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Abstract 

This study proposes a Privacy-Preserving Deep Neural Network for Credit Risk Prediction (PPDNN-CRP) framework 
that leverages homomorphic encryption (HE) to ensure data privacy throughout the credit risk prediction process. 
The PPDNN-CRP framework employs the Paillier homomorphic encryption scheme to secure sensitive loan applica-
tion data during both the training and inference phases. Implemented using TensorFlow for deep neural network 
operations and TenSEAL for HE, the framework uses the Kaggle loan dataset to evaluate its performance. The results 
show that PPDNN-CRP achieved an accuracy of 80.48%, demonstrating competitive performance compared to Pri-
vacy-Preserving Logistic Regression (PPLR) at 77.23% and a slight decrease from the non-private DNN-CRP model 
at 86.18%. The model exhibited strong metrics with a precision of 0.84, recall of 0.91, F1-score of 0.87, and an AUC 
of 0.74. Security analysis confirms that PPDNN-CRP effectively defends against various privacy attacks, includ-
ing poisoning, evasion, membership inference, model inversion, and model extraction, through robust encryption 
techniques and privacy measures. This framework offers a promising approach for achieving high-quality credit risk 
prediction while maintaining data privacy and complying with legal and ethical standards.
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Introduction
The modern banking industry is pivotal in the economic 
development of nations by providing financial assistance 
to individuals and businesses. A key mechanism used by 
banks for financial transactions is the loan system. How-
ever, the sensitive nature of borrowers’ personal and 
financial information underscores the critical impor-
tance of ensuring data security and privacy. Deep Neu-
ral Networks (DNNs) have gained substantial attention 

across various domains for their ability to learn complex 
patterns and make precise predictions. In loan systems, 
DNNs emerge as powerful tools for decision-making, 
capable of analyzing diverse factors and historical data to 
assess the creditworthiness of borrowers.

While accurate predictions are integral to the loan 
system, addressing security concerns related to han-
dling sensitive data is equally imperative. This is where 
Homomorphic Encryption (HE) assumes significance. 
HE facilitates computations on encrypted data without 
decryption, thereby preserving data privacy. This pre-
sents a significant advantage over other privacy-pre-
serving techniques such as differential privacy, secure 
multi-party computation (SMPC), and federated learn-
ing in the context of credit risk prediction. Differential 
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privacy aims to protect individual data points by adding 
random noise to the dataset or query results, which can 
compromise the accuracy of the data analysis, leading 
to less precise creditworthiness assessments and subop-
timal lending decisions. In contrast, HE allows for com-
putations on exact encrypted data without introducing 
noise, ensuring predictions remain precise and reliable 
while maintaining high levels of privacy. SMPC, though 
effective in ensuring privacy through collaborative com-
putations, can be complex to implement and involve sig-
nificant communication overhead, posing a bottleneck 
in real-time systems. HE, on the other hand, offers sim-
plicity and efficiency by enabling a single entity to handle 
encrypted data without complex multi-party protocols, 
thereby reducing latency and computational overhead. 
Federated learning enables multiple entities to collabo-
ratively train models without sharing their data but still 
poses privacy risks through potential inference attacks 
and requires coordination among parties. HE surpasses 
these limitations by ensuring that all computations are 
performed on encrypted data, completely eliminating 
the risk of sensitive information leakage and simplify-
ing implementation through centralized control. Thus, 
Homomorphic Encryption provides a robust and effec-
tive solution for privacy-preserving credit risk predic-
tion, enhancing security, accuracy, and efficiency while 
ensuring the confidentiality of borrowers’ personal and 
financial information.

Combining DNNs and Homomorphic Encryption 
offers a promising solution to enhance the efficiency, 
accuracy, and security of bank loan systems. Loan appli-
cation data can be encrypted using HE techniques, 
ensuring the confidentiality of borrowers’ information. 
This encrypted data serves as input for the neural net-
work, which evaluates the loan application and provides 
a creditworthiness prediction without accessing personal 
and financial data. This approach guarantees the privacy 
of borrowers’ information throughout the loan evalua-
tion process while facilitating accurate creditworthiness 
assessments. Banks can thus make informed decisions 
regarding loan approvals, mitigating the risk of unauthor-
ized access to sensitive data.

Integrating DNNs with Homomorphic Encryption 
presents a comprehensive solution to enhance the effi-
ciency and security of bank loan systems. By harnessing 
the predictive capabilities of neural networks alongside 
the privacy-preserving computations of HE, banks can 
streamline their loan approval processes, mitigate risks 
associated with data breaches, and ensure the confiden-
tiality of borrowers’ personal and financial information. 
This symbiotic approach marks a significant advance-
ment for the banking industry, elevating the customer 

experience while upholding the highest standards of data 
security and privacy. Overall, the trade-off for adopting 
PPDNN-CRP is justified due to its privacy benefits with 
slight accuracy drop. However, decisions should be made 
on a case-by-case basis, considering regulatory environ-
ments and market conditions, with a phased approach 
recommended for implementation.

Contributions
The main contribution of this paper is to build a HE-ena-
bled PPDNN-CRP system with the following features:

•	 Proposed an HE-enabled DNN Processing Frame-
work that can provide privacy in training and infer-
ence phase with training data privacy, model privacy, 
input privacy, and output privacy.

•	 We made a security analysis that shows that the 
proposed system can defend against poison, eva-
sion, member inference, model inversion, and model 
extraction in the respective stages of machine 
learning.

•	 We conduct experiments using the Tenseal pack-
age on real datasets from the Kaggle to evaluate the 
performance of both DNN-CRP (over unencrypted 
data) and the proposed PPDNN-CRP.

 The remainder of this paper is organized as follows: 
Section  2 reviews related work in machine learning for 
credit risk prediction, privacy-preserving techniques, 
and homomorphic encryption. Section 3 covers the back-
ground knowledge, including key notations and DNN 
workflow. Section 4 details the PPDNN-CRP framework, 
its architecture, data flow, and privacy mechanisms. 
Section  5 provides a security analysis, demonstrating 
resilience against various attacks. Section  6 presents 
implementation details and results, including dataset 
analysis, performance metrics, and comparative analyses. 
Finally, Sect. 7 concludes the paper with key findings and 
future research directions.

Related work
Various researchers worked on Machine learning Models 
for credit risk predication: Anshika Gupta et al. [1] devel-
oped a machine learning system that predicts loan appli-
cation results based on credit history and income. Golak 
Bihari Rath et al. [2], machine learning and classification 
algorithms can help anticipate qualified applicants and 
improve loan approval processes. Mayank Anand et  al. 
[3] use various machine learning models to predict loan 
default behavior in secure banking.

Syed Zamil Hasan Shoumo et  al. [4] developed a 
machine learning model for assessing credit risk and 
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predicting loan defaults in the banking sector. Mohammad 
Abdullah et al. [5] apply machine learning approaches to 
anticipate nonperforming loans in financial institutions 
in developing nations. Their findings show that the ran-
dom forest model outperforms the other models, with an 
accuracy of 76.10%. In a study by Bhargavet et al. [6], ran-
dom forest and decision tree algorithms were compared 
for predicting loan approval using machine learning. 
The results show that Random Forest outperforms other 
algorithms.

Dansana et  al. [7] use various loan approval criteria, 
such as gender, educational qualification, employment 
type, business kind, loan length, and marital status, to 
predict defaults. The Random Forest technique is used in 
the study to perform prediction analysis. Blessie et al. [8] 
use various machine learning techniques, including logis-
tic regression, decision trees, SVM, and Naive Bayes, to 
forecast loan sanctions from a loan dataset. Naive Bayes 
is selected as the most effective model, with the highest 
loan predicting accuracy of 80.42%.

Zhu et  al. [9] use different machine learning tech-
niques, including logistic regression, decision trees, 
SVM, and Naive Bayes, to forecast loan sanctions from a 
loan dataset. The study identifies Naive Bayes as the most 
effective model, with an accuracy of 80.42% in loan fore-
casting. Alsaleem et  al. [10] compared machine learn-
ing methods, including decision trees, random forests, 
Bayesian networks, and neural networks, to forecast bank 
loan risks using a dataset of 1000 loan applications. The 
results highlight the better performance of the Multilayer 
Perceptron neural network, which achieved an 80% accu-
racy, suggesting its efficacy in facilitating data-driven loan 
approval choices for banks. Di Wang et  al. [11] created 
NeuCredit, a deep neural network model for evaluating 
and forecasting consumer credit risk in e-commerce set-
tings. The model improves existing methods by partition-
ing default likelihood into willingness to repay, ability to 
repay, and behavioral risk variables, resulting in inter-
pretable predictions.

Uddin et  al. [12] offer an ensemble machine learning 
technique to predict bank loan acceptance using a Kaggle 
dataset. The study investigates various models, applies 
preprocessing approaches, and introduces two ensem-
bles, with the top three models having a peak accuracy 
of 87.26%. Furthermore, the study illustrates practi-
cal implementation via a desktop program with a user 
interface.

Various researchers worked on Integrating Privacy 
Techniques such as Differential Privacy, Homomorphic 
Encryption into Machine Learning: Zhigang Lu et al. [13] 
developed a novel differentially private framework for 
deep learning. This entails inserting DP noise into a ran-
domly chosen neuron in the output layer of a non-private 

neural network trained with a convexified loss func-
tion. Ma et al. [14] provided an overview of DP and deep 
learning, covering both DP and GANs. Cristiano and 
colleagues [15] introduce D-ZOA, a privacy-preserving 
distributed algorithm employing zeroth-order optimiza-
tion to minimize a regularized empirical risk function. 
D-ZOA ensures (∈,∂) − DP and surpasses the accuracy of 
current differentially-private methods.

Various researchers worked on Federated Learning 
for PPCRA: Jean-François et  al. [16] propose a privacy-
preserving framework for probabilistic voltage forecast-
ing in local energy communities. The approach employs 
federated learning and DP strategies. Abdullah Lakhan 
et al. [17] propose an approach for healthcare job sched-
uling that combines federated learning and blockchain. 
The suggested system intends to protect privacy, identify 
fraud, and meet energy and delay restrictions in health-
care applications. Xu et al. [18] proposed µDFL, a hierar-
chical IoT network fabric using microchains and a hybrid 
consensus protocol. This system is intended to ensure 
efficiency, privacy, scalability, and security in the context 
of decentralized federated learning via IoT networks.

Other Privacy-Preserving Techniques: Wang et al. [19] 
propose a privacy-preserving distributed machine learn-
ing system that uses local randomization and ADMM 
perturbation. This approach tries to protect confidential 
data while providing users with varied levels of privacy. 
Huadi Zheng et al. [20] proposed an approach called BDP 
to protect a machine learning model’s decision bound-
ary by obscuring predicted responses through noise. Liu 
et al. [21] discuss privacy and security concerns in deep 
learning. Huang et  al. [22] proposed a trainable picture 
encryption approach to protect privacy in deep learning 
applications, particularly for medical images. Further-
more, they have reported on enhancements to exist-
ing encryption algorithms, with a special emphasis on 
advances in the keyspace of images encrypted with their 
suggested scheme.

Various researchers worked on HE enabled NNP for 
PPCRA: Bernardo Pulido-Gaytan et Chandramohan 
et al. (2013) [23] examined data secrecy in cloud storage 
and proposed an evolutionary model for privacy preser-
vation, highlighting the need for innovative approaches 
to enhance security. Paroda et al. (2023) [24] introduced a 
chaotic image encryption model that combines advanced 
techniques for high security against various attacks. 
Movassagh et al. (2020) [25] developed a neural network 
training algorithm that improves accuracy through opti-
mization techniques. Alzubi et  al. (2021) [25] presented 
a deep learning model for secure medical data trans-
mission using homomorphic encryption. Gheisari et  al. 
(2021) [26] created the OBPP framework to improve pri-
vacy and service quality in IoT-based smart cities.
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In homomorphic encryption for credit risk analysis, 
Pulido-Gaytan et  al. [27] provided a comprehensive 
survey on integrating HE with neural networks. Steph-
anie et  al. [28] combined multiple privacy methods, 
while AONO et  al. [29] introduced the PPLR method 
for secure data collaboration. Chaudhuri et  al. [30] 

developed PPLR with differential privacy techniques to 
enhance accuracy. Zheng et al. [31] proposed the PCAL 
framework to balance privacy and utility. Han et  al. 
[32] combined HE and MPC for secure logistic regres-
sion. Divakar et  al. [33] created a cloud-based credit 
risk analysis method using homomorphic encryption to 
maintain data anonymity.

Background knowledge
This part gives a brief description of pallier and DNN 
for the proposed system.

Notations (Table 1)

Workflow of a deep neural network (DNN)
The workflow of DNN is depicted in Fig.  1 and DNN 
processing steps were presented as follows

DNN Processing Steps

Step 1: The input layer: In a DNN, the input layer is the first layer that receives 
the raw input data. It acts as the interface between the external data 
and the internal computation that occurs within the network.

Step2: First Hidden Layer:

  Linear transformation: Z1 = W1 .X + b1

  Activation function (ReLU): A1 = ReLu(Z1)

Step3: Batch Normalization (after the first hidden layer):

  Batch normalization operation, typically involving scaling and shifting.

Table 1  Notations

Symbol Description

HE Homomorphic Encryption

DNN Deep Neural Network

DNN-CRP Deep Neural Network Processing for Credit Risk Prediction

PPDNN-CRP Privacy-Preserving Deep Neural Network Processing 
for Credit Risk Prediction

LR Logistic Regressions

CSP Cloud Service Provider

DP Differential Privacy

PII Personally Identifiable Information

MPC Multi Party Computation

GANs Generative Adversarial Networks

BDP Boundary Differential Privacy

TP Training Phase

TSP Testing Phase

PUK Public Key

PRK Private Key

PPLR Privacy-Preserving Logistic Regressions

Fig. 1  Workflow of a deep neural network (DNN)
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DNN Processing Steps

Step4: Dropout (after the batch normalization):

Step5: Dropout operation, randomly setting a fraction of input units to zero.

Step6: Second Hidden Layer:

  Linear transformation: Z2 = W2 .X + b2

  Activation function (ReLU): A2 = ReLu(Z2)

Step7: Dropout (after the batch normalization):

  Dropout operation.

Step8. Output Layer:

  Linear transformation: Zoutput = Woutput .A2 + boutput

  Activation function: Aoutput = sigmoid(Zoutput)

Where:
• X is the input data.
• w1, b1,w2, b2,woutput , utput , boutput , utput , are the weight matrices 
  and bias vectors for each layer .
• Z1, A1, Z2, A2, Zoutput , Aoutput , are the pre − activation, post − activation 
  values for each layer .
• ReLU is the rectified linear unit activation function.
• Sigmoid is the sigmoid activation function.

Paillier homomorphic encryption (PHE) cryptosystem
PHE is an asymmetric homomorphic cryptosystem [34] 
with key generation, encryption, and decryption module 
as follows:

PHE. Key Generation(λ):

1. Choose Two Large Prime Numbers: - Select two large prime numbers, p and q.

2. Compute n and �:

- Calculate n = pq and � = lcm(p− 1, q− 1)

(where lcm is the least common multiple).

3. Choose g Value:

- Select a random integer g in the range (n+ 1)2 such that gcd(g, n) = 1.

4. Public Key (n, g) and Private Key �:

- The public key is (n, g) , and the private key is �.

PHE. Encryption(m,n):

To encrypt a plaintext m , where 0 ≤ m < n , compute the ciphertext c
using the formula:

c = (gm · rn)modn2

Wherer  is a random integer in the range1 ≤ r < n.

PHE. Decryption(c,�):
To decrypt a ciphertext , compute the plaintext using the formula:
m = Lc(c�modn2) µmodn
where L(x) =

x−1
n  and µ is the modular inverse of (g�modn2) modulo n.

 Homomorphic Properties:
- Paillier encryption is homomorphic concerning addition.
 Given ciphertexts c1 and c2 encrypting plaintexts m1 and m2 respectively, 
the product c1 mod n2 will decrypt tom1 +m2.

The homomorphic property allows computations on 
encrypted data without decryption, which is particularly 
useful in privacy-preserving applications such as Proposed 
Credict Risk Prediction.

DNN‑CRA architecture
The block diagram stepwise processing of DNN –CRA 
is presented in Fig. 2 as flow chart that starts with finan-
cial dataset and then apply preprocessing and feature 
engineering to get the processed dataset. Next divide 
this dataset into training and testing through which 
DNN model was build and evaluated its performance.

Proposed system
In this section we have presented system model, proposed 
framework

System model for PPDNN‑CRA​
A system model involving a Bank, a Loan Applicant(user), 
and a CSP for building a DNN model to train on a loan 
application dataset with sensitive information is presented 
in Fig. 3. In this model, we will emphasize the importance 
of privacy-preserving techniques to handle sensitive data 
responsibly.

Entities

	 i.	 Loan Applicants (Users): that are individuals apply-
ing for bank loans provides their personal and 
financial information to the bank for the purpose of 
loan approval decision making.

	 ii.	 Bank: a financial institution that provides loans 
and other banking services whichcollects appli-
cant data through loan applications. Owns a data-
set containing sensitive information about income, 
assets, credit history and other financial details. 
And ensures secure storage of datasets. May offer 
additional services for privacy-preserving tech-
niques to encrypt the dataset.

	iii.	 Cloud Service Provider (CSP): a third party that-
provides cloud infrastructure for processing, and 
training of machine learning models and hosts the 
DNN model training process.

Data Flow
The loan applicant provides their information to the bank 
through the loan application process, allowing the collec-
tion of sensitive financial data.

The Bank aggregates and anonymizes the collected data 
to remove PII and reduce the risk of privacy breaches.
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Fig. 2  Block diagram for DNN-CRA​

Fig. 3  System model for PPDNN-CRA​
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The dataset is anonymized and encrypted with the 
BPUK to create an encrypted dataset.

The encrypted dataset is then securely transmitted to 
the Cloud Service Provider, ensuring data integrity and 
confidentiality during the transfer process.

The Cloud Service Provider hosts the DNN model 
training process, utilizing the encrypted loan applica-
tion dataset to develop predictive models for credit 
risk analysis, loan approval optimization or other rel-
evant insights.

After training, the DNN model is deployed back to the 
Bank’s infrastructure for local inference, reducing the 
need for continuous data transmission to the cloud.

Privacy‑preserving techniques
Pailler Homomorphic Crypto systems is used to allow 
certain computations to be performed on encrypted data 
without decryption are utilized. This enables process-
ing of sensitive loan application data while preserving 
confidentiality.

Security measures
Encryption is applied during data transmission to protect 
against unauthorized access or interception of the sensi-
tive loan application dataset.

Access controls and authentication mechanisms are 
implemented at both the Bank and CSP ends to ensure 
that only authorized personnel can access and manipu-
late the data.

By integrating these privacy-preserving techniques and 
security measures into the system model, the Bank can 
benefit from the insights generated by the DNN model 
while safeguarding the privacy of loan applicants and 
complying with ethical and legal standards.

Privacy‑preserving credit risk prediction (PPCRP) 
Framework
The methodology for the bank loan processing system 
utilizing a DNN with partially homomorphic encryption 
consists of two key phases as presented in Fig. 4.

Training phase
In the training privacy subset (steps 1 to 3), the process 
begins with data collection and storage in step 1, wherein 
the bank gathers information from local sites and securely 
stores as a loan dataset on its server. Feature scaling is 
then applied to enhance model performance, result-
ing in normalized datasets. Subsequently, in step 2 (data 
encryption), the normalized datasets undergo encryption 
using the banker’s PUK, creating an encrypted dataset. In 

Fig. 4  Privacy-preserving credit risk analysis framework (PPCRAF)
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step 3 (data transfer) involves transferring this encrypted 
dataset to a CSP, where a CSP provider trains the model 
on the encrypted dataset.

Model privacy (steps 3–5), step 4 (data decryp-
tion) involves a neural network model operating on the 
encrypted dataset to generate resultant coefficients. In 
step 5, the resultant coefficients are decrypted using the 
banker’s PRK, marking the end of the training phase and 
initiating the testing phase.

Testing phase
Input data privacy (Steps 6 to 8), Step 6 (Single Cli-
ent Input Vector Transfer) involves transmitting a sin-
gle input vector from the client to the banker. In Step 7 
(Client Data Encryption), the single-input variable is 
encrypted using the banker’s PUK, resulting in encrypted 
data sent to the bankers. Step 8 (data testing): providing 
the encrypted single input vector to the resultant coeffi-
cients of the bank.

Output Data Privacy (Steps 9 to 11), Step 9 (Results), 
provides clients with loan processing outcomes. In Step 10 
(Results Encryption), the obtained results are encrypted with 
a client-PUK, generating encrypted results sent to the client. 
Finally, in Step 11 (Results Decryption), clients decrypt the 
results using their PRK, decisively determining the banker’s 
decision on loan approval or rejection. This methodology, 
seamlessly integrating a neural network with partially homo-
morphic encryption, ensures robust data security and pri-
vacy throughout the bank loan processing system.

Security analysis
The PPDNN-CRP framework employs a robust security 
model to defend against a wide array of security threats, 
ensuring the integrity and confidentiality of the credit risk 
prediction process. By leveraging Homomorphic Encryp-
tion (HE) and other advanced techniques, the framework 
safeguards data at various stages of machine learning. 
This section delves into the specific attack scenarios and 
the defenses employed by the system, highlighting the 
framework’s comprehensive security measures.

Poisoning attacks
Objective: Poisoning attacks aim to manipulate the train-
ing data by injecting malicious inputs, thereby degrading 
the model’s performance.

Defense Mechanisms:

–	 Homomorphic Encryption: Ensures that the training 
data remains encrypted and confidential during the 
learning process, significantly reducing the risk of 
adversaries injecting malicious data.

–	 Validation Checks and Anomaly Detection: Imple-
ment regular validation checks and anomaly detec-
tion mechanisms to identify and mitigate unusual 
patterns in the encrypted data.

Mathematical Concept:

–	 Loss Function: Defined as L(w,X,y) where w repre-
sents the model parameters, is the input dataset, and 
is the true label.

–	 Training Objective: Minimize the loss function:

–	 Encrypted Gradient Update: The encrypted compu-
tation of the gradient and loss functions during train-
ing updates the model parameters as follows: 

This encrypted update rule prevents adversaries from 
manipulating gradients or injecting poisoned data, as 
they do not have access to the decrypted data.

Evasion attacks
Objective: Evasion attacks aim to manipulate input data 
to deceive the model into making incorrect predictions.

Defense Mechanisms:

–	 Confidentiality of Model Parameters: HE preserves 
the confidentiality of the model’s parameters and gra-
dients, preventing adversaries from gaining insights 
necessary for crafting malicious inputs.

–	 Encryption Techniques: The robust encryption tech-
niques used in PPDNN-CRP make it extremely dif-
ficult for attackers to manipulate inputs in ways that 
would affect the model’s predictions.

Mathematical Concept: - Prediction Function: 
Expressed as M(X, Enc(w)) , where X is the input data and 
Enc(w) represents the encrypted model parameters.

–	 Prediction on Encrypted Data:

Without access to the decryption key, adversaries are 
unable to manipulate y , thereby securing the model from 
evasion attacks.

minL
w

(w,X, y)

Enc(wnew) = Enc(wold)− η · ∇ Enc(L(wold, X, y))

Enc
(
ŷ
)
= M(X, Enc(w))
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Membership inference attacks
Objective: Membership inference attacks attempt to 
determine whether a specific data point was part of the 
training set.

Defense Mechanisms:

–	 Homomorphic Encryption: Ensures that even if 
an attacker gains access to the model’s output, they 
cannot infer whether a particular data point was 
included in the training data.

–	 Differential Privacy (DP): Adds noise to the training 
process to obscure individual records and protect 
against membership inference.

Mathematical Concept:

–	 Probability Distribution of Predictions: Expressed as 
P(Enc(y)|X, Enc(w)) . DP mechanisms ensure that for 
two datasets differing by a single record, the ratio of 
the probabilities is bounded:

This noise addition preserves privacy and limits the 
attacker’s ability to infer membership status.

Model inversion attacks
Objective: Model inversion attacks attempt to extract 
sensitive information about the training data from the 
model’s parameters.

Defense Mechanisms:

–	 Encryption of Model Parameters: HE ensures that 
model parameters remain encrypted and inaccessi-
ble, preventing attackers from extracting information 
about the training data.

–	 Obfuscation Techniques: Further obscure the rela-
tionships between model inputs and outputs, miti-
gating the risk of model inversion.

Mathematical Concept:

–	 Inversion Function: Consider a function G(Enc(w), Enc(X)) 
that attempts to invert the model’s parameters and input 
data. Security against model inversion relies on the diffi-
culty of solving:

∣∣∣∣log
(
P(Enc(y)|X, Enc(w), D1)

P(Enc(y)|X, Enc(w), D2)

)∣∣∣∣ ≤ ǫ

Enc(w) = G−1(Enc(X), Enc(ŷ))

Homomorphic Encryption makes it challenging for 
attackers to retrieve meaningful data from the encrypted 
parameters.

Model extraction attacks
Objective: Model extraction attacks aim to recreate the 
model’s architecture and parameters.

Defense Mechanisms:

–	 Confidentiality of Model Architecture and Param-
eters: HE ensures that the model’s architecture and 
parameters are kept confidential.

–	 Secure Access Controls and Storage: Implement 
strict access controls and key management practices 
to safeguard the decryption key, preventing unau-
thorized extraction of the model’s internals.

Mathematical Concept:

–	 Extraction Attempt: Described as E(Enc(X), Enc(ŷ)) , 
aiming to recover the model parameters. Security 
against extraction attacks is based on the difficulty of 
solving:

Strict access controls and key management practices 
protect against unauthorized extraction of the model 
parameters.

The PHE-enabled PPDNN-CRP system employs a 
comprehensive suite of security measures, including 
Homomorphic Encryption, Differential Privacy, anomaly 
detection, and obfuscation techniques, to defend against 
a variety of attacks. Each attack scenario is addressed 
through specific defenses that leverage advanced crypto-
graphic principles and privacy-preserving technologies. 
The mathematical concepts underlying these defenses 
demonstrate how HE and related mechanisms work 
together to protect against poisoning, evasion, mem-
bership inference, model inversion, and model extrac-
tion attacks. This robust security framework ensures the 
integrity and confidentiality of the credit risk prediction 
process, making PPDNN-CRP a highly secure solution 
for sensitive financial data.

Implementation and results
In this session, we present a dataset and perform analy-
sis, the implementation of various models, and their per-
formance metrics. training and validation, accuracy, and 
performance, Layer-wise and epoch-wise analysis and 

Enc(w) = E−1(Enc(X), Enc(ŷ))
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comparison of proposed models in various performance 
metrics and aspects:

Dataset and it’s feature analysis
Loan dataset is derived from Kaggle [35], exhibits fea-
tures gathered from loan applications, while offers an 
overview of the dataset—614 rows and 13 columns, split 
into 80% training and 20% testing. Notably, an imbalance 
exists, with more approved loans. Mitigating this, min-
max scaling normalizes features in a DNN model with 
117 input nodes, two hidden layers, and one output layer. 
ReLU activates the hidden layers, and rmsprop activa-
tion function is used in the output layer. Optimized via 
stochastic gradient descent, the DNN, employing cate-
gorical cross-entropy loss and dropout for regularization, 
trains on 491 scaled samples. Evaluation on 123 unseen 
scaled test samples gauges generalization performance in 
terms of accuracy, precision, recall and F-score.

Heat map correlation matrix
Figure  5 shows a heatmap correlation matrix indicating 
the relationships between different variables in a dataset 
used for credit risk prediction. The matrix highlights that 
no two variables are strongly correlated, making it clear 
that we have kept all variables for the credit risk predic-
tion model.

Implementation
Proposed DNN-CRP and PPDNN-CRP were imple-
mented using the Keras library with a TensorFlow back-
end. The architecture comprises three dense layers with 
rectified linear unit (ReLU) activation functions. For the 
DNN-CRP model, the input layer has 117 neurons, the 
hidden layer has 104 neurons, and the output layer has 
one neuron with a sigmoid activation function suitable 
for credit risk prediction. In other hand, the PPDNN-
CRP model has corresponding layers with 91, 78, and 

Fig. 5  Heatmap correlation matrix
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1 neuron, respectively. Batch normalization is applied 
after the input and hidden layers to enhance training 
stability, and dropout layers are incorporated to prevent 
overfitting.

The model is compiled using the rmsprop optimizer 
and binary cross-entropy as the loss function, a standard 
choice for binary classification problems. During train-
ing, the accuracy metric is employed, and the model 
undergoes 100 epochs with a batch size of 26, with moni-
toring of the validation data (x_test and y_test).

The primary goal is to optimize model parameters, 
minimize binary cross-entropy loss, and achieve high 
accuracy in predicting binary outcomes.

Layer‑wise and epoch‑wise accuracy during the training 
of proposed models
Exploring layer-wise and epoch-wise implementation 
during the training of proposed models offers a detailed 
understanding of how the model’s performance evolves 
across different layers and training iterations.

i)	 Layer-wise and epoch-wise accuracy during the 
training of DNN-CRP:

The Fig. 6, provides a comprehensive view of the DNN-
CRP performance over 100 epochs. Each epoch reports 
the accuracy of various layers, such as dense_262, batch_
normalization_196, dropout_196, and dense_263, among 
others. The model demonstrates a consistent improve-
ment in accuracy throughout training, reaching a peak 
accuracy of 80.65% at epoch 95.

The first few epochs show a steady increase in accu-
racy across different layers, indicating effective learn-
ing. The model exhibits resilience against overfitting, 
with validation accuracy aligning closely with training 
accuracy. Notably, the accuracy values for batch_nor-
malization_197, dropout_197, and dense_264 consist-
ently match their counterparts in the preceding layers, 
emphasizing the model’s uniform learning across differ-
ent components.

Figure 6 serves as a valuable visual aid, offering a clear 
depiction of the model’s convergence and accuracy 
trends. This comprehensive overview aids in understand-
ing the DNN dynamic behavior and provides insights 
into the learning patterns of individual components, 
contributing to the model’s overall success in credit risk 
prediction.

ii)	 Layer-wise and Epoch-wise Accuracy Analysis for 
PPDNN-CRP:

Figure  7 presents a thorough comparison of accuracy 
across different layers and epochs in a PPDNN-CRP 
model subject to privacy constraints. The model encom-
passes layers such as dense, batch normalization, and 

dropout, with accuracy measured over 100 epochs. Accu-
racy values span from 0.547861516 in the initial epoch to 
0.826882601 in the final one.

Notably, the accuracy exhibits improvement with each 
epoch, signifying the model’s ongoing learning progress. 
Different layers, including dense and batch normaliza-
tion, showcase distinct accuracy levels, illustrating their 
respective contributions to the overall model perfor-
mance. This in-depth examination of layer-specific accu-
racy offers valuable insights into the impact of privacy 
constraints on the model’s learning dynamics. It assists 
in enhancing the PPDNN-CRP for credit risk prediction 
while maintaining privacy through the use of PHE.

Training and validation accuracy
A graphical representation of the training and validation 
accuracy over epochs for the proposed models.

i.	 Training vs. Validation Accuracy for DNN-CRP

Training and validation accuracy graphs with reference 
to Epoch was presented in the Fig. 8.

The DNN model underwent training from 0 to 100 
epochs, with the training accuracy in the range [0.778, 
0.8416]. While the training accuracy exhibited notice-
able variations across epochs, it generally demonstrated 
an upward trend, peaking at 0.8416 by the end of the 
training.

In contrast, the validation accuracy displayed greater 
consistency and reached saturation earlier. This indi-
cates that during the initial eighteen epochs, the model’s 
generalization performance was at its optimal level. The 
model exhibited some overfitting, as evidenced by its 
superior performance on the training data compared to 
the validation data. However, this disparity diminished 
in subsequent epochs, indicating effective control over 
overfitting. With a validation set accuracy of 0.8618, the 
model showcased strong performance, suggesting the 
acquisition of efficient credit risk prediction skills that 
generalized well to new, unobserved data.

For DNN-CRP the validation accuracy is plateau and 
efficient overfitting management is evident.

	 ii.	 Training and validation accuracy performance of 
PPDNN-CRP is  presented in Fig. 9

The training and validation accuracy patterns show the 
PPDNN-CRP model’s continuous learning process. In 
the early epochs, both accuracies increased as the model 
understood underlying data patterns, with training accu-
racy increasing from 53% to over 80% upto epoch 20 and 
validation accuracy peaking at 86–87% upto epoch 25.

The small gap between training and validation accuracy 
throughout the first 25 epochs implies that the model is 
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Fig. 6  Layer-wise and epoch-wise accuracy analysis for DNN-CRP
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Fig. 7  Layer-wise and epoch-wise accuracy analysis for PPDNN-CRP
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fitting genuine data signals without major overfitting. 
However, at period 25, training accuracy increased while 
validation accuracy plateaued at 78%, indicating overfit-
ting and input learning.

By epoch 100, the widening gap demonstrated the 
model’s increasing reliance on irrelevant training data 
details. The optimal stopping point, identified around 25 
epochs, showcased a balance between fitting meaning-
ful patterns and avoiding overfitting. Further training led 
to diminishing returns, with improved training accuracy 
failing to generalize to enhanced validation performance.

In essence, the model demonstrated initial meaningful 
learning followed by overfitting, illustrating the crucial 
role of early action to achieve the best balance between 
underfitting and overfitting for successful credit risk 
prediction.

	iii.	 Comparative Analysis of Training and Validation 
Accuracy Performance of PPDNN-CRP vs. DNN-CRP

Figure  10 illustrates the accuracy outcomes of DNN-
CRP, emphasizing the disparities in training and vali-
dation accuracy across 100 epochs for the credit risk 
prediction model. The comparison is made between the 
DNN-CRP model operating DNN and the same model 
incorporating PHE for privacy.

In the absence of privacy protection, the DNN-CRP 
demonstrates higher and consistently accurate outcomes, 
indicating effective learning. The training accuracy ranges 
from 0.778 to 0.8416, while validation accuracy stabilizes 
between 0.8455 and 0.8618 after initial fluctuations.

Conversely, the PPDNN-CRP model, utilizing PHE, 
begins with a lower training accuracy of 0.5397 but 
steadily progresses to 0.8512 by the 100th epoch. The 
validation accuracy remains relatively stable, consistently 
surpassing 0.8 after epoch 20. Despite some observed 
overfitting, the PPDNN-CRP model exhibits a remark-
able ability to learn from encrypted data.

In comparison, the DNN-CRP exhibits less overfitting, 
as shown by a smaller gap between training and valida-
tion accuracy. In conclusion, the PPDNN-CRP model 
shows reasonable accuracy, demonstrating its potential 
for credit risk prediction while maintaining data privacy 
via homomorphic encryption. Although the DNN-CRP 
model performs somewhat better overall, the balance of 
privacy and usability makes the safety-enhanced model 
an important consideration for safe credit risk assess-
ment, as shown in Fig. 10.

Training loss and validation loss
Training Loss and Validation Loss Graphs for Proposed 
Model. It provides insights into the model’s learning pro-
cess and generalization performance.

Fig. 8  Training accuracy and validation accuracy graph for DNN-CRP

Fig. 9  Training accuracy and validation accuracy graph 
for PPDNN-CRP

Fig. 10  Comparative analysis of training and validation accuracy 
for PPDNN-CRP and DNN-CRP
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i.	 Training Loss and Validation Loss Graphs for  DNN-
CRP presented in Fig. 11

The training and validation loss data for the DNN-CRP 
model, which runs 100 epochs, is clearly reported. The 
training loss steadily reduces from 70.2209 to 1.0215, 
demonstrating the model’s capacity to digest information 
from the training set and improve performance. Simul-
taneously, the validation loss decreases from 62.0963 to 
0.9431, exhibiting greater fluctuation but getting around 
1.0 around epoch 20.

The noticeable difference between the training and 
validation losses indicates some overfitting, as the train-
ing loss falls faster than the validation loss. However, as 
epochs advance, the validation loss decreases, showing 
strong generalization. In essence, the decreasing curves 
of both training and validation losses demonstrate the 

DNN-CRP effectiveness in pattern recognition and credit 
risk prediction.

	 ii.	 Training Loss and Validation Loss Graphs for 
PPDNN-CRP

 Figure  12 shows the PPDNN-CRP model’s train-
ing and validation loss over 100 epochs, with a focus 
on confidentiality via homomorphic encryption. The 
training loss has decreased from 4.6868 to 0.4299, 
indicating that the private model is effective at find-
ing patterns in encrypted training data. The valida-
tion loss follows a similar decreasing trend over the 
epochs, ranging from 4.1436 to 0.8603, with a peak of 
roughly 0.8 around epoch 20.Despite showing overfit-
ting in the private model, as seen in the gap between 
the training and validation loss curves, these losses 
gradually diminish over time, indicating an accept-
able level of generalization. In conclusion, the pri-
vate PPDNN-CRP model shows promise for robust 
learning from encrypted data and effective credit risk 
prediction.

Comparison of training loss and validation loss 
performances for the models with privacy (PPDNN‑CRP) 
and without privacy (DNN‑CRP)
Over the course of 100 epochs, the DNN-CRP model 
exhibits a reduction in validation loss from 62.0963 
to 0.9431, and a gradual decline in training loss from 
70.2209 to 1.0215. These trends underscore the model’s 
effective learning and generalization from the original 
data.

On the other end, the PPDNN-CRP model, employing 
PHE, starts with a lower training loss of 4.6868, eventu-
ally decreasing to 0.4299. The validation loss similarly 
decreases from 4.1436 to 0.8603. This highlights the Fig. 11  Training loss and validation loss analysis graph for DNN-CRP"

Fig. 12  Training loss and validation loss analysis graph for PPDNN-CRP
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PPDNN-CRP capacity to discern patterns and make fore-
casts based on encrypted data.

However, the training and validation curves of the 
DNN -CRP model appear smoother with smaller gaps, 
indicating less overfitting compared to the private model, 
which shows greater variations between training and val-
idation loss.

Both models exhibit respectable declining trends, 
reflecting their ability for learning and generalization. 
While the DNN-CRP demonstrates slightly more overfit-
ting than the privacy-preserving model, it still maintains 
usable accuracy.

Comparative analysis performance metrics 
for the proposed models
Performing a comparative analysis of performance met-
rics for a comprehensive assessment of different models.

Emphasis of various metrics used for evolution
In evaluating the performance of the PPDNN-CRP 
model for Credit Risk Prediction, various metrics provide 
a comprehensive understanding of its effectiveness:

•	 Accuracy measures the proportion of correct predic-
tions, giving a general sense of the model’s overall 
performance.

•	 Precision assesses the accuracy of positive predic-
tions, indicating the model’s ability to avoid false pos-
itives.

•	 Recall evaluates how well the model identifies all 
relevant positive cases, reflecting its capability to 
capture true positives.

•	 F1-Score balances precision and recall, offering a 
single metric that accounts for both false positives 
and false negatives.

•	 Area Under the Curve (AUC) reveals the model’s 
ability to distinguish between different classes, 
demonstrating its discriminative power.

These metrics collectively provide a robust frame-
work for assessing the PPDNN-CRP model’s predictive 
accuracy, reliability, and overall effectiveness in ensur-
ing both high performance and data privacy.

Comparison of performance metrics of PPLR, DNN‑CRP 
and PPDNN‑CRP
Figure 14 Presents the Confusion matrix. of the Three 
models.

Table  2; Figs.  15,  16, and 17 present the performance 
metrics—Precision, Recall, F1-score, Accuracy, AUC, 
and ROC—for the three models: PPLR, DNN-CRP, and 
PPDNN-CRP. Among these, DNN-CRP achieves the 
highest precision at 0.86 and recall at 0.97, indicating its 
strong ability to identify true positives and actual defaults. 
In comparison, PPDNN-CRP shows competitive results 
with a precision of 0.84 and a recall of 0.91, reflecting its 
effective performance in default detection while maintain-
ing an accuracy of 80.48%. PPLR, however, lags behind 
with a precision of 0.74, recall of 0.87, and accuracy of 
77.23%. The F1-scores further confirm these trends, with 
DNN-CRP scoring 0.91, PPDNN-CRP at 0.87, and PPLR 
at 0.79. In terms of AUC, DNN-CRP excels with a value 
of 0.83, while PPDNN-CRP and PPLR score 0.74 and 0.65, 
respectively, indicating varying levels of model robustness.

The solid performance of PPDNN-CRP can be 
largely attributed to its implementation of Homomor-
phic Encryption (HE). This technique allows for the 
secure processing of sensitive data without compromis-
ing model accuracy, enabling effective learning from 
encrypted datasets. HE offers distinct advantages over 
other privacy-preserving methods by preserving data 
utility during computations and facilitating model train-
ing without exposing raw data. While DNN-CRP out-
performs PPDNN-CRP in several metrics, the latter’s 
integration of HE positions it as a compelling option 
for credit risk prediction, balancing the critical need for 
data privacy with reliable predictive performance.

Epoch‑wise computation time analysis for proposed model
Epoch‑wise computation time analysis for DNN‑CRP model 
training model
The Fig. 18 explains the time required for training epochs 
in a DNN, where each epoch signifies one complete cycle 

Fig. 13    Comparison analysis graph for training loss and validation 
loss performances for PPDNN-CRP And DNN-CRP is presented 
in Fig. 13
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Fig. 14  Confusion matrix of the three models
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through the entire training data. Across 100 epochs, the 
first epoch stood out as the lengthiest, taking 6.34 s. Sub-
sequently, the majority of epochs exhibited a significantly 
shorter duration, approximately 0.28 s each.

This pattern indicates that during the initial epoch, 
the DNN dedicated time to learning patterns within the 
credit risk data. The longer duration of the first epoch 
was attributed to the network adjusting its internal 
weights. By the second epoch, the network had already 
acquired substantial knowledge, resulting in faster subse-
quent epochs as it reinforced existing learnings.

The swift processing observed after the initial learn-
ing phase underscores the efficiency of DNN in credit 
risk prediction. Once the intricate patterns are learned, a 
DNN can rapidly process new applicant data. This aligns 
with the notion conveyed in the title, emphasizing that 
DNN excel in processing data for credit risk forecasting. 
The timing data serves as evidence that DNN effectively 
learn relationships and subsequently make rapid predic-
tions regarding credit risk.

Epoch‑wise computation time analysis for PPDNN‑CRP Model 
Training
The Fig. 19 explains from the initial epoch had the long-
est duration, taking 0.3818 s. The subsequent epochs 
were relatively faster, ranging from 0.22 to 0.23 s. After 
epoch 20, the durations increased to a range of 0.3 to 0.4 
s for several epochs. Following this, the times decreased 
once again and remained consistent between 0.2 and 0.25 
s for the remaining epochs.

Table 2  Performance metrics overview

ML Model Performance metric parameters

Precision Recall F-measure Accuracy (%) AUC​

PPLR 0.74 0.87 0.79 77.23 0.65

DNN-CRP 0.86 0.97 0.91 86.18 0.83

PPDNN-CRP 0.84 0.91 0.87 80.48 0.74

Fig. 15  Performance comparsion between PPLR, DNN-CRP 
and PPDNN-CRP

Fig. 16  Performance metric parameters comparison of PPLR, DNN-CRP and PPDNN-CRP
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The extended durations at the beginning and middle 
phases signify periods when the PPDNN-CRP was com-
prehending intricate patterns within the encrypted credit 
risk data. The subsequent faster durations suggest that, 
after a certain point (epoch 20), the network had learned 
the patterns and was primarily reinforcing its existing 
knowledge.

In essence, the timing patterns illustrate the PPDNN-
CRP ability to process homomorphically encrypted data 
for credit risk predictions. The initial learning phase 
requires more time, but once the complex patterns are 
understood, subsequent predictions occur rapidly. This 
aligns with the theme conveyed in the title, asserting that 
PPDNN-CRP Model are proficient in handling encrypted 
data for credit risk forecasting.

Comparative analysis of computation time for DNN‑CRP 
and PPDNN‑CRP
Figure  20 provides a comparison of epoch times for a 
DNN trained on credit risk data, with one set conducted 
DNN-CRP and the other utilizing homomorphic encryp-
tion for privacy. In the absence of encryption, the initial 
epoch takes 2.4449 s, followed by faster durations in later 
epochs, ranging from 0.25 to 0.4 s.

Conversely, when HE is employed, the first epoch is 
slower, taking 1.6726 s. Subsequent epochs, however, 
exhibit similar durations, ranging from 0.2 to 0.4 s.This 
comparison reveals that encryption introduces a slight 
delay during the initial learning phase. However, after 
training, prediction times become comparable. Conse-
quently, neural networks demonstrate the capability to 
process encrypted data for credit risk prediction. The 
titles accurately convey DNN-CRP, with only a minimal 
impact from privacy encryption.

Discussion on results
he PPDNN-CRP model offers a notable balance between 
accuracy in credit risk prediction and data privacy 
through Homomorphic Encryption (HE). When evalu-
ated against the DNN-CRP and PPLR-CRP models, sev-
eral trade-offs and benefits emerge.

The DNN-CRP model, which does not prioritize data 
privacy, exhibits the highest precision and recall, show-
casing its strong predictive capabilities and ability to 
identify true positives. The PPDNN-CRP model, inte-
grating HE for data privacy, shows a slight reduction in 
these metrics, reflecting the computational complexity 
introduced by encryption. Despite this, the PPDNN-
CRP model surpasses the PPLR-CRP model in precision, 
recall, and accuracy, suggesting that HE strikes a better 
balance between accuracy and privacy than differential 
privacy.

Fig. 17  Comparing ROC Curves: PPDNN-CRP, DNN-CRP and PPLR

Fig. 18  "Epoch-wise computation time graph analysis for DNN-CRP 
model training"

Fig. 19  Epoch-wise computation time graph analysis for PPDNN-CRP 
model training
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Regarding precision, recall, and F1-Score, the PPDNN-
CRP model performs well, though slightly lower than the 
DNN-CRP model, while outperforming the PPLR-CRP 
model. This highlights HE’s effectiveness in maintaining 
high predictive performance while ensuring data privacy.

The ROC-AUC analysis indicates that the DNN-CRP 
model has good discriminative power, with the PPDNN-
CRP model also demonstrating fair performance, though 
with a reduction due to privacy preservation. Neverthe-
less, the PPDNN-CRP model’s performance remains 
acceptable given the privacy advantages.

Epoch-wise computation time analysis shows that the 
initial learning phase is more time-consuming for both 
models, with subsequent epochs becoming significantly 
faster. The delay introduced by encryption in the PPDNN-
CRP model’s initial epoch is minimal and manageable.

In summary, the PPDNN-CRP model achieves an 
optimal balance between accuracy and privacy, out-
performing the PPLR-CRP model and approaching the 
performance of the DNN-CRP model. The slight reduc-
tions in accuracy and AUC are acceptable trade-offs for 
the significant privacy benefits provided by HE, making 
the PPDNN-CRP model a superior choice for credit risk 
applications requiring both predictive accuracy and data 
privacy. PPDNN-CRP with Neural Net work processing 
algorithms optimized for encrypted computations. This 
can involve designing neural network operations (like 
matrix multiplications and activations) that are more effi-
cient under encryption. Hence Proposed PPNNP-CRP 
model can handle the potential impact on predictive 
accuracy due to its Homomorphic encryption used as 
privacy-preserving mechanisms.

Conclusions
In this paper we introduced the PPDNN-CRP frame-
work, a Privacy-Preserving Deep Neural Network 
designed for secure credit risk prediction using 

homomorphic encryption. The proposed model dem-
onstrates competitive performance with an accuracy of 
80.48%, closely approximating the accuracy of a tradi-
tional deep neural network (86.18%) and significantly 
outperforming a privacy-preserving logistic regression 
method (77.23%). Additionally, the PPDNN-CRP model 
maintains robust predictive capabilities, as evidenced 
by a precision of 0.84, recall of 0.91, and an F1-score of 
0.87. Our security analysis confirms that the PPDNN-
CRP framework effectively mitigates a range of privacy 
threats, including poisoning, evasion, membership 
inference, model inversion, and model extraction. 
Although there is a slight accuracy trade-off compared 
to the non-private model, the robust privacy protec-
tions provided by homomorphic encryption justify 
this compromise. Epoch-wise analysis indicates that 
the model’s training and inference times remain effi-
cient and comparable to non-private approaches after 
the initial setup phase. In conclusion, the PPDNN-CRP 
framework offers a promising solution for high-qual-
ity credit risk prediction while ensuring data privacy 
and compliance with legal and ethical standards. This 
work significantly advances the potential for secure AI-
driven financial services, and future research oppor-
tunities should focus on further optimizations and 
extensions to additional privacy-sensitive domains.
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