
Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4
http://www.journalofcloudcomputing.com/content/1/1/4
RESEARCH Open Access
Software level green computing for large
scale systems
Faiza Fakhar1*, Barkha Javed1, Raihan ur Rasool1, Owais Malik1 and Khurram Zulfiqar2
* Correspondence: 10msitffakhar@
seecs.edu.pk
1School of Electrical Engineering &
Computer Science, National
University of Science & Technology,
Islamabad, Pakistan
Full list of author information is
available at the end of the article
©
A
m

Abstract

Energy conservation has become a critical issue in modern system electronic devices.
Energy wastage in electronic devices occurs in both hardware and software
components. Software drives the hardware thus decisions taken during software
design and development have significant impact on energy consumption of a
computing system. Green Computing addresses energy conservation by application
of different techniques at software and hardware level. Energy efficient compiler is a
software level green computing technique. Besides compiler optimization, an
effective scheduling approach makes efficient use of resources to directly impact the
green aspect. Therefore, focus of this paper is identification of energy conservation
measures for software level and there utilization at compiler and scheduler. A
Distributed Green Compiler (DGC) is presented in this research that is hardware
independent and uses an existing distributed compiler. It distributes source code of
software over a network, reshapes binary code by applying green strategies during
code transformation at compile time and gives green suggestion to software
programmer for energy conservation. For scheduling, Distributed Interactive
Engineering Toolbox (DIET) scheduler is used and a new algorithm is proposed for
the DIET scheduler. The proposed algorithm introduces green aspect in scheduler to
effectually make use of resources in such a way that consumption of power and
carbon dioxide emission is reduced. Performance analysis of proposed compiler
shows that it conserves energy clock cycles up to 40% by applying few green
strategies.

Keywords: Distributed green compiler (DGC), Energy aware compiler (EAC), Energy
conservation, DIET scheduler, Green aspects, GNU compiler collection (GCC)
Introduction
Global warming has stimulated the need to rethink environmental impact of technol-

ogy. Green or environment friendly computing attempts to reduce consumption of en-

ergy to reduce consumption of fuel required to produce it that entails the toxic impact

on environment. The increasing need for tighter energy budgets demands vigilant en-

ergy conservation and thus driving us to propose energy aware hardware and software

[1]. Effective Energy conservation however is an accumulation of both design and best

practices.

High performance and energy conservation are conflicting goals in green computing.

One way to conserve energy can be to reduce logic voltages; however, this causes

slower circuits and low frequencies, which leads to degradation of performance [2]. In
2012 Fakhar et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly cited.

mailto:10msitffakhar@seecs.edu.pk
mailto:10msitffakhar@seecs.edu.pk
http://creativecommons.org/licenses/by/2.0


Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 2 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
the past few years, cloud computing has gained much popularity as it reduces execu-

tion time of a program by distributing it on different machines over a network. To

solve a large computationally intensive problem, a cluster of several low capacity

machines is more beneficial in terms of cost and performance compared to a high cap-

acity machine. Because a high capacity machine does not fully utilize its resources at a

time, hence it consumes more energy. Therefore, significant performance improvement

with energy conservation can be achieved through distributed or cloud computing

among green strategies implementation.

Optimizations for energy conservation can be made at hardware and software levels.

Hardware level energy optimizations are achieved through circuit design by implement-

ing smaller silicon process geometries, auto idle detection circuits and active well bias-

ing techniques [3]. Software level energy optimization are implemented in operating

system through Green Scheduling techniques that analyze active processes for energy

requirements, and by the Green Compilers through program analysis at compile-time

and code reshaping during transformations. Energy can also be conserved, during soft-

ware development life cycle such as software analysis and design, by applying different

green aspects mentioned further in subsequent sections. Furthermore, the use of en-

ergy aware software tools can help in achieving software level energy optimization

[4,5]. Figure 1 shows different layers of a possible green operating system. Some energy

aware programs residing in OS kernel facilitate higher layers to achieve energy

conservation.

Focus of this paper is to present research on two software level optimization for en-

ergy conservation one of them is energy aware compiler and other is energy conserve

scheduler. Both proposed techniques did not have any relation between them. However,

programmers can use both approaches at a time.

Compiler is software that facilitates programmers to describe the solution of their

problems at an abstraction level and then translates that abstraction into machine-

readable form [5]. They are good source to optimize energy on software level. Most

often energy aware compilers are used by software developers to designed embedded
Figure 1 Energy aware computer system architecture.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 3 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
systems, thus they are hardware dependent. Major contribution of this paper is to

propose an energy conservative distributed compiler that uses green techniques during

compilation to generate an optimized energy conservative executable. However, per-

formance and energy conservation are conflicting goals, but the aim of this paper is tra-

deoff between both of them. Therefore, executable formed by green compiler will

conserve energy as well as substantially maintain performance of compiler by distribut-

ing code over network at compile time.

To effectively make use of cloud resources, a good scheduler is required in cloud.

Keeping this in view, DIET cloud has emerged which makes use of the cloud resources

in a transparent manner. DIET architecture provides the scheduling at agents level that

selects and allocates the machines based on user requirements. The use of DIET toolkit

in cloud computing has given the notion of DIET cloud [6,7]. This research also pre-

sents a review of various schedulers reported in literature and scheduling in DIET is

modified to introduce the green aspect in scheduling. In this paper we will be using the

term power and energy interchangeably.

Rest of the paper is organized as follows: section II discusses related work of DGC

and green scheduler. Several avenues for energy optimization are identified in section

III. Section IV describes green strategies for software developers. Detail of proposed

DGC (Distributed Green Compiler) is discussed in section V. Section VI gives details

of green scheduler. Finally, Section VII concludes this research.

Related work
A. Compiler literature

ESG (Embedded Systems Groups) department of computer science at Dortmund University

Germany has developed encc an energy aware C compiler. encc has LANCE frontend that

takes C program as input. encc backend selects code using tree pattern matching algorithm

and allocates registers for selected code through graph based heuristic method. After regis-

ter and code selection, backend converts the intermediate code by applying optimization

techniques including common sub expressions, dead code elimination, register pipelining,

instruction scheduling, jump optimization and mapping of program object to different type

of memory. Assembler and linker execute this code to form a binary executable. encc main-

tains database about energy consumption statistics of each instruction as well as memory

access. Profiler take gathered information from simulator and database. These statistics are

summed up and the performance statistic of complete program is generated [8].

Coffee compiler for C language is combination of software and customized hardware

to achieve energy conservation at compile time [9]. A major weakness of coffee com-

piler and encc is hardware dependency since they are designed for embedded systems.

Furthermore, green strategies implementation increases compile time especially for

large projects, which causes performance degradation.

mrcc is a distributed open source C compiler using Map Reduce on Hadoop plat-

form, but it can be used in any other cloud computing platform. It does preprocessing

of an input source file, which include placement of header files on source files. mrcc

checks dependency among different source files and if the source file is safe to compile

on several slaves it divides them on different machine using map reduce for compil-

ation [10]. It is a good approach towards distributed compilers but does not give energy

conservative executable.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 4 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
Proposed DGC is a hardware independent compiler that does not require any special

hardware. It optimizes and reshapes source code in energy conservative executable by

implementing software level green strategies. Several compilation problems are very large

and cannot be compiled efficiently on a single machine. Thus a distributed environment

can be a good solution for these problems, but hard for small compilation problems.

DGC is able to perform program compilation with both approaches. A program contains

several green aspects; some of them cannot be handled by energy aware compilers for

example recursion elimination etc. Therefore, these aspects are skipped during energy

aware executable generation process, and hence cause inefficiency. DGC facilitates its

programmers by highlighting sensitive areas of program which consume extra energy

and cannot be reshaped by compiler.

B. Scheduler literature

Grid computing provides the efficiency in terms of availability of number of distributed

resources that perform the computation. In [11] a scheduling system for grid is intro-

duced which encompasses three phases: resource discovery that lists all the available

resources, system selection based on gathered information, and file staging and cleanup

done by job execution. The proposed strategy has disadvantage in term of involvement

of users in scheduling decision.

In [12], Chameleon scheduler is proposed that is designed for computational as well

as data grid. This scheduler works well for large data applications and replicated data

in grid environment. Chameleon scheduler works well not only for finding the appro-

priate location/machine for computation but also performs efficiently to locate the

required data. In [13] a scheduler is proposed that not only dynamically allocates the

resources but also define the mechanism for inter component communication.

In [14], stealth scheduler is introduced which is specifically designed for

Workstation-based Distributed system (WDS). WDS refers to the distributed worksta-

tions that provide large computing capacity but WDS software system does not effi-

ciently share the computing capacity among workstations. Moreover, the foreign

processes are preempted when owner process of workstation is initiated thus causing

the foreign process to wait till the end of owner process or some idle node is available.

To overcome this barrier stealth scheduler does not preempt the foreign process on ini-

tiation of owner process. This avoids the unnecessary preemptive transfers thus in-

creasing the efficiency to fully utilize the computing capacity. Two major components

of stealth scheduler are StealthLS and StealthGS. StealthLS shields the effect of foreign

process on owner process and it does not allow preemptive transfers thus enhancing

the performance. Whereas, StealthGS allow the preemptive transfers only when

required to avoid the starvation, provides transparency by automating the transfer

process, and implements decentralized global scheduling thus avoiding the bottleneck

that incurs in centralized environment.

Form the above description it is clear that the above mentioned schedulers lack green

aspects. In [15], a green scheduler for cloud infrastructure is reported, which comprises

of four algorithms. Firstly, on the basis of history prediction algorithm scheduler pre-

dicts the future request load, then on the basis of result ON/OFF algorithm turn off

unused servers. Task scheduling algorithm schedules the tasks on number of machines

on the basis of earliest deadline first strategy and largest capacity first strategy. Earliest



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 5 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
deadline first strategy queue the coming tasks whereas the largest capacity strategy is

used to allocate the tasks to virtual machines. Finally, the evaluation algorithm is used

to monitor the performance when the load changes.

In [16], DVFS enabled scheduling is proposed. This scheduling algorithm was origin-

ally designed for clusters then adapted in cloud with some modifications. The virtual

machine request arrives at scheduler, which according to the requirement allocates the

VM to the processing element (PE). PE is allocated based on voltage level. If PE with

low voltage level is found and it fulfills the requirement then VM is allocated to that

PE. If in case no PE is found that satisfy the requirement then PE that operates at

higher voltage is selected. Moreover, with the finish in job by any VM the supply voltage o-f

PE is reduced.

The effort to reduce the energy consumption is not confined to the servers only but

efforts are also laid to reduce the power that is used to operate cooling systems. For

this thermal aware scheduling [17] is used that schedules the job such that it reduces

the overall power consumption of datacenter. Moreover, to reduce the power consump-

tion by server, power aware scheduler [18] is designed. This scheduling approach aims

at using all the processing cores in a node, which according to research, reduces the

power consumption. The algorithm used in power aware scheduling is greedy-based

algorithm.

It has been observed that most of the energy efficient schedulers do not take into ac-

count the network and traffic [19]. Deals with the selection of appropriate path for traf-

fic, for this purpose tree routing topology and multi-path protocol are used. When

hash function is applied by protocol then collision might occur. Because of collision

two large traffic flows follows the same path leaving the other path unused. Complex

central scheduler caters this problem as well as analysis of traffic in datacenter and

manages the traffic accordingly. Moreover, the comparison of Simulated Annealing and

Global First Fit algorithm is done and it has been shown by the experiment that simu-

lated annealing outperforms global first fit algorithm.

With the use of virtual machines, it has been analyzed in [20] that VM live migration

consumes a lot of bandwidth and number of migration can lead to the network conges-

tion. In order to cater with this issue migration scheduler analyzes delay and bandwidth

resources.

Migration scheduler also takes into account the network topology and bandwidth

requirements. The schedulers proposed in [20,21] do not take into account the energy

perspective in network awareness. Datacenter energy-efficient network-aware schedul-

ing (DENS) [21] also take into account the energy efficient perspective in addition to

the traffic awareness. DENS methodology balance between the network traffic, job per-

formance, and energy consumption. Moreover, this approach is applicable to the data-

centers, which performs data intensive job that requires low computation but results in

heavy data/traffic generation.

Table 1 shows the summary of the schedulers. The symbol “☼” used in Table 1

shows the fulfillment of particular feature (specified in top row i.e. row 1) by the

scheduler (specified in leftmost column i.e. column 1) whereas the symbol “×” shows

scheduler does not cater with the particular feature. Moreover, the word “not found”

in algorithms column depicts that scheduler does not explicitly states the algorithm it

used.



Table 1 Summary of schedulers

Schedulers Grid
computing

Cloud
computing

Green
aspects

Static
scheduling

Dynamic
scheduling

Network
awareness

Algorithm
used

Grid
Scheduler [11]

☼ × × ☼ × × Not Found

Chameleon
Scheduler [12]

☼ × × × ☼ × Not Found

[13] ☼ × × × × × Not Found

Stealth
Scheduler [14]

☼ × × × ☼ × Not Found

Green
Scheduler [15]

× ☼ ☼ × ☼ × !History
Prediction

!On/Off

!Task Schedule

DVFS enable
Scheduling [16]

× ☼ ☼ × × × Not Found

Thermal-aware
Scheduling [17]

× ☼ ☼ × × × Not Found

Power-aware
Scheduling [18]

× ☼ × × × × Greedy based

Central
Scheduler [19]

☼ × × × ☼ ☼ Simulated
annealing

Migration
Scheduler [20]

☼ × × × ☼ ☼ Not Found

DENS [21] ☼ × ☼ × ☼ ☼ Not Found

Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 6 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
Green strategies for compilers
Energy aware compilers analyze software programs at run time and reshape software

source code by applying several green aspects during code transformation. Following

are some green techniques that can be applied at local, global or inter-procedural level

to make program energy aware [5].

A. Cache skipping

In programming environment loops have significant importance. In loops, replication gives

high performance but causes high-energy consumption due to repetition of same thing. A

good approach can be skipping of cache operations during unnecessary replication.

The study in [2] presents an efficient technique to solve cache-skipping problem by

modification in compiler and hardware. In this technique compiler needs to separate

the blocks that has less chance to execute for example exception block. This study pre-

sents that in ideal case there is no use of cache and hence this technique results in

reduced power consumption.

B. Use of register operands

Every machine has different energy consumption cost to access resources from mem-

ory. Most studies show that memory reads and writes have higher cost as compared to

use of register operands. Register operands have less abstraction than memory accesses

(read/write) and therefore consume less energy.

Instructions with register operand have approximately 300 mA cost per cycle while

instructions with memory operands increase this cost by 430 mA per cycle for read

and 530 mA per cycle for write [2]. Thus, compilers need to use register operands



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 7 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
more. This will result in shorter running time and energy conservation due to exclusion

of possible cache misses.

C. Instruction clustering

Some environments have special type of architecture that allows a compiler to execute

pair or cluster of instructions in one cycle. For example in signal processing applica-

tions, a cluster of related or similar signals can be compiled in one run. It will reduce

the running time of program and leads to energy conservation. The study in [22] shows

that instruction clustering can conserve energy from 26% to 47%.

D. Instruction re-ordering and memory addressing

Sometimes the order of instructions and memory addressing is not in favour of energy

safe mode. Energy consumption can be significantly reduced by changing the order of

instruction to and from the power-safe mode.

A technique is proposed in [23] using Gray Code and Cold Scheduling. Gray code is

used to reference consecutive memory location. The paper reports that Gray code cuts

the energy consumption by 36.9% as compared to binary representation of memory.

Cold scheduling algorithm for instruction scheduling uses gray code that reduces 20%

to 30% instruction switching.

E. Use of energy cost database

Energy aware compilers maintain energy cost database for each transaction/instruction.

This database can be used in code parsing and parse tree generation algorithms. In first

run of code processing during compilation, all possible parse trees are generated and

their respective energy cost is assigned using energy cost database. In the next run, less

cost tree will be selected for further compilation. This mechanism ensures the selection

of highly optimized energy cost tree [23].

F. Loop optimization

Several techniques are presented for loop optimization to increase energy awareness

and efficiency in program. One of them is Loop Fission. In this technique, usually

nested loops are checked across dependency graph. Dependency graph are prepared for

loop body in which nodes represent statements and edge corresponds to data depend-

ency. If there is no cycle in the graph, compiler will create loop for each statement and

run them parallel using interleaved processing.

A technique in [24] uses loop optimization and memory partitioning technique to

cut down energy consumption without degradation of performance.

G. Dynamic power management

Power consumption in Complementary Metal-Oxide Semiconductors (CMOS) is cate-

gorized into static and dynamic. Power consumption is dynamic when circuit is in op-

erating state and no power leakage occurs. Whereas power consumption is static, when

circuit will not be in running form but it is still powered. Dynamic power management

system sets the power of its hardware in true time without degradation in performance

to decrease probable power waste.

Dynamic Voltage and Frequency Scaling (DVFS), Dynamic Process and

Temperature (DPT) compensation and idle time prediction are some power aware

software that can drive hardware power saving mechanisms [3]. A study in [25]



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 8 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
present DVFS based SUIF2 compiler infrastructure for source to source level trans-

formation. Another possibility can be brought forward if an algorithm detects its

slower program regions and makes use of above techniques to cut down energy

usage from the program. The results presented in [5] shows that 23% of total system

energy is saved by SPECfp95 benchmark using this technique with 5% of perform-

ance degradation.
H. Resource hibernation

Hibernation is the process of using low power mode. As mentioned in Section I, idle

resource can be kept in hibernate state but switching to and from this state can be

wastage of precious resources and time.

A compiler algorithm reshapes a program behaviour using source level transform-

ation in such a way that idleness threshold of a resource can be extended, and it can be

switched to hibernation mode with less switching. A compiler needs to call OS direc-

tives for activeness and inactiveness of specific resource [5].

A research in [26] presents reshaping a program on a set of streamed and non-

streamed applications. The study shows that energy cost can be reduced from 55% to

89% with minor performance degradation.
I. Cloud aware task mapping

Cloud aware task mapping is the use of readymade services that can be provided by dif-

ferent clouds. A compilation technique uses cloud services at host level for possible

computation by parallel processing and keeping state records. A machine independent

compiler can also use all services from remote clouds and during progression of these

services; it can go in hibernation mode.

This technique is suffering from several problems; one of them is the cost of virtual

machine and migration cost of host machines. Second problem is failure of network

machines causing delay in compilation or other service utilization.
J. Eliminate recursion

Compiler executes recursive procedures using stack. Sometimes this technique takes a

lot of space and time causing degradation of performance as well as extra energy con-

sumption. Some compiler converts recursion into iteration. This technique may save

time and energy in some cases [27].
Green strategies for software development life cycle
Energy can be conserved during software development life cycle such as software ana-

lysis, design and implementation. At design level, energy can be conserved by making

energy efficient structure of software. Software implementer/developers can use follow-

ing strategies during software implementation.
A. Use of green IDE& compiler

Use of energy aware or green compilers helps to conserve energy. Several open source

and licensed energy aware compilers are available for example Green Hill compiler for

C and C++, encc energy aware compiler for C++.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 9 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
B. Use of grid & cloud computing

Grid & Cloud computing are the biggest trends that make use of readymade computer

resources on demand. There are many open source software and hardware level

resources available as a service by different vendors for example currency converter,

calculators etc. Making use of these readymade resources in program will be beneficial

in terms of energy cost and time, compare to re-programming them.

C. Recursion vs. Iteration

Recursion uses stacks. At the start of each function calls arguments have to be pushed

to stack and at the end of the function call they have to be popped which takes longer

execution time, and hence leads to more energy consumption. Therefore, a better

approach is to use iteration and avoid recursion as much as possible during application

development [22].

D. Less running time

In general, any strategy that can reduce the running time of algorithm can be helpful

for reducing energy consumption [22]. Complexity of algorithm can be computed in

term of Big O notations. Algorithms that have linear complexity will be more energy

aware compared to those that have exponential equation of complexity.

Thus, techniques that reduce complexity of program for example avoidance of nested

loops should be used during software design and development.

E. Use of energy aware data structure

Data structures have significant effect in execution of a program and energy conservation

as efficient data structure is more energy conservative. Study in [22] shows that merge sort

consumes less energy with array data structure whereas it consumes more energy in the

case of link list data structure. Furthermore, compilation of various data structures APIs

such as link list, arrays etc. with some energy conservative compiler make these data

structure energy aware and use of them in program may leads energy conservation.

DGC (distributed green compiler)
This section presents the high-level workflow and basic architecture of proposed dis-

tributed green compiler.

DGC formulates an energy conservative executable by applying several green techni-

ques to reshape source code during intermediate code conversion. A classic green com-

piler requires more time to compile the source code for energy conservative

executable. It applies green strategies in compilation hence leads to degradation of per-

formance. DGC decreases compilation time by distributing source code over a network

of physical or virtual machines. However, software developer also has the option to

compile program on a single machines.

Compiler cannot reshape all source code in energy conservative executable, for example

recursion elimination, use of register operands. DGC provides green suggestions for

software developers by highlighting the areas of source code, which cannot be reshaped

by compiler for energy optimization during intermediate code conversion. DGC gives

energy consumption statistics of program after compilation that tells programmer how

much energy can be conserved in a produced executable.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 10 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
Figure 2 shows the generic algorithm for DGC. A C language program will be given

as input along with some optional parameters (e.g. switch, IP addresses and etc.).

Switch will be used to tell the compiler that program requires distribution on network

and IP addresses use to specify network machines available for compilation.

We have developed a prototype of DGC that uses distcc [28] as baseline. distcc is an open

source distributed C/C++ compiler that uses GCC compiler. Distcc sends preprocessed

source code across the network and volunteer machine compiles that code. Volunteer

machine requires running of distcc daemon and GCC compiler [28].

Figure 3 shows workflow diagram of DGC. Green Compilation and Output Generation

modules of ditcc are being modified in order to perform the mentioned tasks. The Energy

Cost Statistics and Green Strategies modules require implementation to achieve the

functionality of a distributed green compiler.

A C source project is a collection of source code and header files. DGC fetches

source files from project and pre- processes it by attaching required header files and li-

braries. Now, either compiler will distribute source code over the network or compile

on the same machine depending upon the programmer’s choice. Distribution may be

performed by distributing source files of project on different slaves for compilation.

Each request will be sent to first available machine that will process it. Slaves require

running cross compiler and a daemon of DGC. In first run of compilation, source code

is selected block by block and following Green Strategies are applied on selected code:

Loop optimization

Is the process to conserve energy during loop execution. Several techniques of loop

optimization are available for example loop tilling, loop fission, loop fusion and loop unrol-

ling. DGC performs loop unrolling through funroll-all-loops and fvariable-expansion-

in-unroller switches of GCC compiler. funroll-all-loops switch conserves energy by redu-

cing the number of iterations of a loop, while fvariable-expansion-in-unroller copies local

variables during loop unrolling for dependency elimination.
Figure 2 Algorithm for proposed Distributed green compiler (DGC).



Figure 3 Workflow diagram for proposed Distributed green compiler (DGC).

Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 11 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
Use of energy optimized data structure

DGC provides its own energy conservative data structures for software developers.

Dead code elimination

Dead code elimination is the process to remove code, which does not change program

result. For example if I have a code that assigns the value to a variable and that variable

is assigned the value again, then it is obvious that the first assignment is useless. Dead

code elimination will remove the first assignment statement. It shrinks the program

and avoids implementing inappropriate operations. It also helps to conserve energy, as

executable will not need to process unaffected code and this saves clock cycles at each

run of generated executable.

Software pipelining

This technique can be used to optimize loops for overlapping iterations. GCC compiler

and some hardware such as Intel IA-64 architecture support this technique. DGC uses

GCC compiler support and Modulo Scheduling to perform software pipelining that will

help DGC to make it hardware independent, as these approaches are hardware dependent.

Recursion elimination

It is not possible to eliminate recursion every time. DGC resolve when it is feasible to

convert recursion into iteration. If recursion cannot be converted safely, it offers green

suggestion to software developer by highlighting the selected areas of code.

Cloud aware task mapping

DGC uses cluster of physical or virtual machines for distributed compilation process. It

uses the hardware and software resources of network to process a compilation problem.

Accessing and use of virtualization comes under cloud aware task mapping.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 12 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
Un-optimized code blocks identification

DGC offers green suggestion to its software developer by highlighting un-optimized block

of program. Figure 4 demonstrates that swapping of an array element using memory loca-

tions require more low level instructions than a register swap operation [29].

Energy cost statistics

DGC maintains energy cost of each instruction in a database. Different parse tree of

selected code is generated using Energy Cost Statistics database. Machine code of least

energy cost parse tree is generated in final run. Also summary reports will be generated

as an output of DGC. In the case of distributed compilation all compiled unit of pro-

gram are integrated by master machine, and sent to output module for further proces-

sing. Output module generates energy optimization summary report, machine code,

and green suggestion.

Generated executable is highly optimized machine-readable code. Green suggestions will

be highlighted areas of program that is not optimized by compiler and can be energy con-

served by implementing green strategies for software developer as discussed in section IV.

This research is only describing concept, high-level workflow and high-level architec-

ture of Distributed Green Compiler. However, implementation details of different green

aspects and other components are not part of this research work. We are in the phase

of implementing a prototype of this research and all implementation details and experi-

ment results will be the part of next version of this paper. For supporting proposed

concept, following is an analysis that made on different patch of code using few green

aspects which shows that code can be 40% to 60% energy conserved if implements few

green aspects. While, DGC claims to improve this percentage significantly because its

implement all discussed green aspects on code at compile time.

Suppose a P program uses Vcc supply voltage and I average current to achieve its

goals within T seconds, than the total energy E consumed by a program can be calcu-

lated with famous known equation [18]: E ¼ Vcc � I � T :
We can write T ¼ Ncc � τ where Ncc is number of clock cycle and τis the clock

period. So energy’s equation can be rewritten as: E ¼ Vcc � I � Ncc � τ:
Vccand τ remains same for a specific hardware thus they are considered as constant.

By reducing the factor of time a program will be energy conservative, from time
Figure 4 Array element Swapping operation.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 13 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
equation T ¼ Ncc � τ . Sinceτ is assumed as constant so we need to reduce Ncc in order

to make a program energy efficient.

In general, green compilers take comparatively high compilation time; this prob-

lem can be of a little significance in small projects but is a bottleneck for large

projects. Energy cost of a block can be calculated by summing up the clock cycle

of all instruction within that block [29]. In our DGC prototype model, several

green strategies such as loop unrolling, source code distribution, use of register

operands and recursion elimination are applied to different source codes as ex-

periment. Comparing the clock cycles of optimized code assembly verses un-

optimized code assembly, it was observed that optimized code reduce Ncc factor

by 30% to 40% as given in Figure 5. Instruction cycles of Intel 80486 family archi-

tecture used to calculate the energy cost for this experiment are given in [30].

DGC is a distributed compiler and uses distcc as baseline. Study in [28] shows that

distcc is 3.x faster than single machine compilation. If Linux 2.4.19 needs to be compile

on a single 1700 MHz P4 machine distcc 0.15 will take only 6 minutes 45 seconds.

Across three such machines, using distcc with a 100Mbps switch it takes only 2 min-

utes 30 seconds that means 89% increase in efficiency.

Table 2 shows the features analysis of DGC with other compilers. The symbol “☼”

used in Table 2 shows the fulfilment of particular feature (specified in top row i.e. row 1)

by the compiler (specified in leftmost column i.e. column 1) whereas the symbol “×”

shows compiler does not cater with the particular feature.

Diet scheduler with green aspect
This section describes the methodology of proposed scheduler with green aspects. The

scheduling system used in DIET is at the agent level but it has been observed that it does

not take into account the green aspect. For this, some changes are done in the scheduling

system of DIET to include the green aspect. To make energy efficient scheduling the

greedy based algorithm for efficient VM allocation to processor core has been adapted

from [15]. It has been observed that utilization of all cores of processors by VMs reduces

the power consumption [16]. For this, greedy based approach from [16] and largest cap-

acity strategy from [15] is adapted in proposed scheduler. Greedy based algorithm ensures
Figure 5 Experiment comparison graph for Intel 80486 family architecture.



Table 2 Features analysis of DGC with existing compilers

Features/Compilers DGC Encc Coffee Mrcc

Distributed ☼ × × ☼

Hardware Independency ☼ × × ☼

Cloud Aware Task aping ☼ × × ☼

Energy Cost Calculations ☼ ☼ ☼ ×

Loop Optimization ☼ × ☼ ×

Dynamic Power Management × × × ×

Instruction Reordering × ☼ ☼ ×

Recursion Elimination ☼ × × ×

Register pipelining ☼ ☼ ☼ ×

Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 14 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
the allocation of VM to processing cores in such a way all the cores in nodes are utilized

whereas the largest capacity algorithm is for efficient allocation of tasks to VMs.

Client agent submits an application request to master agent (MA), which passes the

request to the local agent (LA). The local agent maintains the list of available servers

and the VMs running on each server. The reason for including the VMs information is

virtualization of one of the efficient techniques for conserving power and minimizing

the number of physical machines. For this purpose, some proper scheduling of VMs is

required. Based on request type, LA passes the request to server daemons (SeD). The

SeD contains the list of problems that can be solved on various VMs, list of available

cores in processor, list of available data on machine, and information including CPU

capacity and available memory. SeD on receiving the request creates the performance

estimation vector that contains the performance estimation values.

Performance estimation values are generated by collector of resource information

(CoRI) which gathers the information from the Network Weather System (NWS),

FAST (Fast Agent System Timer) and CoRI-Easy. NWS, FAST, and CoRI-Easy are per-

formance prediction tools. FAST predicts the execution time of application and relies

on NWS for performance estimation, which provides information like; CPU availability,

free memory, number of cores available, and network bandwidth. CoRI-Easy provides

the information like; memory capacity, CPU evaluation, network performance, and Disk

performance and capacity. Moreover, CoRI manager manages the interaction between

different collectors. On receiving the response from various collectors the list of servers

are passed to the SeD, which passes the list to the LA. LA sorts the list based on available

VMs on a particular server. The machine with large number of VMs is given highest

priority. The list (of servers only not VMs) is then given to MA, which passes it to client.

Client on receiving the list selects the server for computation. It is to be notified that client

can only select the machine from the list but cannot have direct access to any machine.

The selected servers are given to the MA and then to LA. Now LA has the responsibility

of distributing the tasks among various servers. Based on number of VMs available at server,

a specific server is selected and VM is selected because of capacity. Let us suppose that two

servers are selected for computation. Server 1 has large number of VMs and capacity. The

VMs are selected in such a way that all processing elements are utilized. Tasks are distribu-

ted according to the capacity. The VM with larger capacity is given the largest task (or por-

tion of task if the task is to be distributed) and so on. Now suppose that all the VMs in

server 1 are utilized. For next job, server 2 will be selected and rest of the task is distributed



Figure 6 Greedy capacity Algorithm.

Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 15 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
according to the greedy capacity algorithm. Figure 6 shows greedy capacity algorithm. The

list of VMs on machine is maintained in queue with LA and tasks in queue1.

LA maintains the queue of available VMs on machines and another queue let us say

queue1 of submitted tasks is also maintained. On selection of server(s) by client, the

LA allocates the VM on processing cores according to the capacity in such a way that

all processing cores in a machine are utilized. The tasks are allocated according to the

capacity of VMs and size of task. If the task cannot run on one machine then the same

procedure is followed to allocate the task on number of machines.

The major aim of this algorithm is to utilize all processing cores in a machine, which

reduces the power consumption. Figure 7 shows proposed scheduler. It has been

observed from the literature that utilization of all processing cores in a machine
Figure 7 Proposed DIET Scheduler with green aspects.



Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 16 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
reduces the power consumption. This approach is used in the proposed scheduler that

not only reduces the power consumption but also efficiently utilize the cloud resources.

Conclusion & future work
Green compilation is a software level technique to conserve energy. A green compiler

applies several green strategies to reshape source code during intermediate code con-

version and generates energy conservative executables. In this paper, several techniques

for green compilation are highlighted. This paper also discusses techniques that a soft-

ware developer can adopt to develop energy conservative programs.

A distributed green compiler is proposed that uses some of the identified techniques at

compilation level. However, some source code cannot be reshaped during compilation and

is supposed to be handled by software developers. DGC highlights these source code blocks.

Energy conservation and performance are conflicting goals and compilation time of

program is increased when green strategies are applied. DGC handles this problem by

distributing the program over network of physical or virtual machines. It facilitates soft-

ware developer by giving the option to compile the program on a single node as well as

multiple nodes. Performance analysis shows that DGC conserve clock cycles by 30% to

40% by applying few green strategies. Future work of this paper is detailed performance

analysis of DGC with existing compilers, after completing its prototype.

The provision of resources by cloud has added many advantages in terms of saving

cost but to efficiently and effectively make use of its resources, a good scheduler is also

required. In this research, green aspect is introduced in DIET scheduling so that in

addition to efficient utilization of resources, power consumption and carbon dioxide

emission could be reduced.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FF carried out research on energy conservation techniques on software and hardware level. She proposed the idea of
Distributed Green Compiler for software level Green Computing. She participated in alignment and preparation of
menu script. BJ carried out research on scheduling techniques for energy conservation. She gave the idea of Green
Scheduler. RUR participated in both researches by improving proposed ideas. He participated in proof reading and
improving the menu script. OM participated in proof reading of menu script. KZ participated in proof reading of menu
script. All authors read and approved the final manuscript.

Acknowledgment
The author would like to thank Mr. Rauf ul Hassan for his help to review menu script and his valuable discussion on
Distributed Green Compiler.

Author details
1School of Electrical Engineering & Computer Science, National University of Science & Technology, Islamabad,
Pakistan. 2Techaccess NUST Research & Development Center, Islamabad, Pakistan.

Received: 30 December 2011 Accepted: 11 April 2012
Published: 22 May 2012

References

1. Tiwari V, Malik S, Wolfe A (1994) Compilation Techniques for Low Energy: An Overview. J Low Power Electrons –

JOLPE IEEE Symp, 38–39
2. Bellas N, Hajj IN, Polychronopoulos CD, Stamoulis G (2000) Architectural and Compiler Techniques for Energy

Reduction in High-Performance Microprocessors. IEEE Trans Large Scale Integration (Vlsi) Syst 8(3):317–326
3. Freescale Semiconductor, Inc (2011) EXtreme Energy Conservation, Advanced Power-Saving Software for Wireless

Devices. White paper Freescale Semiconductor, Inc. [http://www.freescale.com/files/32bit/doc/white_paper/
XTMENRGYCNSVWP.pdf]

4. Heath T, Pinheiro E, Hom J, Kremer U, Bianchini R (2002) Application Transformations for Energy and Performance-
Aware Device Management. International conference of Parallel Architectures and Compilation Techniques, pp
121–130

http://www.freescale.com/files/32bit/doc/white_paper/XTMENRGYCNSVWP.pdf
http://www.freescale.com/files/32bit/doc/white_paper/XTMENRGYCNSVWP.pdf


Fakhar et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:4 Page 17 of 17
http://www.journalofcloudcomputing.com/content/1/1/4
5. Kremer U, Department of Computer Science Rutgers University (2002) Low Power/Energy Compiler Optimizations.
International conference of Book power aware computing. CRC Press, 2004, ch. 35

6. Jaeger PT, Lin J, Grimes JM, Simmons SN (2009) Where is cloud? Geography, Economics, Env Jurisdiction Cloud
Comput 14(5)

7. Plug in Scheduler. retrieved on 7th January, 2011, [http://graal.ens-lyon.fr/DIET/scheduling.html]
8. A compiler framework for the reduction of worst-case execution times., Retrieved on 3rd July, 2011, [http://ls12-www.cs.

tu-dortmund.de/research/activities/encc/]
9. Raghavan P, Lambrechts A, Absar J, Jayapala M, Catthoor F, Verkest D (2008) COFFEE: COmpiler Framework for

Energy-Aware Exploration. HiPEAC'08 Proc 3rd Int Conference High Perform Embedded Architectures Compilers
4917:193–208

10. Cloud Computing., Retrieved at 03. June 2011 [http://fclose.com/b/cloud-computing/article/mrcc-a-distributed-c-
compiler-system-on-mapreduce/]

11. Schopf JM (2003) Ten actions when Grid scheduling: The user as Grid scheduler. Grid Resource Management:
State of the Art and Future Trends, ch. 2. In: Nabrzyski J, Schopf JM, Weglarz J (eds) Kluwer Academic, Boston, MA

12. Park SM, Kim JH (2003) Chameleon: A Resource Scheduler in a Data Grid Environment. In: the proceedings
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003)., Tokyo,
Japan, pp 258–265

13. Ayyub S, Abramson D (2007) GridRod - A Service Oriented Dynamic Runtime Scheduler for Grid Workflows. In:
Proceedings of the 21st annual international conference on Supercomputing (ICS '07). ACM, New York, NY, USA,
pp 43–52. doi:10.1145/1274971.1274980

14. Krueger P, Babbar D (1993) Stealth: A liberal approach to distributed scheduling for networks of workstations.
Technical Report, OSUCISRCI/93-TR6. Ohio State University

15. Duy TVT, Sato Y, Inoguchi Y (2011) A prediction-based green scheduler for datacenters in clouds. IEICE Trans Inf
Syst E94-D(9):1731–1741

16. Ishfaq Ahmad (2012) Handbook on Energy-Aware and Green Computing., University of Texas at Arlington, USA;
Sanjay Ranka, University of Florida, Gainesville, USA

17. Tang Q, Gupta SKS, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling for homogeneous
high-performance computing data centers: a cyber-physical approach. IEEE Trans on Parallel and Distributed
Systems 19(11):1458–1472

18. Hsu C, Feng W (2005) A power-aware run-time system for high-performance computing. In: Proceedings of the
2005 ACM/IEEE conference on Supercomputing (SC '05). IEEE Computer Society, Washington, DC, USA, p 1
doi:10.1109/SC.2005.3

19. Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010) Hedera: Dynamic Flow Scheduling for
Data Center Networks. Hedera: dynamic flow scheduling for data center networks. In: Proceedings of the
7th USENIX conference on Networked systems design and implementation (NSDI'10). USENIX Association,
Berkeley, CA, USA, p 19

20. Stage A, Setzer T (2009) Network-aware migration control and scheduling of differentiated virtual machine
workloads. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing
(CLOUD '09). IEEE Computer Society, Washington, DC, USA, pp 9–14. doi:10.1109/CLOUD.2009.5071527

21. Kliazovich D, Bouvry P, Khan SU (2010) DENS: Data Center Energy-Efficient Network-Aware Scheduling. IEEE-ACM
International Conference on Green Computing and Communications and International Conference on Cyber,
Physical and Social Computing. IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l
Conference on Cyber, Physical and Social Computing, pp 69–75

22. Naik K (2010) A Survey of Software Based Energy Saving Methodologies for Handheld Wireless Communication
Devices. Tech. Report No. 2010-13. Dept. of ECE, University of Waterloo

23. Su C-L, Tsui C-Y, Despain AM (2002) Low Power Architecture Design and Compilation Techniques for High-
Performance Processors. Compcon Spring '94, Digest of Papers, pp 489–498

24. Delaluz V, Kandemir M, Vijaykrishnan N, Irwin MJ (2000) Energy-Oriented Compiler Optimizations for Partitioned
Memory Architectures. CASES '00 Proceedings of the 2000 international conference on Compilers, architecture,
and synthesis for embedded systems

25. National Compiler Infrastructure (NCI) project., Retrieved overview at 03 June 2011, from [http://www-suif.stanford.
edu/suif/nci/index.html. Co-funded by NSF/DARPA]

26. Heath T, Pinheiro E, Hom J, Kremer U, Bianchini R (2002) Application transformations for energy and
performance-aware device management. Parallel Architectures and Compilation Techniques

27. Mehtal H, Owens RM, Irwin MJ, Chen R, Ghosh D (1997) Techniques for Low Energy Software. In: Proceedings of
the 1997 international symposium on Low power electronics and design (ISLPED '97). ACM, New York, NY, USA,
pp 72–75. doi:10.1145/263272.263286

28. Google Code., Retrieved on 03, June 2011 from [http://distcc.googlecode.com/svn/trunk/doc/web/index.html.]
29. Naik K, Wei DSL (2001) Software Implementation Strategies for Power-Conscious Systems. J Mobile Networks App

6(3)
30. 80 × 86 instruction set., Retrieved on 03, June 2011 from [http://www.penguin.cz/~literakl/intel/intel.html]
doi:10.1186/2192-113X-1-4
Cite this article as: Fakhar et al.: Software level green computing for large scale systems. Journal of Cloud
Computing: Advances, Systems and Applications 2012 1:4.

http://graal.ens-lyon.fr/DIET/scheduling.html
http://ls12-www.cs.tu-dortmund.de/research/activities/encc/
http://ls12-www.cs.tu-dortmund.de/research/activities/encc/
http://fclose.com/b/cloud-computing/article/mrcc-a-distributed-c-compiler-system-on-mapreduce/
http://fclose.com/b/cloud-computing/article/mrcc-a-distributed-c-compiler-system-on-mapreduce/
http://dx.doi.org/10.1145/1274971.1274980
http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1109/CLOUD.2009.5071527
http://www-suif.stanford.edu/suif/nci/index.html
http://www-suif.stanford.edu/suif/nci/index.html
http://dx.doi.org/10.1145/263272.263286
http://distcc.googlecode.com/svn/trunk/doc/web/index.html
http://www.penguin.cz/~literakl/intel/intel.html

	Abstract
	Introduction
	link_Fig1
	Related work
	A. Compiler literature
	B. Scheduler literature

	Green strategies for compilers
	A. Cache skipping
	B. Use of register operands

	link_Tab1
	C. Instruction clustering
	D. Instruction &b_k;re-&e_k;&b_k;ordering&e_k; and memory addressing
	E. Use of energy cost database
	F. Loop optimization
	G. Dynamic power management
	H. Resource hibernation
	I. Cloud aware task mapping
	J. Eliminate recursion

	Green strategies for software development life cycle
	A. Use of green IDE& compiler
	B. Use of grid & cloud computing
	C. Recursion vs. Iteration
	D. Less running time
	E. Use of energy aware data structure

	DGC (distributed green compiler)
	Loop optimization

	link_Fig2
	Use of energy optimized data structure
	Dead code elimination
	Software pipelining
	Recursion elimination
	Cloud aware task mapping

	link_Fig3
	Un-optimized code blocks identification
	Energy cost statistics

	link_Fig4
	Diet scheduler with green aspect
	link_Fig5
	link_Tab2
	link_Fig6
	link_Fig7
	Conclusion & future work
	Competing interests
	Authors´ contributions
	Acknowledgment
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30

