. This reduction mounts to
approximately 60,000 US Dollars annually, and it occurs
when the data pipeline is deployed in only two regions
with a single redundancy model and does not consider
different storage tiers. The larger the data pipeline with
more detailed input parameters, the higher the cost
reduction. Figure 12 shows how the complexity of the
graph increased by adding just one more step to the data
pipeline. Moreover, many more options can be included.
For example, for each node of Steps 2 and 4, there could
be 4 different variations based on the redundancy model
selected. In addition, for Steps 1 and 3, committed use
options can also be selected, such as none, 1 year, and 3
years, and then the price can be calculated. Last but not
least, QoS elements such as latency and throughput can
be measured and, after calculating their impact on cost,
can be included in the graph.

Scenario: big data infrastructure
In this scenario, we are considering three different ETL
data pipelines deployed in three different regions that
consist of three steps each: 1) compute, 2) storage, and
3) compute. The data flows unidirectionally from the
first to the third step. We consider a scenario in which
the first ETL pipeline needs to be deployed in the US
West geographic region, the second in the US East, and
the third in the US South geographic region. From each
ETL data pipeline, the data is transferred and stored in
the data warehouse, which is deployed in the US Cen-
tral geographic region. Once the data is accumulated
and processed, it is transferred back to data marts
deployed in the same regions as the ETL pipelines. QoS
considerations involve the redundancy model in this
scenario. This model ensures that the data is not lost
during transfer and remains accessible and accurate,
thereby maintaining the integrity of the data pipeline.

Requirements: Table 5 outlines the specifications and
regions for big data infrastructure involving three ETL
data pipelines, a data warehouse, and three data marts.
A graph data structure is constructed after retrieving
potential locations and their corresponding estimated
prices, as shown in Fig. 13, which are determined based
on the input requirements. This graph, depicted in
Fig. 13, represents the interconnections between the dif-
ferent steps and their respective regions. The primary
objective is to identify the shortest path from any given
region in each data pipeline to any region in the respec-
tive data mart, which necessarily passes through Steps

Table 3 Requirement specifications for each step in the big
data pipeline, i.e., multi-step data pipeline - two locations, which
is deployed in two different locations presenting a detailed
overview of two compute and two storage instances

Step Instance Specifications Geographic region

Step 1 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step2 Storage Storage: 100 TB US West

Redundancy model: Single

Network: 500 TB

Step3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step4 Storage Storage: 1000 TB EU West

Redundancy model: Single

Network: 1000 TB

Page 18 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Fig. 12 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions
for the multi-step data pipeline - two locations

Page 19 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

2, 3, 4, 5, and 6. Consequently, there are three potential
starting points for the first data pipeline in the US East
region, four for the second data pipeline in the US West
region, and one for the third data pipeline in the US
South region. Regarding potential ending points, the US
East region has three possible ending points, the US West
has four, and the US South has only one possible ending
point. Thus offering a variety of paths for consideration
in the cost optimisation approach. This approach ensures
a comprehensive analysis of all possible routes, thereby
facilitating the identification of the most cost-effective
path.

Results Data is gathered based on the information
retrieved from the Google Pricing API. There are three
possible deployment regions for the ETL data pipeline
in the US East region, four for the ETL data pipeline in
the US West region, and one for the ETL data pipeline in
the US South region. Moreover, there is only one possible
deployment region for the data warehouse in the US cen-
tral region, but two different redundancy models are con-
sidered for the storage in the data warehouse. It is also
interesting to note the exponential increase in the com-
plexity of graphs as more elements of big data infrastruc-
ture are added. More complexity means more possible

deployment models, making it challenging to do a cost-
benefit analysis of different deployment options without
a standard framework and software tool.

Furthermore, data transfer cost is estimated based on
the assumption that the data pipeline is deployed using
the Google Cloud Platform and that data transfer will
occur in the North American region and within the
Google Cloud. The graph is implemented, and the Dijk-
stra algorithm is used to find the cheapest deployment
model. After setting the weights and running the algo-
rithm, the following are the proposed regions for the
resource deployment:

• ETL_Region_e: Step 1 (US East 1) → Step 2 (US
East 1) → Step 3 (US East 1) → Step 4 (US Central
1) → Step 5 (US East 1).

• ETL_Region_w: Step 1 (US West 1) → Step 2 (US
West 1) → Step 3 (US West 1) → Step 4 (US Cen-
tral 1) → Step 5 (US West 1).

• ETL_Region_s: Step 1 (US South 1) → Step 2 (US
South 1) → Step 3 (US South 1) → Step 4 (US Cen-
tral 1) → Step 5 (US South 1).

This shows that the proposed approach has the capa-
bility, to handle complex multi-region ETL data pipe-
lines effectively by leveraging graph theory to map
the data flow and identify cost-efficient paths for data
transfer and storage. Moreover, it is scalable and flex-
ible enough to adapt to various configurations of data
pipelines and storage options. This adaptability ensures
that it can be tailored to different organisational needs
and infrastructure setups, further enhancing its util-
ity in diverse real-world applications. By incorporating
QoS considerations, such as redundancy models, the
approach ensured data integrity and accessibility. This
is critical for maintaining a reliable and accurate data
pipeline.

Scenario: multi‑regional big data pipeline
In this case, we present a big data pipeline that involves
multiple steps, each requiring specific compute and stor-
age resources. The deployment spans across three geo-
graphic regions: US West, EU West, and Asia East. The
first step in the pipeline is data ingestion. This is han-
dled by two compute instances located in the US West
region. Each instance is equipped with 8 CPUs, 32 GB of
memory, and a boot disk size of 50 GB. Following data
ingestion, the data is stored in the US West region. The
storage instance has a capacity of 200 TB and operates
on a single-region redundancy model. The third step in
the pipeline is data processing. This is carried out by four
compute instances located in the EU West region. Each

Table 4 Cost estimation for data pipeline steps in different
regions for the multi-step data pipeline - two locations

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) US West1: 148.85 9313.37 9462.22

US West2: 179.79 9493.16

US West3: 179.79 9493.16

US West4: 168.56 9481.93

Step 2 (Storage) US West1: 1862.55 9313.37 11173.77

US West2: 2142.04 11453.27

US West3: 2142.04 11453.27

US West4: 2142.04 11453.27

Step 3 (Compute) US West1: 148.85 93127.26 93276.11

US West2: 179.79 93307.05

US West3: 179.79 93307.05

US West4: 168.56 93295.82

Step 4 (Storage) EU West1: 18626.45 18626.45

EU West2: 21420.42 21420.42

EU West3: 21420.42 21420.42

EU West4: 18626.45 18626.45

EU West6: 23283.06 23283.06

EU West8: 21420.42 21420.42

EU West9: 21420.42 21420.42

EU West12: 21420.42 21420.42

Page 20 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Table 5 Requirement specifications for each step in the big data infrastructure presenting a detailed overview of three big data
pipelines, a data warehouse, and several data marts

Steps Instance Specifications Geographic region

ETL_DataPipeline_w Step 1 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US West

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

ETL_DataPipeline_e Step 1 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US East

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

ETL_DataPipeline_s Step 1 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 2 Storage Storage: 100 TB US South

Redundancy model: Single

Network: 500 TB

Step 3 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Data Warehouse Step 4 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 5 Storage Storage: 100 TB US Central

Redundancy model: Single

Network: 500 TB

Step 6 Compute No. of instances: 1 US Central

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Data Marts Step 7 Compute No. of instances: 1 US West

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Page 21 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

of these instances has 16 CPUs, 64 GB of memory, and
a boot disk size of 100 GB. Finally, the data is archived
in the Asia East geographic region. The storage instance
used for this purpose has a capacity of 500 TB and oper-
ates on a multi-regional redundancy model. This compre-
hensive and robust pipeline ensures efficient and secure
handling of big data.

Requirements Table 6 presents the requirements for this
multi-regional big data pipeline. A graph data structure
is constructed after retrieving potential locations and
their corresponding estimated costs, as shown in Fig. 14,
which are determined based on the input requirements.
This graph represents the interconnections between the
different steps and their respective regions. The primary
objective is to identify the shortest path from any given
region in Step 1 to any region in Step 4, which necessar-
ily passes through Steps 2, and 3. Consequently, there
are four potential starting points for the first step in the
US West geographic region, four for the second step in
the data pipeline in the US West geographic region, and
again four for the third step in the EU West geographic
region. Regarding potential ending points, the Asia East
geographic region has two possible deployment regions.
Thus offering a variety of paths for consideration in the
cost optimisation approach. This approach ensures a
comprehensive analysis of all possible routes, thereby
facilitating the identification of the most cost-effective
path.

Results Table 7 is created based on the information
retrieved from the Google pricing API. The “Steps” col-
umn lists the different steps involved in the data pipeline.
These steps are categorized into Compute, Network, and
Storage. The “Compute/Storage” column provides cost
estimations for compute and storage resources used in
each step of the data pipeline for different regions. The
costs are based on the amount of resources (like CPU,
RAM, and disk space) consumed during each step,

which are specified in Table 6. This “Network” pro-
vides the cost estimations for network resources used in
each step of the data pipeline for different regions. The
costs are based on the amount of data transferred over
the network from the given step to the next step in the
data pipeline. The last column provides the total cost
estimation for each step of the data pipeline for differ-
ent regions. It is the sum of the “Compute/Storage” and
“Network” costs. The graph is implemented, and the
Dijkstra algorithm is used to find the cheapest deploy-
ment model. After setting the weights and running the
algorithm, the following are the proposed regions for the
resource deployment:

Step 1 (US West 1 or US West 2) → Step 2 (US West 1)
→ Step 3 (EU West 1) → Step 4 (Asia East Coldline).

The deployment model suggested by the algorithm
accumulates an estimate of 225,052 US Dollars com-
pared to the most expensive, 239,066. This reduction
amounts to approximately 168,000 US Dollars annually,
and it occurs when the data pipeline is deployed in three
different geographic regions with a single redundancy
model and considers only one different storage tier for
the data archiving step. In usual circumstances, for data
archival, Archive tier would be first choice, but based on
data retrieval and storage characteristics, Coldline is sug-
gested to be the most suitable. The larger the data pipe-
line with more detailed input parameters, the higher the
cost reduction.

Cost comparison with baseline and robustness analysis
We define the baseline as a deployment executed with-
out utilizing any specific cost models. Figure 15 shows
the annual cost difference between graph-based and
baseline deployments for the above-discussed four sce-
narios. This difference grows with increasing complex-
ity and resource demands. Efficiency can be further
enhanced by factoring in the impact of QoS on cost,
as shown in Eq. 3. It can be seen that even seemingly a

Table 5 (continued)

Steps Instance Specifications Geographic region

Step 8 Compute No. of instances: 1 US East

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Step 9 Compute No. of instances: 1 US South

No. of CPUs: 4

Memory: 16 GB

Boot disk size: 20 GB

Page 22 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

small difference in total cost (∼7-9%) amounts to large
amounts of sum. For example, for a multi-step data
pipeline, that contains a very limited number of cloud
resources, the cost difference is almost 60,000 US Dol-
lars. Similarly, this difference is around 120,000 US Dol-
lars for a big data infrastructure scenario and 170,000
US Dollars for a multi-regional data pipeline.

We further present a sensitivity analysis to demonstrate
the robustness of the proposed approach. By examining
the complexities of basic cloud resource configurations,
specifically a storage instance and a compute instance,
and by diving into the operational specifics of these
instances, we aim to highlight the strengths and potential
scalability of the proposed approach.

Fig. 13 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions for the big
data infrastructure (actual cost estimates are not mentioned in the graph due to the limited dimensions of the figure)

Page 23 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Table 8 outlines the parameters to consider when
selecting a simple storage instance in Google Cloud.
For instance, a storage instance with a capacity of 1000
TB should be deployed in the USWest region. Key con-
siderations include storage tiers (Table 8 lists Standard
and Nearline due to their similar characteristics), addi-
tional data retrieval costs, redundancy models, avail-
able regional options, and data transfer sources and
destinations.

The impact of these parameters on the cost is illus-
trated in the following examples:

• Storage cost, shown in Fig. 16.

– Size: 1000TB; tier: standard; redundancy model:
single - USWest1 = $20,479

– Size: 1000TB; tier: nearline; redundancy model:
single - USWest1 = $10,240

– Size: 1000TB: tier: standard; redundancy model:
single - USWest2 = $23,552

– Size: 1000TB; tier: nearline; redundancy model:
single - USWest2 = $16,384

• Data transfer cost within Google Cloud, shown in
Fig. 17.

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: North America = $20,478

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Europe = $51,195

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Asia = $81,912

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Indonesia = $102,390

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Middle East = $112,640

– Size: 1000TB; tier: standard; source: North Amer-
ica; destination: Latin America = $143,346

Additionally, Table 9 lists the key parameters to
consider when selecting a single compute instance in
Google Cloud. Some parameters are related to resource
requirements, such as the number of CPUs, memory
size, boot disk size, and local SSD capacity (if needed).
Other parameters are qualitative, including the pro-
visioning model, machine type, extended memory
requirements, boot disk type, and committed use dis-
count options. These parameters affect either cost, per-
formance or both. Hence, each of the options needs to
be selected carefully.

The impact of these parameters on the cost is illus-
trated in the following examples, also shown in Fig. 18.

• Cost of a single compute instance in us-central1
region with different provisioning models:

– No. of vCPUs: 12; memory: 36 GiB; provisioning
model: regular; committed use option: none =
$407.60

Table 6 Requirement specifications for each step in the multi-regional big data pipeline presenting a detailed overview of two
compute and two storage instances

Step Instance Specifications Geographic region

Step 1: Data Ingestion Compute No. of instances: 2 US West

Number of CPUs: 8

Memory: 32 GB

Boot disk size: 50 GB

Step 2: Data Storage Storage Storage: 200 TB US West

Redundancy model: Single

Network: 500 TB

Step 3: Data Processing Compute No. of instances: 4 EU West

Number of CPUs: 16

Memory: 64 GB

Boot disk size: 100 GB

Step 4: Data Archiving Storage Storage: 500 TB Asia East

Redundancy model: Multi

Tier: Archive, Coldline, Nearline

Data retrieval: 300 TB

Data transfer: 700 TB

Page 24 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

– No. of vCPUs: 12; memory: 36 GiB; provision-
ing model: spot; committed use option: none =
$101.86

• Cost of a single compute instance in us-central1
region with different committed use options:

– No. of vCPUs: 12; memory: 36 GiB; provision-
ing model: regular; committed use option: none =
$407.60

– No. of vCPUs: 12; memory: 36 GiB; provisioning
model: regular; committed use option: 1 year =
$253.33

Fig. 14 A visual representation of the graph data structure for cost optimisation by mapping all possible paths across steps and regions
for the multi-regional big data pipeline (actual cost estimates are not mentioned in the graph due to the limited dimensions of the figure)

Page 25 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

– No. of vCPUs: 12; memory: 36 GiB; provisioning
model: regular; committed use option: 3 years =
$183.46

It can be seen that by changing the provisioning
model, the cost of a compute instance can be signifi-
cantly reduced. For example, switching from a regular
provisioning model to a spot instance reduces the cost to
one-fourth, leveraging idle capacity. Additionally, com-
mitted use options play a crucial role in cost manage-
ment. Opting for a 1-year or 3-year commitment can
further decrease expenses. These examples highlight the
importance of careful planning and architectural design
in optimizing application costs. In addition to these two
parameters, there are other parameters that need to
be considered before creating a cost-effective compute
instance. The proposed approach has the ability to incor-
porate and process these additional parameters in a very
minimal amount of time.

This analysis highlights the complexity of the cost
structure, demonstrating that costs are influenced by a

Table 7 Cost estimation for data pipeline steps in different
regions for the multi-regional big data pipeline

Steps (Instance) Cost Total

Compute/Storage Network

Step 1 (Compute) USWest1: 598.19 10238 10836.19

USWest2: 598.19 10836.19

USWest3: 720.11 10958.11

USWest4: 675.11 10913.11

Step 2 (Storage) USWest1: 3725.19 25595 29320.19

USWest2: 4284.08 29879.08

USWest3: 4284.08 29879.08

USWest4: 4284.08 29879.08

Step 3 (Compute) EUWest1: 1317.01 81920 83237.01

EUWest2: 1544.12 83464.12

EUWest3: 1544.12 83464.12

EUWest4: 1320.02 83240.02

EUWest6: 1676.91 83596.91

Step 4 (Storage) Archive: 41327.44 71313.84 112641.28

Coldline: 38649.89 62931.94 101581.83

Nearline: 44237.82 71313.84 115551.66

Fig. 15 Comparative analysis of graph-based approach against the baseline cost

Table 8 Range of parameters for selecting a simple storage instance in Google Cloud

Size Storage tiers Additional data
retrieval cost

Redundancy
models

Regions (USWest) Source region Destination region

1000 TB Standard No Single USWest1 North America North America

Nearline Yes Dual USWest2 Europe Europe

Multi USWest3 Asia Asia

USWest4 Indonesia Indonesia

Oceania Oceania

Middle East Middle East

Latin America Latin America

Page 26 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Fig. 16 Difference in storage cost for 1000TB of data based on region and storage tier

Fig. 17 Difference in data transfer cost from destination “North America” and source listed on the x-axes

Table 9 Range of parameters for selecting a simple compute instance with no. of instances set to 1 in Google Cloud

Operation
system

Provisioning
model

Machine
type

No. of CPUs Amount of
memory

Extended
memory

Boot disk
type

Boot disk
size (GiB)

Local SSD Committed
use discount
options

Free Regular General
purpose

Min: 1 vCPUs
Max: 96
vCPUs

Min: 0.6 GiB
Max: 624 GiB

Yes Standard per-
sistent disk

Min: 0 Max:
>= 65,536

0 None

Paid Spot
(Preemptible
VM)

Compute-
optimized

No Balanced per-
sistent disk

1 x 375 GB 1 year

Memory-
optimized

SSD persistent
disk

2 x 375 GB 3 years

Accelerator-
optimized

3 x 375 GB

Storage-
optimized

4 x 375 GB

5 x 375 GB

6 x 375 GB

7 x 375 GB

8 x 375 GB

16 x 375 GB

24 x 375 GB

Page 27 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

combination of multiple factors rather than a single ele-
ment. It also showcases the model’s robustness and its
ability to integrate these factors and generate a model
almost instantaneously (see the next subsection). Addi-
tionally, performance metrics can be incorporated. For
instance, latency is crucial for the application’s perfor-
mance. Real-time latency can be monitored using services
like AWS Latency Monitoring6. The cost-effectiveness

ratio can be calculated (refer to Eq. 3), ensuring efficient
deployment.

Qualitative comparison with the state of the art
In this section, a qualitative comparison with the state-
of-the-art is presented. Table 10 presents a compara-
tive analysis of a graph-based approach against existing
literature in terms of strategy, cost optimization, scal-
ability potential, technology focus, and innovation. The

Fig. 18 Difference in cost of a single compute instance with 12 vCPUs, 36 GiB memory based on provisioning model and committed use discount
options

Table 10 A comparison of graph-based approach with existing literature in terms of strategy, cost elements, scalability potential,
technology focus and innovation

Strategy Cost optimisation Scalability Technology focus Innovation

Grahp-
based
approach

Data placement using
graph-theory

Advanced cost optimisa-
tion techniques

Enhanced scalability
for diverse applications

Platform- & industry
independent

Use of graph-theory
to incorporate multiple
parameters and address
existing gaps

[26, 28] Smart data placement
using storage-as-a-
service model

Not explicitly focused High scalability for big
data pipelines

Storage-as-a-service MCDA-based storage
selection model

[34] Dynamic replication
and migration

For replication
and migration

Scalable replication
and migration

Cloud data centers Advanced cost optimisa-
tion

[57] Edge server placement Cost-effective placement Scalable edge server
placement

Wireless metropolitan
area networks

Novel edge server place-
ment

[51] Edge server placement
for IoT services

Cost-aware placement
optimisation

Scalable IoT services Wireless metropolitan
area networks

Novel IoT service place-
ment

[18] Caching-as-a-Service Cost-driven caching Scalable caching solu-
tions

Cloud-based 5G mobile
networks

Innovative caching
approach

[31] Aggregation networks
for streaming analytics

Cost-aware aggregation Scalable aggregation
networks

Geo-distributed stream-
ing analytics

Advanced aggregation
techniques

[12] Transmission scheme
for inter-datacenter
networks

Cost-efficient transmis-
sion

Scalable transmission
schemes

Inter-datacenter net-
works

Novel transmission scheme

[20] Cloud service selection Not explicitly focused Scalable cloud service
selection

Cloud services Unique fuzzy multi-criteria
approach

[40] Cloud provider selection Availability requirements Scalable cloud provider
selection

Cloud storage services Unique provider selection
model

[38] Intelligent service selec-
tion for IoT

Cost-effective service
selection

Scalable IoT service
selection

Cloud providers for IoT Intelligent multi-dimen-
sional selection

6 https://www.cloudping.co/grid

Page 28 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

graph-based approach leverages graph-theory for data
placement, offering advanced cost optimisation tech-
niques and enhanced scalability across diverse applica-
tions. It is platform and industry-independent, making it
applicable to a wide range of scenarios and applications.
It also incorporates multiple parameters, as compared to
approaches focused solely on data placement, edge server
placement, and caching techniques.

Computational cost
In this section, we present the computational cost of
the graph-based approach in terms of processing time.
Dijkstra’s algorithm has many variants, but in this
case, we have used the one to find the shortest paths
from the source node to all other nodes in the graph.
The time complexity of Dijkstra’s algorithm is O(V 2)
where V is the number of nodes or vertices. However,
since we have multiple possible starting nodes, the
computational time will be higher based on the num-
ber of possible starting nodes. The proposed approach
is implemented using the Java programming language
and executed on a machine running MacOS, 32GB of
RAM, and an Intel Core i7 processor. Figure 19 shows
the number of nodes on the x-axis, computational time
in milliseconds, and number of starting nodes on the
y-axis. The time taken to retrieve data from the pric-
ing API is not included, as that can vary based on the

network speed; however, the time for creating and load-
ing graph data structures in memory is included along
with the traversal time. The computational cost of the
graph-based approach using Dijkstra’s algorithm is
very minimal and it increases as the number of nodes
and starting nodes increase. Moreover, the graph in
Fig. 19 clearly illustrates this trend, showing a steeper
increase in computational time as the number of nodes
increases. While Dijkstra’s algorithm is efficient for
smaller graphs or when the number of nodes is lim-
ited, its computational cost can become significant for
larger graphs or when there are large numbers of nodes
with many potential starting nodes. For such scenarios,
alternative approaches may be necessary to ensure effi-
cient computation within reasonable time frames.

Discussion & conclusions
The graph-based approach proposed in this article pre-
sents a novel and efficient approach to modelling cloud
cost elements. Its platform independence is a significant
advantage, allowing for its application across various
environments and scenarios. This versatility is further
demonstrated through the evaluations performed on
generic scenarios. The approach’s applicability is not
confined to any industry, making it a universally adapt-
able solution for various user scenarios. During the
evaluations, the approach effectively depicted the

Fig. 19 Comparison of starting nodes and computation time vs. total number of nodes. This graph illustrates the relationship between the number
of nodes in a network, the number of starting nodes, and the computation time required in milliseconds

Page 29 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

complexity and variety of cost offerings from a major
CSP, i.e., Google Cloud. This demonstration highlights
the approach’s capability to handle diverse cost structures
and indicates that it can be used with other CSPs offering
similar patterns in their cost structures. This observation
suggests the proposed approach would be equally effec-
tive when applied to other CSPs.

The effectiveness of the proposed approach is further
evidenced by the different paths of graph traversal. These
paths validate the approach’s effectiveness and open up
many opportunities for its extension. The approach’s
adaptability and extensibility make it a promising tool
for future research and practical applications in cloud
cost modelling. Moreover, scalability is a crucial aspect
of any cloud-related solution, and it is relevant in the
context of the proposed graph-based cloud cost model-
ling and optimisation approach. Computational cost and
sensitivity analysis is performed to depict the computa-
tional viability and the robustness and scalability of the
proposed approach. It allows for dynamic resource allo-
cation. As resource demand changes, it can adapt by real-
locating resources across different regions and instances.
This flexibility can help maintain optimal performance
and cost-efficiency. Moreover, cloud service costs can
vary over time due to changes in pricing models or fluc-
tuations in demand. The proposed approach can adapt
to these changes by recalculating the optimal deploy-
ment model, ensuring that resource allocation remains
cost-effective.

Regarding future work, there is a limitation in the
current approach’s applicability, which might be
addressed by including a wider range of resource
aspects for additional testing. Furthermore, the eval-
uation of the approach relies on a robust big data
infrastructure, which is a relatively straightforward
situation. The practical usefulness of this technology
may not be fully presented due to the lack of testing in
more sophisticated, real-world user settings. Another
constraint exists in the integration of QoS elements.
Currently, the approach incorporates a pre-selected
redundancy model for QoS. Expanding the number of
QoS factors and considering their potential fluctua-
tions might improve the approach’s resilience. In order
to enhance the usability, improvements and studies on
user interface could be considered, while extending
its functionality. This would improve the approach’s
usability and applicability, increasing its accessibility
to a broader spectrum of users and scenarios. These
constraints offer further investigation and innovation
opportunities to improve the approach’s efficiency and
relevance.

The proposed approach can be integrated with the cur-
rent cloud management systems, enabling the efficient

and scalable administration of resources across various
platforms and services. The graph-based approach pos-
sesses the fundamental characteristic of being extendable,
which implies that it may be effortlessly enlarged to incor-
porate additional categories of resources or cost-related
aspects. This feature allows for easy expansion and adap-
tation to future developments and modifications in the
cloud services industry, making it a flexible and adaptable
solution. Additionally, the proposed approach can poten-
tially can be integrated with container orchestration sys-
tems like Kubernetes. For example, in terms of resource
allocation and optimisation, node selection can be done
for containers as per the output of the proposed approach
to minimise resource usage costs like CPU and memory.
In terms of network cost optimisation, Kubernetes clus-
ters often span multiple nodes, regions, or even cloud pro-
viders. The graph-based approach could be used to model
the network topology and data flows within a Kubernetes
cluster, thereby optimising data transfer paths.

Acknowledgements
We thank Nikolay Nikolov for the initial discussions around the topic of cloud
storage cost that helped to shape the direction of the work in this article.

Authors’ contributions
A. Q. K. is a PhD student and undertaken conceptualisation, methodology,
experiements, analysis, and writing & review. M. M., R. P., C. B., D. R., and A. S.
provided supervision and contributed to conceptualisation and writing &
review.

Funding
Open access funding provided by NTNU Norwegian University of Science
and Technology (incl St. Olavs Hospital - Trondheim University Hospital) This
work was partly funded through the EC-funded projects DataCloud (H2020
101016835), enRichMyData (HE 101070284), Graph-Massivizer (HE 101093202),
UPCAST (HE 101093216), and INTEND (HE 101135576).

Availability of data and materials
No research data outside the submitted manuscript file.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 24 June 2024 Accepted: 18 September 2024

References
 1. (2021) What Is a Data Lake? Pros and Cons of Data Lakes. https:// www.

maste rclass. com/ artic les/ what- is-a- data- lake. Accessed 9 May 2024
 2. Al-Hakim L, Kusiak A, Mathew J (2000) A graph-theoretic approach to

conceptual design with functional perspectives. Comput Aided Des
32(14):867–875. https:// doi. org/ 10. 1016/ S0010- 4485(00) 00075-0

https://www.masterclass.com/articles/what-is-a-data-lake
https://www.masterclass.com/articles/what-is-a-data-lake
https://doi.org/10.1016/S0010-4485(00)00075-0

Page 30 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

 3. Ashabi A, Sahibuddin SB, Haghighi MS (2020) Big data: current challenges
and future scope. In: Proceedings of 10th Symposium on Computer
Applications Industrial Electronics (ISCAIE 2020), IEEE, pp 131–134.
https:// doi. org/ 10. 1109/ ISCAI E47305. 2020. 91088 26

 4. Bang-Jensen J, Gutin GZ (2008) Digraphs: theory, algorithms and applica-
tions. Springer Science & Business Media

 5. Belov V, Kosenkov AN, Nikulchev E (2021) Experimental Characteristics
Study of Data Storage Formats for Data Marts Development within Data
Lakes. Appl Sci 11(18):8651. https:// doi. org/ 10. 3390/ app11 188651

 6. Chawla H, Khattar P (2020) Data Ingestion, Apress, Berkeley, pp 43–85.
https:// doi. org/ 10. 1007/ 978-1- 4842- 6252-8_4

 7. Cormen T, Leiserson C, Rivest R, Stein C (2009) Introduction to algorithms,
3rd ed. MIT Press, p 693

 8. Corodescu AA, Nikolov N, Khan AQ, Soylu A, Matskin M, Payberah AH,
Roman D (2021a) Locality-aware workflow orchestration for big data. In:
Proceedings of the 13th International Conference on Management of
Digital EcoSystems (MEDES 2021), Springer, pp 62–70. https:// doi. org/ 10.
1145/ 34447 57. 348510

 9. Corodescu AA, Nikolov N, Khan AQ, Soylu A, Matskin M, Payberah AH, Roman
D (2021) Big data workflows: Locality-aware orchestration using software
containers. Sensors 21(24):8212. https:// doi. org/ 10. 3390/ s2124 8212

 10. Dauphiné A (2017) 8 - Models of Basic Structures: Networks. In: Dauphiné
A (ed) Geographical Models with Mathematica, Elsevier, pp 199–224.
https:// doi. org/ 10. 1016/ B978-1- 78548- 225-0. 50011-7

 11. Dedić N, Stanier C (2016) An Evaluation of the Challenges of Multilin-
gualism in Data Warehouse Development. In: Proceedings of the 18th
International Conference on Enterprise Information Systems (ICEIS 2016),
SciTePress, pp 196–206. https:// doi. org/ 10. 5220/ 00058 58401 960206

 12. Dong X, Zhao L, Zhou X, Li K, Guo D, Qiu T (2019) An Online Cost-Efficient
Transmission Scheme for Information-Agnostic Traffic in Inter-Datacenter
Networks. IEEE Trans Cloud Comput 10(1):202–215. https:// doi. org/ 10.
1109/ TCC. 2019. 29416 88

 13. Donida Labati R, Genovese A, Piuri V, Scotti F, Vishwakarma S (2020)
Computational Intelligence in Cloud Computing, Springer, pp 111–127.
https:// doi. org/ 10. 1007/ 978-3- 030- 14350-3_6

 14. Dowsett C (2023) What Is a Data Lake? https:// built in. com/ data- scien ce/
data- lake. Accessed 9 May 2024

 15. Feijen W, Schäfer G (2021) Dijkstras algorithm with predictions to solve
the single-source many-targets shortest-path problem. CoRR 1–28.
https:// doi. org/ 10. 48550/ arXiv. 2112. 11927

 16. Gandhi O, Agrawal V (1992) FMEA–A diagraph and matrix approach.
Reliab Eng Syst Saf 35(2):147–158. https:// doi. org/ 10. 1016/ 0951- 8320(92)
90034-I

 17. Gass SI, Fu MC (eds) (2013) Dijkstra’s Algorithm, Springer US, Boston, p
428. https:// doi. org/ 10. 1007/ 978-1- 4419- 1153-7_ 200148

 18. Ghoreishi SE, Karamshuk D, Friderikos V, Sastry N, Dohler M, Aghvami AH
(2019) A Cost-Driven Approach to Caching-as-a-Service in Cloud-Based
5G Mobile Networks. IEEE Trans Mob Comput 19(5):997–1009. https:// doi.
org/ 10. 1109/ TMC. 2019. 29040 61

 19. Goldberg A, Radzik T (1993) A heuristic improvement of the bellman-ford
algorithm. Stanford University - Computer Science Department, Tech. rep

 20. Ilieva G, Yankova T, Hadjieva V, et al (2020) Cloud Service Selection as a
Fuzzy Multi-criteria Problem. TEM J 9(2):484. https:// doi. org/ 10. 18421/
TEM92- 09

 21. Irfan M, George JP (2022) A Systematic Review of Challenges, Tools, and
Myths of Big Data Ingestion. In: Proceedings of the International Confer-
ence on Data Science for Computational Security (IDSCS 2022), Springer,
LNNS, vol 462, pp 481–494. https:// doi. org/ 10. 1007/ 978- 981- 19- 2211-4_ 43

 22. Johnson DB (1977) Efficient Algorithms for Shortest Paths in Sparse
Networks. J ACM 24(1):1–13. https:// doi. org/ 10. 1145/ 321992. 321993

 23. Karatas G (2024) Data Lake: What It Is, Benefits & Challenges in 2024.
https:// resea rch. aimul tiple. com/ data- lake/. Accessed 9 May2024

 24. Khan AQ, Nikolov N, Matskin M, Prodan R, Bussler C, Roman D, Soylu A
(2023) Towards Cloud Storage Tier Optimization with Rule-Based Classifi-
cation. In: Proceedings of the 10th IFIP WG 6.12 European Conference on
Service-Oriented and Cloud Computing (ESOCC 2023), Springer, LNCS,
vol 14183, pp 205–216. https:// doi. org/ 10. 1007/ 978-3- 031- 46235-1_ 13

 25. Khan AQ, Nikolov N, Matskin M, Prodan R, Bussler C, Roman D, Soylu A
(2023) Towards Graph-based Cloud Cost Modelling and Optimisation.
In: Proceedings of 47th Annual Computers, Software, and Applications

Conference (COMPSAC 2023), IEEE, pp 1337–1342. https:// doi. org/ 10.
1109/ COMPS AC577 00. 2023. 00203

 26. Khan AQ, Nikolov N, Matskin M, Prodan R, Song H, Roman D, Soylu A
(2022) Smart Data Placement for Big Data Pipelines: An Approach based
on the Storage-as-a-Service Model. In: Proceedings of 15th Interna-
tional Conference on Utility and Cloud Computing (UCC 2022), IEEE, pp
317–320. https:// doi. org/ 10. 1109/ UCC56 403. 2022. 00056

 27. Khan AQ, Nikolov N, Matskin M, Prodan R, Song H, Roman D, Soylu A
(2023) A Taxonomy for Cloud Storage Cost. In: Proceedings of 15th
International Conference on Management of Digital Ecosystems (MEDES
2023), Springer, CCIS, vol 2022, pp 317–330. https:// doi. org/ 10. 1007/ 978-
3- 031- 51643-6_ 23

 28. Khan AQ, Nikolov N, Matskin M et al (2023) Smart Data Placement Using
Storage-as-a-Service Model for Big Data Pipelines. Sensors 23(2):564.
https:// doi. org/ 10. 3390/ s2302 0564

 29. Khan AQ, Matskin M, Prodan R, Bussler C, Roman D, Soylu A (2024) Cloud
storage tier optimization through storage object classification. Comput-
ing 1–30. https:// doi. org/ 10. 1007/ s00607- 024- 01281-2

 30. Khan AQ, Matskin M, Prodan R, Bussler C, Roman D, Soylu A (2024) Cloud
storage cost: a taxonomy and survey. World Wide Web 27(4):36

 31. Kumar D, Ahmad S, Chandra A, Sitaraman RK (2021) AggNet: Cost-Aware
Aggregation Networks for Geo-distributed Streaming Analytics. In: Pro-
ceedings of the IEEE/ACM Symposium on Edge Computing (SEC 2021),
IEEE, pp 297–311. https:// doi. org/ 10. 1145/ 34531 42. 34912 76

 32. Liu G, Shen H (2017) Minimum-cost cloud storage service across multiple
cloud providers. IEEE/ACM Trans Networking 25(4):2498–2513. https://
doi. org/ 10. 1109/ TNET. 2017. 26932 22

 33. Liu J, Shen H, Chi H et al (2020) A Low-Cost Multi-Failure Resilient Replica-
tion Scheme for High-Data Availability in Cloud Storage. IEEE/ACM Trans
Networking 29(4):1436–1451. https:// doi. org/ 10. 1109/ TNET. 2020. 30278 14

 34. Mansouri Y, Toosi AN, Buyya R (2017) Cost Optimization for Dynamic
Replication and Migration of Data in Cloud Data Centers. IEEE Trans Cloud
Comput 7(3):705–718. https:// doi. org/ 10. 1109/ TCC. 2017. 26597 28

 35. Mansouri Y, Toosi AN, Buyya R (2017) Data Storage Management in Cloud
Environments: Taxonomy, Survey, and Future Directions. ACM Comput
Surv 50(6):1–51. https:// doi. org/ 10. 1145/ 31366 23

 36. Martens B, Walterbusch M, Teuteberg F (2012) Costing of Cloud Comput-
ing Services: A Total Cost of Ownership Approach. In: Proceedings of the
45th Hawaii International Conference on System Sciences (HICSS 2012),
IEEE, pp 1563–1572. https:// doi. org/ 10. 1109/ HICSS. 2012. 186

 37. Micheli A (2009) Neural Network for Graphs: A Contextual Constructive
Approach. IEEE Trans Neural Netw 20(3):498–511. https:// doi. org/ 10.
1109/ TNN. 2008. 20103 50

 38. Milani OH, Motamedi SA, Sharifian S et al (2021) Intelligent Service Selec-
tion in a Multi-Dimensional Environment of Cloud Providers for Internet
of Things Stream Data through Cloudlets. Energies 14(24):8601. https://
doi. org/ 10. 3390/ en142 48601

 39. Nikolov N, Dessalk YD, Khan AQ et al (2021) Conceptualization and scal-
able execution of big data workflows using domain-specific languages
and software containers. Internet Things 16:100440. https:// doi. org/ 10.
1016/j. iot. 2021. 100440

 40. Oki E, Kaneko R, Kitsuwan N, et al (2017) Cloud provider selection models
for cloud storage services to satisfy availability requirements. IEICE Trans
Commun E100-B(8):1406–1418. https:// doi. org/ 10. 1587/ trans com. 2016E
BP3403

 41. Pishvaee MS, Rabbani M (2011) A graph theoretic-based heuristic algorithm
for responsive supply chain network design with direct and indirect shipment.
Adv Eng Softw 42(3):57–63. https:// doi. org/ 10. 1016/j. adven gsoft. 2010. 11. 001

 42. Raj T, Shankar R, Suhaib M, Khan R (2010) A graph-theoretic approach to
evaluate the intensity of barriers in the implementation of fmss. Int J Serv
Oper Manag 7(1):24–52. https:// doi. org/ 10. 1504/ IJSOM. 2010. 033142

 43. Rajeshwari BS, Dakshayini M, Guruprasad HS (2022) Workload balanc-
ing in a multi-cloud environment: challenges and research directions,
Springer, pp 129–144. https:// doi. org/ 10. 1007/ 978-3- 030- 74402-1_7

 44. Ramachandran GS, Radhakrishnan R, Krishnamachari B (2018) Towards
a Decentralized Data Marketplace for Smart Cities. In: Proceedings of
International Smart Cities Conference (ISC 2 2018), IEEE, pp 1–8. https://
doi. org/ 10. 1109/ ISC2. 2018. 86569 52

 45. Ravat F, Zhao Y (2019) Data Lakes: Trends and Perspectives. In: Hart-
mann S, Küng J, Chakravarthy S, Anderst-Kotsis G, Tjoa AM, Khalil I (eds)

https://doi.org/10.1109/ISCAIE47305.2020.9108826
https://doi.org/10.3390/app11188651
https://doi.org/10.1007/978-1-4842-6252-8_4
https://doi.org/10.1145/3444757.348510
https://doi.org/10.1145/3444757.348510
https://doi.org/10.3390/s21248212
https://doi.org/10.1016/B978-1-78548-225-0.50011-7
https://doi.org/10.5220/0005858401960206
https://doi.org/10.1109/TCC.2019.2941688
https://doi.org/10.1109/TCC.2019.2941688
https://doi.org/10.1007/978-3-030-14350-3_6
https://builtin.com/data-science/data-lake
https://builtin.com/data-science/data-lake
https://doi.org/10.48550/arXiv.2112.11927
https://doi.org/10.1016/0951-8320(92)90034-I
https://doi.org/10.1016/0951-8320(92)90034-I
https://doi.org/10.1007/978-1-4419-1153-7_200148
https://doi.org/10.1109/TMC.2019.2904061
https://doi.org/10.1109/TMC.2019.2904061
https://doi.org/10.18421/TEM92-09
https://doi.org/10.18421/TEM92-09
https://doi.org/10.1007/978-981-19-2211-4_43
https://doi.org/10.1145/321992.321993
https://research.aimultiple.com/data-lake/
https://doi.org/10.1007/978-3-031-46235-1_13
https://doi.org/10.1109/COMPSAC57700.2023.00203
https://doi.org/10.1109/COMPSAC57700.2023.00203
https://doi.org/10.1109/UCC56403.2022.00056
https://doi.org/10.1007/978-3-031-51643-6_23
https://doi.org/10.1007/978-3-031-51643-6_23
https://doi.org/10.3390/s23020564
https://doi.org/10.1007/s00607-024-01281-2
https://doi.org/10.1145/3453142.3491276
https://doi.org/10.1109/TNET.2017.2693222
https://doi.org/10.1109/TNET.2017.2693222
https://doi.org/10.1109/TNET.2020.3027814
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1145/3136623
https://doi.org/10.1109/HICSS.2012.186
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.3390/en14248601
https://doi.org/10.3390/en14248601
https://doi.org/10.1016/j.iot.2021.100440
https://doi.org/10.1016/j.iot.2021.100440
https://doi.org/10.1587/transcom.2016EBP3403
https://doi.org/10.1587/transcom.2016EBP3403
https://doi.org/10.1016/j.advengsoft.2010.11.001
https://doi.org/10.1504/IJSOM.2010.033142
https://doi.org/10.1007/978-3-030-74402-1_7
https://doi.org/10.1109/ISC2.2018.8656952
https://doi.org/10.1109/ISC2.2018.8656952

Page 31 of 31Khan et al. Journal of Cloud Computing (2024) 13:147

Database and Expert Systems Applications, Springer, pp 304–313. https://
doi. org/ 10. 1007/ 978-3- 030- 27615-7_ 23

 46. Robinson K (2021) Why companies are flocking to the cloud more than
ever. https:// www. busin essin sider. com/ cloud- techn ology- trend- softw
are- enter prise- 2021-2. Accessed 20 Feb 2023

 47. Roman D, Prodan R, Nikolov N et al (2022) Big Data Pipelines on the
Computing Continuum: Tapping the Dark Data. Computer 55(11):74–84.
https:// doi. org/ 10. 1109/ MC. 2022. 31541 48

 48. Russell SJ (2010) Artificial intelligence a modern approach. Pearson
Education, Inc

 49. Sabharwal S, Garg S (2013) Determining cost effectiveness index
of remanufacturing: A graph theoretic approach. Int J Prod Econ
144(2):521–532. https:// doi. org/ 10. 1016/j. ijpe. 2013. 04. 003

 50. Scarselli F, Gori M, Tsoi AC et al (2008) The Graph Neural Network Model.
IEEE Trans Neural Netw 20(1):61–80. https:// doi. org/ 10. 1109/ TNN. 2008.
20056 05

 51. Shao Y, Shen Z, Gong S et al (2022) Cost-Aware Placement Optimization of
Edge Servers for IoT Services in Wireless Metropolitan Area Networks. Wirel
Commun Mob Comput 2022. https:// doi. org/ 10. 1155/ 2022/ 89365 76

 52. Song IY (2009) Data Mart, Springer US, Boston, p 594. https:// doi. org/ 10.
1007/ 978-0- 387- 39940-9_ 883

 53. Upadhyay N, Agarwal VP (2007) Structural Identification and Compari-
son of Intelligent Mobile Learning Environment. J Appl Quant Methods
2(4):363–374

 54. Vargas-Solar G, Darmont J, Adorjan A, Espinosa-Oviedo JA, Hara C,
Loudcher S, Motz R, Musicante M, Zechinelli-Martini JL (2024) Dataversify-
ing Natural Sciences: Pioneering a Data Lake Architecture for Curated
Data-Centric Experiments in Life & Earth Sciences. arXiv: 2403. 20063

 55. West DB, et al (2001) Introduction to graph theory, vol 2. Prentice Hall
Upper Saddle River

 56. Xia X, Chen F, He Q et al (2020) Graph-based data caching optimization
for edge computing. Futur Gener Comput Syst 113:228–239. https:// doi.
org/ 10. 1016/j. future. 2020. 07. 016

 57. Zeng F, Ren Y, Deng X et al (2018) Cost-effective edge server placement
in wireless metropolitan area networks. Sensors 19(1):32. https:// doi. org/
10. 3390/ s1901 0032

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-27615-7_23
https://doi.org/10.1007/978-3-030-27615-7_23
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://doi.org/10.1109/MC.2022.3154148
https://doi.org/10.1016/j.ijpe.2013.04.003
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1155/2022/8936576
https://doi.org/10.1007/978-0-387-39940-9_883
https://doi.org/10.1007/978-0-387-39940-9_883
http://arxiv.org/abs/2403.20063
https://doi.org/10.1016/j.future.2020.07.016
https://doi.org/10.1016/j.future.2020.07.016
https://doi.org/10.3390/s19010032
https://doi.org/10.3390/s19010032

	Cost modelling and optimisation for cloud: a graph-based approach
	Abstract
	Introduction
	Background
	Cloud computing cost
	Big data pipelines
	Data ingestion
	Date warehouse
	Data marts

	Data lake
	Graph theory

	Related work
	Cloud cost optimisation
	Graph-theory for optimisation
	Discussion

	Cost optimisation paths
	Graph-based cloud cost modelling and optimisation
	Purpose clarification
	Designed architecture
	Graph creation
	Implementation process
	Selected algorithm
	User interface

	Case study
	Evaluation
	Scenario: three-step data pipeline
	Scenario: multi-step data pipeline - two locations
	Scenario: big data infrastructure
	Scenario: multi-regional big data pipeline
	Cost comparison with baseline and robustness analysis
	Qualitative comparison with the state of the art
	Computational cost

	Discussion & conclusions
	Acknowledgements
	References

