Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

The design of a redundant array of
independent net-storages for improved
confidentiality in cloud computing

Martin Gilje Jaatun'", Gansen Zhao?, Athanasios V Vasilakos®, Asmund Ahlmann Nyre', Stian Alapnes*

and Yong Tang?

Abstract

formal model, security analysis, and simulation results.

This article describes how a Redundant Array of Independent Net-storages (RAIN) can be deployed for confidentiality
control in Cloud Computing. The RAIN approach splits data into segments and distributes segments between
multiple storage providers; by keeping the distribution of segments and the relationships between the distributed
segments private, the original data cannot be re-assembled by an observer. As long as each segment is small enough,
an individual segment discloses no meaningful information to others, and hence RAIN is able to ensure the
confidentiality of data stored in the clouds. We describe the inter-cloud communication protocol, and present a

1 Introduction

Security concerns are frequently cited [1,2] as one of
the major obstacles to cloud computing adoption. In
a traditional outsourcing scenario, technical and orga-
nizational security mechanisms contribute to protect a
customer’s data, but the most important factor is that
the customer establishes a trust relationship with the
provider. This implies that the customer acknowledges
that if the provider is evil, the customer’s data may be used
improperly [3].

One aspect of Cloud Computing can be described as
“outsourcing on steroids”; where both storage and pro-
cessing is handled by one or several external providers,
and where the provider(s) may be in a different jurisdic-
tion than the customer. Not knowing where your data is
physically located may be uncomfortable to the customer,
and personal data may even be illegal to export from some
jurisdictions [4]. Just like with traditional offshoring, set-
tling disputes is more challenging when the provider may
be on a different continent, which is all the more reason
to limit the degree to which the customer has to trust the
provider. This is the “need to know” principle in a nutshell

*Correspondence: martin.gjaatun@sintef.no
TSINTEF ICT, Trondheim, Norway
Full list of author information is available at the end of the article

@ Springer

- if the provider does not need to read the information,
why should it be allowed to?

In this article, we explore a Cloud Computing scenario
where the dependency on trust will be reduced through
a divide-and-conquer approach, where each actor gets
access to sufficiently small units of data so as to minimize
confidentiality concerns. In a way, our approach is the
opposite of the aggregation problem in database security
[5] — we de-aggregate the sensitive data.

The remainder of the article is structured as follows: In
Section 2 we outline the background for our contribution.
In Section 3 we sketch our solution, and detail the pro-
tocol between the various actors further in Section 4. We
present a formal model in Section 5, and provide a security
analysis in Section 6. We discuss implementation consid-
erations in Section 4.6 and present simulation results in
Section 7. We discuss our contribution in Section 8, out-
line further work in Section 9, and offer our conclusions
in Section 10.

2 Background

Cloud computing provides on-demand services delivered
via the Internet, and has many positive characteristics
such as convenience, rapid deployment, cost-efficiency,

© 2012 Jaatun et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

and so on. However, we have shown [6] that such off-
premises services cause clients to be worried about the
confidentiality, integrity and availability of their data.

In previous work [7], we identified five deployment
models of cloud services designed to ease users’ security
concerns:

e The Separation Model separates storage of data
from processing of data, at different providers.

e The Availability Model ensures that there are at
least two providers for each of the data storage and
processing tasks, and defines a replication service to
ensure that the data stored at the various storage
providers remains consistent at all times.

e The Migration Model defines a cloud data
migration service to migrate data from on storage
provider to another.

e The Tunnel Model defines a data tunneling service
between a data processing service and a data storage
service, introducing a layer of separation where a data
processing service is oblivious of the location (or even
identity) of a data storage service.

e The Cryptography Model extends the tunnel model
by encrypting the content to be sent to the storage
provider, thus ensuring that the stored data is not
intelligible to the storage provider.

By use of these deployment models, we have shown [1]
that through duplication and separation of duty, we can
alleviate availability and integrity concerns, and to some
extent also confidentiality by implementing encrypted
storage. However, even with encrypted storage, we still
have to trust the encryption provider with all our data.
Furthermore, if the data needs to be processed in the
cloud, the cloud processing provider in general also needs
to have access.

The main motivation for confidentiality control in the
cloud is currently various privacy-related legislation for-
bidding the export of sensitive data out of a given juris-
diction, e.g. the Privacy legislation in the EU [4]. The
current solution to this problem has been to sidestep
it: By offering geolocalized cloud services, where a cus-
tomer may request the cloud provider to ensure that the
sensitive data is only stored and processed on systems
that are physically located in a geographically defined
area, e.g., within the borders of the European Union.
However, this is rapidly becoming a moot point, since
cloud service providers typically run global operations,
and although data might physically reside in one jurisdic-
tion, it will in principle be accessible from anywhere in the
world.

Although misappropriation of data by cloud providers
has not been documented, Jensen et al. [8] show that
current cloud implementations may be vulnerable to

Page 2 of 19

attack, and the first examples of Cloud compromises have
surfaced [9]. Ristenpart et al. [10] demonstrate that even
supposedly secret information such as where a given vir-
tual machine is running may be inferred by an attacker,
highlighting another attack path. Furthermore, insider
malfeasors can be a challenge for any organization, and
an incident at Google shows they are as vulnerable as
anyone [11].

Krautheim [12] proposes to achieve cloud security
through the introduction of Trusted Platform Modules
(TPM) in all datacenter equipment. It is not clear, how-
ever, how the user could verify that a TPM is indeed
present in any given cloud infrastructure. You might argue
that the cloud provider could assert, and have an audi-
tor confirm that they are using a TPM, but this is really
not much better than today’s situation where providers are
asserting that they will treat your data properly, and all
their certifications is a testament to them staying true to
their words.

2.1 Previous work on security through splitting data

The Free Haven project [13] describes a collaborative dis-
tributed storage system, where participants are allowed
to store (or publish) data by offering to store data for
others, in the same general fashion of peer-to-peer file
sharing. The Free Haven project does not provide a new
solution for the anonymous communications channel, but
uses a set of anonymous remailers as a basis. The Free
Haven project makes no assumptions on the participants
being honest, but uses a reputation system to identify
non-cooperative (or dishonest) nodes.

The OceanStore [14] system is also based on distributed
storage, but is not concerned with ensuring anonymity of
the individual users.

The ShareMind framework [15,16] offers distributed
privacy-preserving® computations, based on the princi-
ples of secure multiparty computations. Sharemind is not
focused on (anonymous) storage; the current prototype
solution is based on distributing data from one source
among three nodes referred to as data miners, and is only
secure as long as the three miners do not collude.

2.2 Abrief introduction to Botnets

A botnet is a collection of compromised computers (bots)
which are controlled by a human botmaster, often through
a convoluted hierarchy of subnodes to evade detection
and disclosure of the network and its owner. This is
illustrated in Figure 1, inspired by by Wang et al. [17].

A traditional C&C (Command & Control) botnet is cre-
ated by infecting regular PCs with malware that opens
up a backdoor. Furthermore, the infected hosts actively
poll a shared communication medium (typically: An Inter-
net Relay Chat channel) for instructions. When correctly
tagged instructions are observed on the shared medium,

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

Page 3 of 19

Figure 1 A traditional C&C botnet.

o)
Botmaster

Wﬁ C&C W'ﬂ C&C

v vy ¥

the infected host obeys without verifying (or even know-
ing) the identity of the issuer.

Botnets are used for mundane tasks such as sending
unsolicited commercial email (spam) and performing Dis-
tributed Denial of Service (DDoS) attacks, but could in
theory be used for any task that is amenable to distributed
computing on nodes with modest processing and mem-
ory resources. In the following, we will show that we can
exploit some properties of a botnet, not by infecting Cloud
nodes, but by running autonomous agents as legitimate
processes on Cloud processing providers.

3 Approach

We have extended the deployment models [1] with a new
concept where data is split up and kept by several inde-
pendent (non-colluding) storage providers in a Redundant
Array of Independent Net-storages (RAIN) [6], in such a
manner that a single chunk does not compromise confi-
dentiality [18]. The data can then be stored using one or
several cloud storage providers (duplicated, according to
the deployment models).

3.1 Assumptions
The RAIN solution makes the following security assump-
tions:

1. We have a file (or dataset) that has been divided into
small chunks

2. A provider will not be able to link two different
chunks of the same dataset, should it gain access to
them

3. The cloud service providers can be classified as
“Honest but curious”, i.e., we expect them to carry out

the protocol faithfully, but they may try to access the
information either through collusion or other means.

4. There are enough simultaneous users to make
anonymity feasibleP

5. We have a lightweight authentication mechanism
which can be used to regulate access to a data item

6. The C&C node has a list of “honest” Cloud
Processing providers, and their public keys

7. The C&C node maintains a record of all data IDs

8. The C&C node maintains a record of all nonces
generated by legitimate users and itself, for as long as
a data ID is active

9. The user maintains a log of any outstanding requests
sent to the C&C node, and will reject any unsolicited
responses

10. The C&C node maintains a log of any outstanding

requests sent to cloud processing providers, and will
reject any unsolicited responses

The adversarial model is less powerful than Dolev-Yao,
in that we assume that an adversary can observe all traffic,
and possibly insert traffic, but not in general delete traffic
(e.g. does not carry the message).

3.2 Using Botnets for non-nefarious purposes

We propose to organize the various elements in our
distributed cloud architecture as a traditional multi-tier
Command & Control (C&C) botnet, e.g. as described by
Wang et al. [17].

We implement the shared medium as a cloud multicast
service which can be freely accessed by anyone. To prevent
tracing, we employ an approach similar to Onion Routing
[19] when issuing commands from the C&C node.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

We introduce a new type of cloud service provider
which assumes the role of the botnet C&C node, and
which is in charge of assembling the information and pre-
senting it. This keeps all processing in the cloud, but leaves
us with the problem that we have to trust this provider
with our information. The resulting configuration is con-
ceptually illustrated in Figure 2a.

The key property of the solution is that all the subn-
odes (cloud processing providers) and leaf nodes (cloud
storage providers) only get to observe a small subset of
a user’s data, and that these nodes are prevented from
associating a given piece of data with a specific user, or
with other pieces of the same dataset. Ultimately, it will
be like breaking open a large number of jigsaw-puzzles
and distributing the pieces among storage providers — a
single provider will not be able to determine where the
pieces come from, or even if they are part of the same
puzzle. Note that we do not propose to make the cloud
processing provider work with encrypted data; the confi-
dentiality control is achieved through the de-aggregation
of information, and hiding the relationships between
the processing providers. Also note that assuming the
volume of such “botnet computations” is large enough
(i.e., many enough users employ this technique), it is also
possible to re-use providers, since it will not be possi-
ble for a provider to relate two different processing tasks
with each other. Note that requiring a certain number
of users is not unusual in similar applications, e.g., the
TOR designers [19] make the same assumption regarding
TOR’s ability to provide privacy for its users.

Page 4 of 19

For the truly paranoid, it could be possible to intro-
duce uncertainties by routinely accessing bogus data, but
although the user will know which data is real, and which
is bogus, this will introduce the need for some “intel-
ligence” on the client (to separate the wheat from the
chaff), and we find ourselves transported to the alternative
solution presented in Section 3.8.

3.3 Arevival for autonomous mobile agents

Mobile agents [20] have already been suggested as a
viable paradigm for services in Cloud Computing [21-23].
Many traditional security concerns with mobile agents
are related to security of the host platform [24], but in a
cloud setting these are mostly alleviated through the vir-
tualization strategies employed. As will be detailed below,
the mobile agent paradigm is a very good fit for the
intermediate nodes in our design.

3.4 Example 1 - digital image
To illustrate the concept, we will in the following consider
the storing of bitmap images in the cloud. Figure 3a shows
a 480X480 image. The image is sliced into a 10X5 grid,
of 48X98 pixels each. For our purposes, a single slice of
the picture does not reveal much useful information to the
observer, and this information can be stored unencrypted
as long as it is not possible to combine it with the other
slices.

The C&C node performs the slicing of the image, and
randomly distributes the slices among (say) 10 subn-
odes. Each subnode then stores the slices independently

Processing providers

Storage providers

(a) Pure Cloud Solution

Figure 2 Divide-and-conquer Cloud Security. (a) Pure Cloud Solution. (b) With Intelligent Client .

(b) With Intelligent Client

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

Page 5 of 19

(a) Original Lena Image

(b) Randomly Segmented Lena
Image

Figure 3 Segmentation and Randonmization. (a) Original Lena Image. (b) Randomly Segmented Lena Image.

using as many cloud storage providers as available (ide-
ally one for each slice, but even for this small example we
would probably be hard pressed to find 50 independent
providers). To prevent observability, the subnodes may
use an encrypted tunnel to transfer the data to the storage
providers.

It is the responsibility of the C&C node to keep track
of which subnode has received which slices, but also to
record the location. When the image is to be retrieved, the
user will instruct the C&C node to fetch all the slices.

Admittedly, this is a toy example, with all the real pro-
cessing being performed by the C&C node — the real
challenge comes when it is required to perform compli-
cated processing on each subnode. This will also introduce
the need for more sophisticated “slicing” of data.

Note that, without the proper knowledge of the distribu-
tion of the slices, it is very unlikely that the original image
can be reconstructed. Given all the slices, it is still not
easy to reconstruct the original image, if the number of
slices is large enough. Figure 3b is an example of the recon-
structed image without knowledge of the slices’ order. The
reconstructed image does not look much like the original
image. If the image is sliced into even smaller slices, the
reconstructed image would be even more different from
the original image.

3.5 Example 2 - electronic document

The need to permutate the different slices becomes more
evident if we consider the example of an online document
stored in the Cloud. The naive solution might be to let
every N character be stored at each cloud storage provider,
but if the number of providers is as low as three, the risk
of a single provider inferring the missing characters is too

high for our liking. However, if there is a sufficiently high
number of users in total, and the cloud provides cannot
differentiate between the users, even this solution may
provide adequate security.

Updating a stored document will currently require stor-
ing everything anew as if it were a new document, since
there are no relationships between the various slices. A
possible future extension could be to allow the C&C node
to keep track of changes, and only add new data. Note that
although the previous example used contiguous image
regions as slices (see Figure 3b), this is merely for illustra-
tion; both a document and an image could be sliced, e.g.,
by selecting every n'" byte.

3.6 Criteria

Since we perform the slicing and distribution of data
in order to achieve data confidentiality, it is important
that the slicing and distribution processes adhere to the
following criteria:

e Data must be sliced into segments small enough such
that each segment bears no meaningful information
to malicious entities. With data sliced in this way,
malicious entities may be able to access an individual
data segment, but the access to the data segment
should not compromise the confidentiality of the
data as a whole.

e Data segments must be distributed in a random
manner, such that it is not possible to establish the
relationships between data segments without
knowledge of the original data. The relationships
between data segments are kept secret by the
data owner.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

With the above two criteria strictly enforced, the pro-
posed approach would be able to ensure the confiden-
tiality of data. This is achieved without encrypting the
data.

3.7 Minimal data unit for processing

In the presented example, the minimal data unit that can
be handled by a cloud processing provider is the entire
image (e.g. for image manipulation). A similar situation
is reasonable to expect for documents, whereas database
operations may only need access to a limited number of
records, not the whole database.

3.8 Alternative solution

If we are unwilling to trust the C&C provider described in
the previous section, an alternative solution is place this
functionality on the client, i.e. running on the user’s own
infrastructure, as figure 2b.

This solution requires a certain amount of computing
power present on the client side in order to (re-)assemble
all the different pieces of information produced by the
cloud processing provides, and may thus not necessarily
be considered a pure cloud solution.

4 Protocol

In the following we describe the protocol [25] to be used
in RAIN in greater detail. The scheme is dependent on
creating a small mix-net [26] in the cloud, and creat-
ing a collection of autonomous cloud processing agents
explained below (see Figure 4). The autonomous agents
will retain a one-to-one relationship with a cloud storage
provider. Each agent will have a unique ID that is known

Page 6 of 19

to the C&C node, but this knowledge should in principle
not allow the C&C node to locate the agent. Furthermore,
we need to create a cloud service that can serve as a broad-
cast medium similar to an IRC channel; for simplicity we
will call this the IRC node.

4.1 Protocol for storing data
First, we will describe briefly the main thrust of the proto-
col, with more details in the following subsections.

Let D be a piece of data to be split and stored in
the clouds. The user U will send D to the C&C node,
encrypted with that node’s public key:

U — C&C : {store—full, auth, IDp, D}y

Here, “auth” is an authentication token used to verify the
user’s rights to the dataset®. If this message is replayed, it
will be ignored; the only way to re-use a data ID is to first
delete the data-set that uses it.

The C&C node performs the split [18] such that H can
be represented as H =< Ds, R; > where

o D,={dli=1,..,n)
° RS = {< di:dl'+1 > |l = 1, ey 1 — 1}

Here, R; specifies how the segments are related to
each other; this knowledge is necessary for reassem-
bly. The reulting sequence H can thus be written
H = (d1,dy,..,d,). We need to assign a unique ID (or
pseudonym) to each data item, which we in the following
refer to as ID ;.

The C&C node then distributes H among the cloud
storage providers by assigning their respective identifiers

Cloud Mix-net

Cloud Agents

Cloud Storage
Providers

Figure 4 Sketch of solution for storing information.

C&C node

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

(CSx, ..., CS)) to the corresponding d;, this through the
mix-net (see section 4.2 for details) to IRC:

Vi|C&C — IRC : mix({CSj, store—part, auth, ID 4;, d;})

The C&C node needs to maintain a table mapping
which data items have been sent to which cloud storage
service. Furthermore, it is important that the pseudonyms
are unique within a given C&C provider, but created in
such a manner that it cannot be determined that two
different pseudonyms refer to data items from the same
file. As mentioned in Section 3.1, we're assuming that the
traffic volume will contribute to hide which items belong
to which datasets, so although we are effectively broad-
casting the mapping tables, this should not matter: An
adversary can tell that the data item with pseudonym X is
stored with cloud storage service Y, but this information
is of little use if there is no way to tie the pseudonym to a
dataset (or user). Furthermore, due to the use of the mix-
net, the identity of the cloud storage provider is effectively
a pseudonym as well.

The IRC node then publishes this information on its
broadcast medium, where all the autonomous agents are
listening. When an autonomous agent sees its own ID, it
copies the associated d; and stores this at its associated
cloud storage provider.

4.2 Mix-netin the cloud

Chaum’s original mix-net idea [26] has been employed
with some success in the TOR network [19,27]. In the fol-
lowing, we will describe a simplified scheme tailored to
the task at hand.

We assume we have a set of n autonomous agents
my, My, . .., my. The agents are running as cloud web ser-
vices, and their addresses and public keys are known to
the C&C node.

By a slight paraphrasing of Chaum [26] we have that
when using a single mixer node »;, communication from
Bob to Alice via m1; occurs as follows:

B — my . {Rm; ml;Ay {Ra,A,Store, di, CS]}KA }Kml
my —> A : {Ry, A, store, d;, CSj}k,

Here, R, and R,, are nonces that are discarded upon
decryption, and d; is the item of data to be sent. The
only purpose of the nonce here is to prevent repeated
sending of identical plaintexts from generating the same
ciphertext. The parameter CS; identifies the storage agent,
which is effectively a pseudonym for the Cloud storage
provider below. By recursively applying the scheme above,
it is possible to extend it to an arbitrary number of mixer
nodes.

In our case, the sender is the C&C node, and the final
recipient is always the IRC node. The sole purpose of the
mix-net is thus to hide the identity of the C&C node from
the IRC node. Naturally, this only makes sense if there are

Page 7 of 19

multiple C&C nodes in the system as a whole. In the pro-
tocol descriptions, we will use the notation mix(...) to
indicate that a message is sent through the mix-net.

4.3 IRCnode

The IRC node receives a large amount of data items from
multiple C&C nodes, and for each data item, the param-
eter CS; identifies which storage agent should handle the
item. The CRC then simply sends the following to all
storage agents, using a fixed multicast address Rain:

VilIRC — Rain : CS}, store—irc, auth, IDy;, d;

The multicast traffic is UDP-based, and there is thus no
acknowledgment or retransmission at the transport level.
Although not explicitly shown here, an important feature
is then that each data item must be sent to multiple storage
agents; this redundancy both ensures duplication of stor-
age, and introduces error tolerance in case of bit errors in
the transmission.

4.3.1 Storage agent

Each storage agent subscribes to the Rain multicast
address, and thus receives all the data items, but discards
all messages that are not addressed to it. Note that the
Storage agent ID (CS;) can be viewed as a pseudonym,
since it is never used as a return address in any way, and
can thus not be directly linked to the storage agent.

The storage agents need to maintain a record of
data items and associated IDs; the IDs are not actually
revealed to the cloud storage providers. However, the
storage agents are not anonymous to the cloud storage
providers, i.e., the cloud storage providers can log the real
addresses of the storage agents, but they do not know their
pseudonyms.

4.4 Dataretrieval
The user may ask the C&C to retrieve a dataset:

U — C&C : {retrieve—full, auth, IDp}K e,

When asked to retrieve a dataset, the C&C node will
need to ask each storage service via the IRC to return their
respective data items:

Vi|C&C — IRC : mix({CS;j, retrieve—part, ID;})

Note that we do not need to authenticate when retriev-
ing individual data items in order to fulfill any security
claims made by RAIN.

Unfortunately, simply running the storage process in
reverse by asking for the data does not work, since an
observer then quickly could make the link between stor-
age agent pseudonym and its address. Instead, when we
need to retrieve a data set, the C&C will instruct the IRC
node to issue a “call for data items’, listing the IDs of the
data items. In order to complicate traffic analysis, the IRC

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

node will also ask for somed bogus IDs; these will simply
be discarded.

The storage agents that find matching data item IDs
in their records, will retrieve these from the storage
providers. In addition, they will also retrieve some other
random data which will be discarded. Storage agents who
don't find any data they have stored in the list will period-
ically retrieve random data, and send this on as explained
below.

The retrieved data is then sent back to the IRC node, but
this time via the mix-net. The IRC node then sends each
data item back to the C&C node, again via the mix-net.
This operation is dependent on the C&C node providing
the IRC node with an anonymous return address [26].

Each storage agent® responds with its piece of the puz-
zle, and the IRC node forwards everything to the C&C
node:

Vi|lIRC — C&C : mix({CS}, return—part, IDg;, d;})

The C&C node then re-assembles the data, and either
returns it to the user:

C&C — U : {U, return—full, IDp, D}k,

or sends it off to be processed as explained in the next
section.
The complete picture is illustrated in Figure 5.

4.5 Processing data in the cloud
When the user wants to do something with the data, it will
tell the C&C node:

U — C&C : {process—cnc, operation, auth, IDp, Ny} ke

Page 8 of 19

Here, “operation” identifies what should be done, IDp
identifies the dataset, and N, is a nonce chosen by the user.

The data will first have to be retrieved and re-assembled
as explained above. The C&C node then selects an appro-
priate number of cloud processing providers, depending
on the type of data and what is to be done with it. If the
data is, e.g., a digital image, and the user wants to manipu-
late it using a Cloud-based image editor, then the complete
data set typically needs to be sent to a single processing
provider.

C&C — CP]' :

{{CP;, process—cp, operation, D, Kpc, Neykep hmix

The data, the nonce chosen by the C&C node, a sym-
metric key Kpc for encrypting the response, and the rest
is encrypted with the public key of the cloud processing
provider, and sent through the mix-net.

CP; — C&C : mix({{result —cnc, Dyeguit; NeYkpe })

Note that since the C&C node keeps track of requests
to processing providers, the operations are idempotent;
replayed responses are ignored, and in case of response
failures, a new request will be sent, canceling the former.

The result is returned to the user:

C&C — U : {U, result—user, Dyesuir, Nu Yy

Again, the user will reject any spurious responses with a
nonce that doesn’t match that of an outstanding request.

If the result is a change in the dataset, it will either have
to be re-stored or delivered to the user, depending on the
user’s wishes. If data items need to be updated or deleted,
the authentication mechanism comes into play again. In

Cloud Mix-net

Cloud Agents

Cloud
Qcessing
Providéxs

Figure 5 Retrieving and processing information.

C&C node

Cloyd Storage

oviders

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

any case, a confirmation is sent to the user, closing the
outstanding request.

An example of an editing operation is shown in Figure 6.
In this case, an image of a rodent (Figure 6a) is to be mod-
ified to become a feline (Figure 6d). This example also
highlights an optimization opportunity; Figure 6b and 6¢
identify the modified areas of the image, and on com-
pletion only these parts need to be re-stored. The exact
mechanisms of how to determine which parts have been
changed are beyond the scope of this article, however.

4.6 Implementation considerations

Space does not permit a full implementation specifica-
tion, but in the following we will illustrate in a little more
detail how the actual storage and retrieval process may be
realized from the C&C node’s point of view.

Although we do not go into specifics here, it is clear
that the actual splitting must depend on the type of doc-
ument. The process is illustrated in Figure 7. A user (or a
client running e.g. in a cloud environment) initiates writ-
ing of content to the system. The user can configure which
storage providers to use for certain file types or content.
Part of the config contains information on how each of
the storage providers can be used, i.e. description on how
to access, write and read content. Typically this can be
a proprietary web API Based on the selection of storage
providers available and the content type a recipe is gener-
ated. The recipe states the size of blocks the original file
is to be split into and a sequence for writing the blocks

Page 9 of 19

to the various storage providers. Based on the recipe the
content is divided in blocks that each is stored at a storage
provider. The recipe is stored, and using the recipe, the
content can be retrieved from the storage providers and
assembled. The fileID is returned to the initiating part.

The retrieval process is illustrated in Figure 8. A user
(or a client running e.g. in a cloud environment) initiates
reading of content from the system. The recipe is retrieved
based on the fileID. Based on the recipe the file is read
from storage providers and assembled. The assembled file
is returned to the initiating party.

5 Formal model
We recall from Section 4 that D is a piece of data to be split
and stored on a cloud, and split is a function that splits
D into a sequence H of smaller segments such that H =
(d1,ds, ..., d,) where n is the number of segments D shall
be split into.

The above process can be denoted as follows.

H = split(D)
= (dl: d2r weer dn)

1)
2)

Recall that H can be represented as H =< Dg, Ry >
where

o Dy={dili=1,..,n}
e Ri={<djdir1>10i=1,.,n—1}.

(a) Rodent

(C) Feline characteristics

(b) Rodent characteristics

(d) Feline

Figure 6 lllustration of editing an image of a rodent to get a feline. (a) Rodent. (b) Rodent characteristics. (¢) Feline characteristics. (d) Feline.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

Page 10 of 19

c&C SP#1 SP#2 SP#n
:StorageProvider :StorageProvider :StorageProvider
User
1 T T T T
| | 1 1 |
I 1.0 wite(file) :filelD _ | 1 1 1
. L 1 1 I
I I |
I I |
| I |
1.1 getConfig(fileMIME_type) 1 1 |
1 1 |
1.2 generateRecipe(serviceProviders, c:ontentType) : :
I | |
1.3 write(recipe) : : :
1 1 |
1 1 1
loop | I |
= I I I
[while more blocks] 1 | |
| 1 |
alt ! ! !
1 1 |
[if(recipe (Hiblchi). SP == 1)] 1 1 1
1.4 write(block(i)) | I |
’[I‘] I |
I |
-------- RIS v e o R e o o o o e e e e RO
if(recipe(qipcH#i).SP == 2
iy Bel) 1 1.5 write(block{i)) : : :
i g I
________ L T T ey

3 ; ; o I | |
[if(recipe(q! ::clnril).SF’ ==n)] 1.6 write(block(i)) 1 |
LLT 1 T 'q]

1 1
1 1]
1 | |
I I |
1.7 storeRecipe() :filelD : : :
1.8 1 | |
T A —— 1 1 |
- I I |
[| | I |
1 I 1 1 [

Figure 7 Sequences for splitting content/file into blocks and writing to a set of storage providers.

Note that Dj is the set of all segments D is split into. R; is
the set of relations between the segments in Dy, specifying
the order of the segments.

The split data is then distributed to different service
providers. In general, the dividing of the data is to con-
trol the length of each segment to avoid having too
much information in a single segment. The permutation
of the original data is to diffuse the data in a way that
the new presentation conveys very limited information
on the original data. Combining the division and permu-
tation could greatly reduce the amount of information
carried by a single segment.

5.1 Data segmentation

The criteria stated in section 3 mandate that the data seg-
mentation must make sure that each data segment bears
no sensitive information of the original data. The segmen-
tation does not mandate the size of each segment as the
size has not direct relationship with the information of the
segment bears. Commonly, the bigger a piece of segment,
the more information it may bear. Thus a bigger segment
is more likely to bear sensitive information.

The criteria do not impose any restriction on the way
the original data is segmented. A most simple way to
segment data is a sequential segmentation, by which the
original data is treated as a binary stream and is divided
into multiple substreams in their original order, as illus-
trated by Figure 9. An alternative way to segment the
original data is to pick bytes from random positions of
the original data and put them into different segments.
Figure 10 shows a case of data segmentation based on the
random segmentation approach. The segmentation pro-
cess is in fact a permutation of the original data, followed
by dividing of the permutated data.

The data segmentation is in fact the implementation of
the function split, where

H = split(D) 3)
= (dl)dZ;uwdn) (4)

Assuming that e is the maximum amount of information
that could be tolerated to be disclosed by any single
segment, and inf be the function that evaluates the
amount of information disclosed.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13 Page 11 of 19
http://www.journalofcloudcomputing.com/content/1/1/13

C&C SP#1 SP#2 SP#n
:StorageProvider :StorageProvider :StorageProvider
User
I T T T T
I | 1 1 1
I 1.0read(ilelD) file | I I I
P 1 1 1
1 1 1
1.1 getRecipe(fileID) ‘recipe : : :
I 1 1
1.2 read(recipe) file : : :
1 1 1
loop] ‘I i
[while more blocks] : : :
1 1 1
alt 1 1 1
1 1 1
[if(recipe(lblogkii).SP == 1 | 1
1.3 read(block(i)) 1 | |
| 1 1
1 1 1
--'f"-'"“--ld;-S-I;-:-Z """""""""""" | roommommmmmmmmmmmmt 177777
[f(recipe(gigpie). SP == 2)] 1.4 read(block()) ! ! :
1 E:' 1
........ PRI =t i e i T o i, T A o i B ol (T
[ifrecipe (blogki#i).SP == n)) . re;d(blocm)) | I
S ea 1 1
|]] g n|
1 | [
T T T
1 1 1
1 1 1
1 1 |
fe — — — L M— 1 1 1
Ll 1 1 |
T I 1 I I

I (0] 2 3 4 5 6 7 8 9 10 1112 13 14 15 I

I0123456?89101112131415|

Figure 9 Sequential Segmentation.

IO]”245678910111213]415|

[N I S - l I T 1
v r v vl v v iV v Vv vy Y v ¥
0 1 2 3 4|5 6 |7 8 9 10|11 12 13 14 15

Figure 10 Random Segmentation.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

The split funciton must make sure that the following
holds.

Vd; € D,inf(d;) < e (5)

Assuming that E is the maximum amount of inforoma-
tion that could be tolerated to be disclosed by the whole
set of segments, and INF be the function that evaluates
the amount of information disclosed by a set of segments,
where

INF (Ds) = inf (d1) x INF(Ds — {d1}) (6)

= xj_yinf (dy) @)

x be an operator for calculating the sum of two disclosure
degrees.

The split funciton must make sure that the following
holds.

INF(Dy) < E

5.2 Randomize distribution
Once the original data is transformed into segments, the
segments need to be stored on different cloud storage
services. This is performed by the segment distribution
process, which needs to make sure that the distribution
is random to avoid tracking of the segments. Otherwise,
segments can be identified by malicious users with limited
cost.

Let M be the set of cloud providers that are providing
cloud storage services. Vm; € M, 3D; C Dg such that
Vd; € D; then dj is stored in m;, where

O D;=D (8)
i=1
D; ﬂDi =0)

The distribution process is to generate the set Dp C D,
where Dp = {D;|li = 1,...,n,D; is the set of segments
kept on m;}. This process can be denoted by a function
dist, where

Dp = dist(Ds, M) (10)

Note that Dp is the set of segment sets, specifying the
set of segments on each storage server.

An ideal distribution would be a complete random dis-
tribution of the segments over the available cloud storage
services. A possible way to achieve random distribution is
to have the dist function randomly pick a cloud storage
service for each segment, such that

|Ds|
p(d; € D)) < M|
where p(d; € D;) denote the possibility that d; € D; holds,
|Ds| and | M| represent the number of elements in the set
Dg and M respectively.

(11)

Page 12 0of 19

5.3 Data re-assembling
The re-assembling of the original data requires two pieces
of information.

1. The segment distribution information. The segment
distribution information allows the picking of related
segments from all the cloud storage services. This
process is to generate either Dg out from all the
segments kept on M without any secret information.

2. The order relations of the segments, Rs. With Rg, the
picked data segments, Ds, can be permutated back to
the original order to construct the original data.

6 Security analysis
Malicious users can either collect individual data seg-
ments or re-assemble the complete data to compromise
the data confidentiality.

6.1 Compromization by a single data segment

Malicious users can randomly pick up individual data
segments if they have excessive access privilege to the
cloud storage services. Any individual data segment that
is picked by a malicious user should disclose no informa-
tion on the original data, according to the criteria of data
segmentation. Therefore, it is not possible for malicious
users to compromise the confidentiality by any single data
segments.

6.2 Compromization by re-assembling
Malicious users can also re-assemble the original data.
The re-assembling consists of a few steps as follows.

1. Picking all related data segments.
2. Permuting the data segments.

Picking all the related data segments requires a mali-
cious user to have excessive access privileges to access all
the involved cloud storage services, and also requires that
the malicious user to pick up all the data segments from
all the involved cloud storage services.

Suppose that for each m; € M, where M is the set of
all the cloud storage services, the set of all data segments
stored by the cloud storage service m; is N;.

The number of data segments stored in M is TotalSegs
where

M|
TotalSegs = » _ INi|
i—1

(12)

To be able to re-assemble the original data, a malicious
user must be able to pick all the segments and permutate
the segments into the right order.

If the malicious user does not know the number of
segments the original data has been split into, the total

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

number of possible re-assembled data is NumOfAllRe-
assembled, where

u
Num Of All Reassembled = ZPiTomlSegs (13)
i=1
u
_ i
=L Py O
i=

Where R is the upper limit of the number of segments
that a data is likely to be split into.

If the malicious user knows, s, the number of segments
the original data has been split into, the total number of
possible re-assembled data is NumOfReassembled, where

S
Num Of Reassembled = ZPi

TotalSegs (15)
i=1
s
_ i
B 21: Py i (16)
=

Both cases require a large amount of computation to
brute-force search the complete space. Hence it is not
trivial for a malicious user to compromise the data confi-
dentiality by re-assembling the original data.

From a complexity point of view, assuming that there are
in total n pieces of data stored in the cloud, let a malicious
user try to illegally access a file, which has been split into k
pieces and kept in the cloud. The malicious user must first
re-assemble the whole file, taking two steps.

1. Step 1: All k pieces must be retrieved corrected out
from the # pieces. The probability to retrieve the
correct pieces is as follows.

1 k!
pr= Ck_n*(n—l)*-~~*(n—k+1)

n

2. Step 2: Re-order all the k pieces into the correct
order, given the k pieces. The probability of putting
all k pieces in the right order without any knowledge
of the original data is

1 1

pz:P;g:E

Hence, the probability of re-assembling the file correctly
is
k! 1
X —
nxm—1)%---x(m—k+1) k!

p=prXpr=

1
T ar—D % x(m—k+1)

Assuming that there is a very large number of pieces in
the cloud and each file is split into small enough chunks, #n

Page 13 of 19

and k are both large enough to ensure that the probability
p is small enough to counter attacks.

The cost for an attacker is far from only the computa-
tion complexity of re-assembling the k pieces. Due to the
distributed characteristics of the proposed storage system,
the system contains a very large amount of data and the
data are distributed across various networks. The attacker
attempting to re-assemble a file by brute force will have
to have an extremely large storage space to keep all the
retrieved data pieces (both the correct ones and the wrong
ones), and it also has to afford the cost for the network
bandwidth to transfer such an amount of data across the
network.

6.3 Protocol analysis
As can be seen from Table 1, pain has been taken to
avoid reusing commands that otherwise might have made
it possible to replay messages from A to B as a message
from B to C. This is according to Principle 1 of Abadi and
Needham [28], and to some extent also Principle 3, since
it ensures that every message will only be handled by the
same type of actor as intended. However, full adherence
with Principle 3 may be difficult to achieve in a setting of
anonymous communication. The explicit naming of com-
mands is also in accordance with Principle 10, since it
allows for unambiguous encoding of each message.

Since data is sent encrypted from the C&C node to the
Cloud Processing provider, it cannot be observed by an

Table 1 Summary of all protocol commands

Command Explanation

store-full Command from User to C&C to store a complete dataset

store-part Command from C&C to IRC to store a piece of data

store-IRC Command from IRC to storage agent to store a piece
of data

retrieve-full Command from User to C&C to retrieve a complete
dataset

retrieve-part ~ Command from C&C to Cloud Storage provider to
retrieve a piece of data

return-part Cloud Storage provider is returning a piece of data

return-full C&C node is returning a complete dataset to User

process-cnc - Command from User to C&C to perform processing

operation on a dataset

process-cp Command from C&C to Cloud Processing provider to
perform processing operation on a dataset

result-cnc Cloud Processing provider returning result of processing
operation on a dataset to C&C node

result-user C&C node returning result of processing operation on a

dataset to User

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

adversary, who cannot determine the symmetric key used
to encrypt the response, and thus cannot do a suppress-
replay attack to replace the result with a bogus result. We
are assuming the C&C node has verified public keys to the
providers, which means only the selected provider sees
the data, but as long as the relationship between user and
data is kept secret, it does not really matter exactly which
Cloud Processing provider handles the data.

By applying the Scyther tool [29], we find (unsurpris-
ingly) that the assumption that data and session keys from
the C&C node are kept confidential holds (see Listing 1),
but unless the public key of the processing provider has
been verified, we cannot assume that it remains confi-
dential. Since the Scyther tool does not support verifying
privacy/anonymity claims, it cannot be used to verify the
full protocol.

6.4 Listing 1: Scyther code for verifying confidentiality

[

* Secrecy protocol

*

/* Uses asymmetric encryption
*/

// PKI infrastructure
const pk: Function;
secret sk: Function;
inversekeys (pk,sk);

/I The protocol description

protocol protocol0 (I,R)

role I

{
const ni: Nonce;
const data;
secret sessionkey: Function;
send_1(LR, {I,ni,sessionkey}pk(R));
claim_i(I,Secret,ni);
claim_i(I,Secret,sessionkey);

}

role R

var ni: Nonce;
var sessionkey: Function;
read-1(LR, {I,ni,sessionkey}pk(R));

}

// An untrusted agent, with leaked information

const Eve: Agent;
untrusted Eve;
compromised sk(Eve);

Note that we have made no claims with respect to
resource consumption on the cloud providers. Thus, it
may be possible for a malfeasor to waste the resources of
a Cloud Processing provider by replaying process-cp
messages from the C&C node. This could be countered by
having the Cloud Processing provider store all nonces N,

Page 14 of 19

and discard all messages with non-fresh nonces, but since
this does not contribute to keeping data and users anony-
mous, it has been omitted to avoid forcing the providers to
maintain state information. However, in a possible future
commercial solution, this might be solved as part of a
payment solution.

7 Simulations

In this section we describe our efforts to simulate the per-
formance of the protocol. The source code and detailed
settings are available from the authors upon request.

7.1 Simulation environment

We implemented the protocol utilising a the Nessi simu-
lation framework[30] written in the Python programming
language. The main motivation for selecting a Python-
based framework was the flexibility and ease of use that
the programming language offers despite its obvious per-
formance penalty as compared to other C and C++ based
simulation frameworks. The Nessi Framework is not cur-
rently actively maintained and lacks a few basic elements
such as support for the Internet Protocol (IP), Address
Resolution Protocol (ARP) and Transport layer protocols
such as TCP and UDP. The framework offer a stack con-
sisting of everything up to and including the Data Link
Layer of the OSI reference model as well as some appli-
cation layer traffic generators. We therefore had to make
some simplifying assumptions to cater for the fact that our
protocol is designed to run on top of TCP/IP or UDP/IP.

7.2 Simulation implementation

Since our implementation aimed at demonstrating the
delay and throughput of the protocol, we simplified the
described protocol somewhat. The Mixnet is modelled as
a number of nodes connected through a Point-to-Point
(P2P) links. Each node contains three network interface
cards and is randomly connected to other mixnet nodes
through these cards. The Mixnet does not setup a path
or route information in the network, instead we specify a
hopcount that determines the number of times a packet
should be forwarded by the network. Forwarding is done
by randomly selecting one of the network interface cards
attached to the host and then forwarding over the data
link layer to the host connected to the other end. When
the hopcount reaches zero, the mixnet node forwards the
packet to the IRC-node. The IRC-node is connected to the
mixnet through an Ethernet bus, and forwards packets to
the agents on another Ethernet bus. By utilising the MAC-
address as an application level address, our implementa-
tion circumvents the problems of not having a network
layer protocol. The user and C&C are represented as Traf-
fic generating sources attached to a mixnet-node, whereas
the agents are implemented only as Traffic sinks. Hence,
the protocol is only implemented in one direction.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

7.3 Simulation setup

The default values of all simulation parameters are given
in Table 2 and if not explicitly stated otherwise, these are
the values used for all simulation runs. We have attempted
to keep the values as realistic as possible, without exhaust-
ing the resource requirements of the PC running the sim-
ulations. This particularly includes memory allocation,
which can be quite challenging in Python.

The Mixnet size is given in number of nodes contained
in the network and is relatively small compared to what
is foreseeable in the Cloud. However, it should be suf-
ficiently large to provide meaningful data. Further, the
hopcount, i.e. the number of times a packet is routed
inside the mixnet, is set to half the size of the network.
The packet size set to 1/10000 of the traffic source data
size and the redundancy factor is set to 1. Thus, the default
behaviour is not to have redundancy in packet transmis-
sion. All of these parameters are configured one at a time
for the various simulation runs, except the number of net-
work interfaces per node. This is set to 3, such that each
node has a direct connection to three other nodes in the
network.

The traffic source is supposed to mimic a kind of FTP-
traffic generation. That is, traffic data is characterised by
fairly long inter-arrival times and relatively large PDU
sizes, which resembles the action of storing data quite
well. The simulation time is adapted to the traffic inter-
arrival time. The number of agents in the RAIN-network
does not really affect the simulation at this point, since we
only consider one-way traffic to the agents.

Table 2 Default simulation settings for the RAIN protocol

Mixnet settings

MIXNET_SIZE« =10
MIXNET_HOPCOUNT % =5
MIXNET_PACKET_SIZEx
MIXNET_REDUNANCY_FACTOR=* =1
MIXNET_LINKS_PER_NODE =3

Traffic source settings:
TRAFFIC_INTERARRIVAL =505

TRAFFIC_TYPE = PoissonSource

TRAFFIC_PDU_SIZEx* =10 MB
SIMULATION.TIME =100s
Network characteristics:

LINK_DATA_RATE = 100MB/s
LINK_DISTANCE = 1000 km
Agent network settings:

AGENT_NUMBER =5

Items marked « are configurable and may vary.

Page 15 of 19

7.4 Results

In this subsection we provide the results and interpreta-
tions of our simulation runs related to delay, throughput
and queue length.

7.4.1 Delay

Since we have chosen a traffic source that produces burst-
traffic, the packet delay as measured on the agents also
tend to vary greatly. Figure 11 demonstrates the period-
icity of the delay function as compared to the arithmetic
mean (dotted line). We measure the delay by recording the
time interval between when the packet was sent and when
it was received. Hence, we only consider end-to-end delay
and do not compute intermediate packet delays (e.g. after
k hops).

The packet delay is of course dependent on the distance
it has to travel and the amount of time spent being pro-
cessed and queued along the way. However, in our setup
we have fixed the distances between nodes and there-
fore view delay as a product of changed traffic intensity.
In Figure 12 demonstrates that only direct changes to
the source traffic either by increasing the PDU size or
replicating the packets causes significant changes to the
delay. Whereas altering the hop count and packet size of
the mixnet have little influence on the end-to-end packet
delay. A reason for this may be that additional transmis-
sions within the Mixnet tend to stretch the burst and
thereby reduce the congestion problems occurring when
to many nodes transmit simultaneously.

7.4.2 Throughput

We measure the throughput as it is seen by the agent,
that is, the number of octets received by the agents within
the simulation time. The computation is somewhat ham-
pered by the lack of error handling due to missing network
and transport layer protocols. However, the average queue

0.8

mean
0.6

Delay (s)

0.4

0.2

0
0 10 20 30 40 50 60 70 80 90 100 110

Simulation time (s)

Figure 11 Packet delay on default simulation measured on the
agents.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

Page 16 of 19

(b) Packet size

(a) PDU size

Figure 12 Delay as a function of various factors. (a) PDU size. (b) Packet size. (c) Hop count. (d) Redundancy.

(c) Hop count (d) Redundancy

time (see next paragraph) suggests that there are not too
many packets dropped.

The throughput is dependent on the amount of inbound
traffic in the network, the delay and the packet drop rate.
Therefore, as can be seen in Figure 13, increasing the
traffic through either PDU size, redundancy or number
of nodes yields increased throughput. Note however that
the increase in network size (number of nodes and traffic
sources) is not proportional to the increase in through-
put. Doubling the network size yields only about 50%
increase in throughput. The hop count does not seemingly
affect the throughput consistently. It is unclear why there
is a considerable peak around the default hop count value
(MIXNET_HOPCOUNT= 5).

7.4.3 Queuelength

We measure the queue length on all nodes in the Mixnet
at with a sampling frequency of 10/s. Any changes to the
queue between these samples are not detected and hence
we only provide an estimate of the queue length. Note
that we measure the total queue length, i.e. the sum, on
all nodes in the Mixnet. The packet delay described above
is partially dependent on the queue length, such that the
longer the queue, the longer the delay. However, the rea-
son for measuring the queue length of Mixnet nodes is
that are indicators for network congestion.

From Figure 14 we see that both the size of traffic source
generated PDUs and the redundancy factor greatly influ-
ence the queue length. Also, the Mixnet packet size affects
the queue length as larger sizes reduces the queues to a

level close to zero. The hopcount has only moderate effect
on the queue, which is in line with what we discovered for
packet delay and throughput. Note however, that although
the average total queue length is quite small, the standard
deviation is considerable, indicating that the queue may be
considerable for shorter periods of time. This is expected
since the traffic source we have selected, generates pack-
ets in bursts which yields a burst behaviour in the queues
as well.

8 Discussion

Cloud service providers have been identified as potential
targets of attack simply because of the vast amounts of
data they store on behalf of their multitude of customers.
In this sense, it may be in the providers’ best interest
to “know less” - if even the provider cannot access the
customers’ data directly, there is little point in attacking
them.

Strictly speaking, most users would probably be happy
if it were possible to impose universal usage control [31]
on data submitted to providers (a sort of “reverse DRM’,
where end-users get to control how multi-national cor-
porations use their data), but despite Krautheim’s efforts
[12], we do not believe this will be a reality in the fore-
seeable future. Thus, it would seem that the easiest way
to control what a provider does with your information is
to hide it - either through encryption (as previously pro-
posed for the storage providers) or through separation. A
brief comparison of RAIN with other such approaches is
provided in Table 3.

13,0000 5000000
12000000 st
11,000000
10,000,000

2,000,000 _ 3500000
8,000,000 mean 3
7,000,000

5000000

5000000

4000000 -
3,000,000

2000000

1000.000

0 L
0 2,000,000 4,000,000 6,000,000 8,000,000 11,000,000 DD 5 10 15 20 26

Traffic PDU size (B) Mixnet size

(a) PDU size (b) # nodes

4,500,000

4,000,000

T 3,000,000

roughput (B/s)

2 2,500,000

2 2000000

Th

F 1,500,000
1,000,000

500,000

Figure 13 Throughput as a function of various factors. (a) PDU size. (b) # nodes. (c) Hop count. (d) Redundancy.

it (B/s)

< 2,000,000

Throughpu

20,000,000

std

3,500,000 18,000,000

3,000,000 16,000,000 ¢

14,000,000 +
2,500,000
12,000,000 mean

10,000,000

1,500,000 8,000,000+

Throughput (B/s)

6,000,000 -
1,000,000 std
4,000,000

500000 2,000,000+

ok
0 05 1 15 2 25 3 35 4 45 5 55
Redundancy factor

(d) Redundancy

% i 2 3 4 5 & 7 8 8 d0 n
Mixnet hopcount

(c) Hop count

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

Page 17 of 19

(a) PDU size (b) Packet size

Figure 14 Queue size as a function of various factors. (a) PDU size. (b) Packet size. (c) Hop count. (d) Redundancy.

(c) Hop count (d) Redundancy

In a real-life setting, there will be cases where very small
units of data carry a significant amount of sensitive infor-
mation, such as blood type for patients. It will thus be
imperative that not only shall it not be possible to match
e.g. a blood type to an identity, but in storage it should also
not be possible to determine what the data item refers to.

In this respect, our approach is different from the
k-anonymity concept proposed by Sweeney [39], since
we assume that it generally will not be possible for an
observer to deduce what the data mean; Sweeney’s con-
cept is meant to ensure “statistical anonymity” by ensuring
that at least k different persons have the same characteris-
tics in any given dataset.

8.1 Searching and indexing

One major unsolved problem with our solution is related
to searching and indexing. Even if it were possible to cre-
ate an index to search in, where can we store it? Thus,
we currently have to accept that searching is not possible
without re-constructing each file first.

8.2 Business model

It’s been said that everybody wants security, but nobody
is willing to pay for it. This means that not only is it
difficult to get funding for security measures in organiza-
tions where security is viewed as a net expense, but most
users are also not willing to put up with the extra incon-
venience that added security mechanisms often imply.
Contrasting this with the (at least currently) free ser-
vices such as Google Docs [40] that cloud providers
are throwing at customers, it may be hard to imag-
ine anybody paying money to get the same thing “more
secure”.

However, privacy is evidently an issue for some peo-
ple, as the usage statistics of the TOR network can testify
[19], and also experiments in Scandinavia have shown
that many people will choose privacy if it'’s made available
to them [41]. In general, it is dangerous to confuse the
concepts of “privacy” and “confidentiality’, but in our case
we believe that the privacy aspects will be the major driver
for people wanting to keep their data confidential.

Table 3 Comparison of RAIN with other approaches of splitting data

Approach Summary

Misgivings

Singh et al. [32]

A scheme for n-out-of-m secret sharing of data [33]

Do not provide an algorithm for the actual splitting of
the data to be stored.

Parakh and Kak [34] Another n-out-of-m scheme

Do not discuss why their scheme should be better
than e.g. the one proposed by Rabin [35].

Luna et al. [36]

Yet another n-out-of-m scheme, but add an addi-
tional concept of Quality of Security (QoSec) to rate
individual storage providers.

Solution is tailored to a Grid computing scenario, not
to commercial cloud operators.

RACS [37]

Prevents vendor lock-in and data loss through fail-
ures by performing striping of data (in RAID-5 fashion)
across multiple cloud providers

Does not offer privacy or confidentiality.

Mnemosyne [38]

Offers steganographic storage which not only hides
data, but also prevents anyone from determining that
there is anything hidden in the first place.

Mnemosyne encrypts each block, and thus requires a
key management system in addition to the informa-
tion dispersal algorithm.

Free Haven [13]

A collaborative distributed storage system, based on
peer-to-peer file sharing principles.

Does not provide a new solution for the anonymous
communications channel, but uses a set of anony-
mous remailers as a basis.

OceanStore [14]

Provides distributed storage

Is not concerned with ensuring anonymity of the
individual users.

ShareMind [16]

Offers distributed privacy-preserving computations

Is not focused on storage, only computation.

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www journalofcloudcomputing.com/content/1/1/13

How to pay for the services anonymously has not been
completely resolved. Most existing solutions such as TOR
[19] and Free Haven [13] are based on volunteer or barter
arrangements, where participants get free use of the ser-
vice by supporting parts of it on their own systems. The
payment problem is also the main obstacle for Chaum’s
approach [42], since he assumes the existence of a dig-
ital cash system, something which remains elusive. Still,
since the cloud paradigm is oriented toward pay per use,
we believe it will be easier to solve this in the clouds than
in many other situations.

8.3 Trust

Since we place all our trust in the C&C node, it will remain
as a “single point of trust” as long as it is realized as part
of the cloud. It would have been desirable to strengthen
this by ensuring that the C&C node provider only sees the
information as we see it ourselves, preventing it from min-
ing stored information. However, as long as the C&C node
is required to keep track of all the data items (or slices,
as in the example), there is nothing to prevent it from
accessing this information as it pleases. Currently, only the
alternative solution in Figure 2b keeps this information
out of the cloud.

However, we maintain that even if we still have to trust
the C&C node in the cloud, this in an improvement over
handing all our data over to Google. The C&C node in
effect plays the role of a Trusted Third Party, and gen-
erally does not need to have the enormous resources of
the current commercial cloud providers. Thus, the C&C
node could in principle be run by some small company
in the user’s neighbourhood, enabling a traditional trust
relationship.

9 Further work

This divide-and-conquer approach may be suitable for
privacy-conscious home users and small businesses, but
the ultimate holy grail is absolute confidentiality in the
cloud, and thus a deliverance from trust. Only then can
cloud computing deliver on the dream of computing
power as a utility akin to power, water and gas. A further
refinement of our approach that removes the necessity to
trust the C&C node is therefore a natural challenge.

We have implemented a simple proof-of-concept pro-
totype [43], so the next step will be to implement a
large-scale prototype to gauge performance impacts on
typical cloud applications. One particular challenge in
this respect is to determine the optimal slicing strategy
for arbitrary data. It is likely that a trade-off between
security and efficiency will have to be made in order
to capitalize on the advantages of the Cloud Computing
paradigm. The prototype will be targeted toward a “sensi-
tive but unclassified” application, representing a realistic
use case.

Page 18 of 19

10 Conclusion

We have described the design of the Redundant Array of
Independent Net-storages (RAIN) that achieves confiden-
tiality in the cloud through dividing data in sufficiently
small chunks. We have provided a formal model and
security analysis to motivate our claims, and our simula-
tion results indicate that the efficiency of our approach is
acceptable. We believe that this may be useful for small
office and home users, but experimentation and practical
experience will be necessary to validate the approach.

11 Endnotes

It may be a matter for debate whether the solution rather
should have been referred to as confidentiality-preserving.
PThis is a rather fuzzy assumption, but it is clear that if
there are only two parties communicating, an adversary
can trivially determine that all data observed leaving one
party will arrive at the second party. This assumption of
“more than a few” users is also used in, e.g., TOR [19].

In the current description, we make no attempt to hide
the identity of the user from the C&C node, so here we
could assume that the authentication is an (as yet unspec-
ified) conventional mechanism authenticating the user to
the C&C provider. However, in the following we will use
this authentication mechanism to control access to indi-
vidual data items, and in this case the cloud providers
should of course not know the identity of the user or other
actors.

4 The number of bogus IDs requested is configurable.

€It may be debatable whether it makes sense to include the
provider ID in the response, but certainly the C&C node
ID cannot be there, as it is supposed to be anonymous.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This work has been supported by Telenor through the SINTEF-Telenor research
agreement, by China State Key Lab of Software Engineering through grant
SKLSE2010-08-22, and by China Canton-HK research project TC10-BHO7-1.

Author details

VSINTEF ICT, Trondheim, Norway. 2South China Normal University, Guangzhou,
China. 3University of Western Macedonia, Florina, Greece. “Telenor Research
and Future Studies, Trondheim, Norway.

Author’s contributions

MGJ initated the RAIN concept, constructed the RAIN protocol and drafted the
article. GZ constructed the formal model and performed the security analysis.
AW contributed to the formal model. AAN performed the simulations and
wrote up the results. SA provided the implementation considerations. YT
contributed to the security analysis. All authors read and approved the final
manuscript.

Received: 30 January 2012 Accepted: 1 June 2012
Published: 17 July 2012

References

1. Zhao G,Rong C, Jaatun MG, Sandnes F (2012) Reference deployment
models for eliminating user concerns on cloud security. J
Supercomputing 61(2): 337-352. http://dx.doi.org/10.1007/511227-010-
0460-9 [10.1007/511227-010-0460-9]

Jaatun et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:13

http://www.journalofcloudcomputing.com/content/1/1/13

22.

ChenY, Paxson V, Katz RH (2010) What's new about cloud computing
security? Technical Report UCB/EECS-2010-5, EECS Department,
University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2010/EECS-2010-5.html

Nyre AA, Jaatun MG (2010) A probabilistic approach to information
control. J Internet Technol 11(3): 407-416

European Parliament (1995) Directive 95/46/EC of the European
Parliament and of the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and on the free
movement of such data

Hinke TH (1988) Inference aggregation detection in database
management systems. In: Proceedings of the 1988 IEEE conference on,
Security and privacy, SP'88. IEEE Computer Society, Washington, DC, USA,
pp 96-106. http://portal.acm.org/citation.cfm?id=1949221.1949237
Jaatun MG, Nyre AA, Alapnes S, Zhao G (2011) A Farewell to, Trust: An
Approach to Confidentiality Control in the Cloud. In: Proceedings of the
2nd International Conference on Wireless Communications, Vehicular
Technology, Information Theory and Aerospace & Electronic Systems
Technology (Wireless Vitae Chennai 2011). IEEE, Piscataway, NJ

Zhao G, Rong C, Jaatun MG, Sandnes F (2010) Deployment Models:
Towards Eliminating Security Concerns from Cloud Computing. In:
Proceedings of the International Conference on High Performance
Computing & Simulation. pp 189-195

Jensen M, Schwenk J, Gruschka N, lacono LL (2009) On Technical Security
Issues in Cloud Computing. In: Cloud Computing, IEEE International
Conference on, Volume 0. [EEE Computer Society, Los Alamitos,

pp 109-116

Whitney L (2009) Amazon EC2 cloud service hit by botnet, outage.
http://news.cnet.com/8301-1009-3-10413951-83.html

Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds.
In: Proceedings of the 16th ACM conference on Computer and
communications security. ACM New York, pp 199-212

Chen A (2010) GCreep: Google Engineer Stalked Teens, Spied on Chats.
Http://gawker.com/#!5637234/gcreep-google-engineer-stalked-teens-
spied-on-chats

Krautheim F (2009) Private virtual infrastructure for cloud computing.

In: proceedings of the Workshop on Hot Topics in Cloud Computing,
HotCloud

Dingledine R, Freedman MJ, Molnar D (2000) The Free Haven Project:
Distributed Anonymous Storage Service. In: Proceedings of the Workshop
on Design Issues in Anonymity and Unobservability

Rhea S, Eaton P, Geels D, Weatherspoon H, Zhao B, Kubiatowicz J (2003)
Pond: the OceanStore Prototype. In: Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST '03)

Bogdanov D, Laur S, Willemson J (2008) Sharemind: a framework for fast
privacy-preserving computations. Cryptology ePrint Archive, Report
2008/289. Http://eprint.iacr.org/

Cybernetica News blog - Sharemind (2008). http:/research.cyber.ee/
sharemind/. Http://research.cyber.ee/sharemind/, visited: Sept. 9, 2010
Wang P, Wu L, Aslam B, Zou CC (2009) A Systematic Study on
Peer-to-Peer Botnets. In: ICCCN '09: Proceedings of the 2009 Proceedings
of 18th International Conference on Computer Communications and
Networks. IEEE Computer Society, Washington, pp 1-8

Zhao G, Jaatun MG, Vasilakos A, Nyre AA, Alapnes S, Ye Q, Tang Y (2011)
Deliverance from Trust through a Redundant Array of Independent
Net-storages in Cloud Computing. In: Proceedings of IEEE Infocom
Dingledine R, Mathewson N, Syverson P (2004) Tor: The
second-generation onion router. In: Proceedings of the 13th conference
on USENIX Security Symposium-Volume 13. USENIX Association, Cerrito,
pp 21-21

Wooldridge M (2002) An Introduction to MultiAgent Systems. John Wiley
& Sons Ltd, Chichester

Li X, Zhang H, Zhang Y (2009) Deploying Mobile, Computation in Cloud
Service. In: Jaatun M, Zhao G, Rong C (eds) Cloud Computing, Volume
5931 of Lecture Notes in Computer Science. Springer, Berlin / Heidelberg,
pp 301-311. http://dx.doi.org/10.1007/978-3-642-10665-1_27.
[10.1007/978-3-642-10665-1_27]

Zhang Z, Zhang X (2009) Realization of open cloud computing federation
based on mobile agent. In: Intelligent Computing and Intelligent Systems,
20009. ICIS 2009. IEEE International Conference on, Volume 3. pp 642-646

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

Page 19 of 19

Aversa R, Di Martino B, Rak M, Venticinque S (2010) Cloud Agency: A
Mobile Agent Based Cloud System. In: Complex, Intelligent and Software
Intensive Systems (CISIS), 2010 International Conference on. pp 132-137
Borselius N (2002) Mobile agent security. Electron & Commun Eng J
14(5):211-218

Jaatun MG, Zhao G, Alapnes S (2011) A Cryptographic Protocol for
Communication in a Redundant Array of Independent Net-storages. In:
Proceedings of the 3rd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2011)

Chaum DL (1981) Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun ACM 24: 84-90. http://doi.acm.org/10.
1145/358549.358563

McCoy D, Bauer K, Grunwald D, Kohno T, Sicker D (2008) Shining Light in,
Dark Places: Understanding the Tor Network. In: Borisov N, Goldberg |
(eds) Privacy Enhancing Technologies, Volume 5134 of Lecture Notes in
Computer Science. Springer, Berlin / Heidelberg, pp 63-76. http://dx.doi.
0rg/10.1007/978-3-540-70630-4.5

Abadi M, Needham R (1996) Prudent engineering practice for
cryptographic protocols. Software Eng, IEEE Trans 22: 6-15

Cremers C (2006) Scyther - Semantics and Verification of Security
Protocols. Ph.D. dissertation, Eindhoven University of Technology
Vernez J, Ehrensberger J, Robert S (2006) Nessi: A Python Network
Simulator for Fast Protocol Development. In:Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks, 2006 11th
International, Workshop on. IEEE, Piscataway, NJ, pp 67-71

Park J, Sandhu R (2004) The UCON_ABC usage control model. ACM Trans
Inf Syst Secur 7: 128-174

Singh Y, Kandah F, Zhang W (2011) A secured cost-effective multi-cloud
storage in cloud computing. In: Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on. pp 619-624

Shamir A (1979) How to share a secret. Commun ACM 22: 612-613.
http://doi.acm.org/10.1145/359168.359176

Parakh A, Kak S (2009) Online data storage using implicit security. Inf Sci
179(19): 3323-3331. http://www.sciencedirect.com/science/article/pii/
50020025509002308

Rabin MO (1989) Efficient dispersal of information for security, load
balancing, and fault tolerance. J ACM 36(2): 335-348

Luna J, Flouris M, Marazakis M, Bilas A (2008) Providing security to the
Desktop Data Grid. In: Parallel and Distributed Processing 2008 IPDPS
2008 IEEE International Symposium on. pp 1-8. http:/ieeexplore.ieee.
org/xpls/abs_alljsp?arnumber=4536443

Abu-Libdeh H, Princehouse L, Weatherspoon H (2010) RACS: a case for
cloud storage diversity. In: Proceedings of the 1st ACM symposium on
Cloud computing, SoCC '10. ACM, New York, NY, USA, pp 229-240.
http://doi.acm.org/10.1145/1807128.1807165

Hand S, Roscoe T (2002) Mnemosyne: Peer-to-Peer Steganographic
Storage. In: Revised Papers from the First International Workshop on
Peer-to-Peer Systems, IPTPS '01. Springer-Verlag, London, pp 130-140.
http://dl.acm.org/citation.cfm?id=646334.756802

Sweeney L (2002) k-anonymity: A model for protecting privacy. Int J
Uncertainty, Fuzziness and Knowledge-Based Syst 10(5): 557-570
Google (2011) Google Docs - Online documents, spreadsheets,
presentations, surveys, file storage and more. Http://docs.google.com
Larsen NE (2009) Privacy in The Polippix Project. In: D 7.3 PRISE
Conference Proceedings: “Towards privacy enhancing security
technologies - the next steps”. pp 143-149

Chaum D (1988) The dining cryptographers problem: Unconditional
sender and recipient untraceability. J Cryptology 1: 65-75. http://dx.doi.
org/10.1007/BF00206326 [10.1007/BF00206326]

Jaatun MG, Askeland C, Salvesen AE (2012) Drizzle: The RAIN Prototype. In:
“Proceedings of the 12th International Conference on Innovative Internet
Community Systems”

doi:10.1186/2192-113X-1-13

Cite this article as: Jaatun et al: The design of a redundant array of indepen-
dent net-storages for improved confidentiality in cloud computing. Journal
of Cloud Computing: Advances, Systems and Applications 2012 1:13.

	Abstract
	Introduction
	Background
	Previous work on security through splitting data
	A brief introduction to Botnets

	Approach
	Assumptions
	Using Botnets for non-nefarious purposes
	A revival for autonomous mobile agents
	Example 1 – digital image
	Example 2 – electronic document
	Criteria
	Minimal data unit for processing
	Alternative solution

	Protocol
	Protocol for storing data
	Mix-net in the cloud
	IRC node
	Storage agent

	Data retrieval
	Processing data in the cloud
	Implementation considerations

	Formal model
	Data segmentation
	Randomize distribution
	Data re-assembling

	Security analysis
	Compromization by a single data segment
	Compromization by re-assembling
	Protocol analysis
	Listing 1: Scyther code for verifying confidentiality

	Simulations
	Simulation environment
	Simulation implementation
	Simulation setup
	Results
	Delay
	Throughput
	Queue length

	Discussion
	Searching and indexing
	Business model
	Trust

	Further work
	Conclusion
	Endnotes
	Competing interests
	Acknowledgements
	Author details
	Author's contributions
	References

