
Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7
http://www.journalofcloudcomputing.com/content/1/1/7

RESEARCH Open Access

Context caches in the Clouds
Saad Liaquat Kiani1*, Ashiq Anjum2, Nick Antonopoulos2, Kamran Munir1 and Richard McClatchey1

Abstract

In context-aware systems, the contextual information about human and computing situations has a strong temporal
aspect i.e. it remains valid for a period of time. This temporal property can be exploited in caching mechanisms that
aim to exploit such locality of reference. However, different types of contextual information have varying temporal
validity durations and a varied spectrum of access frequencies as well. Such variation affects the suitability of a single
caching strategy and an ideal caching mechanism should utilize dynamic strategies based on the type of context
data, quality of service heuristics and access patterns and frequencies of context consuming applications. This paper
presents an investigation into the utility of various context-caching strategies and proposes a novel bipartite caching
mechanism in a Cloud-based context provisioning system. The results demonstrate the relative benefits of different
caching strategies under varying context usage scenarios. The utility of the bipartite context caching mechanism is
established both through simulation and deployment in a Cloud platform.

Introduction
Context in computing terms is the information related to
the users of computing systems, which includes their per-
sonal situations, digital and physical environmental char-
acteristics. Context-aware systems facilitate the acqui-
sition, representation, aggregation and distribution of
this contextual information in ubiquitous environments.
Established context-aware systems predominantly utilize
a broker or a context server to facilitate context provi-
sioning from providers of context information to context
consumers. Due to the distributed nature of sensors and
services that provide raw data for context creation, and
that of applications/services that utilize such data, the
provisioning of contextual information is a non-trivial
task.
Existing context-aware systems are mostly focused on

small geographic and conceptual domains and the context
provisioning function of these systems has not attracted
in-depth attention. For instance, the temporal properties
of contextual data are not utilized by existing context-
aware systems to improve context provisioning perfor-
mance through caching, grid and cloud based platforms.
One of the key challenges in context-aware systems is the
provisioning of contextual information about anything,

*Correspondence: saad2.liaquat@uwe.ac.uk
1Faculty of Engineering and Technology, University of the West of England,
Bristol, UK
Full list of author information is available at the end of the article

anytime and anywhere [1].Meeting this challenge requires
an infrastructure that can reliably collect, aggregate and
disseminate contextual information related to a very large
user base over a large scale. Cloud computing is ide-
ally placed to provide infrastructural support for meeting
this challenge through its key characteristics of reliability,
scalability, performance and cost effectiveness. However,
context-aware systems have not yet taken advantage of
this recent progress in the computing arena.
In addition to the intrinsic benefits of Cloud computing,

contextual information itself has certain features that can
aid in improving the performance of systems that deliver
context information from context producing components
to context consuming components. Context information
remains temporally valid for a certain duration, which
depends on the type of context data. This property of the
context data can be exploited by employing context caches
in context provisioning systems to improve the over-
all system performance as done routinely in distributed
systems. Our motivation towards investigating this area
builds on the observation that contextual data is central
to the functional relevance of any context-aware system.
With a significantly large number of users, devices, data
sources and services involved in the end-to-end cycle
of acquisition, reasoning, delivery and consumption of
context information, inadequate infrastructure support in
terms of storage, processing, and provisioning of contex-
tual information can be the biggest hurdle in adoption
of context-aware systems over a large scale. Caching is a

© 2012 Kiani et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 2 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

well established performance improvement mechanism in
distributed systems, and if employed in Cloud based con-
text provisioning systems, can augment its infrastructure
strengths and further improve the context provisioning
function.
Context information is usually modeled using name-

value pairs, software objects and structured or semi-
structured records. Irrespective of the representation for-
mat, the context information has an ever-present tem-
poral property i.e. the information remains valid for a
certain period of time. For example, an instantiation of
the location context of a user remains valid as long as
the user remains in that location, the weather context of
a user remains valid as long as the user remains within
the geographic span whose weather information is quan-
tified in a context instance, the Wi-Fi context of a device
remains valid as long as the device is connected to a cer-
tainWi-Fi hotspot. This temporal validity can be exploited
in intermediate components of context-aware systems
for improving the context-provisioning performance e.g.
caching contextual data at a context broker can allow
for the exploitation of the locality of reference in order
to reduce contextual query satisfaction time and reduc-
tion in the overall context related traffic in the system.
While caching is an established mechanism for perfor-
mance improvement in distributed systems, the pertinent
issues have not been analyzed extensively in the domain
of context-aware systems. Firstly, different types of con-
textual data have varying validity durations i.e. a certain
scope of context information (location, activity, Wi-Fi,
weather, etc.) may remain valid for a few seconds while
another scope may remain valid for days e.g. user-profile,
device settings and shopping preferences. Secondly, the
access rate and patterns of context consuming applica-
tions (distribution of scopes in context queries) may vary
according to the time of day, type of context consuming
application and user activity. Since caches are practi-
cally limited in size, cache replacement policies have to
be employed during the context query-response and the
variances in scope distributions in the queries, rate of
the queries and validity periods of context scopes greatly
influence the effectiveness of the cache replacement poli-
cies. The comparative effectiveness of different cache
replacement policies needs to be analyzed and empirically
evaluated.
Mere analysis of the caching strategies for contextual

data provisioning is insufficient in the absence of a plat-
form where their benefits can be fully utilized. The evolv-
ing technological landscape, characterized by increasing
technological capabilities of smart devices and their adop-
tion by everyday users, the greater availability of digital
information services and the emergence of smart envi-
ronments with embedded digital artifacts point towards
an emerging digital ecosystem where a significantly large

number of users in inter-connected smart environments
will be utilizing context-based services through different
computational interfaces. The success of context-aware
systems will depend on accommodating these emerging
scenarios and meeting their wide-spectrum requirements
will greatly influence their adoption. Specifically, these
requirements include device and location independence
during utilization of contextual services, reliability of the
system infrastructure, scalability in terms of load, admin-
istration and geographic scale, and the performance of the
overall system in terms of query-response times and qual-
ity of service. A cloud based context provisioning system
will 1) allow access to context information through stan-
dardised and interoperable interfaces, which will facili-
tate device and location independence, and 2) provide
reliability and scalability through elastic and redundant
resources. However, simply enabling Cloud based provi-
sioning will not utilize the temporal validity characteristic
of the context data, which can exploit the principle of
locality to improve query-response times and therefore
positively influence the quality of service of the context-
aware system as a whole. Keeping these expectations in
view, this paper relates the delivery of the caching func-
tionality through a Cloud based context provisioning sys-
tem, but focuses primarily on establishing the suitability
and relative effectiveness of different caching strategies for
different types of contextual data. Once such effectiveness
is established through experimental analysis, we analyse
the performance of the caching strategies in a prototype
Cloud-based context provisioning system.
We discuss related work in the following section and

then describe the functional characteristics of our Con-
text Provisioning Architecture. The experimental eval-
uation of the caching functionality, and that of cache
replacement policies in context caches, is presented in the
Context cache section. Based on the results of the exper-
imental analysis, we propose a novel caching strategy
for utilization in context provisioning systems and dis-
cuss its dynamic re-configuration based operation as well
(The bipartite context cache section). After experimen-
tally establishing the performance benefits of the novel
caching strategy, we carry out an evaluation of various
cache replacement policies in a Cloud-based deployment
of the Context Provisioning Architecture (Cloud-based
evaluation section) . The paper is concluded in the Con-
clusions and future work section with a discussion of
relevant points that chart the future direction of this work.

Related work
A number of server/broker-based context provisioning
systems have been developed, e.g. CoBrA [2], SOCAM
[3], JCAF [4], PACE [5], and MobiLife [6] but caching
contextual information has not been targeted in these
systems explicitly. The MobiLife architecture specifies



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 3 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

context caching at the context provider component but
this approach creates distributed context caches at each
context provider, potentially saving computational load at
the providers but not reducing the communication cost.
The query from the context consumer has to traverse
the complete round trip from the context provider via
the context broker. This mechanism can be improved by
building a collective cache based on the smaller caches at
context provider level.
Buchholz et al. [7] discuss the importance of caching

context in improving its quality. Ebling et al. [8] also high-
light caching of context data as an important issue in
designing context-aware services and this point is reit-
erated in [9]. Caching context requires that the validity
of a context data instance can be specified. This can be
achieved by the inclusion of temporal information in the
context representation format. MobiLife is one of the
few context-provisioning systems that specify a caching
component at the architecture level. However, its con-
text representation format [10] contains no metadata that
specifies its temporal properties. A similar system is the
Context Based Service Composition (CB-SeC) [11] that
employs a Cache Engine for providing context based ser-
vice composition. However, the CB-SeC system does not
store context information but the whole context service
in the cache. A Caching Service is demonstrated in the
SCaLaDEmiddleware architecture [12] for use with Inter-
net data applications. The focus of this Caching Service
is on providing disconnected operation to mobile devices
by keeping a mobile device cache consistent with a central
cache in the network. However, no performance metrics
are reported regarding the gains achieved by the use of this
cache. Despite the established significance and usability of
caching components in distributed systems, context aware
systems have not, as yet, demonstrated their use. Some
researchers have highlighted the importance of caching
context information but no study has reported any results
on the empirical gains of employing a context cache in a
context provisioning system and this deficiency has served
as the main motivation for our continuing study of this
domain. The discussion presented in this paper builds
on our earlier work that demonstrated one of the first
empirical studies on caching contextual data in context
provisioning systems [13].

The context provisioning architecture
The Context Provisioning Architecture is based on the
producer (provider)-consumer model in which context
related services take the roles of context providers or con-
text consumers. These basic entities are interconnected
by means of context brokers that provide routing, event
management, query resolution and lookup services. The
following paragraphs describe these three main compo-
nents of the architecture. A Context Consumer (CxC) is

a component (e.g. a context based application) that uses
context data. A CxC can retrieve context information by
sending a subscription to the Context Broker (CxB) or a
direct on-demand query and context information is deliv-
ered when and if it is available. The Context Provider
(CxP) component provides contextual information. A CxP
gathers data from a collection of sensors, network/cloud
services or other relevant sources. A CxP may use various
aggregation and reasoning mechanisms to infer context
from raw sensor, network or other source data. A CxP
provides context data only to a specific invocation or sub-
scription and is usually specialized in a particular context
domain (e.g. location). A Context Broker (CxB) is the
main coordinating component of the architecture. Pri-
marily the CxB has to facilitate context flow among all
attached components, which it achieves by allowing CxCs
to subscribe to or query context information and CxPs to
deliver notifications or responses.
A depiction of the core system components described

above is presented in Figure 1 emphasizing the com-
plementary provision of synchronous and asynchronous
context-related communication facilities. A number of
useful applications have been developed based on this
architecture. Further details of this architecture and
industrial trials are described in [14], [15]. Context con-
sumers and providers register with a broker by specifying
its communication end point and the type of context
they provide or require. This in turn enables a broker-
ing function in which the context broker can look up
a particular context provider that a context consumer
may be interested in (e.g. based on the type of context
being requested). The broker can cache recently produced
context, in order to exploit the principle of locality of
reference.
A distinguishing feature of this architecture is the fed-

eration of multiple context brokers to form an overlay

Figure 1 Broker based context provisioning. Basic broker based
context provisioning component interaction.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 4 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

network of brokers (Figure 2 ), which improves the scal-
ability of the overall system and provides location trans-
parency to the local clients (CxCs and CxPs) of each
broker. This federation of context brokers is achieved with
a coordination model that is based on routing of context
queries/subscriptions and responses/notifications across
distributed brokers, discovery and lookup functions and
is described in detail in our earlier work [16]. This con-
cept of context broker federation can be directly related
to Cloud federation in which two or more geographically
distinct or administratively independent Clouds coop-
erate in resource sharing and related functional opera-
tions, hence setting the conceptual foundation for federa-
tion of context-aware Clouds that exchange cross-domain
context-information for serving their mobile/roaming
users.
Context information is represented in the Context

Provisioning Architecture using an XML based schema
entitled ContextML. The defining principle in ContextML
is that context data relates to an entity and is of a cer-
tain scope. The entity may be a user, a username, a SIP
or an email address etc., and scope signifies the type of
context data e.g. weather, location, activity and user pref-
erences. Furthermore, a temporal validity is associated
with ContextML encoded context data through the times-
tamp and expiry tags, which specify the time duration
during which a specific context instance is considered
valid. This feature of ContextML forms the basis of uti-
lizing the caching function in the context brokers of the
architecture.
The actual context information about a scope is encoded

using named parameters, parameter arrays and complex
parameter structures in ContextML elements. A parser,
titled the ContextML Parser, has been implemented as a
Java library for Java SE, EE and the Android platforms that

can be used by thee context producing and consuming
applications for the processing of contextual information
and other messages encoded in ContextML. The model
of the contextual data-related elements and a discussion
about various dimensions of ContextML is presented in
an earlier work [17].
A single broker based prototype of the Context Pro-

visioning Architecture has been deployed on a Cloud
platform and work is under progress to enable a federa-
tion of many such Cloud-based instances to be federated
together in order to exploit the scalability, reliability, per-
formance and interoperability related benefits offered by
the Cloud platform. Figure 3 shows a conceptual diagram
of how the system components may operate in a federa-
tion of context brokers in the Cloud infrastructure for the
delivery of contextual information to context consumers.
Each context broker may be under the control of a differ-
ent administrative authority but the federation between
these context brokers (and semi-private Clouds) can allow
the context consumers to utilize these brokers for acquir-
ing contextual information. The federation features are
beyond the scope of this paper and we will limit our focus
to the specific feature of context caching in a single broker
setup.

Context cache
Context consumers request context about a particular
entity and scope by forwarding a ContextML encoded
query to the context broker. The broker forwards the
query to an appropriate context provider that can sat-
isfy it. When the query-satisfying context information
is available, the provider sends the context response
to the broker. In the absence of a caching facility, the
broker simply forwards the query to the querying con-
sumer. The Context Provisioning Architecture utilizes a

Figure 2 Consumer–Broker–Provider interaction. Simplified view of the federated broker based interaction.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 5 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

Figure 3 Federated broker model. Architectural components of the Context Provisioning Architecture in the Cloud infrastructure.

caching component that caches recently received con-
textual data in response to context queries, in addition
to forwarding the response to the querying consumer.
The context data remains in the cache for the valid-
ity period unless it is replaced by more recent context
of the same scope/entity or has to be removed to free
the cache due to cache size limits. The query process-
ing and notification operations from the context bro-
ker’s point of view are described in Algorithms 2 and 2
respectively.

Algorithm 1
Context broker query processing

WHERE P = {P1,P2, . . . ,P3}, P is the set of all
providers in the system

WHERE a query Q = {
Iq, Ie, Is, ICxC ,Qp

}
# Iq is the

query ID, Ie is the entity ID, Is is the scope ID,
ICxC is the consumer component’s ID and Qp
consists of other query parameters.

WHERE Tq = {
Iqi , ICxCi

}
# Tq is a table where the

broker stores the query ID to consumer ID
mappings of the form

{
Iq, ICxC

}
subscribe(Q) # Query arrives at the broker
record(Tq, Iq, ICxC) # Query is recorded in the
queries table

CXTf = searchCache(Q, Ie, Is) # See if cache can
satisfy the query

if CXTf then

notify(ICxC ,CXTf ) # Notify the consumer in case
of cache hit

incrementUseCount(CXTf ) # Increment the use
count of the particular item

else

Ps = lookup(P, Ie, Is) # Broker looks up an
appropriate provider

query(Q,P) # And forwards the query to that
provider

end if

Algorithm 2
Context broker notification processing

WHERETq = {
Iqi , ICxCi

}
# Tq is a table where the broker

stores the query ID to consumer ID mappings of the
form

{
Iq, ICxC

}
WHERE TIns is the cached item insertion time
WHERE TExp is the cached item’s validity expiry time
WHERE CXTin is the cached item’s use count
publish(Iq,CXTp) # Context response arrives from the
provider

storeInCache(CXTp,TExp,TIns) # Store the context item
in the cache

ICxC = resolve(Tq, Iq) # Find out which consumer
requested this context item

notify(ICxC ,CXTp) # Notify the consumer

In addition to the development and real-world deploy-
ment of the Context Provisioning Architecture system,
a simulation model has been developed to evaluate the
system under various conditions. The simulator is based
on OMNET++ [18], a Discrete Event Simulator toolkit,
and models the actual system components (providers,
consumers, broker), the representation scheme and the
communicationmodel between these components as well.
The results of the experiments carried out with this sim-
ulated setup will aid in establishing the suitability and



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 6 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

relative effectiveness of caching strategies for context
provisioning. These caching strategies can then be read-
ily implemented in a Cloud-based Context Provisioning
Architecture to augment the reliability, scalability and
device/location independence benefits that are provide by
the Cloud setup.

Simulation
The simulation model consists of a context broker mod-
ule, context providers and context consumers connected
by communication channels. The simulator comprises the
core functionalities of context caching, context querying
service, CxP registration and lookup service. Further-
more, the ContextML schema is also fully modeled. CxP
modules provide context on invocation by the CxB and
provide context about one particular scope only. The sim-
ulation model comprises various input parameters that
can be set individually for each simulation run allowing
several scenarios to be evaluated and compared against
each other. The parameters for each scope contain numer-
ical scope ID (integer) and its validity duration (seconds).
The parameters for each Context Provider comprise a CxP
ID (integer), ID of the context scope that it provides (inte-
ger) and the average time taken to process a query and
respond to it (ms). The context broker module parame-
ters include the lookup time for finding CxPs for satisfying
queries (ms), cache access time [ms], caching enabled
(Boolean), maximum cache size (integer i.e. the number
of items in the cache), and the cache strategy i.e. the cache
replacement policy used (integer).

scopeID =
⌈
maxScopeID ·

(
ξ

randUniform (0, 1]

)−σ
⌉

(1)

Within the scope of this evaluation, there are three main
caching strategies that we will evaluate, including remove
oldest first (OF), remove least used first (LU), and remove
soonest expiring first (SE), in addition to the non-practical
strategy of having an infinite cache size thus requiring
no replacement policy. When the cache is full and space
is required for a more recent context item, the OF pol-
icy removes the oldest item from the cache. The context
caching functionality in our system therefore records the
time of insertion of each item in the cache. The SE pol-
icy removes the context item from the cache store whose
expiry time will be up the soonest. In the case of LU policy,
the context item which has been accessed the least num-
ber of times. For this policy to be applicable, the caching
function in our system has to record each context item’s
access frequency. These cache replacement policies, with
respect to their usage by the context broker, are described
in Algorithm 2.

Algorithm 3
Context cache insertion and replacement procedure
(storeInCache)

WHERE TIns is the cached item’s insertion time
WHERE TExp is the cached item’s validity expiry time
WHERE CXTin is the cached item’s use count
WHERE policy = ‘LU ′ ∨ ‘OF ′ ∨ ‘SE′ # The cache
replacement policy

if filledSpace < maxSpace then

insert(MD5(Ie||Is),CXT ,TExp)

else

if policy == ‘SE′ then

CXTRem = Minimum(TExp) # Select the item
with the soonest reaching expiry time
remove(CXTRem)

end if

else

if policy == ‘OF ′ then

CXTRem = Maximum(TIns) # Select the item
with the oldest insertion time remove(CXTRem)

end if

else

if policy == ‘LU ′ then

CXTRem = Minimum(CXTin) # Select the item
with the least usage count

end if

end if

We have already established the usefulness of caching
contextual data in principle in our earlier work [13], but
did not analyze the effect of variance in the scope valid-
ity durations in detail. As the results will demonstrate,
different access patterns from users (requesting longer
validity scopesmore than shorter validity scopes) can have
a significant influence on the performance of the cache
(cache-hit rate). With the help of this simulation model,
we intend to establish suitable strategies for varying access
patterns and devise a caching strategy that can accommo-
date a combination of these access patterns. The context
consumers are configured to request context a constant
rate λ [/s]. The context scope specified by the CxCs in the
queries is determined using a Pareto distribution with a
selectable shape α and scale ξ (1).



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 7 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

The discretized Pareto distribution has been selected
because it allows us to model scope distribution in context
queries with tuneable parameters. Twelve different scopes
are used in this experiment and the scope distribution in
context queries is controlled by changing the Pareto shape
parameter α while the scale parameter ξ is kept constant
at 1. In each simulation run 5,000 context requests dis-
tributed across 10 entities are instantiated. After all the
responses have been received by CxCs, the simulation is
terminated. Scopes and CxPs are initialized using the val-
ues from Table 1. The CxB cache access time and provider
lookup time are assumed to be 10ms. In each simulation
run, a caching strategy is selected and the Pareto distri-
bution for selecting the requested scopes (α) is varied to
select a certain percentage of short validity (SV) and long
validity (LV) category scopes. The simulation is repeated
for each caching strategy and the query satisfaction time,
the time elapsed between issuance of a query from a
consumer and receipt of a response to that query, being
recorded. Hence, the performance of the selected cache
strategies is investigated with varying scope distribution
in the context requests.

Results
Themean query satisfaction times of 5000 context queries
with different caching strategy are plotted in Figure 4.
We analyze the mean query satisfaction time of these
caching strategies in the cases where scope distribution
varies from being fully focused on short validity (SV)
scopes to long validity (LV) scopes in increments of 25%
i.e. the distributions range from (1.0 SV/0.0 LV), (0.75
SV/0.25 LV), (0.5 SV/0.5 LV), (0.25 SV/0.75 LV) and (0.0
SV/1.0 LV). The reference cases of having an unlimited
and no cache show the maximum performance improve-
ment possible with our setup. The mean query satisfac-
tion time across different combinations of SV/LV scope

Table 1 Simulation parameters

CxP:ScopeID Processing time[ms] Validity[s] Category

CxP:1 70 60 Short

CxP:2 70 60 Short

CxP:3 80 80 Short

CxP:4 80 80 Short

CxP:5 90 180 Short

CxP:6 90 240 Short

CxP:7 70 360 Long

CxP:8 70 400 Long

CxP:9 80 600 Long

CxP:10 80 900 Long

CxP:11 90 1200 Long

CxP:12 90 1200 Long

distributions improves from 487ms to 292.8ms, with a
cache-hit ratio of approximately 46%. However, having an
unlimited cache size is impractical in deployment sce-
narios, hence we focus our attention to various cache
replacement policies that are evaluated with a fixed cache
size of 500 items maximum i.e. 1/10th of the total num-
ber of context items that will be generated during an
experimental iteration.
The caching sub-component in the context broker keeps

track of the number of times an element in the cache has
found use i.e. cache-hits that have occurred. It also records
the time of arrival of a context-item in the cache and time
left in the expiry of a context data items validity. When
space is needed in the already full cache for a newer con-
text data item, the LU cache replacement policy removes
an existing item from the cache that has been accessed the
least number of times. The chart in Figure 4 shows that LU
results in mean query satisfaction time of 358.8ms (with
˜33.5% cache-hit ratio) and provides a fairly even perfor-
mance for both the short validity scope and long validity
scope focused context queries. TheOF cache replacement
policy provides an improvement over LU with a mean
query-satisfaction time of 341.8ms. However, it is evident
by considering the results in Figure 4 that OF delivers a
better query satisfaction time when the scope distribu-
tion in the contextual queries is biased towards SV scopes.
This can be explained by the fact that under a querying
pattern where most of the queries contain requests for
SV scopes, the SV context data items will dominate the
cache store. But since these data items have shorter valid-
ity durations, by the time they are removed due to the
OF policy they would be closer to the expiry instant and
hence been offered a greater chance of generating a cache-
hit by spending most of their validity period in the cache.
In the reciprocal case of high concentration LV scopes in
the context queries,OF policy results in the longer validity
data items from the cache that are not often closer to their
expiry instant and hence have not been offered a fuller
chance to result in a cache-hit.
The SE cache replacement policy removes an item from

the cache that is the closest to its validity expiration.
This policy delivers an improved mean query satisfaction
time of 331.4ms (with ˜36.25% cache-hit ratio) across all
scope distributions but a closer inspection reveals that SE
performs better for LV scoped queries than SV scoped
queries. This policy is biased towards replacing an SV
scoped item from the cache store because the validity
expiry time for such items is more than likely to be closer
than LV items. Moreover, an LV scoped removal candi-
date item would have spent most of its validity duration
in the cache and thus given a good chance to result in a
cache-hit.
The OF and SE policies can be further examined

by comparing the validity categories of data items that



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 8 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

Figure 4 Simulation experiment results.Mean query satisfaction times, different caching strategies and scope distribution scenarios.

resulted in a cache-hit. Figures 5 and 6 illustrate the rela-
tive percentage of SV and LV scoped items in the cache-hit
resulting data items. It can be seen from Figure 5 that
under the OF policy, SV scoped data items occupy a share
of the context-hit space that is greater than their percent-
age in the context queries i.e. under the OF policy it takes
a 78% share in the case of 0.75 SV/0.25 LV, 52% in case of
0.5 SV/0.5 LV and a 28% share in the case of 0.25 SV/0.75
LV. Contrastingly, under the SE policy, LV scoped data
items occupy a greater share of the context-hit space i.e.
under the SE policy it takes a 30% share in the case of
0.75 SV/0.25 LV, 58% in case of 0.5 SV/0.5 LV and a 80%
share in the case of 0.25 SV/0.75 LV (see Figure 6 ). These
trends demonstrate the suitability of OF and SE policies
for SV and LV scoped context data respectively. We have

used these observations to devise a novel caching mecha-
nism for contextual data that is suitable for both short and
long validity scoped context data, which is discussed in the
following section.

The bipartite context cache
Taking into consideration the suitability of different cache
replacement policies for SV and LV scope categories,
we split the physical cache into two parts, one cater-
ing for the SV scoped context data items and the other
for LV scoped items. The caching strategy is then con-
figured to utilize OF replacement policy for SV scoped
data and SE policy for LV scoped data items. The per-
formance of the bipartite context cache is evaluated
under the same experimental conditions discussed earlier

Figure 5 Cache-hit ratio under OF cache replacement policy. OF replacement policy and cache-hit rate of SV vs. LV in different scope
distribution scenarios.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 9 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

Figure 6 Cache-hit ratio under SE cache replacement policy. SE replacement policy and cache-hit rate of SV vs. LV in different scope distribution
scenarios.

and the results are plotted in Figure 7. The bipartite
cache provides a marginally improved overall perfor-
mance over the OF and SE, with a mean query sat-
isfaction time of 326ms (˜38.1% cache-hit ratio). This
use of two different cache replacement policies suited to
the scope validity durations of the data items results in
an improved performance and provides a fairly constant
mean query satisfaction time across all scope distribution
patterns.
We have further evaluated the bipartite caching mech-

anism with a dynamic scaling of the size of the two
partitions that is based on the distribution of scopes in
the incoming context queries. Dynamically increasing or
decreasing the size of a partition based on the ratio of a
particular scope validity category in the incoming queries
tunes the cache to accommodate the pattern of queries
that exists in a particular situation. The query satisfaction

times improve marginally by the application of bipar-
tite caching with dynamic partitioning from the case of
equally sized bipartite cache. The mean query satisfaction
time in our experiments is 318.4ms (˜39.4% cache hit-
ratio) and the results display a consistent pattern across all
scope validity scenarios (Figure 7).
The experiments carried out in a simulated envi-

ronment (OMNET++) have established that the bipar-
tite caching mechanism, both with fixed and dynami-
cally resizable partitions, operating different replacement
strategies in both partitions provides a better hit ratio.
Hence, the mean query satisfaction time improves in
comparison to the SE and OF policies operating indepen-
dently. In the following section, we describe the deploy-
ment of our broker based Context Provisioning Archi-
tecture system in a Cloud platform and repetition of the
previously carried out experiments.

Figure 7 Simulation experiment results including the bipartite cache. Inclusion of the Bipartite with Dynamic Size cache strategy in the earlier
comparison.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 10 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

Cloud-based evaluation
The prototype implementation of the Context Provi-
sioning Architecture has been carried as a collection of
applications and services conforming to the Enterprise
JavaBeans [19] specification. The Context Broker EJB
application consists of functional entities that provide the
registration, brokering, querying, notification and caching
functions through RESTful HTTP interfaces. The Cache
Service is implemented as a Singleton Session Bean of the
EJB specification with appropriate interfaces for adding,
removing and retrieving context information. Singleton
session beans are designed for circumstances in which a
single enterprise bean instance is shared across and con-
currently accessed by clients, which in this case are the
constituent components of the Context Broker. The Cache
Service has built in cache replacement policies (includ-
ing those mentioned in the preceding discussion) and the
administrator can configure which policy is to be used
during execution. Generic Context Provider and Con-
text Consumer applications have also been developed that
can be programmed for querying and providing context
information related to a particular scopes and entities at
specified rates.
The ContextBroker is deployed on a Glassfish [20] appli-

cation server, which itself is hosted on a compute node of
the OpenStack (www.openstack.org) cloud platform (Dia-
blo release). The OpenStack cloud platform is deployed

on a server consisting of a nova-compute virtual machine.
The software/hardware configurations of the server and
the virtual machine, along with the physical and virtual
network configuration details, are illustrated in Figure 8.
The Context Providers are deployed on a server that is
accessible to the Context Broker via a local area net-
work through the host OS. The Context Consumers are
deployed on a workstation on the public network available
to the Cloud nodes. It must be noted that for the purposes
of this experiment, the public interface is also confined to
a local area network in order to reduce the variable net-
work factors during execution. The local area networks
consist of 1Gbps ethernet connections.
As with the simulated experiments, the Cloud-based

experiments are carried out with 5000 context queries,
which are sent from context consumers to the broker. The
mean query satisfaction times with different caching strat-
egy are recorded for the cases where scope distribution
varies from being fully focused on SV scopes to LV scopes.
The results reported/plotted in the following paragraphs
are a mean of five repetitions (the individual results being
within +/–2% of the mean results). The results are plot-
ted in Figure 9 and Figure 10 . The chart in Figure 9 shows
that OF cache replacement policy provides a better query
satisfaction time when the context queries are focussed
towards SV scopes while SE policy provides a better query
satisfaction time when the query scope distribution is

Figure 8 Cloud-based deployment. Deployment of the Context Provisioning Architecture on an OpenStack based Cloud for the caching
experiment.

www.openstack.org


Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 11 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

Figure 9 Cloud-based experiment results. Bipartite cache with fixed partition size (equally distributed).

biased towards LV scopes. This results are in line with
our earlier findings that are based on a simulation envi-
ronment. However, an notable observation is the variation
in the performance of a particular cache replacement pol-
icy as the scope distribution varies from one extreme to
the other (i.e. 1.0SV/0.0LV to 0.0SV/1.0LV). In the case
of simulation based experiments, the SE policy demon-
strates a net 10.8% (315ms to 338ms) change in the query
satisfaction times across the range of scope distributions
while the OF policy demonstrates a similar 10.3% (321ms
to 354ms) change as the scope distributions varies from
1.0SV/0.0LV to 0.0SV/1.0LV. But when the experiments
are carried out on the Cloud-based deployment, the query
satisfaction times in case of OF and SE demonstrate a
range that varies 14.96% and 17.5% respectively, i.e. the
practical favourable tendency of these policies towards SV
scoped queries (OF policy) and LV scoped queries (SE
policy) is more pronounced.
The performance of the bipartite caching mecha-

nism demonstrates a trend that is similar to the earlier
simulation experiments i.e. it provides an improved over-
all performance over the OF and SE policies applied inde-
pendently, with a mean query satisfaction time of 263ms
(˜40.2% cache-hit ratio).Moreover, the provision of a fairly

constant mean query satisfaction time with the bipar-
tite cache across all scope distribution patterns is also
evident. The query satisfaction times in case of the bipar-
tite cache with fixed partition sizes only vary by a 1.45%
(262ms to 265ms) as the scope distribution varies between
SV and LV scoped queries i.e. it provides a fairly consis-
tent performance. Figure 10 illustrates the performance of
the bipartite caching mechanism with dynamic partition
resizing and the results confirm our earlier findings that
signified the improved performance of this caching mech-
anism. The bipartite caching mechanism with dynamic
partition resizing delivers a mean query satisfaction time
of 245.8ms, which is better than 1) the OF results by
12.77%, (277.2ms), 2) the SE results by 7.89% (265.2ms)
and 3) the bipartite cache using fixed partition sizes by
7.16% (263.4ms). Moreover, it demonstrates only a 0.82%
change (from 245ms to 247ms) as the scope distribu-
tions vary from 1.0SV/0.0LV to 0.0SV/1.0LV, signifying
a consistent performance during different query condi-
tions. This consistency is in line with our earlier findings
during the simulated experiments where the bipartite
caching mechanism with fixed and dynamically resizable
partitions demonstrated a deviation of 1.23% and 0.96%
respectively as the scope distributions varied. The mean

Figure 10 Cloud-based experiment results. Bipartite cache with dynamically resizable partitions.



Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 12 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

observed cache hit ratio in the case of the bipartite caching
withe dynamically resizable cache is 41.36% (individual
repetition of experiments yielded cache hit ratios of 41.2%,
41.7%, 40.9%, 41.1%, 41.9%).
The experiment carried out in the Cloud based deploy-

ment of the Context Provisioning Architecture have reaf-
firmed our findings from the OMNET++ simulation
that the bipartite caching mechanism, both with fixed
and dynamically resizable partitions, operating differ-
ent replacement strategies in both partitions, provides a
better mean query satisfaction time in comparison to the
SE and OF policies.

Conclusions and future work
The work presented in this paper builds on the well estab-
lished mechanism of caching in distributed systems for
performance improvement purposes. However, the use
and effectiveness of context caches has not been evalu-
ated or demonstrated. The Context Provisioning Archi-
tecture employs a caching mechanism at the context
broker, which positively affects the mean query satisfac-
tion time between context consumers and providers. We
have analysed the relative performance of various cache
replacement policies using the OMNET++ discrete event
simulator. Our analysis has revealed that different caching
strategies display contrasting behaviour under different
scope distribution scenarios, with OF policy performing
better for short scoped context data and SE performing
better for long scoped context data. Based on this obser-
vation, we have devised a novel bipartite caching strategy
for use in context data provisioning that allows utilization
of the OF and SE policies for SV and LV scoped context
data during context provisioning.
The bipartite cache is further improved by allowing

dynamic resizing of the bipartite cache partitions based
on the scope distribution scenario of the incoming context
queries. The novel caching strategy can assist in designing
a Cloud based context provisioning system that effec-
tively utilizes the temporal validity characteristic of the
context data, exploit the principle of locality to improve
query-response times and therefore positively influence
the quality of service of the context-aware system as a
whole. To validate our claim, we have repeated the simu-
lation based experiments on a deployment of the Context
Provisioning Architecture in a Cloud platform. The sub-
sequent results demonstrate similar trends and improve-
ment in the mean query satisfaction times through the use
of caching and the comparatively better performance of
the novel bipartite caching mechanism.
The experiments presented in this work have been

carefully designed to reduce the number of variable fac-
tors e.g. carrying out the experiments in isolated local
area networks and configuring context providers with
deterministic behaviour i.e. fixed processing and response

delays. Such restrictions have assisted in determining the
behaviour of the caching function to a better degree of
confidence as the effects of variable factors is dimin-
ished in our setup. However, to derive more generaliz-
able results, we aim to carry out the experiments under
real-world conditions with the context providers and
consumers deployed in public networks and consum-
ing/providing a more practical context information set.
Furthermore, the Context Provisioning Architecture

enables multiple brokers to be federated together in an
overlay network and the geographically distributed con-
text consumers and providers can be attached to different
brokers. In such a setup, there will be multiple distributed
caches in the system, one at each broker. The caching
benefits cannot be maximised if such distributed caches
are not synchronised amongst each other. Such a syn-
chronisation mechanism does no exist in our system and
is a target of our future work. The distributed, yet syn-
chronized, caches may also effect the suitability of cache
replacement policies to certain distributions of scopes in
the context queries and we also expect that an investiga-
tion into this aspect may open further avenues of research
and development in this domain.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SLK drafted the manuscript, carried out the background work to identify the
problem area and devised the caching strategy. AA participated in drafting the
manuscript, designing the simulation parameters and carrying out the
experiments. NA participated in the experiment design and analysis of the
results with respect to Cloud-based feasibility of our approach. KM carried out
the analysis of the experimental results and participated in the Cloud-based
evaluation. RM carried out the analysis of the experimental results and
contributed significantly towards establishing the logical validity of our results.
All authors have made substantial contributions and have been part of
drafting the manuscript. All authors read and approved the final manuscript.

Author details
1Faculty of Engineering and Technology, University of the West of England,
Bristol, UK. 2School of Computing and Mathematics, University of Derby,
Derby, UK.

Received: 1 December 2011 Accepted: 22 February 2012
Published: 9 July 2012

References
1. Weiser M (1991) The computer for the twenty-first century. Sci Am 265(3):

94–104
2. Chen H (2004) An Intelligent Broker Architecture for Pervasive

Context-Aware Systems. University of Maryland, Baltimore County
3. Gu T, Pung HK, Zhang DQ (2005) A Service-oriented middleware for

building context-aware Services. J Netw Comput Appl 28: 1–18
4. Bardram JE (2005) The Java Context Awareness Framework (JCAF) - a

service infrastructure and programming framework for context-aware
applications. In Pervasive Computing, Volume 3468 of LNCS 98–115.
Springer

5. Henricksen K, Indulska J, McFadden T, Balasubramaniam S (2005)
Middleware for distributed context-aware systems. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA , and ODBASE, Volume
3760 of Lecture Notes in Computer Science, ed. Meersman R Tari Z 846–
863. Berlin / Heidelberg: Springer. http://dx.doi.org/10.1007/11575771 53

http://dx.doi.org/10.1007/11575771_53


Kiani et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:7 Page 13 of 13
http://www.journalofcloudcomputing.com/content/1/1/7

6. Floreen P, Przybilski M, Nurmi P, Koolwaaij J, Tarlano A, Wagner M, Luther
M, Bataille F, Boussard M, Mrohs B, et al (2005). Towards a context
management framework for mobiLife. 14th IST Mobile & Wireless Summit

7. Buchholz T, Küpper A, Schiffers M (2003) Quality of Context: What It Is and
Why We Need It. In Workshop of the HP OpenView University Association

8. Ebling M, Hunt GDH, Lei H (2001) Issues for Context Services for Pervasive
Computing. In Workshop on Middleware for Mobile Computing,
Heidelberg. http://www.mobilesummit.de/authors.php

9. Lei H, Sow DM, Davis I, John S, Banavar G, Ebling MR (2002) The design
and applications of a context services. ACM SIGMOBILE Mobile Comput
Commun Rev 6(4): 55

10. Kernchen R, Bonnefoy D, Battestini A, Mrohs B, Wagner M, Klemettinen M
(2006) Context-awareness in mobiLife. In Proceedings of the 15th IST
Mobile Summit. IST Mobile Summit. Mykonos, Greece

11. Mostéfaoui SK, Tafat-Bouzid A, Hirsbrunner B (2003) Using context
information for service discovery and composition. In 5th International
Conference on Information Integration and Web-based Applications and
Services (iiWAS). Östereichische Computer Gesellschaft, ISBN
3-85403-170-10, ed. Kotsis G, Bressan S, Catania B, Ibrahim IK

12. Bellavista P, Corradi A, Montanari R, Stefanelli C (2006) A mobile
computing middleware for location and context-aware internet data
services. ACM Trans Internet Technol (TOIT) 6(4): 380

13. Kiani SL, Knappmeyer M, Reetz E, Baker N (2010) Effect of Caching in a
Broker based Context Provisioning System. In Proceedings of The 5th
European Conf. on Smart Sensing and Context, Vol 6446, LNCS 108–121

14. Zafar M, Baker N, Moltchanov B, João Miguel Goncalves SL, Knappmeyer
M (2009) Context Management Architecture for Future Internet Services.
In: ICT Mobile Summit 2009. Santander, Spain

15. Knappmeyer M, Tönjes R, Baker N (2009) Modular and extendible context
provisioning for evolving mobile applications and services. In: 18th ICT
Mobile Summit

16. Kiani SL, Knappmeyer M, Baker N, Moltchanov B (2010) A Federated
Broker Architecture for Large Scale Context Dissemination. In: 2nd Int’l
Symp. on Advanced Topics on Scalable Computing. Bradford, UK

17. Knappmeyer M, Kiani SL, Frá C, Moltchanov B, Baker N (2010). In:
Proceedings of IEEE International Symposium on Wireless Pervasive
Computing

18. Varga A (2001) The OMNeT++ discrete event simulation systems. In:
Proceedings of the European Simulation Multiconference (ESM’2001)
319–324

19. Emmerich W, Kaveh N (2002) Component technologies: Java beans, COM
, CORBA , RMI , EJB and the CORBA component model. In: Proceedings of
the 24th International Conference on Software Engineering (ICSE 2002).
IEEE 691–692

20. Goncalves A (2009) Beginning Java EE 6 Platform with GlassFish 3: from
novice to professional. From Novice to Professional Series, Apress

doi:10.1186/2192-113X-1-7
Cite this article as: Kiani et al.: Context caches in the Clouds. Journal of Cloud
Computing: Advances, Systems and Applications 2012 1:7.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.mobilesummit.de/authors.php

	Abstract
	Introduction
	Related work
	The context provisioning architecture
	Context cache
	Algorithm 1
	Algorithm 2
	Simulation
	Algorithm 3
	Results
	The bipartite context cache
	Cloud-based evaluation

	Conclusions and future work
	Competing interests
	Authors' contributions
	Author details
	References

