
Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22
http://www.journalofcloudcomputing.com/content/2/1/22
RESEARCH Open Access
Data management in cloud environments: NoSQL
and NewSQL data stores
Katarina Grolinger1, Wilson A Higashino1,2*, Abhinav Tiwari1 and Miriam AM Capretz1
Abstract

Advances in Web technology and the proliferation of mobile devices and sensors connected to the Internet have
resulted in immense processing and storage requirements. Cloud computing has emerged as a paradigm that
promises to meet these requirements. This work focuses on the storage aspect of cloud computing, specifically on
data management in cloud environments. Traditional relational databases were designed in a different hardware
and software era and are facing challenges in meeting the performance and scale requirements of Big Data. NoSQL
and NewSQL data stores present themselves as alternatives that can handle huge volume of data. Because of the
large number and diversity of existing NoSQL and NewSQL solutions, it is difficult to comprehend the domain and
even more challenging to choose an appropriate solution for a specific task. Therefore, this paper reviews NoSQL
and NewSQL solutions with the objective of: (1) providing a perspective in the field, (2) providing guidance to
practitioners and researchers to choose the appropriate data store, and (3) identifying challenges and opportunities
in the field. Specifically, the most prominent solutions are compared focusing on data models, querying, scaling,
and security related capabilities. Features driving the ability to scale read requests and write requests, or scaling
data storage are investigated, in particular partitioning, replication, consistency, and concurrency control.
Furthermore, use cases and scenarios in which NoSQL and NewSQL data stores have been used are discussed and
the suitability of various solutions for different sets of applications is examined. Consequently, this study has
identified challenges in the field, including the immense diversity and inconsistency of terminologies, limited
documentation, sparse comparison and benchmarking criteria, and nonexistence of standardized query languages.

Keywords: NoSQL; NewSQL; Big data; Cloud computing; Distributed storage; Data management
Introduction
In recent years, advances in Web technology and the
proliferation of sensors and mobile devices connected to
the Internet have resulted in the generation of immense
data sets that need to be processed and stored. Just on
Facebook, 2.4 billion content items are shared among
friends every day [1]. Today, businesses generate massive
volume of data which has grown too big to be managed
and analyzed by traditional data processing tools [2].
Indeed, traditional relational database management sys-
tems (RDBMS) were designed in an era when the avail-
able hardware, as well as the storage and processing
requirements, were very different than they are today
[3]. Therefore, these solutions have been encountering
* Correspondence: whigashi@uwo.ca
1Department of Electrical and Computer Engineering, Faculty of Engineering,
Western University, London, ON N6A 5B9, Canada
2Instituto de Computação, Universidade Estadual de Campinas, Campinas, SP,
Brazil

© 2013 Grolinger et al.; licensee Springer. This
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
many challenges in meeting the performance and scaling
requirements of this “Big Data” reality.
Big Data is a term used to refer to massive and complex

datasets made up of a variety of data structures, including
structured, semi-structured, and unstructured data. Ac-
cording to the Gartner group, Big Data can be defined by
3Vs: volume, velocity, and variety [4]. Today, businesses
are aware that this huge volume of data can be used to
generate new opportunities and process improvements
through their processing and analysis [5,6].
At about the same time, cloud computing has also

emerged as a computational paradigm for on-demand
network access to a shared pool of computing resources
(e.g., network, servers, storage, applications, and services)
that can be rapidly provisioned with minimal management
effort [7]. Cloud computing is associated with service pro-
visioning, in which service providers offer computer-based
services to consumers over the network. Often these
is an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:whigashi@uwo.ca
http://creativecommons.org/licenses/by/2.0

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 2 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
services are based on a pay-per-use model where the
consumer pays only for the resources used. Overall, a
cloud computing model aims to provide benefits in
terms of lesser up-front investment, lower operating
costs, higher scalability, elasticity, easy access through
the Web, and reduced business risks and maintenance
expenses [8].
Due to such characteristics of cloud computing,

many applications have been created in or migrated to
cloud environments over the last few years [9]. In fact,
it is interesting to notice the extent of synergy between
the processing requirements of Big Data applications,
and the availability and scalability of computational
resources offered by cloud services. Nevertheless, the
effective leveraging of cloud infrastructure requires care-
ful design and implementation of applications and data
management systems. Cloud environments impose new
requirements to data management; specifically, a cloud
data management system needs to have:

� Scalability and high performance, because today’s
applications are experiencing continuous growth in
terms of the data they need to store, the users they
must serve, and the throughput they should
provide;

� Elasticity, as cloud applications can be subjected to
enormous fluctuations in their access patterns;

� Ability to run on commodity heterogeneous
servers, as most cloud environments are based on
them;

� Fault tolerance, given that commodity machines are
much more prone to fail than high-end servers;

� Security and privacy features, because the data may
now be stored on third-party premises on resources
shared among different tenants;

� Availability, as critical applications have also been
moving to the cloud and cannot afford extended
periods of downtime.

Faced with the challenges that traditional RDBMSs
encounter in handling Big Data and in satisfying the
cloud requirements described above, a number of spe-
cialized solutions have emerged in the last few years in
an attempt to address these concerns. The so-called
NoSQL and NewSQL data stores present themselves as
data processing alternatives that can handle this huge
volume of data and provide the required scalability.
Despite the appropriateness of NoSQL and NewSQL

data stores as cloud data management systems, the im-
mense number of existing solutions (over 120 [10])
and the discrepancies among them make it difficult to
formulate a perspective on the domain and even more
challenging to select the appropriate solution for a
problem at hand. This survey reviews NoSQL and
NewSQL data stores with the intent of filling this gap.
More specifically, this survey has the following objectives:

� To provide a perspective on the domain by
summarizing, organizing, and categorizing NoSQL
and NewSQL solutions.

� To compare the characteristics of the leading
solutions in order to provide guidance to
practitioners and researchers to choose the
appropriate data store for specific applications.

� To identify research challenges and opportunities
in the field of large-scale distributed data
management.

NoSQL data models and categorization of NoSQL data
stores have been addressed in other surveys [10-14].
In addition, aspects associated with NoSQL, such as
MapReduce, the CAP theorem, and eventual consistency
have also been discussed in the literature [15,16]. This
paper presents a short overview of NoSQL concepts
and data models; nevertheless, the main contributions
of this paper include:

� A discussion of NewSQL data stores. The category
of NewSQL solutions is recent; the first use of the
term was in 2011 [17]. NewSQL solutions aim to
bring the relational data model into the world of
NoSQL. Therefore, a comparison among NewSQL
and NoSQL solutions is essential to understand
this new class of data stores.

� A detailed comparison among various NoSQL and
NewSQL solutions over a large number of
dimensions. By presenting this comparison in a table
form, this paper helps practitioners to choose the
appropriate data store for the task at hand. Previous
surveys have included comparisons of NoSQL
solutions [11]; nonetheless, the number of compared
attributes was limited, and the analysis performed
was not as comprehensive.

� A review of a number of security features is also
included in the data store comparison. According
to the surveyed literature [10-14], security has
been overlooked, even though it is an important
aspect of the adoption of NoSQL solutions in
practice.

� A discussion of the suitability of various NoSQL
and NewSQL solutions for different sets of
applications. NoSQL and NewSQL solutions differ
greatly in their characteristics; moreover, changes
in this area are rapid, with frequent releases of new
features and options. Therefore, this work
discusses the suitability of NoSQL and NewSQL
data stores for different use cases from the
perspective of core design decisions.

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 3 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
The rest of this paper is organized as follows: the
“Background and Related Work” section describes back-
ground concepts and studies related to this survey. The
methodology used in this survey is presented in the
“Methodology” section. The “Data Models” section pre-
sents the NoSQL and NewSQL data models and catego-
rizes the surveyed data stores accordingly. Querying
capabilities are discussed in the “Querying” section,
while the “Scaling” section describes the solutions’ scaling
properties and the “Security” section their security fea-
tures. The suitability of NoSQL and NewSQL data stores
for different use cases is discussed in the “Use Cases” sec-
tion. The challenges and opportunities identified in this
study are described in the “Opportunities” section, and the
“Conclusions” section concludes the paper.
Background and related work
This section introduces relevant concepts and positions
this paper with respect to other surveys in the NoSQL
domain.
Cloud computing
Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., network, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction [7]. It denotes a model in
which a computing infrastructure is viewed as a “cloud”,
from which businesses and individuals can access appli-
cations on demand from anywhere in the world [18].
Essential characteristics of the cloud-computing model,
according to the U.S. National Institute of Standards
and Technology (NIST), include [7]:

� On-demand self-service, enabling a user to access
cloud provider services without human interaction;

� Broad network access that enables heterogeneous
thick and thin client applications to access the
services;

� Pooling of service provider computing resources to
serve multiple consumers;

� Automatic, rapid, and elastic provisioning of
resources;

� Measured service in which resource usage is
monitored and controlled.

Overall, a cloud computing model aims to provide bene-
fits in terms of lesser up-front investment in infrastructure
during deployment, lower operating costs, higher scalabil-
ity, ease of access through the Web, and reduced business
risks and maintenance expenses [8].
The CAP theorem
In order to store and process massive datasets, a com-
mon employed strategy is to partition the data and store
the partitions across different server nodes. Additionally,
these partitions can also be replicated in multiple servers
so that the data is still available even in case of servers’
failures. Many modern data stores, such as Cassandra
[19] and BigTable [20], use these and others strategies to
implement high-available and scalable solutions that can
be leveraged in cloud environments. Nevertheless, these
solutions and others replicated networked data stores
have an important restriction, which was formalized by
the CAP theorem [21]: only two of three CAP properties
(consistency, availability, and partition tolerance) can be
satisfied by networked shared-data systems at the same
time [21,22].
Consistency, as interpreted in CAP, is equivalent to

having a single up-to-date instance of the data [22].
Therefore, consistency in CAP has a somewhat dissimilar
meaning to and represents only a subset of consistency
as defined in ACID (Atomicity, Consistency, Isolation
and Durability) transactions of RDBMSs [22], which
usually refers to the capability of maintaining the data-
base in a consistent state at all times. The Availability
property means that the data should be available to serve
a request at the moment it is needed. Finally, the Partition
Tolerance property refers to the capacity of the networked
shared-data system to tolerate network partitions. The
simplest interpretation of the CAP theorem is to consider
a distributed data store partitioned into two sets of par-
ticipant nodes; if the data store denies all write requests
in both partitions, it will remain consistent, but it is not
available. On the other hand, if one (or both) of the par-
titions accepts write requests, the data store is available,
but potentially inconsistent.
Despite the relative simplicity of its result, the CAP

theorem has had important implications and has origi-
nated a great variety of distributed data stores aiming to
explore the trade-offs between the three properties.
More specifically, the challenges of RDBMS in handling
Big Data and the use of distributed systems techniques
in the context of the CAP theorem led to the develop-
ment of new classes of data stores called NoSQL and
NewSQL.

NoSQL and NewSQL
The origin of the NoSQL term is attributed to Johan
Oskarsson, who used it in 2009 to name a conference
about “open-source, distributed, non-relational databases”
[23]. Today, the term is used as an acronym for “Not only
SQL”, which emphasizes that SQL-style querying is not
the crucial objective of these data stores. Therefore, the
term is used as an umbrella classification that includes a
large number of immensely diverse data stores that are

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 4 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
not based on the relational model, including some solu-
tions designed for very specific applications such as graph
storage. Even though there is no agreement on what
exactly constitutes a NoSQL solution, the following set of
characteristics is often attributed to them [11,15]:

� Simple and flexible non-relational data models.
NoSQL data stores offer flexible schemas or are
sometimes completely schema-free and are designed
to handle a wide variety of data structures
[11,12,24]. Current solution data models can be
divided into four categories: key-value stores,
document stores, column-family stores, and graph
databases.

� Ability to scale horizontally over many commodity
servers. Some data stores provide data scaling, while
others are more concerned with read and/or write
scaling.

� Provide high availability. Many NoSQL data stores
are aimed towards highly distributed scenarios, and
consider partition tolerance as unavoidable.
Therefore, in order to provide high availability, these
solutions choose to compromise consistency in
favour of availability, resulting in AP (Available/
Partition-tolerant) data stores, while most RDBMs
are CA (Consistent/Available).

� Typically, they do not support ACID transactions as
provided by RDBMS. NoSQL data stores are
sometimes referred as BASE systems (Basically
Available, Soft state, Eventually consistent) [25]. In
this acronym, Basically Available means that the
data store is available all the time whenever it is
accessed, even if parts of it are unavailable; Soft-state
highlights that it does not need to be consistent
always and can tolerate inconsistency for a certain
time period; and Eventually consistent emphasizes
that after a certain time period, the data store comes
to a consistent state. However, some NoSQL data
stores, such as CouchDB [26] provide ACID
compliance.

These characteristics make NoSQL data stores especially
suitable for use as cloud data management systems. In-
deed, many of the Database as a Service offerings available
today, such as Amazon’s SimpleDB [27] and DynamoDB
[28], are considered to be NoSQL data stores. However,
the lack of full ACID transaction support can be a major
impediment to their adoption in many mission-critical
systems. For instance, Corbert et al. [29] argue that it is
better to deal with performance problems caused by the
overuse of transactions rather than trying to work around
the lack of transaction support. Furthermore, the use of
low-level query languages, the lack of standardized inter-
faces, and the huge investments already made in SQL by
enterprises are other barriers to the adoption of NoSQL
data stores.
The category of NewSQL data stores, on the other hand,

is being used to classify a set of solutions aimed at bring-
ing to the relational model the benefits of horizontal scal-
ability and fault tolerance provided by NoSQL solutions.
The first use of the term is attributed to a report of the
451 group in 2011 [17]. The Google Spanner [29] solution
is considered to be one of the most prominent representa-
tives of this category, as is also VoltDB [30], which is based
on the H-Store [31] research project. Clustrix [32] and
NuoDB [33] are two commercial projects that are also
classified as NewSQL. All these data stores support the re-
lational model and use SQL as their query language, even
though they are based on different assumptions and archi-
tectures than traditional RDBMSs. Generally speaking,
NewSQL data stores meet many of the requirements for
data management in cloud environments and also offer
the benefits of the well-known SQL standard.

Related surveys
Several surveys have addressed the NoSQL domain [10-14];
nevertheless, this survey is different because it focuses on
the comparison of available NoSQL and NewSQL solutions
over a number of dimensions. Hecht and Jablonski [11]
presented a use case-oriented survey, which, like this one,
compares features of several NoSQL solutions, including
the data models, querying capabilities, partitioning, repli-
cation, and consistency. However, for a large number of
features, they use a “black and white” (+/−) approach to
indicate that the solution either does or does not have the
feature. This survey adopts a different approach by ex-
pressing degrees, aspects, and details of each solution’s
features. Moreover, this survey includes security features
and NewSQL solutions, which are not addressed in their
work.
Pokorny [13], Cattell [12], and Sakr et al. [14] have also

reviewed NoSQL data stores. They portrayed a number of
NoSQL data stores, describing their data models and their
main underlying principles and features. However, in con-
trast to this work, they did not perform direct feature
comparison among data stores. Sadalage and Fowler [15]
described the principles on which NoSQL stores are based
and why they may be superior to traditional databases.
They introduced several solutions, but they did not com-
pare features as is done in this work.
In addition, existing surveys have not described the ra-

tionale or method for choosing the specific data stores to
include in their studies [11-14]. For example, Sakr et al.
stated, “…we give a brief introduction about some of those
projects” [14], or Hecht and Jablonski “The most promin-
ent stores are …” [11]; however, the method for choosing
the data stores included in their studies were not pre-
sented. In contrast, this work uses a systematic approach

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 5 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
to choose which data stores to include in the study.
Additionally, this survey includes different data stores
than the existing surveys [11-14].

Methodology
Due to the large number of NoSQL and NewSQL solu-
tions, it was not feasible to include all of them in this
survey. While other NoSQL surveys did not specify the
methodology for choosing the data stores to be included
in their studies [11-14], this survey makes use of a system-
atic approach to select the solutions.
DB-Engine Ranking [34] ranks database systems ac-

cording to their popularity by using parameters such as
the number of mentions on Web sites, general interest
according to Google Trends, frequency of technical dis-
cussions on the Web, number of job offers, and number
of professional profiles in which the solutions are men-
tioned. As can be seen, the DB-Engine Ranking esti-
mates overall popularity of a data store on the Web.
Nevertheless, this work is also interested in popularity
within the research community; therefore, it also con-
siders how often each system has been mentioned in re-
search publications. Even though various research
repositories could have been used, this study focuses on
the IEEE as it is one of the most prominent publishers
of research papers in computer science and software en-
gineering. Hence, the initial list of NoSQL solutions was
obtained from DB-Engine Ranking [34] and includes all
NoSQL solutions listed by DB-Engine Ranking. Next,
the IEEE Xplore database was searched to determine
how many times each data store was mentioned in the
indexed publications. For each NoSQL category, the
most often cited data stores were chosen to be included
in this survey. The key-value category was further divided
into in-memory and disk-persistent key-value stores, and
the most prominent solutions within each subcategory
were chosen.
The prevalent data stores found in IEEE publications

are similar to the data stores ranked high by DB-Engine
Ranking. In the document category, the same three data
stores, MongoDB [35], CouchDB [26], and Couchbase
[36] are the most popular according to DB-Engine
Ranking and IEEE publications. Both popularity estima-
tion approaches rank Cassandra [19] and HBase [37] as
the most prominent in the column-family category.
SimpleDB [27] and DynamoDB [28] are ranked high by
both approaches. While DB-Engine Ranking considers
them key-value stores, this work categorizes them as
column-family stores because of their table-like data
model. In the remaining two categories, key-value data
stores and graph databases, a large number of solutions
rank high in popularity according to both approaches, in-
cluding Redis [38], Memcached [39], Riak [40], BerkeleyDB
[41], and Neo4J [42].
The selection of NewSQL data stores followed a similar
approach. Nevertheless, because most of these solutions
are very recent, only VoltDB and Spanner had a significant
number of hits in the IEEE Xplore database. Therefore,
in order to include a larger number of solutions in this
survey, Clustrix and NuoDB were also selected because
of their unique architectural and technical approaches.
The selected NoSQL and NewSQL solutions were com-

pared with a focus on the data model, querying, scaling,
and security-related capabilities. The categorization ac-
cording to data model was used because the data model is
the main factor driving other capabilities, including query-
ing and scaling. In the querying context, support for
MapReduce, SQL-like querying, REST (representational
state transfer) and other APIs was considered. With regard
to scaling, the study considered scaling read and write re-
quests, or scaling data storage and analyzed four concepts
closely related: partitioning, replication, consistency, and
concurrency control. Finally, the following security related
features were analyzed: authentication, authorization, en-
cryption, and auditing.

Data models
The family of data stores belonging to the NoSQL cat-
egory can be further sub-classified based on their data
models. Many authors have proposed distinct interpreta-
tions for NoSQL categories, which has led to different
sub-classifications [10,12]. In this paper, the classification
provided by Hecht and Jablonski [11] has been used,
which divides the various NoSQL data stores into four
major categories: key-value stores, column-family stores,
document stores, and graph databases. Figure 1 shows
representations of these models. This study also reviews
NewSQL as a hybrid between NoSQL stores and relational
databases.

Key-value stores
Key-value stores have a simple data model based on key-
value pairs, which resembles an associative map or a dic-
tionary [11]. The key uniquely identifies the value and is
used to store and retrieve the value into and out of the
data store. The value is opaque to the data store and can
be used to store any arbitrary data, including an integer, a
string, an array, or an object, providing a schema-free data
model. Along with being schema-free, key-value stores are
very efficient in storing distributed data, but are not suit-
able for scenarios requiring relations or structures. Any
functionality requiring relations, structures, or both must
be implemented in the client application interacting
with the key-value store. Furthermore, because the
values are opaque to them, these data stores cannot
handle data-level querying and indexing and can per-
form queries only through keys. Key-value stores can be
further classified as in-memory key-value stores which

Figure 1 Different types of NoSQL data models.

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 6 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
keep the data in memory, like Memcached [39] and
Redis [38], and persistent key-value stores which maintain
the data on disk, such as BerkeleyDB [41], Voldemort [43],
and Riak [40].
Column-family stores
Most column-family stores are derived from Google
Bigtable [20], in which the data are stored in a column-
oriented way. In Bigtable, the dataset consists of several
rows, each of which is addressed by a unique row key,
also known as a primary key. Each row is composed of a
set of column families, and different rows can have dif-
ferent column families. Similarly to key-value stores, the
row key resembles the key, and the set of column families
resembles the value represented by the row key. However,
each column family further acts as a key for the one or
more columns that it holds, where each column consists
of a name-value pair. Hadoop HBase [37] directly imple-
ments the Google Bigtable concepts, whereas Amazon
SimpleDB [27] and DynamoDB [28] have a different data
model than Bigtable. SimpleDB and DymanoDB contain
only a set of column name-value pairs in each row,
without having column families. Cassandra [19], on the
other hand, provides the additional functionality of super-
columns, which are formed by grouping various columns
together.
In column-family stores, a column family in different rows

can contain different columns. Occasionally, SimpleDB
and DynamoDB are classified as key-value stores [34];
however, this paper considers them as column-family
stores due to their table-like data model in which each
row can have different columns. Typically, the data be-
longing to a row is stored together on the same server
node. However, Cassandra offers to store a single row
across multiple server nodes by using composite partition
keys. In column-family stores, the configuration of column
families is typically performed during start-up. However, a
prior definition of columns is not required, which offers
huge flexibility in storing any data type.
In general, column-family stores provide more powerful
indexing and querying than key-value stores because they
are based on column families and columns in addition to
row keys. Similarly to key-value stores, any logic requiring
relations must be implemented in the client application.

Document stores
Document stores provide another derivative of the key-
value store data model by using keys to locate documents
inside the data store. Most document stores represent
documents using JSON (JavaScript Object Notation) or
some format derived from it. For example, CouchDB [26]
and the Couchbase server [36] use the JSON format for
data storage, whereas MongoDB [35] stores data in BSON
(Binary JSON). Document stores are suitable for applica-
tions in which the input data can be represented in a
document format. A document can contain complex data
structures such as nested objects and does not require ad-
herence to a fixed schema. MongoDB provides the add-
itional functionality of grouping the documents together
into collections. Therefore, inside each collection, a docu-
ment should have a unique key.
Unlike an RDBMS, where every row in a table follows

the same schema, each document inside these document
stores can have a different structure. Document stores
provide the capability of indexing documents based on
the primary key as well as on the contents of the docu-
ments. This indexing and querying capability based on
document contents differentiates this data model from
the key-value stores model, in which the values are opaque
to the data store. On the other hand, document stores can
store only data that can be represented as a document.
Like key-value stores, they are inefficient in multiple-key
transactions involving cross-document operations.

Graph databases
Graph databases originated from graph theory and use
graphs as their data model. A graph is a mathematical
concept used to represent a set of objects, known as ver-
tices or nodes, and the links (or edges) that interconnect

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 7 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
these vertices. By using a completely different data model
than key-value, column-family, and document stores,
graph databases can efficiently store the relationships be-
tween different data nodes. In graph databases, the nodes
and edges also have individual properties consisting of
key-value pairs. Graph databases are specialized in
handling highly interconnected data and therefore are
very efficient in traversing relationships between differ-
ent entities. They are suitable in scenarios such as social
networking applications, pattern recognition, dependency
analysis, recommendation systems and solving path find-
ing problems raised in navigation systems [11,44].
Some graph databases such as Neo4J [42] are fully

ACID-compliant. However, they are not as efficient as
other NoSQL data stores in scenarios other than hand-
ling graphs and relationships. Moreover, existing graph
databases are not efficient at horizontal scaling because
when related nodes are stored on different servers, tra-
versing multiple servers is not performance-efficient.

NewSQL
These solutions are by definition based on the relational
model. VoltDB [30], Clustrix [32], and NuoDB [33] offer
their clients a pure relational view of data. On the other
hand, Google Spanner [29] is based on a semi-relational
model in which tables are seen as mappings from the
primary-key columns to the other columns. In its model,
hierarchies of tables are created so that users can specify
locality relationships between tables [29].
Even though clients interact with these data stores in

terms of tables and relations, it is interesting to note that
NewSQL solutions might use different data representa-
tions internally. For example, NuoDB can store its data
into any compatible key-value store.

Querying
Similar to the selection of a data model, the querying
capabilities of data stores play an important role when
choosing among them for a particular scenario. Different
data stores offer different APIs and interfaces to interact
with them. This is directly dependent upon the data model
that a particular data store possesses. For example, a key-
value store cannot provide querying based on the contents
of the values, because these values are opaque to the data
store. On the other hand, a document store can do so
because its data model provides the capability to index
and query the document contents.
Another important query-related feature of NoSQL

and NewSQL data stores is their level of support for
MapReduce. MapReduce, which was first developed by
Google, is a programming model and an associated im-
plementation for processing large datasets [45]. It has
now become a widely accepted approach for performing
distributed data processing on a cluster of computers.
Because one of the primary goals of NoSQL data stores is
to scale over a large number of computers, MapReduce
has been adopted by most of them. Similarly, SQL-like
querying has been a preferred choice because of its wide-
spread use over the past few decades, and it has now also
been adopted in the NoSQL world. Therefore, some of the
prominent NoSQL data stores like MongoDB [35] offer a
SQL-like query language or similar variants such as CQL
[46] offered by Cassandra and SparQL [47] by Neo4j and
Allegro Graph [48].
As for the NewSQL category, the use of SQL as a

query language is one of its defining characteristics, but
the level of SQL support varies considerably. Clustrix [32]
and NuoDB [33] are the most SQL-compliant of the solu-
tions analyzed, having only minor incompatibilities with
the standard. On the other hand, Corbett et al. state that
the Google Spanner query language “looks like SQL with
some extensions to support protocol-buffer-value fields”
[29], but they do not provide details about the language.
Finally, VoltDB [30] has a larger number of restrictions in
place: it is not possible to use the having clause, tables
cannot join with themselves, and all joined tables must be
partitioned over the same value. It is also worth mention-
ing that the recommended way of interacting with VoltDB
is through Stored Procedures. These procedures are writ-
ten in Java, where programming logic and SQL statements
are interspersed.
On the other hand, a command-line interface (CLI) is

usually the simplest and most common interface that a
data store can provide for interaction with itself and is
therefore offered by almost all NoSQL and NewSQL
products. In addition, most of these products offer API
support for multiple languages. Moreover, a REST-based
API has been very popular in the world of Web-based
applications because of its simplicity [49]. Consequently,
in the NoSQL world, a REST-based interface is provided
by most solutions, either directly or indirectly through
third-party APIs. Table 1 provides a detailed view of the
different APIs support provided by the most prominent
NoSQL and NewSQL solutions along with other querying
capabilities offered.

Scaling
One of the main characteristics of the NoSQL and
NewSQL data stores is their ability to scale horizontally
and effectively by adding more servers into the resource
pool. Even though there have been attempts to scale re-
lational databases horizontally, on the contrary, RDBs
are designed to scale vertically by means of adding more
power to a single existing server [3].
With regard to what is being scaled, three scaling dimen-

sions are considered: scaling read requests, scaling write
requests, or scaling data storage. The partitioning, replica-
tion, consistency, and concurrency control strategies used

Table 1 Querying capabilities

NoSQL data stores Querying License

Map reduce REST Query Other API Other features

Key-value
stores

Redis http://redis.io No Third-party
APIs

Does not provide
SQL-like querying

CLI and API in several languages Server-side scripting
support using Lua.

Open source: BSD
(Berkeley Software
Distribution).

Memcached
http://memcached.org

No Third-party
APIs

Does not provide
SQL-like querying

CLI and API in several languages.
Binary and ASCII protocols for
custom client development

No server-side scripting
support.

Open source: BSD
3-clause license.

BerkeleyDB http://www.oracle.
com/us/products/database/
berkeley-db/overview/index.html

No Yes SQLite CLI and API in several languages. No secondary indices, no
server-side-scripting support.

Closed source: Oracle
sleepycat license.

Voldemort http://www.project-
voldemort.com/voldemort

Yes Under
development

No Clients for several languages Open source: Apache
2.0 license.

Riak http://basho.com/riak Yes Yes Riak search,
secondary indices

CLI and API in several languages Provides filtering through key filters.
Configurable secondary indexing.
Provides Solr search capabilities.
Provides server-side scripting.

Open source: Apache
2.0 license.

Column
family stores

Cassandra http://cassandra.
apache.org

Yes Third party
APIs

Cassandra query
language

CLI and API in several languages.
Supports Thrift interface

Secondary indexing mechanisms
include column families,
super-columns, collections.

Open source: Apache
2.0 license.

HBase http://hbase.apache.org Yes Yes No, could be
used with Hive

Java/Any Writer Server-side scripting support. Several
secondary indexing mechanisms.

Open source: Apache
2.0 license.

DynamoDB (Amazon service)
http://aws.amazon.com/
dynamodb

Amazon Elastic
MapReduce

Yes Proprietary API in several languages Provides secondary indexing
based on attributes other than
primary keys.

Closed source: Pricing
as pay-per-use basis.

Amazon SimpleDB
(Amazon service)
http://aws.amazon.com/simpledb

No Yes Amazon proprietary Amazon proprietary API Automatic indexing for all columns. Closed source: Pricing
as pay-per-use basis.

Document
stores

MongoDB http://www.
mongodb.org

Yes Yes Proprietary CLI and API in several languages Server-side scripting and secondary
indexing support. A powerful
aggregation framework.

Open source: Free
GNU AGPL v3.0 license.

CouchDB http://couchdb.
apache.org

Yes Yes SQL like UnQL,
under development

API in several languages Server-side scripting and secondary
indexing support.

Open source: Apache
2.0 license.

Couchbase server http://www.
couchbase.com

Yes Yes No Memcached API + protocol
(binary and ASCII) in several
languages.

Server-side scripting and secondary
indexing support.

Open source: Free
community edition.
Paid enterprise edition.

Graph
databases

Neo4J
http://www.neo4j.org

No Yes Cypher, Gremlin
and SparQL

CLI and API in several languages Server-side scripting and secondary
indexing support.

Open source license:
NTCL + (A)GPLv3.

HyperGraphDB
www.hypergraphdb.org/

No Yes SQL like querying Currently has Java API. Could be
used with Scala.

Provides a search engine
and Seco scripting IDE.

Open source license:
GNU LGPLv3.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

8
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22

http://www.gartner.com/id=2057415
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://451research.com/report-short?entityId=66963
https://451research.com/report-short?entityId=66963
https://451research.com/report-short?entityId=66963
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://nosql.eventbrite.com
http://couchdb.apache.org
http://couchdb.apache.org
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf
http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://www.mongodb.org
http://www.mongodb.org
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/couchbase-server/overview
http://hbase.apache.org
http://redis.io

Table 1 Querying capabilities (Continued)

Allegro graph http://www.franz.
com/agraph/allegrograph

No Yes SparQL and Prolog API in several languages Support for Solr indexing and
search.

Closed source: free,
developer and
enterprise versions.

NewSQL VoltDB http://voltdb.com/ No Yes SQL CLI and API in several
languages. JDBC support

Stored procedures are written
in Java. Tables cannot join with
themselves, and all joined tables
must be partitioned over the
same value.

Open source AGPL
v3.0 license.Commercial
enterprise edition.

Spanner Yes NA SQL like language NA Tables are partitioned into
hierarchies, which describe locality
relationship between tables.

Google internal
use only.

Clustrix
http://www.clustrix.com/

No No SQL Wire protocol compatible
with MySQL.

Closed source. Available
as a service in the AWS
marketplace, as an
appliance, and as
standalone software.

NuoDB http://www.nuodb.com/ No No SQL CLI and drivers for most
common data access APIs
(JDBC, ODBC, ADO.NET).
Also provides a C++ API.

No support for stored procedures. Closed source. Pro and
developers editions.
Available as a service
in the AWS marketplace.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

9
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22

http://memcached.org
http://memcached.org
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.neo4j.org/
http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 10 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
by the NoSQL and NewSQL data stores have significant
impact on their scalability. For example, partitioning de-
termines the distribution of data among multiple servers
and is therefore a means of achieving all three scaling
dimensions.
Another important factor in scaling read and write re-

quests is replication: storing the same data on multiple
servers so that read and write operations can be distrib-
uted over them. Replication also has an important role
in providing fault tolerance because data availability can
withstand the failure of one or more servers. Further-
more, the choice of replication model is also strongly
related to the consistency level provided by the data
store. For example, the master–slave asynchronous rep-
lication model cannot provide consistent read requests
from slaves.
Finally, another influential factor in scaling read and

write requests is concurrency control. Simple read/write
lock techniques may not provide sufficient concurrency
control for the read and write throughput required by
NoSQL and NewSQL solutions. Therefore, most solutions
use more advanced techniques, such as optimistic locking
with multi-version concurrency control (MVCC).
In the following subsections, partitioning, replication,

consistency, and concurrency control strategies of NoSQL
and NewSQL data stores will be compared; an overview is
presented in Table 2.

Partitioning
Most NoSQL and NewSQL data stores implement some
sort of horizontal partitioning or sharding, which involves
storing sets or rows/records into different segments (or
shards) which may be located on different servers. In con-
trast, vertical partitioning involves storing sets of columns
into different segments and distributing them accordingly.
The data model is a significant factor in defining strategies
for data store partitioning. For example, vertical parti-
tioning segments contain predefined groups of columns;
therefore, data stores from the column-family category
can provide vertical partitioning in addition to horizontal
partitioning.
The two most common horizontal-partitioning strat-

egies are range partitioning and consistent hashing. Range
partitioning assigns data to partitions residing in different
servers based on ranges of a partition key. A server is
responsible for the storage and read/write handling of a
specific range of keys. The advantage of this approach is
the effective processing of range queries, because adjacent
keys often reside in the same node. However, this ap-
proach can result in hot spots and load-balancing issues.
For example, if the data are processed in the order of their
key values, the processing load will always be concentrated
on a single server or a few servers. Another disadvantage
is that the mapping of ranges to partitions and nodes must
be maintained, usually by a routing server, so that the
client can be directed to the correct server. BerkeleyDB,
Cassandra, HBase, and MongoDB implement range
partitioning as depicted in Table 2.
In consistent hashing, the dataset is represented as a

circle or ring. The ring is divided into a number of
ranges equal to the number of available nodes, and each
node is mapped to a point on the ring. Figure 2 illustrates
consistent hashing on an example with four nodes N1 to
N4. To determine the node where an object should be
placed, the system hashes the object’s key and finds its
location on the ring. In the example from Figure 2, object
a is located between nodes N4 and N1. Next, the ring is
walked clockwise until the first node is encountered, and
the object gets assigned to that node. Accordingly, object
a from Figure 2 gets assigned to node N1. Consequently,
each node is responsible for the ring region between itself
and its predecessor; for example, node N1 is responsible
for data range 1, node N2 for data range 2, and so on.
With consistent hashing, the location of an object can be
calculated very fast, and there is no need for a mapping
service as in range partitioning. This approach is also
efficient in dynamic resizing: if nodes are added to or
removed from the ring, only neighbouring regions are
reassigned to different nodes, and the majority of records
remain unaffected [16]. However, consistent hashing nega-
tively impacts range queries because neighbouring keys are
distributed across a number of different nodes. Voldemort,
Riak, Cassandra, DynamoDB, CouchDB, VoltDB, and
Clustrix implement consistent hashing.
The in-memory stores analyzed, Redis and Memcache,

do not implement any partitioning strategy and leave it to
the client to devise one. Amazon SimpleDB, the NoSQL
solution which is provided as a service, offers its clients
simple, manual mechanisms for partitioning data, as de-
scribed in Table 2. However, the service provider might
implement additional partitioning to achieve the through-
put capacity specified in the service level agreement.
Partitioning graph databases is significantly more chal-

lenging than partitioning other NoSQL stores [50]. The
key-value, column-family, and document data stores parti-
tion data according to a key, which is known and relatively
stable. In addition, data are accessed using a lookup mech-
anism. In contrast, graphs are highly mutable structures,
which do not have stable keys. Graph data are not
accessed by performing lookups, but by exploiting rela-
tions among entities. Consequently, graph partitioning at-
tempts to achieve a trade-off between two conflicting
requirements: related graph nodes must be located on the
same server to achieve good traversal performance, but, at
the same time, too many graph nodes should not be on
the same server because this may result in heavy and con-
centrated load. A number of graph-partitioning algorithms
have been proposed [50], but their adoption in practice

Table 2 Partitioning, replication, consistency, and concurrency control capabilities

NoSQL data stores Partitioning Replication Consistency Concurrency control

Key-value
stores

Redis Not available (planned for Redis Cluster
release). It can be implemented by a client
or a proxy.

Master–slave, asynchronous replication. Eventual consistency. Application can implement optimistic
(using the WATCH command) or pessimistic
concurrency control.

Strong consistency if slave
replicas are solely for failover.

Memcached Clients’ responsibility. Most clients support
consistent hashing.

No replication Strong consistency (single
instance).

Application can implement optimistic
(using CAS with version stamps) or
pessimistic concurrency control.

Repcached can be added to memcached
for replication.

BerkeleyDB Key-range partitioning and custom
partitioning functions. Not supported by
the C# and Java APIs at this time.

Master–slave Configurable Readers-writer locks

Voldemort Consistent hashing. Masterless, asynchronous replication. Configurable, based on quorum
read and write requests.

MVCC with vector clock
Replicas are located on the first R nodes
moving over the partitioning ring in a
clockwise direction.

Riak Consistent hashing. Masterless, asynchronous replication. Configurable, based on quorum
read and write requests.

MVCC with vector clock.
The built-in functions determine how
replicas distribute the data evenly.

Column
family
stores

Cassandra Consistent hashing and range partitioning
(known as order preserving partitioning in
Cassandra terminology) is not
recommended due to the possibility of hot
spots and load balancing issues.

Masterless, asynchronous replication. Configurable, based on quorum
read and write requests.

Client-provided timestamps are used to
determine the most recent update to a
column. The latest timestamp always wins
and eventually persists.

Two strategies for placing replicas: replicas
are placed on the next R nodes along the
ring; or, replica 2 is placed on the first
node along the ring that belongs to
another data centre, with the remaining
replicas on the nodes along the ring in the
same rack as the first.

HBase Range partitioning. Master–slave or multi-master, asynchronous
replication. Does not support read load
balancing (a row is served by exactly one
server). Replicas are used only for failover.

Strong consistency MVCC

DynamoDB Consistent hashing. Three-way replication across multiple zones
in a region.

Configurable Application can implement optimistic
(using incrementing version numbers) or
pessimistic concurrency control.Synchronous replication

Amazon
SimpleDB

Partitioning is achieved in the DB design
stage by manually adding additional
domains (tables). Cannot query across
domains.

Replicas within a chosen region. Configurable Application can implement optimistic
concurrency control by maintaining a
version number (or a timestamp) attribute
and by performing a conditional put/delete
based on the attribute value.

Document
stores

MongoDB Range partitioning based on a shard key
(one or more fields that exist in every
document in the collection). In addition,
hashed shard keys can be used to partition
data.

Master–slave, asynchronous replication. Configurable Readers–writer locks
Two methods to achieve strong
consistency: set connection to
read only from primary; or, set
write concern parameter to
“Replica Acknowledged”.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

11
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22

Table 2 Partitioning, replication, consistency, and concurrency control capabilities (Continued)

CouchDB Consistent hashing. Multi-master, asynchronous replication. Eventual consistency. MVCC. In case of conflicts, the winning
revision is chosen, but the losing revision is
saved as a previous version.

Designed for off-line operation. Multiple
replicas can maintain their own copies of
the same data and synchronize them at a
later time.

Couchbase
server

A hashing function determines to which
bucket a document belongs. Next, a table is
consulted to look up the server that hosts
that bucket.

Multi-master. Within a cluster: strong
consistency.

Application can implement optimistic
(using CAS) or pessimistic concurrency
control.Across clusters: eventual

consistency.

Graph
databases

Neo4J No partitioning (cache sharding only). Master–slave, but can handle write
requests on all server nodes. Write requests
to slaves must synchronously propagate to
master.

Eventual consistency. Write locks are acquired on nodes and
relationships until committed.

Hyper
GraphDB

Graph parts can reside in different P2P
nodes. Builds on autonomous agent
technologies.

Multi-master, asynchronous replication. Eventual consistency. MVCC.
Agent style communication based on
Extensible Messaging and Presence
Protocol (XMPP) .

Allegro
graph

No partitioning (federation concept which
aims to integrate graph databases is
abstract at the moment).

Master–slave. Eventual consistency. Unclear how locking is implemented “100%
Read Concurrency, Near Full Write
Concurrency”.

NewSQL VoltDB Consistent hashing. Users define whether
stored procedures should run on a single
server or on all servers.

Updates executed on all replicas at the
same time.

Strong consistency. Single threaded model (no concurrency
control).

Spanner Data partitioned into tablets. Complex
policies determine in which tablet the data
should reside.

Global ordering in all replicas (Paxos state
machine algorithm).

Strong consistency. Pessimistic locking in read-write transac-
tions. Read-only transactions are lock-free
(versioned reads).

Clustrix Consistent hashing. Also partitions the table
indices using the same approach.

Updates executed on all replicas at the
same time.

Strong consistency. MVCC.

NuoDB No partition. The underlying key-value store
can partition the data, but it is not visible
by the user.

Multi-master (distributed object replication).
Asynchronous.

Eventual consistency. MVCC.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

12
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22

Figure 2 Consistent hashing.

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 13 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
has been limited. One of the reasons is the rapid pace of
changes in graphs, which may trigger intensive rebalan-
cing operations. For this reason, the graph databases in-
vestigated, Neo4J, HypergraphDB, and AllegroGraph, do
not offer partitioning in the traditional sense. However,
Neo4J offers cache sharding, while HypergraphDB relies
on autonomous agents to provide communication among
graphs residing in different peer nodes, as summarized in
Table 2.
The NewSQL data stores investigated also use diverse

partitioning strategies. VoltDB uses a traditional approach
in which each table is partitioned using a single key and
rows are distributed among servers using a consistent
hashing algorithm. Stored procedures can be executed on
a single partition or on all of them; however, the drawback
is that the user is responsible for selecting between these
options. The Clustrix data store also partitions the data
using a consistent hashing algorithm over a user-defined
primary key. In addition, Clustrix also partitions the table
indices using the indexed columns as the keys. Theoretic-
ally, this strategy enables parallel searches over these indi-
ces, leading to faster query resolution.
Google’s Spanner uses a different partitioning model.

A Spanner deployment contains a set of servers known
as spanservers, which are the nodes responsible for serving
data to clients. A spanserver manages hundreds to thou-
sands of tablets, each of which contains a set of director-
ies. A directory is basically a set of rows that shares a
common key prefix, as specified by the user-defined table
hierarchy mentioned in section “Data Models”. A direc-
tory is also considered to be the basic unit of placement
configuration, which is used to define constraints for data
partitioning and replication among the available tablets.
Some of the criteria that can be defined are the datacen-
tres where replicas should reside, the number of replicas,
the distance of the data to their clients, and the distance
among replicas. The data store automatically moves the
directories among the spanservers to respect these criteria
and to improve general data access performance.
NuoDB is another NewSQL solution that uses a com-

pletely different approach for data partitioning. A NuoDB
deployment is made up of a number of Storage Managers
(SM) and Transaction Managers (TM). The SMs are the
nodes responsible for maintaining the data, while the TMs
are the nodes that process the queries. Each SM has a
complete copy of the entire data, which basically means
that no partitioning takes place within the SM. Neverthe-
less, the underlying key-value store used by the SMs can
partition the data by itself, although this is neither control-
lable nor viewable by the user.

Replication
In addition to increasing read/write scalability, replication
also improves system reliability, fault tolerance, and dur-
ability. Two main approaches to replication can be distin-
guished: master–slave and multi-master replication.
In master–slave replication, shown in Figure 3.a, a single

node is designated as a master and is the only node that
processes write requests. Changes are propagated from
the master to the slave nodes. Examples of data stores
with master–slave replication are Redis, BerkeleyDB, and
HBase. In multi-master replication, illustrated in Figure 3b,
multiple nodes can process write requests, which are
then propagated to the remaining nodes. Whereas in
master–slave replication the propagation direction is al-
ways from master to slaves, in multi-master replication,
propagation happens in different directions. CouchDB
and Couchbase Server are examples of multi-master
data stores. Three other data stores, Voldemort, Riak,
and Cassandra, support masterless replication, which is
similar to multi-master replication as multiple nodes
accept write requests, but as highlighted by the term
masterless, all nodes play the same role in the replica-
tion system. Note that all three of the data stores with
masterless replication use consistent hashing as a parti-
tioning strategy. The strategy for placing replicas is
closely related to node position on the partitioning ring,
as shown in Table 2.
NewSQL replication schemes can be considered as

multi-master or masterless schemes because any node
can receive update statements. In VoltDB and Clustrix, a
transaction/session manager receives the updates, which
are forwarded to all replicas and executed in parallel. On
the other hand, Google Spanner uses the Paxos state-
machine algorithm [29] to guarantee that a sequence of
commands will be executed in the same order in all the
replica nodes. Note that Paxos is a distributed algorithm

Figure 3 Replication models.

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 14 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
without central arbitration, which differs significantly from
the other solutions. Finally, in NuoDB, the table rows are
represented as in-memory distributed objects which com-
municate asynchronously to replicate their state changes.
The choice of replication model impacts the ability of

the data store to scale read and write requests. Master–
slave replication is generally useful for scaling read re-
quests because it allows the many slaves to accept read
requests – examples are BerkeleyDB and MongoDB.
However, some data stores such as HBase do not permit
read requests on the slave nodes. In this case, replication
is used solely for failover and disaster recovery. In
addition, master–slave data stores do not scale write re-
quests because the master is the only node that processes
write requests. An interesting exception is the Neo4J data-
base, which is able to handle write requests on the slave
nodes also. In this case, write requests are synchronously
propagated from slaves to master and therefore are slower
than write requests to master. Finally, multi-master and
masterless replication systems are usually capable of scal-
ing read and write requests because all nodes can handle
both requests.
Another replication characteristic with a great impact

on data stores throughput is how write operations are
propagated among nodes. Synchronization of replicas
can be synchronous or asynchronous. In synchronous or
eager replication, changes are propagated to replicas be-
fore the success of the write operation is acknowledged to
the client. This means that synchronous replication intro-
duces latencies because the write operation is completed
only after change propagation. This approach is rarely
used in NoSQL because it can result in large delays in the
case of temporary loss or degradation of the connection.
In asynchronous or lazy replication, the success of a write
operation is acknowledged before the change has been
propagated to replica nodes. This enables replication over
large distances, but it may result in nodes containing
inconsistent copies of data. However, performance can
be greatly improved over synchronous replication. As
illustrated in Table 2, the majority of the data stores
studied use asynchronous replication. Typically, NoSQL
solutions use this approach to achieve the desired per-
formance, yet CouchDB uses it to achieve off-line op-
eration. In CouchDB, multiple replicas can have their
own copies of the same data, modify them, and then
synchronize these changes at a later time.

Consistency
Consistency, as one of the ACID properties, ensures that a
transaction brings the database from one valid state to an-
other. However, this section is concerned with consistency
as used in the CAP theorem, which relates to how data
are seen among the server nodes after update operations.
Basically, two consistency models can be distinguished:
strong and eventual consistency. Strong or immediate
consistency ensures that when write requests are con-
firmed, the same (updated) data are visible to all subse-
quent read requests. Synchronous replication usually
ensures strong consistency, but its use can be unaccept-
able in NoSQL data stores because of the latency it intro-
duces. Among the observed NoSQL data stores with
replication, HBase is the only one exclusively supporting
strong consistency. In the eventual consistency model,
changes eventually propagate through the system given
sufficient time. Therefore, some server nodes may contain
inconsistent (outdated) data for a period of time. Asyn-
chronous replication, if there are no other consistency-
ensuring mechanisms, will lead to eventual consistency
because there is a lag between write confirmation and
propagation. Because NoSQL data stores typically repli-
cate asynchronously, and eventual consistency is often
associated with them, it was expected that the reviewed
NoSQL solutions provide eventual consistency. Never-
theless, as illustrated in Table 2, the majority of these
data stores allow configuration of the consistency model
using alternate consistency-ensuring mechanisms; how-
ever, choosing strong consistency may have a perform-
ance impact.

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 15 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
The data stores with consistent hashing and masterless
replication, specifically Voldemort, Riak, and Cassandra,
use a quorum approach in their consistency models. In
this approach, a read or write quorum is defined as the
minimum number of replicas that must respond to a
read or write request for it to be considered successful and
confirmed to the requestor. Even though these data stores
are designed for eventual consistency, they can achieve
strong consistency by choosing (read quorum +write
quorum) larger than the number of replicas.
MongoDB can achieve strong consistency using two

different techniques. First, a connection can be set to
read-only from the master, which removes the data-stores’
ability to scale read requests. The second option is to set
the write concern parameter to “Replica Acknowledged”,
which ensures that a write succeeds on all replicas
before being confirmed. This makes the data store
into a synchronous replication system and degrades
its performance.
Finally, it is important to note that the NewSQL solu-

tions analyzed, with the exception of NuoDB, are strongly
consistent, fully transactional data stores.

Concurrency control
Concurrency control is of special interest in NoSQL and
NewSQL data stores because they generally need to
accommodate a large number of concurrent users and
very high read and/or write rates. All the solutions
studied facilitate concurrency by implementing parti-
tioning and replication. However, this section focuses
on concurrency control as a means of achieving simul-
taneous access to the same entity, row, or record on a
single server node.
The main concurrency-control schemes can be catego-

rized as pessimistic or optimistic. Pessimistic concurrency
control, or pessimistic locking, assumes that two or more
concurrent users will try to update the same record or
object at the same time. To prevent this situation, a lock
is placed onto the accessed entity so that exclusive ac-
cess is guaranteed to a single operation; other clients try-
ing to access the same data must wait until the first one
finishes its work. The entity that is locked depends on
the underlying data model. For example, key-value stores
lock records consisting of key-value pairs, column-family
stores lock rows, and document stores enforce locking
at document level. In graph databases, specifically in
Neo4J, locks are acquired on nodes and their relationships.
BerkeleyDB and MongoDB implement readers-writer
locks which allow either multiple readers to access data or
a single writer to modify them. Pessimistic locking tech-
niques can lead to performance degradation, especially in
write-intensive scenarios.
Optimistic concurrency control or optimistic locking

assumes that conflicts are possible, but rare. Therefore,
instead of locking the record, the data store checks at the
end of the operation to determine whether concurrent
users have attempted to modify the same record. If a con-
flict is identified, different conflict-resolution strategies
can be used, such as failing the operation immediately or
retrying one of the operations. Several of the data stores
investigated, including Voldemort, Riak, HBase, CouchDB,
Clustrix, and NuoDB, implement optimistic concurrency
control with multi-version concurrency control (MVCC).
In MVCC, when the data store needs to update a record,
it does not overwrite the old data, but instead adds a new
version and marks the old version as obsolete. Multiple
versions are stored, but only one is marked as current.
With the MVCC approach, a read operation sees the data
the way they were when it began reading, even if the data
were modified or deleted by other operations in the
meantime.
A number of NoSQL solutions allow applications to

implement optimistic concurrency control by providing
primitives such as check and set (CAS) in Memcached
and Couchbase Server. The CAS method ensures that a
write will be performed only if no other client has chan-
ged the record since it was last read. In Redis, the
WATCH primitive performs a similar function. Opti-
mistic concurrency-control implementations use vari-
ous approaches to determine whether a record has been
changed. For example, Memcached uses version stamps
and AmazonDB incrementing version numbers. Often it
is hard to tell which approach a data store uses intern-
ally to achieve check and set functionality based solely
on the system documentation.
Cassandra has been recognized for its ability to handle

large numbers of write requests [19], and therefore archi-
tecture characteristics contributing to Cassandra’s write
scalability are highlighted. Although the storage structure
in typical relational databases and a number of NoSQL
data stores including MongoDB and CouchDB relies on a
B-Tree, Cassandra takes advantage of a log-structured
merge tree. When a write occurs, Cassandra stores the
changes in two places: in the memory structure called
memtable, and in the commit log on disk by appending to
the existing data. When the memtable reaches a threshold,
the memtable data are flashed to SSTables (sorted string
tables) on disk, and data in the commit log corresponding
to the flushed memtable are purged. When flashing the
memtable, Cassandra writes entire sectors to disk using
sequential I/O instead of modifying rows in place. This ap-
proach eliminates locking of data on disk for concurrency
control because write operations only append data and do
not modify existing data on disk. Consequently, Cassandra
is especially suitable for applications with high write
volume or those that require very fast writes.
Some of the NewSQL solutions analyzed also imple-

ment innovative approaches to concurrency control. For

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 16 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
example, Google’s Spanner uses a hybrid approach in
which read-write transactions are implemented through
read-write locks, but read-only transactions are lock-free.
This is possible because Spanner stores multiple versions
of data, and a read transaction is basically a read at a “safe”
timestamp. On the contrary, VoltDB implements an inter-
esting alternative to concurrency control. This data store
assumes that the total available memory is large enough to
store the entire data store. Moreover, it also assumes that
all user transactions are short-lived and can be very effi-
ciently executed over in-memory data. Based on these as-
sumptions, all transactions are then executed sequentially
in a single-threaded, lock-free environment.

Security
Security is an important aspect of data stores that is over-
looked by many NoSQL implementations. In this section,
the data stores surveyed are compared with regard to the
following features:

� Authentication: mechanisms that enable
verification of the identity of users who are
accessing the data. This is usually achieved through
a password associated with a user’s login, but more
sophisticated mechanisms are also possible, such as
user certificates. For many enterprises, an
important requirement for authentication is the
capacity of integration with enterprise
user-directory systems such as Lightweight
Directory Access Control (LDAP)/Active Directory
and Kerberos servers.

� Authorization: this refers to the capability to ensure
access control to the data-store resources.
Authorization is usually performed through
association of each user with a set of permissions.
For example, some data stores might require specific
permissions for read and write requests on tables,
creation of users, and execution of administrative
functions. Authorization information might also be
included in directory systems.

� Encryption: this refers to mechanisms that encrypt
data so that they cannot be read by attackers and
others unauthorized parties. A complete encryption
solution should be present in at least three different
levels:

○ Data at rest: data stored on disks can be read if
an attacker has access to the servers’ file
systems. A data-at-rest encryption mechanism
guarantees that the users’ data are automatically
encrypted when written to these files and
unencrypted when retrieved.

○ Client-to-server communication: Most data
stores allow remote connections of users and
applications so that stored data can be obtained.
This data flow must also be encrypted to
guarantee private and secure communication.

○ Server-to-server connections: because many
NoSQL and NewSQL data stores include some
sort of replication and distributed processing
functionalities, communications among the
server nodes can also be eavesdropped to obtain
unauthorized access to data. A server-to-server
encryption mechanism guarantees that these
flows cannot be read.

� Auditing: auditing functionalities are usually related
to the creation of an audit trail that logs records of
events that occurred in a data stores. This is
especially important in forensic analysis of security
events. Many security standards, such as PCI-DSS
[51] and HIPAA [52], require the existence of audit
trails.

Table 3 shows a summary of the security features found
in the solutions surveyed. It is worth mentioning that very
often the system documentation mentions nothing about
some of the criteria analyzed, especially server-to-server
communication and data-at-rest encryption. In these
cases, the corresponding cells in the table contain “NA”.
Generally speaking, it is possible to affirm that the

security features of NoSQL solutions are not as mature as
those included in traditional RDBMSs. Many solutions,
such as Redis, Memcached, Voldemort, and Riak, are de-
signed to be used in secure networked environments only.
Therefore, they assume that it is the network administra-
tor’s responsibility to ensure that only authorized applica-
tions have access to the data store, using mechanisms
such as firewalls, operating system configurations, or
the adoption of virtual private networks (VPN). In these
cases, there is no fine-grained access control to the data
store. Furthermore, audit features are not present in
most cases, and when present, they are very simple and
not customizable. For example, VoltDB can log all the
queries executed on its data, but it cannot constrain this
logging to only a subset of the tables.
Another interesting observation is that MongoDB and

Cassandra offer additional security functionalities in their
enterprise editions, acknowledging the fact that security is
a particularly relevant concern for large companies. For
instance, data-at-rest encryption and auditing functional-
ities are available only in Cassandra Enterprise Edition.
Among the NewSQL solutions, Clustrix and NuoDB use

the authorization and authentication schemes of trad-
itional RDBMS by supporting the GRANT/REVOKE
statements. In its turn, VoltDB implements access control
to execution of stored procedures, and no information
regarding Google Spanner security could be found.
Cloud data management systems may also need to han-

dle other security related concerns, such as legal issues

Table 3 Security features

NoSQL data stores Encryption Authentication Authorization Auditing

Data at rest Client/Server Server/Server

Key-value
stores

Redis No No No Admin password sent in clear
text for admin functions. Data
access does not support
authentication.

No No

Memcached NA, Memcache does
store data on disk.

No No Binary protocol supports Simple
Authentication and Security
Layer (SASL) authentication.

No No

BerkeleyDB Yes, the database
needs to be created
using encryption.

NA, embedded
data store.

No No No No

Voldemort Possibly if
BerkeleyDB is used
as the storage engine.

No No No No No

Riak No REST interface
supports HTTPS.

Multiple data-centre repli-
cation can be done over
HTTPS

No No No

Binary protocol
is not encrypted.

Column
family stores

Cassandra Enterprise Edition
only. Commit log is
not encrypted.

Yes, SSL based. Yes, configurable: all server-
to-server communication,
only between datacentres
or between servers in the
same rack

Yes, store credentials
in a system table.

Yes, similar to the SQL
GRANT/REVOKE approach.

Enterprise Edition only.
Based on log4j framework.

Possible to provide pluggable
implementations.

Possible to provide
pluggable implementations.

Logging categories include
ADMIN, ALL, AUTH, DML, DDL,
DCL, and QUERY. Possible to
disable logging for specific
keyspaces.

HBase No, planned for
future release.

Yes Communication of HBase
nodes with the HDFS and
Zookeeper clusters can be
secured.

Yes, RPC API based on SASL,
supporting Kerberos.REST API
uses a HTTP gateway, which
authenticates with the data
store as one single user, and
executes all operations on
his/her behalf.

Yes, permissions include
read, write, create and admin.

No, planned for future release.

Granularity of table, column
family, or column.

Not clear whether the
HBase nodes communicate
via a secure channel.

Amazon
DynamoDB

No Yes, HTTPS NA Integration with Identity and
Access Management (IAM)
services. The requests need
to be signed using
HMAC-SHA256.

Allow the creation of
policies that associate users
and operations on domains.

Integrates with Amazon Cloud
Watch service. Access.
information about latencies for
operations, amount of data
stored, and requests throughput.

Possible to define policies
for temporary access.

Amazon
SimpleDB

See DynamoDB No

Document
stores

MongoDB No, a third-party
partner (Gazzang)
provides an encryp
tion plug-in.

Yes, SSL-based Yes Yes, store credentials in a
system collection.

Yes, permissions include
read, read/write, dbAdmin,
and userAdmin.

No

REST interface does not
support authentication. Granularity of collections.

Enterprise Edition supports
Kerberos.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

17
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22

Table 3 Security features (Continued)

CouchDB NA Yes, SSL-based Possible using
HTTPS connections

Yes, HTTP authentication using
cookies or BASIC method.

Three leve f users: server
admin, da ase admin, and
database mber.

No

Oauth supported
Complex horization can
be done i alidation
functions.

Couchbase
server

No No No, planned for
future release

Yes, SASL authentication – each
bucket is differentiated by its
name and password.

No No

REST API for administrative
function uses HTTP BASIC
authentication.

Graph
databases

Neo4J No Yes, SSL-based No No, developers can create a
SecurityRule and register with
the server.

No No

Hyper
graphDB

No NA, embedded
data store

No No No No

Allegro
graph

No Yes, HTTPS NA Yes Yes, perm ns include
read, writ nd delete.

A structure audit log
can be used to record
specific changes.

Predefine ser attributes
are used efine special
administra n capabilities.

Not clear what types of
changes are logged, nor
how to customize this process.

NewSQL VoltDB No No No Yes, users are defined in a
deployment file that needs to
be copied to each node.

Yes, roles defined at the
schema le , and each
stored pro ure defines
which rol re allowed to
execute it

Yes, logging categories
include connections, SQL
statements, snapshots,
exports, authentication /
authorization, and others.

Spanner NA

Clustrix NA Yes NA Yes, SQL-like Yes, SQL-l NA

NuoDB Native store does not
support it.

Yes Yes Yes, SQL-like Yes, SQL-l Yes, logging categories
include SQL statements,
security events, general
statistics, and others.

Theoretically, it could
use a pluggable store
that supports it.

G
rolinger

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:22
Page

18
of

24
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/22
ls o
tab
me
aut
n v

issio
e, a

d u
to d
tio

are
vel
ced
es a
.

ike

ike

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 19 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
associated to the data location, and the complete disposal
of sensitive data [53], but they are out of scope of this
survey.
Use cases
Due to the diversity of NoSQL and NewSQL solutions,
making the choice of the most appropriate data store for
a given use case scenario is a challenging task. This sec-
tion discusses some general guidelines that can be used
in this task and shows examples of applications that use
different data stores. The following discussion is mostly
focussed on selecting a specific data model over others,
but when relevant, we also examine the appropriateness
of specific data stores.
Key-value stores
Generally speaking, key-value data stores are appropriate
for scenarios in which applications access a set of data
as a whole using a unique value as the key. Sadalage and
Fowler [15] use three examples for this category: storing
Web session information, user profiles and configura-
tions, and shopping cart data. In all three cases, the data
are always accessed through user identification and are
never queried based on the data content. The Web ses-
sion and shopping cart examples are also representatives
of another common key-value use case: the stored infor-
mation is needed for a limited period of time only (the
duration of the user session). Indeed, in many simple
Web applications, these types of data are kept in the appli-
cation server’s memory because of their transient nature.
Nevertheless, the use of a key-value store may be appro-
priate in scenarios where multiple application servers
access the same session information. This is a commonly
used strategy to make application servers stateless and to
implement high availability and scalability requirements.
Similarly, key-value data stores are useful in content

providing applications. The Riak documentation [54]
uses as examples of this use case an advertisement plat-
form that provides ads based on a campaign identifier
and a content provider application that retrieves images
and videos based on IDs.
Key-value data stores are also suitable for object cach-

ing, especially in-memory implementations. In this case,
they are used to store the results of processing intensive
requests such as database queries, page rendering, and
API calls. For example, Memcached is used as a caching
layer for large clusters of MySQL databases in Facebook
[55]. The LinkedIn service also uses a key-value data
store (Voldermort) as a cache on top of their primary
storage and also to store the results of intensive algo-
rithms [43]. The use of these data stores as a caching
layer is very common and is often considered an integral
part of cloud applications [56,57].
It is important to note that some key-value data stores
provide enhanced functionalities that may increase their
applicability. For example, Redis can interpret stored
values as specific data types, such as lists, sets, and
strings, and also provides many primitives to manipu-
late these types. On the other hand, Riak enables the
integration of search engines to index the stored values
and the attachment of tags on keys to facilitate complex
searches. These extra functionalities are also relevant
when choosing the most appropriate key-value store for
a particular scenario.
Finally, it is essential to recognize that key-value data

stores have limitations when dealing with:

� Highly interconnected data, because all relationships
need to be explicitly handled in the client
applications.

� Operations that manipulate multiple items, as data
are often accessed using a single key and most data
stores do not provide transactional capabilities.

Document stores
Document stores can be seen as key-value stores in which
the value is not completely opaque and therefore can be
examined [15]. As mentioned in the “Data Model” section,
these data stores manage data that can be represented
as documents, which are self-describing hierarchical
data structures which may contain nested objects and
list attributes and do not require adherence to a fixed
schema.
The first use cases for document stores are for applica-

tions dealing with data that can be easily interpreted as
documents, such as blogging platforms and content man-
agement systems (CMS). Both Sadalage and Fowler [15]
and the MongoDB documentation [35] use these applica-
tions as canonical examples. A blog post or an item in a
CMS, with all related content such as comments and tags,
can be easily transformed into a document format even
though different items may have different attributes. For
example, images may have a resolution attribute, while
videos have an associated length, but both share name and
author attributes. Moreover, these pieces of information
are mainly manipulated as aggregates and do not have
many relationships with other data. Finally, the capability
to query documents based on their content is also import-
ant to the implementation of search functionalities.
A second significant use case for document data stores

is for storing items of similar nature that may have differ-
ent structures. For example, document data stores can be
used to log events or monitor information from enterprise
systems. In this case, each event is represented as a docu-
ment, but events from different sources log different infor-
mation. This is a natural fit for the flexible document data
model and enables easy extension to new log formats. This

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 20 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
contrasts with the relational approach, in which a new
table needs to be created for each new format or new
columns needs to be added to existing tables. As an
example, Liu et al. [58] used CouchDB for storing and
analyzing log data from a Platform as a Service (PaaS).
Similarly, document data stores have also been used to
store sensor network data, as suggested by Ramaswamy
et al. [59].
Document data stores have also been chosen in scenar-

ios in which high development productivity and low main-
tenance cost are essential. The flexibility of the data model
mentioned in the previous paragraphs, in tandem with
easy mapping of documents to object oriented constructs
[60], makes these data stores especially suited for fast
application development. Moreover, many modern ap-
plications provide services using REST interfaces based
on JSON representations that can be directly mapped to
document data stores.
Finally, it is also worth mentioning that CouchDB has

been used in scenarios, such as in Havlik et al. [61],
which specifically explore its off-line replication capabil-
ities. CouchDB allows the co-existence of multiple in-
stances of a database that can be updated independently
and be synchronized only when the instances can com-
municate with each other. This characteristic is explored
in applications where servers and clients are not always
on-line and also to provide low latency and local data
access to remote clients.
Document data stores have similar limitations to key-

value data stores, such as the lack of built-in support for
relationships among documents and transactional opera-
tions involving multiple documents.

Column-family stores
Due to differences in the data models of the analyzed
column-family stores, the use cases for this category will
be discussed in two groups. The first group contains data
stores which do not use the column-family concept,
namely SimpleDB and DynamoDB, and the second group
consists of HBase and Cassandra.
SimpleDB and DynamoDB are both based on a schema-

free tabular model, in which each row can have different
columns and a column can possibly contain more than
one value. The expressiveness of this model is similar to
the document-store model, but with the additional limita-
tion that nested objects are not allowed. Therefore, Sim-
pleDB and DynamoDB are appropriate for use cases
comparable to those mentioned in the previous section -
document stores. In addition, both data stores are man-
aged services, which make them especially suitable for
scenarios where the users want to avoid the cost and com-
plexity of managing a data store.
Regarding the second group of column-family stores,

both HBase and Cassandra have flexible data models,
and it is difficult to choose only a few applications as
representatives of their use cases. Sadalage and Fowler
[15] cite event logging, CMS, and blogging platforms as
column-family use cases, which are once again similar to
document store examples. On the other hand, we opt to
show applications and benchmarks which are diverse,
but which help to show the strengths and limitations of
these data stores.
As mentioned in the “Concurrency Control” section,

Cassandra is a data store optimized for handling a large
number of write requests, and different benchmarks
have confirmed this capability. In Cooper et al. [62],
Cassandra achieved the highest update throughput on
an update heavy workload in comparison to HBase,
MySQL, and Yahoo’s PNUTS [63]. Similarly, Rabl et al.
[64] showed that Cassandra can achieve good throughput
on 50%/50% read-write workloads and 99% write work-
loads, and most importantly, can scale linearly as a
function of the number of nodes in the cluster. On this
benchmark, HBase had similar scalability results, but at
the cost of a much smaller throughput rate. In addition,
both Cooper et al. [62] and Rabl et al. [64] stated that
generally HBase can handle write requests with latency
orders of magnitude faster than Cassandra, even though
the opposite happens when comparing read latency.
Nevertheless, a different performance comparison per-
formed by Altoros Systems [65] showed that Cassandra
and HBase had similar latency and throughput in both
reads and writes and that HBase had slightly better results
in most cases.
The flexibility, scalability, and high performance of

these data stores, in conjunction with MapReduce sup-
port, make them a good fit for analytics scenarios. For ex-
ample, Chang et al. [20] demonstrated the use of BigTable
in two applications that are representative of this use case:
Web analytics and personalized search. In the first applica-
tion, webmasters instrument their pages to keep track of
how visitors use them. All user actions are logged to the
database, and a MapReduce task is run to aggregate and
transform these data into statistics useful for the Web
page administrator. In the personalized search application,
all user searches and actions in diverse Google services are
stored, and a MapReduce task generates profiles that are
used to personalize the user interaction experience.
It is also worth mentioning that Cassandra was origin-

ally designed to fulfill the storage requirements of the
inbox search application [19], which Facebook’s users
can use to search for conversations with specific friends
or using specific terms. This application also has a
write-intensive workload, but at the same time requires
low-latency results when these indices are queried.
More recently, Facebook has revealed that they are
using HBase in applications that require high write
throughput and efficient random reads [55], but they do

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 21 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
not discuss the limitations of Cassandra in addressing
these requirements. They justify the choice of HBase
based on their confidence in addressing missing features
using their own engineering team and in the resiliency
of the system against disk failures.
Finally, the limitations of column-family data stores are

similar to those of other NoSQL categories, such as the
lack of built-in support for relationships and transactional
operations that involve more than one row. In addition,
HBase and Cassandra are not very appropriate for scenar-
ios where queries are highly dynamic because changes in
queries may impact the column-family design.
Graph databases
Graph databases are a suitable choice for the following
types of applications: location-based services, recom-
mendation engines, and complex network-based appli-
cations including social, information, technological, and
biological networks [15,66]. For instance, user location
history data which are used to generate patterns that
associate people with their frequently visited places
could be efficiently stored and queried using Neo4J in
location-based socio-spatial network applications [67].
Similarly, recommendation-based systems in which users
are provided directed content based on their preferences
could be efficiently built using graph databases. As an
example, news broadcasters could create an aggre-
gated global profile of a user, link it with their prefer-
ences for events and news, and effectively feed
personalized RSS feeds to users using a graph database
like Allegrograph [68].
Moreover, graph databases are being increasingly used

since the rise of large social computing platforms like
YouTube, Flicker, LiveJournal, and Orkut [69]. These solu-
tions offer graph data storage and a graph processing sys-
tem which provides indexing on nodes and edges, making
them very efficient in storing closely related data and per-
forming highly complex queries similar to those involving
multiple joins in relational databases [69]. Another inter-
esting application of graph databases was proposed by Sor
and Srirama [70] for memory leak detection in distributed
applications. To detect memory leaks, a leak cause analysis
was required, which involved finding the shortest path
from leaking objects to garbage collection roots with the
intention of detecting the object responsible for holding
the references which are no longer used. However, their
use case required implementing custom graph database
solutions over existing ones due to the high reliance on
shortest-path search over other kind of traversals.
NewSQL
Generally speaking, the use of NewSQL data stores is
appropriate in scenarios in which traditional DBMS have
been used, but which have additional scalability and
performance requirements.
First, NewSQL data stores are appropriate for applica-

tions which require the use of transactions that manipu-
late more than one object, or have strong consistency
requirements, or even both. The classical examples are
applications in the financial market, where operations
such as money transfers need to update two accounts
automatically and all applications need to have the same
view of the database. Most of the analyzed NoSQL data
stores do not support multi-object transactions, and
many of them are eventually consistent solutions, which
make them inappropriate for these use cases.
Second, the relational model is appropriate in scenarios

where the data structure is known upfront and unlikely to
change. The overhead of creating a schema beforehand is
compensated by the flexibility of querying the data using
SQL [60], a very powerful mechanism that can be used to
implement almost any kind of data manipulation.
Finally, when selecting the most appropriate solution for

an application, it is essential to consider the investment
already made in tools and personnel training. In this re-
gard, NewSQL data stores are especially attractive because
they are compatible with most DBMS tools and use SQL
as their main interaction language.

Opportunities
Although NoSQL and NewSQL data stores deliver power-
ful capabilities, the large number and immense diversity of
available solutions make choosing the appropriate solution
for the problem at hand especially difficult. Moreover,
such diversity presents challenges in obtaining a perspec-
tive on the field and establishing directions for future re-
search. Analysis and comparison of a number of NoSQL
and NewSQL solutions in this study has revealed the
following opportunities for future research in the field:
A common terminology needs to be established, at least

for data stores having the same data model. Different ter-
minology makes comparison of solutions challenging. An
example of a terminology discrepancy is Riak’s quorum
read and write requests, which are referred to as routing
parameters in Voldemort. Establishing a common termin-
ology will not only help in comparing different data stores,
but will also help in understanding the concepts of a new
data store when a user is switching between different
NoSQL products.
It is important to create a clear distinction between

the term consistency as used in the ACID acronym and
consistency as used in “eventual consistency”. The over-
loading of this term has led to the general belief that an
eventual-consistency data store cannot be ACID, which
Bailis et al. [71] have already shown is not true.
Possibilities for establishing a standard SQL-like query-

ing mechanism need to be explored, at least for data stores

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 22 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
having the same data model. Today, with NoSQL data
stores, performing even a simple query requires significant
programming expertise and often solution-specific code.
Therefore, switching to another data store may require
changing the majority of the application code. Solutions
such as Hive [72] have provided a great help in this direc-
tion, but their use is still limited to only a few data stores
such as HBase and Cassandra. Additionally, some NoSQL
data stores such as Cassandra, MongoDB, and Neo4J na-
tively provide SQL-like querying. Standardizing querying
mechanisms based on the capabilities of their data models
would increase adoption of NoSQL in practice and would
ease migration among different solutions.

� Standardized performance benchmarking is
required. The popularity of NoSQL stores for cloud
data management has been growing, especially in
the Big Data domain. However, little has been done
to compare the performance of different solutions
under different processing loads. Although there
have been some attempts to establish benchmarking
standards, for example the Yahoo Cloud Serving
Benchmark (YCSB) [62], the adoption of these
standards in practice has been limited. Establishing a
benchmarking standard would help in comparing
different data stores with a view to selecting one for
a particular application.

� Another consideration arises from modern-day
business needs. Businesses now rely heavily on
business intelligence (BI) tools. Although an analysis
platform called Pig [73] provides some basic
analytical functionalities for NoSQL data stores, it is
not yet as powerful as the BI tools available for
RDBMSs. Therefore, BI tools need to provide
support for NoSQL data stores to obtain the most
benefit from them.

� Sophisticated security and privacy provisions are
needed. The review of the security properties offered
by NoSQL solutions has revealed that in comparison
to relational databases, the security capabilities of
NoSQL solutions are limited. It is expected that
future development in this area will increase
adoption of NoSQL in practice.

� Use of more than one NoSQL data store in a single
application needs to be explored. This consideration
arises from the fact that NoSQL is not just one
product, but encompasses several different data
stores, each offering features specific to a particular
type of use case or data need. Therefore, to cover a
wider range of application scenarios, a solution
might need to incorporate more than one NoSQL
data store to address the need for different kinds of
data. Sadalage and Fowler [15] use the term polyglot
persistence to refer to the use of different data stores
for different purposes within the same application.
As an example of this type of work, Atzeni et al.
[74] recently proposed a common interface for
accessing key-value, document, and column-family
data stores.

This list includes the prominent opportunities and
illustrates the great potential for future research in this
domain. It can be expected that further research, to-
gether with the use of NoSQL and NewSQL in practice,
will lead to emergence of preferred solutions for specific
requirements. It is also important to note the signifi-
cance of documentation and a user community: better
documentation, a more active user community, or both
may be the deciding factors because they can effectively
support application development and ease data store
administration.

Conclusions
In recent years, cloud computing has emerged as a
computational paradigm that can be used to meet the
continuously growing storage and processing require-
ments of today’s applications. This study has focused on
the storage aspect of cloud computing systems, in particu-
lar, NoSQL and NewSQL data stores. These solutions have
presented themselves as alternatives to traditional rela-
tional databases, capable of handling huge volumes of data
by exploiting the cloud environment.
Specifically, this paper has reviewed NoSQL and

NewSQL data stores with the objectives of providing a
perspective on the field, providing guidance to practi-
tioners and researchers to choose appropriate storage
solutions, and identifying challenges and opportunities
in the field. A comparison among the most prominent
solutions was performed on a number of dimensions,
including data models, querying capabilities, scaling, and
security attributes. Use cases and scenarios in which
NoSQL and NewSQL data stores have been used were dis-
cussed and the suitability of various solutions for different
sets of applications was examined. The discussion of the
use cases, together with the comparison of data stores, will
assist practitioners in choosing the best storage solution
for their needs. In addition, this work has identified chal-
lenges in the domain, including terminology diversity and
inconsistency, limited documentation, sparse comparison
and benchmarking criteria, occasional immaturity of solu-
tions and lack of support, and non-existence of a standard
query language.

Abbreviations
ACID: Atomicity consistency isolation durability; API: Application
programming interface; BASE: Basically available soft-state eventually
consistent; BI: Business intelligence; BSON: Binary JSON; CAP: Consistency
availability partition tolerance; CAS: Check and set; CLI: Command line
interface; CMS: Content management system; CQL: Cassandra query
language; JSON: JavaScript object notation; LDAP: Lightweight directory

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 23 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
access control; MVCC: Multi-version concurrency control; NIST: National
institute of standards and technology; PaaS: Platform as a service;
RDBMS: Relational database management system; REST: Representational
state transfer; SM: Storage manager; SQL: Structured query language;
TM: Transaction manager; VPN: Virtual private network; YCSB: Yahoo cloud
serving benchmark.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KG contributed towards defining the survey methodology and establishing
the relation of this survey with other cloud data management surveys. Also,
KG studied the scaling aspect of NoSQL stores and participated in identifying
the challenges and opportunities of the cloud data management. WAH
contributed towards the selection and study of the NewSQL data stores.
WAH studied the security aspects of all the data stores included in this study
and also developed the Use Cases section. Finally, WAH worked on the
contextualization of the study in the cloud computing field, and participated
into the discussions about the challenges and future opportunities of the
cloud data management solutions. AT contributed towards the work of
choosing the NoSQL data stores included in the study and carried out the
studies of cloud computing. AT studied various NoSQL data stores, their data
models, and their querying capabilities in detail and also contributed
towards exploring the challenges and future opportunities regarding NoSQL
data stores. MAMC provided direction and advice, participated in the critical
and technical revision of the manuscript. All authors read and approved the
final manuscript.

Received: 1 October 2013 Accepted: 13 December 2013
Published: 18 December 2013

References
1. Facebook Newsroom A New data center for Iowa. http://newsroom.fb.com/

News/606/A-New-Data-Center-for-Iowa. Accessed 29 Sep 2013
2. Ohlhorst FJ (2013) Big Data Analytics: Turning Big Data into Big Money.

John Wiley & Sons, Inc, Hoboken, New Jersey, USA
3. Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P

(2007) The end of an architectural era: (it’s time for a complete rewrite).
Proc 33rd Int Conf Large Data Bases:1150–1160

4. Beyer MA, Laney D (2012) The Importance of “Big Data”: A Definition.
http://www.gartner.com/id=2057415. Accessed 29 Sep 2013

5. Agrawal D, Das S, El Abbadi A (2011) Big data and cloud computing:
Current State and Future Opportunities. Proceedings of the 14th
International Conference on Extending Database Technology - EDBT/
ICDT’11. ACM Press, New York, NY, USA, pp 530–533

6. Bughin J, Chui M, Manyika J (2010) Clouds, big data, and smart assets: Ten
tech-enabled business trends to watch. McKinsey Quarterly 2010:1–14

7. Mell P, Grance T (2011) The NIST definition of cloud computing. NIST
special publication 800–145. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf. Accessed on 29 Sep 2013

8. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and
research challenges. J Intern Serv Appl 1:7–18. 10.1007/s13174-010-0007-6

9. Venters W, Whitley EA (2012) A critical review of cloud computing:
researching desires and realities. J Info Technol 27:179–197. 10.1057/
jit.2012.17

10. Tudorica BG, Bucur C (2011) A comparison between several NoSQL
databases with comments and notes. 2011 10th International Conference
RoEduNet. IEEE:1–5

11. Hecht R, Jablonski S (2011) NoSQL evaluation: A use case oriented survey.
Proc 2011 Int Conf Cloud Serv Computing:336–341

12. Cattell R (2011) Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record
39(4):12–27

13. Pokorny J (2011) NoSQL Databases: a step to database scalability in Web
environment. Int J Web Info Syst 9(1):69–82

14. Sakr S, Liu A, Batista DM, Alomari M (2011) A survey of large scale data
management approaches in cloud environments. IEEE Commun Surv
Tutorials 13(3):311–336

15. Sadalage PJ, Fowler M (2013) NoSQL distilled: a brief guide to the emerging
world of polyglot persistence. Addison-Wesley, Upper Saddle River, NJ
16. Abiteboul S, Manolescu I, Rigaux P, Rousset M-C, Senellart P (2012) Web
Data Management. Cambridge University Press, New York

17. Aslett M (2011) How will the database incumbents respond to NoSQL and
NewSQL? https://451research.com/report-short?entityId=66963. Accessed 29
Sep 2013

18. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Gen Computer Syst 25(6):599–616.
http://dx.doi.org/10.1016/j.future.2008.12.001

19. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Syst Rev 44(2):35–40. 10.1145/
1773912.1773922

20. Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M, Chandra T,
Fikes A, Gruber R (2006) Bigtable: A distributed structured data storage
system. 7th OSDI 26:305–314

21. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News
33(2):51–59. 10.1145/564585.564601

22. Brewer E (2012) CAP twelve years later: How the “rules” have changed.
Computer 45:23–29. 10.1109/MC.2012.37

23. NOSQL meetup. Eventbrite, San Francisco. http://nosql.eventbrite.com/.
Accessed 29 Sep 2013

24. Konstantinou I, Angelou E, Boumpouka C, Tsoumakos D, Koziris N (2011) On
the elasticity of NoSQL databases over cloud management platforms.
Proceedings of the 20th ACM international conference on Information and
knowledge management - CIKM ’11. ACM Press, New York, NY, USA, pp
2385–2388

25. Pritchett D (2008) BASE: An ACID Alternative. Queue 6:48–55. 10.1145/
1394127.1394128

26. Apache CouchDB. http://couchdb.apache.org/. Accessed 29 Sep 2013
27. Murty J (2008) Programming Amazon Web Services: S3, EC2, SQS, FPS, and

SimpleDB. O’Reilly Media, Inc
28. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly
available Key-value store. ACM SIGOPS Operating Syst Rev 41:205. 10.1145/
1323293.1294281

29. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S,
Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd
A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y,
Szymaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s
globally-distributed database. Osdi 2012:1–14

30. VoltDB Inc (2013) VoltDB Technical Overview. 1–4. http://voltdb.com/
downloads/datasheets_collateral/technical_overview.pdf. Accessed 29
Sep 2013

31. Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EPC,
Madden S, Stonebraker M, Zhang Y, Hugg J, Abadi DJ (2008) H-store: a
high-performance, distributed main memory transaction processing system.
Proc VLDB Endowment 1(2):1496–1499

32. Clustrix Inc (2012) A New Approach: Clustrix Sierra Database Engine. 1–10.
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-
Approach_WhitePaper.pdf. Accessed 29 Sep 2013

33. NuoDB Greenbook Publication (2013) NuoDB Emergent Architecture. 1–20.
http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf. Accessed 29
Sep 2013

34. DB-Engines Ranking. http://db-engines.com/en/ranking. Accessed 29
Sep 2013

35. MongoDB.. http://www.mongodb.org/. Accessed 29 Sep 2013
36. Couchbase Server The NoSQL document database. http://www.couchbase.

com/couchbase-server/overview. Accessed 29 Sep 2013
37. Apache HBase. http://hbase.apache.org/. Accessed 29 Sep 2013
38. Redis. http://redis.io/. Accessed 29 Sep 2013
39. Memcached. http://memcached.org/. Accessed 29 Sep 2013
40. Klophaus R (2010) Riak Core: building distributed applications without

shared state. Proceedings of CUFP’10 - ACM SIGPLAN Commercial Users of
Functional Programming. ACM Press, New York, NY, USA, p 1

41. Oracle Berkeley DB 12c. http://www.oracle.com/technetwork/products/
berkeleydb/overview/index.html. Accessed 29 Sep 2013

42. Neo4j - What is a Graph Database? http://www.neo4j.org/. Accessed 29
Sep 2013

43. Auradkar A, Botev C, Das S, De Maagd D, Feinberg A, Ganti P, Gao L, Ghosh
B, Gopalakrishna K, Harris B, Koshy J, Krawez K, Kreps J, Lu S, Nagaraj S,

http://newsroom.fb.com/News/606/A-New-Data-Center-for-Iowa
http://newsroom.fb.com/News/606/A-New-Data-Center-for-Iowa
http://www.gartner.com/id=2057415
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://451research.com/report-short?entityId=66963
http://dx.doi.org/10.1016/j.future.2008.12.001
http://nosql.eventbrite.com
http://couchdb.apache.org
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf
http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf
http://db-engines.com/en/ranking
http://www.mongodb.org
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/couchbase-server/overview
http://hbase.apache.org
http://redis.io
http://memcached.org
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.neo4j.org/

Grolinger et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:22 Page 24 of 24
http://www.journalofcloudcomputing.com/content/2/1/22
Narkhede N, Pachev S, Perisic I, Qiao L, Quiggle T, Rao J, Schulman B,
Sebastian A, Seeliger O, Silberstein A, Shkolnik B, Soman C, Sumbaly R,
Surlaker K, Topiwala S, Tran C, Varadarajan B, Westerman J, White Z, Zhang
D, Zhang J (2012) Data Infrastructure at LinkedIn. Proceedings of 2012 IEEE
28th International Conference on Data Engineering. IEEE:1370–1381

44. Buerli M (2012) The current state of graph databases. http://www.cs.utexas.
edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf.
Accessed 29 Sep 2013

45. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large
clusters. Comm ACM 51(1):107–113. 10.1145/1327452.1327492

46. Cassandra Query Language (CQL) v3.1.1. http://cassandra.apache.org/doc/
cql3/CQL.html. Accessed 29 Sep 2013

47. Harris S, Seaborne A (2013) SPARQL 1.1 Query Language. http://www.w3.
org/TR/2013/REC-sparql11-query-20130321/. Accessed 29 Sep 2013

48. AllegroGraph 4.11. http://www.franz.com/agraph/allegrograph/. Accessed
29 Sep 2013

49. Battle R, Benson E (2008) Bridging the semantic Web and Web 2.0 with
Representational State Transfer (REST). Web Semantics: Sci Serv Agents
World Wide Web 6:61–69. 10.1016/j.websem.2007.11.002

50. Soni Madhulatha T (2012) Graph partitioning advance clustering technique.
Int J Computer Sci Eng Surv 3(1):91–104. 10.5121/ijcses.2012.3109

51. PCI Security Standards Council (2010) Payment card industry (PCI) data
security standard - requirements and security assessment procedures -
version 2.0. https://www.pcisecuritystandards.org/documents/pci_dss_v2.
pdf. Accessed 29 Sep 2013

52. Health insurance portability and accountability Act of 1996 (HIPAA).
http://www.cms.gov/Regulations-and-Guidance/HIPAA-Administrative-
Simplification/HIPAAGenInfo/downloads/hipaalaw.pdf. Accessed 29 Sep
2013

53. Gonzalez N, Miers C, Redígolo F, Simplício M, Carvalho T, Näslund M,
Pourzandi M (2012) A quantitative analysis of current security concerns and
solutions for cloud computing. J Cloud Computing: Adv Syst Appl 1:11.
10.1186/2192-113X-1-11

54. Basho Technologies (2012) From relational to riak. http://basho.com/assets/
RelationaltoRiak.pdf. Accessed 11 Dec 2013

55. Borthakur D, Rash S, Schmidt R, Aiyer A, Gray J, Sen SJ, Muthukkaruppan K,
Spiegelberg N, Kuang H, Ranganathan K, Molkov D, Menon A (2011) Apache
hadoop goes realtime at Facebook. Proc 2011 Int Conf Manage Data - SIG-
MOD ’11 1071. 10.1145/1989323.1989438

56. Petcu D, Macariu G, Panica S, Crăciun C (2012) Portable cloud applications—
from theory to practice. Future Gen Computer Syst 29(6):1417–1430. 10.1016/j.
future.2012.01.009

57. Vaquero LM, Rodero-Merino L, Buyya R (2011) Dynamically scaling
applications in the cloud. ACM SIGCOMM Computer Comm Rev
41(1):45–52. 10.1145/1925861.1925869

58. Liu Z, Wang Y, Lin R (2012) A novel development and analysis solution to
PaaS log by using CouchDB. 2012 3rd IEEE Int Conf Network Infrastr Digital
Content:251–255

59. Ramaswamy L, Lawson V, Gogineni SV (2013) Towards a quality-centric Big
data architecture for federated sensor services. 2013 IEEE Int Congr Big
Data:86–93. 10.1109/BigData.Congress.2013.21

60. Redmond E, Wilson JR (2013) Seven databases in seven weeks: a guide to
modern databases and the NoSQL movement. O'Reilly Media. 978-1-
934356-92-0

61. Havlik D, Egly M, Huber H, Kutschera P, Falgenhauer M, Cizek M, et al. (2013)
Robust and Trusted Crowd-Sourcing and Crowd-Tasking in the Future
Internet. In: IFIP Advances in Information and Communication Technology,
413th edition, pp 164–176

62. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010)
Benchmarking cloud serving systems with YCSB. Proceedings of the 1st
ACM Symposium on Cloud Computing. 154:143–154

63. Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P,
Jacobsen H-A, Puz N, Weaver D, Yerneni R (2008) PNUTS: Yahoo!’s hosted
data serving platform. Proc VLDB Endowment 1(2):1277–1288

64. Rabl T, Gómez-Villamor S, Sadoghi M, Muntés-Mulero V, Jacobsen HA,
Mankovskii S (2012) Solving big data challenges for enterprise application
performance management. Proc VLDB Endowment 5(12):1724–1735

65. Bushik S (2012) A Vendor-independent Comparison of NoSQL Databases:
Cassandra, HBase, MongoDB, Riak. http://www.networkworld.com/news/
tech/2012/102212-nosql-263595.html. Accessed 11 Dec 2013
66. Angles R, Gutierrez C (2008) Survey of graph database models. ACM
Computing Surv 40:1–39. 10.1145/1322432.1322433

67. Doytsher Y, Galon B, Kanza Y (2012) Querying socio-spatial networks on the
world-wide web. Proceedings of 21st international conference companion
on world wide web - WWW’12 Companion. ACM Press, New York, NY, USA,
pp 329–332

68. Mannens E, Coppens S, Pessemier T, Dacquin H, Deursen D, Sutter R, Walle
R (2011) Automatic news recommendations via aggregated profiling.
Multimed Tools Appl 63:407–425. 10.1007/s11042-011-0844-8

69. Ho L-Y, Wu J-J, Liu P (2012) Distributed graph database for large-scale social
computing. 2012 IEEE Fifth Int Conf Cloud Computing:455–462

70. Sor V, Srirama SN (2012) Evaluation of embeddable graph manipulation
libraries in memory constrained environments. Proceedings of the 2012
ACM Research in Applied Computation Symposium - RACS’12. ACM Press,
New York, NY, USA, pp 269–275

71. Bailis P, Fekete A, Ghodsi A, Hellerstein JM, Stoica I (2013) HAT, not CAP:
highly available transactions. arXiv preprint arXiv:1302.0309

72. Thusoo A, Sarma J, Sen JN, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P,
Murthy R (2009) Hive: a warehousing solution over a Map-reduce
framework. Proc VLDB Endowment 2(2):1626–1629

73. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a
not-so-foreign language for data processing. Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data - SIGMOD’08.
ACM Press, New York, NY, USA, pp 1099–1110

74. Atzeni P, Bugiotti F, Rossi L (2013) Uniform access to NoSQL systems.
Information systems (in press). 10.1016/j.is.2013.05.002

doi:10.1186/2192-113X-2-22
Cite this article as: Grolinger et al.: Data management in cloud
environments: NoSQL and NewSQL data stores. Journal of Cloud
Computing: Advances, Systems and Applications 2013 2:22.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf
http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf
http://cassandra.apache.org/doc/cql3/CQL.html
http://cassandra.apache.org/doc/cql3/CQL.html
http://www.w3.org/TR/2013/REC-sparql11-query-20130321
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.franz.com/agraph/allegrograph
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://www.cms.gov/Regulations-and-Guidance/HIPAA-Administrative-Simplification/HIPAAGenInfo/downloads/hipaalaw.pdf
http://www.cms.gov/Regulations-and-Guidance/HIPAA-Administrative-Simplification/HIPAAGenInfo/downloads/hipaalaw.pdf
http://basho.com/assets/RelationaltoRiak.pdf
http://basho.com/assets/RelationaltoRiak.pdf
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html

	Abstract
	Introduction
	Background and related work
	Cloud computing
	The CAP theorem
	NoSQL and NewSQL
	Related surveys

	Methodology
	Data models
	Key-value stores
	Column-family stores
	Document stores
	Graph databases
	NewSQL

	Querying
	Scaling
	Partitioning
	Replication
	Consistency
	Concurrency control

	Security
	Use cases
	Key-value stores
	Document stores
	Column-family stores
	Graph databases
	NewSQL

	Opportunities
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	References

