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Abstract

In April 2012, Rogers and Cliff (R&C) demonstrated a theoretical financial brokerage model for cloud computing that is
profitable for the broker, offers reduced costs for cloud users, and generates more predictable demand flow for cloud
providers. Relatively cheap, long-term reserved instances (RIs) are bulk-purchased by the broker, and then
re-packaged and re-sold as monthly options contracts at a price lower than a user can purchase “on-demand” from
the provider. Thus, the broker risks exposure on purchase for margin on sales. R&C’s result has generated significant
interest in the cloud computing community and is currently the fifth most accessed research paper of all time in the
Journal of Cloud Computing: Advances, Systems and Applications.
Here, we perform an independent replication of R&C’s brokerage model using CReST, a discrete event simulation
platform for cloud computing developed at the University of Bristol. We identify two implementation problems in
R&C’s original work: firstly, the broker buys fewer RIs than the model suggests; and secondly, the broker is
undercharged for RIs used. We correct R&C’s results accordingly: while broker’s profits are not as high as R&C suggest,
the model still supports the theoretical possibility of a profitable brokerage.
However, aggressive competition between cloud providers has reduced the cost of cloud services to users and led to
the introduction of new secondary markets where users can buy and sell RIs between themselves. This has squeezed
the opportunity for an intermediary brokerage. By recalibrating R&C’s model to fit current market conditions, we
conclude that the commercial viability of R&C’s brokerage model has been eradicated. The window of opportunity
has now closed.
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Introduction
In April 2012, Rogers and Cliff (R&C) demonstrated a
theoretical financial brokerage model for cloud comput-
ing that is profitable for the broker, offers reduced prices
for cloud users, and generates more predictable demand
flow for cloud providers [1]. The broker achieves this
by acting as an intermediary between cloud providers
and cloud users. Firstly, the broker bulk-purchases rela-
tively cheap, long-term 12-months or 36-months reserved
instances (RIs) from the provider. Then, the broker re-
packages as monthly units and re-sells to cloud users at
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a price lower than users can otherwise purchase directly
“on-demand” from the provider. The broker thus risks
exposure to loss on large up-front purchase costs that
may never be recovered, for the potential reward of profit
margin generated on each unit sold—i.e., the difference
between the purchase cost and sale price. As a conse-
quence, cloud providers benefit from more predictable
demand (achieved by bulk-selling long-term RIs); and
cloud users benefit from access to cheaper prices. Thus, by
providing liquidity, the broker improves market efficiency.
Having potential for profitable commercial exploitation,
this theoretical result has generated significant interest
in the cloud computing community: since its publication
18 months ago, R&C’s model has become the fifth most
accessed research paper of all time in the Journal of Cloud
Computing: Advances, Systems and Applications [2].
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However, the cornerstone of science is the princi-
ple of replication. New findings should only be provi-
sionally accepted—and considered with scepticism—until
verified by independent replication (cf. the infamously
high-profile discovery, and subsequent refutation, of neu-
trinos having velocity greater than the speed of light in
a vacuum, e.g., [3]). Here, we perform an independent
replication of R&C’s brokerage model using CReST, the
Cloud Research Simulation Platform (freely available for
open-source download [4]). CReST was developed at the
University of Bristol to address the need for a robust
simulation modelling tool for research and teaching of
data centre (DC) management and cloud provision; and
has successfully been used to refute, revise and extend
findings in the cloud computing literature [5].
Our replication study identifies two implementation

problems in R&C’s original work. Firstly, the broker buys
fewer RIs than the model suggests; we call this the “reser-
vations bug”. Secondly, the broker underpays for RIs used;
we call this the “payment bug”. We demonstrate the effects
of these bugs on the brokerage model and correct R&C’s
published results: while broker’s profits are not as high
as R&C suggest, the model still supports the theoretical
possibility of a profitable brokerage.
However, since the publication of R&C’s model, aggres-

sive price competition between cloud infrastructure
providers has dramatically reduced the cost of cloud
services to end users, both from the provider directly
(the primary market) and through newly introduced sec-
ondarymarkets where users buy and sell RIs second-hand.
To reflect this, we recalibrate R&C’s model using cur-
rent prices charged by Amazon Web Services (AWS).
Results demonstrate that competition between providers
has increased market efficiency and squeezed the oppor-
tunity for a profitable intermediary brokerage. At today’s
prices (September, 2013), and with updated constraints
to reflect the introduction of secondary markets, R&C’s
model is no longer theoretically profitable. We conclude
that increased competition between vendors has eradi-
cated the commercial viability of R&C’s financial broker-
age model for cloud computing. As such, the window of
opportunity for commercial exploitation has closed.
The rest of this paper is organised as follows. In

Section ‘Background’ we introduce R&C’s brokerage
model and describe our CReST implementation in
Section ‘Experimental method’. In Section ‘Experiment
1: Model verification’ we validate our model replication
by generating results almost identical to those presented
by R&C. The effects of the reservations bug (Section
‘Experiment 2: the reservations bug’) and payment bug
(Section ‘Experiment 3: the payment bug’) identified in
R&C’s implementation are then demonstrated, before a
set of “corrected” results for R&C’s model are presented
(Section ‘Experiment 4: corrected replication of R&C’s

brokerage model’). Finally, in Section ‘Experiment 5:
Recalibrating R&C’s model to reflect current market
conditions’ we recalibrate R&C’s model to reflect the cur-
rent market for cloud provision and observe the impact
this has on theoretical profits. The paper finishes in
Section ‘Conclusions’ with our primary conclusion that
R&C’s brokerage model is no longer commercially viable.

Background
Pricing the cloud
The on-demand delivery model for cloud computing
resources offers a variety of benefits for business con-
sumers: no up-front capital expenditure on (often under-
utilised) compute infrastructure needed to cover peak
business demand; flexibility and scale-out opportunities
from the ability to start and stop VM instances at will;
and reduced operational costs from outsourcing mainte-
nance and support [6]. However, the on-demand model is
not necessarily ideal for cloud providers, as they attempt
to adhere to strict Service Level Agreements in the face
of fluctuating demand. If providers could accurately fore-
cast future resource demand, then they would have the
opportunity to reduce costs by optimising electricity pur-
chases, engineering staff, and hardware utilisation, etc. [7].
At present, most providers offer a choice between an on-
demand tariff (“on-demand” instances, billed per hour of
usage with no upfront purchase cost [8]) and a contract
tariff (“reserved” instances (RIs), leased for a fixed time
period and offering significant hourly usage discounts [9]).
Some providers, e.g., AWS, offer an alternative spot price
tariff that varies in real-time based on current supply and
demand [10]. However, of these methods, only long-term
RI contracts (12-months or 36-months) have the potential
to aid the provider in capacity planning.
Several alternative pricing models have been proposed

in academic research, most notably involving derivatives
contracts, such as (European) options [11]. Options con-
tracts involve the payment of an up-front fee that gives
the buyer the legal right, but not the obligation, to pur-
chase a resource for an agreed strike-price on some later
delivery date [12]. These types of financial instruments
are commonly used in financial markets, with underly-
ing assets ranging from commodities such as wheat and
oil, to a suite of complex financial products. In 2012,
R&C demonstrated that it was possible for a cloud com-
puting brokerage to utilise options contracts to provide
cheaper resources to consumers while simultaneously
aiding providers in predicting future demand [1]. Sig-
nificantly, R&C also demonstrated that the broker could
profit from providing this service.
R&C’s result has the potential to positively disrupt the

delivery and pricing of cloud services. As the market in
cloud resources matures and becomes more standard-
ised, the promise of a federated cloud—where cloud users
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can migrate between providers seamlessly—will enable
resources to be traded as a commodity; eradicating exist-
ing concerns of vendor lock-in. In turn, this will open
opportunities for brokers to enter the market, acting as
intermediarymarket makers between users and providers.
In such a scenario, R&C’s result could have commercial as
well as academic significance.

R&C’s options model for cloud computing
Typically, the role of a broker is to facilitate the match-
ing of supply and demand in a market. Brokerage services
primarily generate profit by charging commission fees,
and/or making the spread by buying at a lower price and
selling at a higher price. In the cloud brokerage model of
R&C [1], the broker aims to make a profit by purchasing
long-term advanced obligations on resources (12-months
or 36-months RIs), and repackaging them as one-month
options contracts to users.
The brokerage model of R&C consists of two stages:

(1) each month, the broker takes orders from clients for
future resource needs by selling options, and determines
how many RIs to purchase; (2) in the following month,
clients can request instances from the broker by exercis-
ing their options. If the broker has capacity available from
previously purchased RIs, these are sold to the users at
a profit. Otherwise, the broker must purchase additional
(more expensive) on-demand instances from the provider
to fulfil the obligation to the client.
R&C’s brokerage model extends a pricing structure

that was initially developed at HP Labs by Wu, Zhang,
and Huberman (WZH) [11]. The WZH model financially
rewards clients that reveal the true likelihood that they will
utilise a resource in the future. Every month, each client,
i, estimates the probability, pi, of using a resource in the
following month. Clients then submit their estimation, pi,
to the broker in order to purchase a resource contract.
In the following month, the client is charged Used(pi) if
the resource is used and Unused(pi) if the resource is not
used, such that:

Used(pi) = 1 + k
2

− kpi + kp2i
2

(1)

and

Unused(pi) = kp2i
2

. (2)

If users choose instead to purchase resources directly
from the provider, they will expect to pay piPD, where PD
is the on-demand cost of a one-month instance (inWZH’s
model, PD = 2 [11]). It has been proven that this pricing
model encourages users to truthfully submit their honest
estimate of resource usage, pi, when k = 1.5 [11].
We can consider WZH’s contract as an options model

if the broker charges clients Unused(pi) to purchase the
option contract and then a further charge of Used(pi) −

Unused(pi) in the following month if the option is exer-
cised (i.e., if the resource is used). The model can then
be calibrated to real-world prices by multiplying Used(pi)
and Unused(pi) by a cost factor, C. Setting k = 1.5, to
ensure truthful submission of usage probability, this gives
us the final options pricing model used by R&C [1]:

OptionPrice(pi) = C
(
3p2i
4

)
(3)

and

ExercisePrice(pi) = C
(
7
4

− 3pi
2

)
(4)

where (3) is the price of an option contract, and (4) is
the price of exercising the contract. Hence, the full cost of
purchasing a one-month RI from the broker is:

TotalPrice(pi) = OptionPrice(pi) + ExercisePrice(pi).
(5)

Figure 1 shows the price of options as a function of
probability of usage, pi. Prices assume a cost factor of
C = 1 and a monthly on-demand price of PD = 2 (as
in WZH’s model). We see that OptionPrice(pi) increases
non-linearly from 0 when pi = 0, to a maximum value of
0.75 when pi = 1 (blue line); and ExercisePrice(pi) falls
linearly, from a maximum value of 1.75 when pi = 0, to
a minimum value of 0.25 when pi = 1 (red line). There-
fore, the TotalPrice(pi) of purchasing and exercising an
option (green line) falls non-linearly from a maximum
value of 1.75 when pi = 0 to a minimum value of 1 when
pi = 1. As a result, the probabilistic cost of an option
(pi TotalPrice(pi) + (1−pi)OptionPrice(pi); orange dots)
is always lower than the probabilistic cost of purchas-
ing an on-demand instance directly from the provider
(pi.PD; purple dots). This is the maximum constraint on
the model and ensures that the user will always bene-
fit from purchasing options from the broker, rather than
buying from the provider directly.

R&C’s brokerage implementation
R&C implement their brokerage framework using a sim-
ulation model consisting of: a population of user agents
that have demand for cloud resources (VM instances); a
cloud provider offering VM instances either on-demand
or as long-term RIs; and a single broker with a market
monopoly, acting as intermediary between the population
of agents and the cloud service provider. We introduce
each, below.

User agents
Each month, agents ai ∈ A submit their probability, pi,
of demanding a resource in the following month. Agents
calculate pi as the mean number of resources they have
consumed during the samemonth in previous years. Since
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Figure 1 Option prices.With a cost factor C = 1 and on-demand price PD = 2, the cost of options from the broker (orange dotted line) is always
cheaper than purchasing an on-demand instance directly from the provider (purple dotted line).

each agent, ai, has a maximum demand of one resource
per month, then: 0 ≤ pi ≤ 1; and the predicted demand
for the full population is:

∑
∀i pi ≤ |A|, where |A| is the

size of the agent population.

Cloud provider
The cloud provider offers VM services for sale: either on-
demand, at price PD per month; or reserved for Rmonths
with up front cost PRu, plus an additional cost PRm per
month of use. Since the provider offers RIs at a discounted
rate, it is always true that:

PD > PRm + PRu
R

. (6)

However, there exists a value R̂ < R such that:

PD = PRm + PRu
R̂

. (7)

Thus, if a RI is purchased and utilised for fewer than R̂
months, then there is no longer a cost saving; in fact, the
RI will be more expensive than the on-demand price, PD.
For this reason, to guarantee savings on a RI purchase, one
must be certain that it will be utilised for at least R̂months
of the full R-months term.

Broker
The broker aims to make a profit by taking the risk of pur-
chasing long-term RIs (R = 12, or R = 36 months) from
the provider and re-selling to users as one-month options
contracts. Each month, users purchase options from the
broker by submitting their probability of demand, pi.

The broker then uses Algorithm 1 to determine how
many (additional) RIs to purchase. The broker first checks
whether there is sufficient capacity available to cover the
following month’s demand, i.e., whether ft+1 ≥ ∑

pi.
If capacity covers demand, then no further RIs are pur-
chased; else, additional RIs are incrementally purchased
until either: broker capacity covers demand (Algorithm 1,
line 3); or the expected Marginal Resource Utilisation
(MRU) of an additional purchase falls below a minimum
threshold, θ (Algorithm 1, line 5).

Algorithm 1 Broker’s algorithm used for purchasing RIs
each month.
1: function PURCHASERESERVEDINSTANCES
2: continue ← True
3: while (�pi > ft+1 and continue) do
4: MRU ← 1

R
∑

d∈D[ d > 0] , where [ x]={
1 if x is true
0 otherwise � calculate MRU

5: ifMRU ≥ θ then
6: for i ← 1toR do
7: ft+i ← ft+i + 1 � purchase new RI;

update future capacity
8: end for
9: else

10: continue ← False � stop purchasing RIs
11: end if
12: end while
13: end function
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The broker calculates expected MRU (Algorithm 1,
line 4) by comparing historical demand, H = [ht+1−R,
ht+2−R, . . . , ht], over the previous R months, against the
future resource capacity, F = [ft+1, ft+2, . . . , ft+R], (the
number of RIs owned) over the forthcoming R months.
Using a simple forecasting mechanism that assumes
future demand will equal previous demand lagged R
months, the broker then calculates an expected deficit
profile, D = F− H, for each forthcoming month by sub-
tracting historical demand from future capacity, such that:
D = [ ft+1 − ht+1−R, ft+2 − ht+2−R, . . . , ft+R − ht]. Then,
the expected MRU of an additional RI purchase is the
proportion of months in D > 0. More formally:

MRU = 1
R

∑
d∈D

[d > 0] , where[x]=
{
1 if x is true
0 otherwise.

(8)

The MRU estimates the fraction of life (months/R) an
additional reserved instance is likely to be utilised over the
next R months, based on historical demand. A minimum
threshold, θ , is then used to determine whether or not
to make the purchase (Algorithm 1, line 5). If MRU ≥ θ

then the broker buys a new RI, estimating that it will be
utilised enough to make a profit. Conversely, ifMRU < θ ,
the broker does not purchase a new RI, estimating that
it will be under-utilised. For each new purchase, the bro-
ker’s future capacity, F , is incremented (Algorithm 1, line
7) and the while loop restarts. However, ifMRU < θ , then
no more RIs are purchased and the while loop is exited
(Algorithm 1, line 10).
In the following month, the broker delivers one-month

instances to users that exercise their options. If the bro-
ker does not have the capacity to fulfil client demand, then
additional on-demand instances are purchased directly
from the provider to supply to the users. The broker is able
to vary exposure to risk by altering the value of θ over the
range 0 ≤ θ ≤ 1. When θ is low, the broker purchases
more RIs per unit of demand than when θ is high.

Experimental method
In this section, we describe our replication of R&C’s bro-
kerage model. To ensure that the replication is entirely
independent, we have implemented R&C’s model on a
different platform (CReST) written in a different pro-
gramming language (Java).

CReST, the cloud research simulation toolkit
The Cloud Research Simulation Toolkit (CReST) was
developed at the University of Bristol to address the need
for a robust simulation modelling tool for research and
teaching of data centre (DC) management and cloud pro-
vision. CReST is a discrete-event simulation platform

written in Java, and is freely available open source under a
GNU General Public License version 3.0 [4].
Although a variety of cloud simulation platforms exist

(e.g., [13-16]), CReST has a unique feature set (see [5] for
a detailed comparison) that enables simulation at multiple
abstraction levels: from physical hardware, energy usage
and thermal flows within a DC; to networked infrastruc-
ture and the virtualisation layer of application services
supporting dynamic user demand.
CReST is designed as a set of coupled modules that

can be independently switched on or off depending on
the level of abstraction required. To ensure extensibility
and module independence, CReST has a Model-View-
Controller (MVC) architecture. Following Figure 2, each
module has a ModuleRunner that views the time-ordered
EventQueue model using Java’s Observer-Observable
interface. Modules observe each time-stamped Event
popped from the EventQueue and decide whether to
ignore the event or take appropriate action; which may
include generating new Events that are subsequently
pushed onto the EventQueue with a post-dated times-
tamp. Modules are therefore independent Observers and
only interact via the EventQueue, ensuring strict delin-
eation between modules and making it possible to switch
modules on and off, delete modules, and add new mod-
ules with relative ease (for more detail on the architecture
of CReST, refer to [5]).
For all experiments reported in this paper, we use

CReST as the cloud simulation platform. To optimise
simulation performance, we disabled several of the lower-
level physical infrastructuremodules, such as theThermal

Figure 2MVC architecture of CReST. Each module has a
ConcreteModuleRunner object that extends the AbstractModuleRunner
class. The AbstractModuleRunner implements the Observer interface
and uses the method Observer.update() to view each new
timestamped Event popped from the time-sorted EventQueue. The
ConcreteModuleRunner then chooses to ignore or react to the Event,
which may cause future Events to be generated and added to the
EventQueue.
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module that tracks heat-flow in the data centre. The active
modules used in all of the brokerage simulations that we
perform include: Brokerage, Pricing, Events, Services and
Simulation. This enables us to efficiently run experiments
that simulate decades of time, without compromising on
the abstraction level needed. All CReST code used to run
the experiments performed here, and associated Python
scripts used for data analysis and visualisation, are avail-
able to download in version 0.4.0 of CReST [4].

Parameter configuration settings
The configuration settings used for all experiments, unless
otherwise stated, are detailed below:

• Demand profiles: Following R&C, to simulate
realistic demand for cloud resources, we consider
four demand profiles generated using real demand
data over the period 1988-2011 for a variety of IT-
related industries. Owen Rogers, using the UK Office
for National Statistics’ database of Non-Seasonally
Adjusted Index of Sales, collated these data [1].
Figures 3, 4, 5 and 6 displays the four demand profiles
that we label using R&C’s terminology: Rapid Growth
(Figure 3), Steady Growth (Figure 4), Recession &
Recovery (Figure 5) and Steady (Figure 6). These
data were kindly supplied to us by Owen Rogers to
enable us to perform a strict replication of R&C’s
experiments. As Rogers and Cliff explain, since
historical demand data for cloud resources over long
periods (necessary for the brokerage model) are not
available (due to the relatively short history of cloud
computing), public domain data were selected for
markets that can be considered complementary to
cloud computing—for example e-commerce
applications, where demand for computing resources

is positively related to sales executed. Furthermore, to
enable the brokerage model to be evaluated across a
range of market conditions, markets exhibiting
qualitative variation (e.g., growth versus recession)
were preferentially selected. As one may expect, all
demand profiles exhibit strong seasonality, including
significant spikes around Christmas.

• Running time: Each simulation lasts 276 simulated
months. This time period is determined by the
available demand data utilised by R&C (refer to
Figures 3, 4, 5 and 6). Results statistics are all
calculated up to and including 2010.

• Number of user agents: Following R&C, we set the
number of user agents in the population to
|A| = 1000.

• RI Period and learning period length: Following
R&C, we explore RIs with both R = 12 and R = 36
months. At the start of each simulation, there is a
learning period of R months such that the broker
observes the market and updates historical demand,
but does not trade.

• Pricing: Prices for cloud computing resources in the
real world continue to fall as providers face increasing
competition. For the R&C replication experiments,
we follow the same pricing scheme as [1], shown in
Table 1. We take these values directly from the source
code used by R&C for their brokerage model; kindly
made available to us by Owen Rogers. The values in
Table 1 differ slightly from those described in [1];
which states that the monthly cost of an on-demand
instance is “approximately $60 for a whole month of
usage” page 5, [1], and does not give absolute values
for the monthly usage cost of reserved instances. In
the final experiment (Section ‘Experiment 5:
Recalibrating R&C’s model to reflect current market

Figure 3 Normalised demand profiles for the period 1988-2011, labelled: Rapid Growth. RSI: Not seasonally adjusted, non-store retailing, all
business index. (Data identical to Figure one, [1]).
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Figure 4 Normalised demand profiles for the period 1988–2011, labelled: Steady Growth. RSI: Not seasonally adjusted, non-store retailing,
large business index. (Data identical to [1], Figure two).

conditions’), we recalibrate the model using current
AWS prices (September 2013) and observe the effect
of these changes on the brokerage model.

• Cost Factor, C: The WZH charging model [11] is
based on instances with a cost of 1 or 2. The model
must therefore be scaled by a cost factor, C, in order
to simulate real-world pricing (refer to Equations (3)
and (4)). To replicate R&C we use a cost factor of
C = 35. However, in Section ‘Experiment 5:
Recalibrating R&C’s model to reflect current market
conditions’, when AWS prices are updated to
represent current prices, we vary the value of C to
ensure the model still benefits users.

• MinimumMRU threshold, θ : Following R&C, we
explore a range of thresholds, θ , to determine the
optimal (most profitable) value, θopt . In each

experiment, θ is varied between 0 and 1 using
increments of 0.01.

In this paper, we repeat each experimental condition
only once. Since the broker follows a deterministic proce-
dure (see Algorithm 1), and since demand is fixed during
each run (see Figures 3, 4, 5 and 6), there is very lit-
tle stochastic variation in the model; generated only by
the random ordering of user agents selected to purchase
and exercise options each month. Previous studies that
performed 30 repeated trials of each condition to enable
statistical hypothesis testing of the results identified that
95% confidence intervals were negligible (usually nar-
rower than the thickness of the line presented in the
graph of results; see, for instance Figure two, [17]). Hence,
the brokerage model of R&C is largely deterministic and

Figure 5 Normalised demand profiles for the period 1988–2011, labelled: Recession & Recovery. RSI: Not seasonally adjusted, non-store
retailing, small business index. (Data identical to [1], Figure three).
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Figure 6 Normalised demand profiles for the period 1988-2011, labelled: Steady. RSI: Not seasonally adjusted, retail of computer and
telecoms equipment, all business index. (Data identical to [1] Figure four).

we expect to replicate the results presented in [1] very
closely.

Experimental results
In this section, we present a series of experimental
results using our CReST replication of R&C’s brokerage
model. In Experiment 1 (Section ‘Experiment 1: Model
verification’), we present results that closely match those
presented by R&C [1]. However, to generate these results,
it is necessary to replicate two problems identified in
R&C’s implementation: the reservations bug, rectified in
Experiment 2 (Section ‘Experiment 2: the reservations
bug’); and the payment bug, rectified in Experiment 3
(Section ‘Experiment 3: the payment bug’). In Experiment
4 (Section ‘Experiment 4: corrected replication of R&C’s
brokerage model’), we present a “corrected” version of
R&C’s results, without the reservations and payment bugs.
Results are compared with those published in [1]. Finally,
in Experiment 5 (Section ‘Experiment 5: Recalibrating
R&C’s model to reflect current market conditions’), we
recalibrate the model using current AWS prices and
updated constraints to reflect the introduction of a sec-
ondary marketplace for users to buy and sell RIs between
themselves. Results demonstrate that the brokeragemodel
is no longer profitable.

Table 1 Instance prices

Linux/Unix Standard RI 12-months 36-months

Reserved up-front PRu $227.50 $350.00

Hourly Monthly Hourly Monthly

Reserved usage PRm $0.03 $21.88 $0.02 $21.88

On-demand usage PD $0.085 $62.00 $0.085 $62.00

AWS prices used for R&C replication studies (AWS prices in June 2011).

Experiment 1: Model verification
Here, we present results that closely replicate those pre-
sented by R&C [1]. Figures 7 and 8 show total broker
profits as a function of θ for 12-months and 36-months
RIs, respectively. These graphs are directly comparable to
Figure six, [1] for 12-months RIs and [1], Figure seven
for 36-months RIs. To the naked eye, these results are
qualitatively identical to those presented by R&C; and
also quantitatively very similar, with broker profits across
all markets falling within 2% (the majority within 1%) of
R&C’s published values [1], Table one.
These results offer compelling evidence that our CReST

implementation is an accurate replication of R&C’s bro-
kerage implementation. However, it was not possible to
achieve these results by strictly following the brokerage
model. Our failure to replicate R&C’s results led us to
scrutinise R&C’s source code, to which we were kindly
given access by Owen Rogers. During this process, we
noticed two inaccuracies in R&C’s implementation—the
reservations bug and the payment bug.Only by replicating
these bugs in our CReST model were we able to pro-
duce the results (presented in Figures 7 and 8) that closely
match those of R&C. This verifies that the reservation
and payment bugs were present in R&C’s model imple-
mentation and that the headline results presented by R&C
are inaccurate. Given the significant interest that R&C’s
results have generated within the cloud computing com-
munity, this is an important discovery. In the following
sections, we demonstrate the impact that the reservations
and payment bugs have on R&C’s results.

Experiment 2: the reservations bug
In R&C’s implementation of the brokerage model, there is
a bug in the software code that causes the broker to pur-
chase fewer reservations than the model suggests. This
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Figure 7 Replication. Total profits plotted against θ using 12-months reserved instances (compare Figure six, [1]).

occurs during the while loop in the PurchaseReservedIn-
stances function detailed in Algorithm 1 (see Section
‘Broker’). Each time the broker decides to purchase a
new reserved instance, i.e., when “if MRU ≥ θ” is True
(line 5), the broker then allocates this new purchase to
the next unit of demand. In essence, there is an addi-
tional line in Algorithm 1, between lines 8 and 9, which
reads:

line 8a:
∑

pi ←
∑

pi − 1 (9)

This is the reservations bug—each new RI purchase is
effectively allocated to two units of demand. As a result,
the broker purchases fewer RIs than the brokerage model
dictates. (For further discussion of the reservations bug,
refer to pp. 26-33, [18]).
We can see the effect of removing the reservations bug

from our CReST implementation in Figures 9 and 10. For
12-months RIs, the effect is most clear (Figure 9). We
see that for all markets, the total profit for brokers is
much lower when θ < 0.5. In particular, in the Recession

Figure 8 Replication. Total profits plotted against θ using 36-months reserved instances (compare Figure seven, [1]).
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Figure 9 No reservations bug. Total profits plotted against θ using 12-months reserved instances (compare Figure 7).

& Recovery market, when θ = 0, broker’s profits are
70% lower than R&C report on 12-months RIs. A simi-
lar, but smaller effect is also observed for 36-months RIs
(Figure 10).
This result can be explained as follows. As the value of

θ falls, the statement “if MRU≥ θ” (line 5) is more likely
to evaluate True. Therefore, smaller values of θ are more
affected by the reservations bug than larger values of θ .
When the reservations bug is not present, the broker pur-
chases more RIs per unit of expected demand. However,
since under-utilised RIs reduce the broker’s profits (and

potentially generate a loss), we see profits most affected
when θ is small (i.e., when the broker takes on most risk
from purchasing RIs).
We thus conclude that the reservations bug has arti-

ficially inflated the brokerage profits presented by R&C.
This effect increases as the value of θ falls and is greatest
when θ < 0.5.

Experiment 3: the payment bug
Algorithm 2 describes the process used to calculate the
monthly usage fees a broker must pay to satisfy user

Figure 10 No reservations bug. Total profits plotted against θ using 36-months reserved instances (compare Figure 8).
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demand. Each month, the number of options exercised
by users is the demand that the broker must satisfy.
The broker compares demand against the number of RIs
owned—the current capacity (Algorithm 2, line 3). If
capacity covers demand, then the broker simply pays the
provider the monthly fee to utilise enough RIs to ful-
fil demand (Algorithm 2, line 4). Else, if capacity is less
than demand, the broker first pays to utilise all RIs owned
(Algorithm 2, line 6), before covering excess demand
by purchasing additional on-demand instances from the
provider (Algorithm 2, lines 7-8).

Algorithm 2 The payment bug—line 6 is missing from
R&C’s implementation.

1: function CALCULATEUSAGEFEES(capacity,demand)
2: fees ← 0
3: if capacity ≥ demand then � if broker owns

enough reserved instances to cover demand
4: fees ← demand × PRm � pay monthly fee for

reserved instances used
5: else
6: fees ← capacity × PRm � pay monthly fee for

reserved instances used
7: excessDemand ← demand − capacity
8: fees ← fees + excessDemand × PD � purchase

on-demand instances to cover excess
9: end if

10: return fees
11: end function

From an inspection of R&C’s code, it is apparent
that R&C have erroneously implemented the procedure
described in Algorithm 2 to calculate monthly utilisation
fees that the broker must pay the provider. In particular,
R&C’s code has accidentally omitted line 6. This is the
payment bug—duringmonths that demand is greater than
capacity, the broker does not pay the monthly utilisation
charge for RIs. Although the payment bug only manifests
when there is excess demand for broker resources (and
hence is more likely to occur when θ has a high value), it
has a significant effect on results. (For further discussion
of the payment bug, refer to [18]).
Figures 11 and 12 present results from our CReST repli-

cation of R&C’s model with the payment bug corrected
(to ensure a controlled comparison, the reservations bug
remains). We see that the broker’s profits are much lower
across all thresholds, θ , and in all markets. Comparing
Figure 11 with Figure 7, we see that, for 12-months RIs,
maximum profits (θ = θopt) fall by more than 50% in all
markets (and more than 75% in the Steady market). Like-
wise, comparing Figure 12 with Figure 8, we see that, for
36-months RIs, maximum profits fall by more than 33%

in all markets (and more than 50% in the Steady market).
Clearly, the payment bug is responsible for a large inflation
in the brokerage profits reported by R&C.

Experiment 4: corrected replication of R&C’s brokerage
model
Here, we perform a fully “corrected” replication of R&C’s
model with both bugs removed. Figures 13 and 14 once
again show total profits against θ . It can be seen that
total profits are significantly lower than those presented
by R&C. However, the broker remains profitable under
all conditions other than when investing in 12-months
RIs in a Recession & Recovery market using a low MRU
threshold, θ ≤ 0.07. Under these conditions, the broker
invests too much capital in purchasing RIs that are then
under-utilised by users.
Table 2 presents a summary of results. This table is

intended to replace the results table presented by R&C
Table one, [1]. In general, the results in Table 2 largely
support the conclusions drawn by R&C. Apart from the
particular loss-making conditions described above, the
broker profits under all other conditions and will increase
profits: by considering past performance (i.e., by select-
ing a value of θ > 0); and by investing in 36-months RIs
rather than 12-months RIs. Therefore, although the reser-
vations and payment bugs have a significant impact on
absolute profits (the corrected model produces between
31% and 68% lessmaximumprofit than the original model;
see Table 3), the headline results presented by R&C largely
hold true in the corrected model.
However, in the following section, we recalibrate

R&C’s brokerage model using current market conditions
(September 2013) to test whether the conclusions are still
valid.

Experiment 5: Recalibrating R&C’s model to reflect current
market conditions
Since the publication of R&C’s brokerage model in April
2012 [1], the market for cloud computing provision
has become increasingly competitive. Over the last 18
months, AWS’ prices have fallen rapidly (compare Table 4
with Table 1); and new RI price tiers have been introduced
(“Light”, “Medium” and “Heavy” Utilisation), enabling
users more flexibility to offset upfront payment, PRu,
against the monthly utilisation rate, PRm.
Perhaps more significantly, AWS have also introduced

a secondary marketplace venue for cloud users to buy
and sell RIs—the Amazon EC2 Reserved Instance Market-
place (ARIM) [19,20]. ARIM enables cloud users that own
RIs to re-sell the time remaining (in whole months). For
instance, if a user with 9 months and 2 weeks remain-
ing on a 12-months RI decides that the RI is surplus to
requirements, the instance can be resold on ARIM with
a reservation period of 9 months. Sellers are able to offer
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Figure 11 No payment bug. Total profits plotted against θ using 12-months reserved instances (compare Figure 7). For values of θ ≤ 0.4, profits
are similar (non-identical) for all markets. This is purely co-incidental.

their RIs for sale at any price, PA, but are encouraged by
default to use a “linear price drop”, such that:

PA =
( r
R

)
PRu, (10)

where r is the time in whole months remaining on the
instance, R is the RI’s full term (in months), and PRu is
the price of the instance when bought directly from the
provider [19].

ARIM has the potential to radically disrupt the market
for RIs. Firstly, the introduction of a re-sale venue means
that investment in RI purchases on the primary market—
i.e., directly from the provider—are less risky, as unwanted
time can be traded away. Secondly, the availability of RIs
on the secondary market with contract periods shorter
than those available on the primary market (since r ≤ R)
produces a further reduction in the purchase risk of RIs.
Thus, by enabling the trade of risk, ARIM encourages
users to switch from the (more expensive, but less risky)

Figure 12 No payment bug. Total profits plotted against θ using 36-months reserved instances (compare Figure 8).
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Figure 13 Corrected model. Total profits plotted against θ using 12-months reserved instances (compare Figure 7).

on-demand purchase model, to the RI purchase model.
This benefits AWS, as an increase in the sale of RIs on the
primary market generates more predictability (in revenue
and demand) for the provider and encourages user loyalty.
In light of these changes, it is necessary to recalibrate

the brokerage model of R&C and address assumptions of
the model that may no longer hold.

Current AWS pricing (September 2013)
Table 4 presents current AWS prices for a Medium Util-
isation RI (prices assume 730.5 hours/month; 365.25

days/year). The new tiered pricing of RIs by AWS means
that users can select to purchase RIs based on their likely
utilisation. Higher utilisation RIs have a higher up-front
cost, PRu, and lower usage cost, PRm, than lower utili-
sation RIs. Here, we select Medium Utilisation RIs as a
simple proxy for average prices, however, the conclusions
drawn are largely unaffected by this choice. We can see
from Table 4 that all prices have fallen roughly 30% since
April 2012 (compare Table 1). In this section, we use these
new AWS prices to test the profitability of the brokerage
model in the current market. However, when calibrating

Figure 14 Corrected model. Total profits plotted against θ using 36-months reserved instances (compare Figure 8).



Cartlidge and Clamp Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:2 Page 14 of 20
http://www.journalofcloudcomputing.com/content/3/1/2

Table 2 Profits (and increase) achieved for θ = 0 and θ = θopt (compare [1], Table one)

12-months 36-months

Profit $M Profit $M

θ = 0 θ = θopt Change θopt θ = 0 θ = θopt Change θopt

Rapid growth 0.15 0.44 202% 0.42-0.49 0.76 0.83 8% 0.56-0.58

Steady growth 0.50 0.57 15% 0.34-0.41 1.13 1.15 2% 0.37-0.41

R & R −0.05 0.69 −1565% 0.84-0.91 1.0 1.25 19.8% 0.71-0.80

Steady 0.16 0.61 279% 0.59-0.64 1.3 1.4 10% 0.42-0.46

the model with real-world prices, it is necessary to ad-
just the cost factor,C, to ensure that the options prices that
the broker offers remain low enough to benefit users (and
hence ensure that each user, i, estimates their probabil-
ity of exercising an option, pi, truthfully). In the following
section we describe how we derive C, given the current
market landscape.

Cost factor
The pricing structure of the brokeragemodel is defined as:
ModelPrice(pi) = pi TotalPrice(pi) + (1 − pi)OptionPrice(pi),

(11)
where TotalPrice(pi) and OptionPrice(pi) are given by
equations (5) and (3), respectively. For the model to
offer value to users (a requirement necessary to remain
within theWZH bounds for truth-telling conditions [11]),
ModelPrice(pi) must be lower than (is bounded by) the
lowest available price on the market, PM, such that:

ModelPrice(pi) < piPM, ∀pi ∈ [0, 1] . (12)

Then, Cmax is the value of C that maximises broker’s
profits, i.e., the highest value of C that satisfies inequality
(12).
In [1], R&C assume that PM is the price of an on-demand

instance purchased directly from the provider, PD. Using
current AWS prices (Table 4), we have:

PD = $43.83. (13)

When using R&C bounds, the maximum cost factor
Cmax = 25 (see Figure 15; where the blue-dashed line is
the upper-bounds on the model, piPD, and the solid blue

line representsModelPrice(pi) when C = 25). Thus, when
C = 25, the user is incentivised to purchase options rather
than purchasing on-demand.
However, since the publication of [1], the introduction

of ARIM means that users can now purchase instances
on the secondary market (at price PS). We can be sure
that one month RIs offered for sale on ARIM will have
price PS < PD, since RIs inherently offer less flexibil-
ity than on-demand instances. Therefore, the assump-
tion that PD is the best available price is no longer
reasonable—wemust now consider PS as the best available
price.
We can estimate the likely value of PS using simple

game-theoretic reasoning. Sellers on ARIM want to max-
imise price subject to the constraint PS < PD. However,
sellers must offer a competitive price to ensure a sale. If
PS > PC , where PC is the cost price of a RI to the seller,
then there exists an opportunity for a professional re-seller
to enter themarket at price PB and profit from simply buy-
ing long-term RIs from the provider, slicing into monthly
units, and re-selling at a price PC < PB < PS. In the limit,
therefore, we expect ARIM to tend to an equilibrium price
such that: limt→∞ PS = PC . At prices PS < PC , the seller
makes a loss on each sale. This is clearly not a profitable
strategy to pursue, and hence professional re-sellers on
ARIM will not price at these values. However, there may
be individual firms that attempt to dump surplus RI vol-
ume at a price PS < PC to ensure a sale. But, assuming
that ARIM is a liquid market—i.e., demand on ARIM is
high enough to ensure that a competitive sale price will
always result in a sale—then there is no need for a seller to

Table 3 Overall deviations of maximum profits between R&C’s model and correctedmodel

12-months 36-months

Maximum profit $M Maximum profit $M

R&C Corrected Difference R&C Corrected Difference

Rapid growth 1.00 0.44 −56% 1.27 0.83 −35%

Steady growth 1.41 0.57 −59% 1.85 1.15 −38%

R & R 1.65 0.69 −58% 1.80 1.25 −31%

Steady 1.89 0.61 −68% 2.45 1.38 −44%
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Table 4 Current AWS prices for a MediumUtilisation RI (September 2013)

Medium Utilization RI (m1.small) 12-months 36-months

Reserved up-front PRu $139.00 $215.00

Hourly Monthly Hourly Monthly

Reserved usage PRm $0.021 $15.34 $0.017 $12.42

On-demand usage PD $0.060 $43.83 $0.060 $43.83

reduce prices below PC unless the volume to be sold forms
a significantly large proportion of the market (at which
point there will be an adverse “price impact”, such that
PS must be lowered in order to discover enough demand
to fulfil the volume [21]). For simplicity, we assume that
ARIM is a liquid market and ignore commission costs
(ARIM charges a 12% commission fee on all sales [19]).
Then, we expect:

PS = PC = PRu
R

+ PRm = $18.39. (14)

We consider PS to be the new strong bounds on the bro-
kerage model (see Figure 15, green dashed line). When
Cmax = 10, broker’s profits are maximised (Figure 15,
green solid line), while ensuring that users are incentivised
to purchase options from the broker rather than purchase
RIs on ARIM.
Finally, we also consider a weak bounds on the model,

such that PM = PW , where:

PW = PD + PS
2

= $31.11. (15)

PW assumes that RIs are available to users on ARIMonly
half of the time. We introduce this as an approximation
of ARIM being an illiquid market, such that supply can-
not always cover demand. Hence, under these conditions,
users cannot always be certain that a RI will be available

for purchase on ARIM. Under this condition, Cmax = 18
(Figure 15, red line).
Although we expect the strong bounds to be a more

realistic expectation of the long-term equilibrium price
on ARIM, we include the weak bounds as a transitional
model of ARIM, since it is likely to take some time before
ARIM gains enough traction to become a liquid market
trading at equilibrium.

Empirical evidence of instance prices fromARIM data
At the time of writing (March 2014), ARIM has been
operational for 18 months. However, since Amazon AWS
do not currently publish historical ARIM trade data it is
impossible to perform a full analysis of the behaviour of
the market. Therefore, to determine the level of RI prices
available on ARIM, a snapshot of current price data was
collected across all instance types and all availability zones
in US-East on 14thMarch 2014, 13:14 GMT. To normalise
the data across instance types, the effective hourly rate
(EHR) for each instance, defined as:

Effective hourly rate (EHR) = upfront cost
term in hours

+ hourly rate,

(16)

was indexed against the effective hourly rate of the original
full-term instance when purchased from AWS, such that:

Figure 15 Cost factor bounds.Maximum cost factor, C, given upper bounds on options pricing.
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EHR index = EHR of instance listed on ARIM
EHR of instance purchased from AWS

.

(17)

Therefore, when EHR index = 1, the ARIM list price
has the same effective hourly rate as the same instance
purchased directly from the provider—this is also equiv-
alent to the linear drop price of the instance, defined by
equation (10). Index values below 1 indicate that ARIM
prices are effectively lower than provider prices, and val-
ues above 1 are effectively higher than provider prices.
Figure 16 represents a snapshot of all EHR index prices

across all instance types against the proportion of time
remaining on the RI term. Each bubble plots an individ-
ual quote price, with bubble area proportional to volume
(number of instances) listed at that price. It can clearly be
seen that the majority of instances are quoted for sale at,
or just below, EHR index = 1. Therefore, the argument pre-
sented previously in Section ‘Cost factor’—that prices on
ARIM are likely to be available at the linear drop price—
appears valid. This supports the strong assumption, PS
(14), which implies a cost factor Cmax = 10.
However, a recent blog article presents analysis con-

cerning the liquidity of ARIM [22]. The author monitors
ARIM over a 45-day period between 28th November 2013
and 9th January 2014, taking hourly snapshots of the mar-
ketplace. After cleaning the data, the author uses survival

function estimates to calculate that the median time-to-
sell (for instances that eventually do sell) is 15.5 days and
the censoring ratio is 30% (the proportion of instances
unsold at the end of the observed interval) [22]. This anal-
ysis suggests that ARIM is still an illiquid and fragmented
market, thus supporting the weak assumption, PW (15),
which implies a cost factor Cmax = 18.
The empirical evidence presented here supports the

argument proposed in Section ‘Cost factor’. Specifically,
while the strong bounds offer a more realistic expectation
of the long-term equilibrium of ARIM, the weak bounds
are likely to be a more accurate transitional model of
the market’s current illiquidity. This argument is further
supported by evidence generated from a multi-agent sim-
ulation of ARIM [23], using a simple model containing a
population of ZIP trading agents buying and selling RIs
on a simulated exchange (see [24] for ZIP’s design and
[25-27] for a review of ZIP). Results from the model
showed that simulated trade prices tend to equilibrate
at the linear drop price when the market is liquid; and
equilibrate below the level required for a broker to profit
when there is an excess of sellers dumping unwanted
capacity into the market [23].

Results
When running the brokerage model using current AWS
prices (Table 4) and a cost factor C = 25, the broker-
age model remains profitable (at a level similar to that

Figure 16 Snapshot of US-East ARIM quote prices for all instance types, 14th March 2014 13:14 GMT, with bubble area proportional to
liquidity (volume) at a specific price. An effective hourly rate index of 1 indicates that an instance is listed at the linear drop price. Values below
(above) 1 indicate instance is listed at a price below (above) the linear drop price. Clearly, the majority of instances are listed at or below the linear
drop price (index ≤ 1).
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Figure 17 September 2013 calibration (C=18). Total profits plotted against θ using 12-months reserved instances.

presented in Figures 13 and 14). However, C = 25 is only
acceptable if we assume R&C’s upper bounds (Figure 15).
Given the introduction of ARIM, we reject this result and
re-test the brokerage model using cost factors of C = 18
(weak assumption) and C = 10 (strong assumption).
Figure 17 shows total broker profits for 12-months RIs

when C = 18. For all market conditions, the broker
makes a loss. This demonstrates that, under the weak
assumption, the brokerage model is no longer profitable

for 12-months RIs. However, the model does remain prof-
itable for 36-months RIs, but at a much reduced rate
(maximum profit is less than $0.4M). Hence, as ARIM
grows in popularity and becomes more liquid, we will
expect the brokerage model to be much less profitable.
Finally, when running the model using C = 10, 36-

months RIs are no longer profitable (see Figure 18). Thus,
under the strong assumption, the brokerage model is no
longer profitable under any condition. This effectively

Figure 18 September 2013 calibration (C=10). Total profits plotted against θ using 36-months reserved instances.
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demonstrates that, once ARIM matures into a liquid mar-
ket, there will be no profit available for a broker using
R&C’s model. Thus, we conclude that (if it hasn’t already)
the window of opportunity to commercially exploit the
brokerage model of R&C will soon close.

Discussion: the effect of broker competition
Throughout this paper, and following directly from R&C’s
brokerage model, it has been assumed that the broker
has a monopoly position. Indeed, the WZH reserva-
tion model, which R&C’s brokerage model extends, is
described by the authors as a mechanism that “extracts
revenue similar to that of a monopoly provider practic-
ing temporal pricing discrimination with a user population
whose preference distribution is known in advance” [11]).
Thus, the brokerage model relies on the broker being
somehow able to position itself as a monopoly provider
of options; perhaps through an exclusive licensing agree-
ment with the provider.
We have demonstrated in Section ‘Results’ that R&C’s

corrected brokerage model is profitable under current
AWS prices when acting as a monopoly provider of
options. However, we have also shown that this profit is
eroded through the availability of cheaper instance prices
on ARIM.What we have not considered is the impact that
competition betweenmultiple brokers may have on profit.
It has been shown that when competition is introduced

into a market dominated by a monopolistic supplier per-
forming differential pricing—similar to R&C’s brokerage
model—there will be an increase in intra-firm price dis-
persion [28]. That is, the difference between the highest
and lowest prices charged by each individual firm will
increase: “as the market becomes more competitive, prices
become more dispersed, a pattern documented in the air-
line industry” [28]. In the airline industry for example, one
can observe that while competition between airlines has
lowered the price of the cheapest economy seats (booked
off-season, non-refundable, non-transferable, booked in
advance), the most expensive seats (first or business class,
flexible dates, refundable) have experienced rapid price
inflation.
Therefore, in a market containing multiple brokers

using R&C’s brokerage model we would expect competi-
tion between brokers to similarly increase intra-firm price
dispersion. Therefore, either: (i) theminimumprice (when
the probability of an individual consumer exercising the
option pi = 1) will fall; or (ii) the maximum price (pi = 0)
will rise; or (iii) both the minimum price will fall and
the maximum price will rise together. However, since the
maximum price is constrained by the cost factor, C, it
is impossible for the maximum price to increase beyond
the bounds determined by Cmax (otherwise the brokerage
model will no longer encourage consumers to act truth-
fully, thus destroying the model). Hence, for competition

to occur, either the minimum price (pi = 1) must fall,
or the cost factor must fall. Either way, since the max-
imum price (pi = 0) cannot simultaneously rise, then
the brokers’ margins (and ultimately, the brokers’ profits)
must fall. In reality, the dynamics of a competitive broker-
age market, resulting from the coevolutionary interaction
of multiple adapting entities, are likely to be complex (see,
for example [29,30]). However, we fundamentally expect a
downward trend in brokerage profits over the long-term.
In summary, therefore, we reach the intuitive conclusion

that competition between brokers will reduce brokers’
profits. Furthermore, this effect will be exacerbated by the
availability of “cheap” instances on the secondary market,
ARIM. Thus, unless the cloud provider acts as a monopoly
brokerage supplying instance options, R&C’s brokerage
model looks unsustainable in the face of potential com-
petition. That is not to say that profitable opportunities
do not exist via alternative differential pricing models
using temporal demand forecasts (for example [31,32]), or
alternative cloud brokerage models.

Conclusions
The financial brokerage model for cloud computing
presented by Rogers & Cliff (R&C) demonstrated that
there is an opportunity to profit from acting as an
intermediary between cloud providers and cloud users.
This result has received significant attention within the
cloud computing community and the publication is cur-
rently the fifth most accessed article of all time in the
Journal of Cloud Computing: Advances, Systems and
Applications [2].
Here, we have presented results from our independent

replication of R&C’s brokerage model using CReST, the
Cloud Research Simulation Toolkit. In doing so, we have
identified two problems with R&C’s implementation: the
reservations bug, which forces the broker to be more risk-
averse than the brokerage model suggests; and the more
influential payment bug, which incorrectly calculates the
payment a broker makes to the provider, thereby inflating
the broker’s profits.
After demonstrating the impact of the reservations and

payment bugs, we then presented a set of “corrected”
results for the brokerage model, intended to replace those
presented by R&C. While the corrected results demon-
strate that the brokerage model is less profitable in abso-
lute terms than previously thought, the conclusions drawn
by R&C still largely hold.
However, since R&C’s model was published, the land-

scape for cloud computing provision has radically altered.
In particular, increased competition between providers
has driven down prices and encouraged innovation,
such as the introduction of a secondary marketplace—
Amazon’s Reserved Instance Marketplace (ARIM)—for
users to buy and sell reserved instances. To reflect these
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changes, we updated the assumptions of R&C’s model, by
altering the maximum allowable cost factor.
In R&C’s original work, the model was bounded to

ensure that options from the broker are always cheaper
for users than an on-demand instance purchased directly
from the provider. However, the introduction of ARIM
means that users can now purchase instances on the sec-
ondary market for prices cheaper than the on-demand
price. Therefore, we assume that the price of an option
must always be cheaper than the expected price of a
reserved instance on ARIM. Under this assumption, we
show that the broker’s profits will reduce as ARIM grows
in popularity and at the expected equilibrium the broker-
age model is no longer profitable.
We therefore conclude that the introduction of a new

secondary market venue for users to buy and sell RIs has
closed the window of opportunity to commercially exploit
the brokerage model of R&C. This is particularly com-
pelling, since R&C’s brokerage model assumes that the
broker has a monopoly position. Indeed, the WZH reser-
vation model, which R&C’s brokerage model extends, is
described by the authors as a mechanism that “extracts
revenue similar to that of a monopoly provider practic-
ing temporal pricing discrimination with a user population
whose preference distribution is known in advance” [11]).
Thus, the brokerage model relies on the broker being
somehow able to position itself as a monopoly provider
of options; perhaps through an exclusive licensing agree-
ment with the provider. However, every user now has the
ability to trade RIs on ARIM. Thus, the assumption that
the broker has a monopoly position is no longer tenable.
For this reason, the brokerage model must be able to com-
pete with prices expected on the secondary market. As we
have shown, this is not possible.

Appendix

Rogers & Cliff: right of reply
Here, in the interest of fairness and clarity, we present
Owen Rogers’ response to the camera-ready version of
this paper (20/03/2014).

Replication
“We’re disappointed that errors crept into the code, but
are pleased that our main finding that the consumer and
broker can both benefit using the scheme still holds. JC
and PC’s work demonstrates the importance of confirm-
ing results using independently developed code, a point we
raised in our original paper”.

Calibration
“The ARIM marketplace, rather than weakening the com-
mercial viability of the mechanism, could provide more
opportunities for the broker to hedge capacity. We agree

that based on the current market, the brokerage model
is less commercially viable than when previously investi-
gated, but only when the broker purchases standard RIs
directly from AWS.
“The broker could potentially buy reserved instances

from the ARIM too, giving it further opportunity to reduce
its costs. It could also choose to offer options of smaller
durations not supported by the current ARIM, such as
options for a week or fortnight. Furthermore, the ARIM
gives the broker the opportunity to purchase RIs for a wide
range of time periods, rather than just the 12 and 36-
months offered as standard and investigated in the original
paper - this could enable a wide range of thresholds to
be set for each length of reserved instance to maximise
utilization of the RIs, forcing costs down further. The mech-
anism in these scenarios essentially remains the same -
the configuration of the options sold, and RIs bought is
different.
“The original mechanism was simulated in a monopoly

market. It would be interesting to assess the mechanism
in a competitive market, where each broker differentiates,
essentially, through its assessment of the risk in purchasing
resources. Competing and differentiated financial broker-
dealers currently exist in other commodity markets. Could
the accuracy of thresholds (which may vary over time,
based onmarket prices in the ARIM) provide opportunities
for multiple brokers to co-exist, taking profits dependent on
different market trends? By using the ARIMmarketplace as
a source of cheaper resources, this could potentially provide
some interesting results on market dynamics.”
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