
Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3
http://www.journalofcloudcomputing.com/content/3/1/3

RESEARCH Open Access

Multi-cloud resource management: cloud
service interfacing
Victor Ion Munteanu1,2*, Călin Şandru1,2 and Dana Petcu1,2

Abstract

Cloud service abstractions are currently used to hide the underlying complexity given by existing technologies and
services, in hope of facilitating the enacting of Cloud Federations and Marketplaces. In particular, resource
management systems dealing with multiple Cloud providers need to expose an uniform interface for various services
and to build wrappers for the Cloud service APIs. In this paper we discuss the solution adopted by a recent developed
open-source and vendor agnostic platform-as-a-service for Multi-Cloud application deployment. The middleware
includes a multi-agent system for automatic Cloud resource management. With a modular design, the solution
provides a flexible approach to encompass new Cloud service offers as well as new resource types. This paper focuses
on the modules which enable resource abstraction and automatized management.

Introduction
Offering rapid access to a large pool of available hard-
ware and software resources to a large variety of users, the
Cloud computing has been rapidly adopted by business
and academic communities. The most preferred services
are the ones from the Infrastructure-as-a-Service (IaaS)
category and a large number of such services are available
all over the world.
Currently, there are many reasons for the use of services

from multiple Clouds. We can name here few scenar-
ios: optimize costs or improve quality of services; react
to changes in existing provider offers; follow constraints,
like new locations or laws; avoid dependency on only
one external provider; ensure backup-ups to deal with
disasters or scheduled downtime; deal with the peaks in
service and resource load by offloading on external ones,
on demand basis; replicate applications/services by con-
suming services from different Clouds to ensure their
high availability; act as intermediary; enhance own Cloud
resource and service offers, based on agreements with
other providers; consume different services for their par-
ticularities not provided elsewhere.
According to [1], a Multi-Cloud denotes the usage

of multiple and independent Clouds by a client or a
service. It does not imply interconnection and sharing

*Correspondence: vmunteanu@info.uvt.ro
1West University of Timişoara, Timişoara, Romania
2Institute e-Austria Timişoara, Timişoara, Romania

between Clouds. The clients or their software representa-
tives are responsible for managing resource provisioning.
The selection of the best fitted place to deploy a Cloud
application is a complex technical issue in a Multi-Cloud
that requires the introduction of a Cloud resource man-
agement layer based on vendor-independent brokers and
semi-automated tools (including knowledge-based selec-
tion methods for Cloud services). Such a resource man-
agement system should be able to hide the complexity
of service selection procedures and to control the life-
cycle of the resources and services allocated to a certain
application.
The mOSAIC project consortium (http://www.mosaic-

cloud.eu) has recently proposed and developed an open-
source Platform-as-a-Service focusing on ensuring the
portability of applications consuming Cloud resources
from Private or Public Clouds (the acronym stands for
Open-source API and Platform for multiple Clouds). It
complies with the requirements of aMulti-Cloud resource
management system. In order to achieve its goal to serve
application developers, the PaaS relies upon artificial
intelligence methods in the different procedures, like in
the selection of the Cloud resources to be consumed.
mOSAIC, as a whole, is of modular design, allow-

ing modules to be used as a whole or individually,
individual modules servicing specific purposes. Previ-
ous papers about mOSAIC’s platform have reported the

© 2014 Munteanu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:vmunteanu@info.uvt.ro
http://www.mosaic-cloud.eu
http://www.mosaic-cloud.eu
http://creativecommons.org/licenses/by/2.0

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 2 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

design and functionality of different architectural mod-
ules. In this paper we put a special focus on the platform
modules which are allowing the connection to different
Cloud resources to be consumed. The following sections
describe them in detail as well as their integration within
the whole platform.
The work carried out in this paper is of direct conse-

quence of a general lack of support for common standards
coming from Cloud Vendors, each of them having propri-
etary, closed source, implementations with custom inter-
faces and APIs. This in turn makes it difficult for cloud
application developers to create provider independent
cloud applications and forces them to spend time away
from working on their applications to work on integrating
various Cloud Vendor technologies.
This paper is an extension of the authors’ paper pre-

sented at ITAAC 2012 [2]. The extension consists in the
description of the interaction with the Cloud resources,
as well as a the functionality of the tool designed as
proof-of-concept.
The remainder of the paper is organized as fol-

lows. Section ‘Short overview of mOSAIC’s approach
for interaction with Cloud services’ gives a brief intro-
duction to the mOSAIC’s approach to the interaction
with Cloud services. The main results are presented in
Section ‘Vendor module role and functionality’ where
our approach to Vendor Modules is detailed along with
use cases for which the solution was designed and in
Section ‘Proof-of-concept implementation’ a proof-of-
concept implementation is presented. Finally, conclusions
and future work are presented in Section ‘Conclusions’.

Short overview ofmOSAIC’s approach for
interactionwith Cloud services
Triggered by the need of a solution for the portability
problem, mOSAIC was designed to be an open-source
and deployable middleware able to support applications
which are consuming Private or Public Cloud services. An
overview of the entire solution can be found in the recent
paper [3].
Figure 1 captures mOSAIC’s architecture as a series

of grouped components. The top part represents proof
of concept applications that were developed on top of
mOSAIC. The bottom part is the mOSAIC PaaS which
is composed of: an application support layer made up
of APIs, tools and semantic support; software platform
support which is behind the high level APIs and handles
execution; infrastructure support which handles the man-
agement of the infrastructure; cloud adaptors which for
the basis of the PaaS and communicate directly to various
Cloud services and providers.
mOSAIC offers integration of Cloud services which is

achieved through an interface that is instantiated in three
forms:

1. an abstract entity (e.g. an object) in a programming
language, mainly used at the design stage of the
application;

2. a wrapper that allows the service to be integrated in
the platform, mainly used at the run time by the
platform as an intermediary for the application;

3. a representation in the service acquisition and
SLA management processes, mainly at the
deployment time of the support platform and the
application.

In the next sections we will focus on the last case. The
other two cases we present shortly in what follows.

Design time: language-dependent and
vendor-independent abstraction of the Cloud services
The developer of a new application intended to run in
Cloud environment is invited to describe the application
in Java, Python and Erlang following the mOSAIC’s API
recommendations so that the application is not depend-
ing on a certain implementation of a Cloud service. An
application can profit from the elasticity at the level of
components (instead at a larger granularity level, as usual,
at virtual machine level), if the component is able to scale.
An event-driven programming style has been adopted to
reduce the network traffic.
The first level of interface with the Cloud service (the

abstraction layer) is done to the level of the language-
dependent APIs through the so-called Cloudlets and Con-
nectors. The first ones are expressing the reaction of
the application to the events related to Cloud resource
consumption. The second ones are generic in terms of
operations allowed for a certain type of Cloud resource
(e.g. key-value store, distributed file system, http gateway,
or message passing system).
The latest detailed description of themOSAIC’s API can

be found in [4].

Run time: wrappers of cloud service interfaces
An interoperability service of the mOSAIC’s platform acts
at run-time as a proxy between a vendor-agnostic and
language-dependent Connector used by a certain appli-
cation and a Driver of a certain type of Cloud resource
(e.g. message queuing system, key value store, distributed
file system). The Driver is wrapping the native API of the
Cloud service in order to enable the service to interact
with the other components of the platform or applica-
tion. Deployable open-source services (like RabbitMQ as
message queuing system, Jetty as web server, or Riak as
key-value store) are used as Cloud resources available on
the provisioned virtual machines on which the mOSAIC
platform is deployed. The open-source code of the latest
stable version includes more then ten drivers for various
deployable or hosted services and is provided at https://

https://bitbucket.org/mosaic

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 3 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Figure 1mOSAIC’s architecture presented in [3].

bitbucket.org/mosaic. Some of them are mentioned in the
next section (see the tables).
The platform that is deployable on virtual machines

acquired from Private or Public Clouds includes core
modules that ensure the deployment of the application,
the control of the deployed components, the registration
and discovery of new components. A web interface allows

manual start, destruction, replication or replacement of
application components without stopping and restarting
the application or the platform.
The latest detailed description of the platform function-

ality at run-time can be found in [5]. The platform is
further developed to include monitoring facilities in the
frame of the EC-FP7 project MODAClouds [6] and to

https://bitbucket.org/mosaic

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 4 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

improve security features and SLA compliance checks in
the frame of EC-FP7 project SPECS [7].

Deployment time: cloud service representation for
acquisition
The Application Tools developed throughout the project
were designed to assist the developers in the deployment
process by enabling the editing of the application descrip-
tor stating the basic requirements in terms of the rela-
tionships between the application components. Another
component, the Portable Testbed Cluster (PTC), allows
the development and debugging of application on a desk-
top and then assist in its porting on a Private or Public
Cloud. The Resource Allocator is able to acquire resources
as described in the deployment descriptor.
The Semantic Engine and Service Discoverer support

the application developer in finding the proper function-
ality for his or her application or the proper type of Cloud
service (details in [8]). In order to tackle with the vari-
ety of terms and relationships between of them, a Cloud
Resource Ontology was build (details in [9]).
The application developer is assisted in the process of

Cloud service acquisition by the Cloud Agency (shortly,
CA), a multi-agent system designed to support brokering
and provisioning of Cloud services. The multi-agent sys-
tem includes Vendor Agents representing the providers
in the brokerage process. Details about the CA concept
can be found in [10], while the full workflow is detailed
in [11]. An overview of its architecture can be seen in
Figure 2. The brokering process is based on service level
agreements (details in [12]).
The Cloud Agency focuses on acquiring services

for computing, storage or networking (i.e related to
resources).
A Cloud resource can be present in the inputs and

outputs of the CA:

1. in an abstract representation in the call for proposals
for services to be acquired for an application
deployment;

2. in an abstract representation in the response of the
Cloud providers agents available in the platform
leading to a proposal for a service level agreement;

3. in an abstract representation in the application
deployment descriptor, after the approval of the
service level agreement.

The interface with the Cloud service for resource acqui-
sition is achieved through a so-called Vendor Module that
is discussed in what follows.

Vendor module role and functionality
This section focuses on the Vendor Modules, as being
relevant for the management system of multiple Cloud

resources. The design requirements are related to the
need of vendor agnosticism, the integration in the Cloud
Agency, the compliance with the Cloud providers offers.
While the answers to the last two requirements are spe-
cific for the solution that is build or the provider that is
connected, the first one leads to an abstract level that can
be of general interest, and therefore is described in details
in what follows.

Supported applications
Taking a step back, we should first note that there are two
business processes which are relevant in relation with the
vendor agents: the resource provisioning and the resource
management (Figures 3 and 4).
The Cloud Agency supports at least three kinds of

applications:

1. ones that run on top of the Platform having CA as a
resource provider for the Platform itself;

2. ones that run on the Cloud without Platform and CA
provides provisioning and resource management as
well as scaling up and down of the resources;

3. ones that include both mOSAIC API compliant
components intended to run on top of the Platform
and non-mOSAIC components to be serviced by the
CA.

The Vendor Agents should be able to read and interpret
application descriptions prepared using the Application
Tools for applications addressing any of the three situa-
tions above. They are able to prepare the Cloud resources
according to the application description rules. The appli-
cation description together with other elements coming
in place based on the user preferences and tools interac-
tions during the resource provisioning process (e.g. SLA
mechanisms) allows for the generation of a deployment
descriptor. This descriptor includes all the needed infor-
mation to prepare and create resources at deployment
time (it is basically an artifact which is available at the end
of the resource provisioning phase and is the base for the
resource management phase).
A sample deployment descriptor is included in Listing 1.

It mainly includes a set of descriptions for all the resource
classes involved in the application to deploy. The example
presents an application which needs:

1. the CA support, thus a CA Virtual Machine has to be
available;

2. the Platform support, thus the Platform Control VM
and Platform Execution VM should be available;

3. a storage for a platform Driver implementing a
key-value storage;

4. the Web Server functionality presented as a distinct
tier with all the resources at this tier being load
balanced.

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 5 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Listing 1 Deployment descriptor

<dep l oyment_de sc r i p to r >
< a p p l i c a t i o n >

mOSAIC App l i c a t i on
< / a p p l i c a t i o n >
< d e s c r i p t i o n >

Requ i r i ng the CA, PaaS and a Web Se rve r
< / d e s c r i p t i o n >
< t i e r s >
< t i e r >
< id > CA </ id >
< r e s o u r c e _ c l a s s e s >

< r e s o u r c e _ c l a s s r e sou r ce_ t ype = " compute " name="CA_VM" >
<prov ide r >AMAZON</ prov ide r >
< s l a >SLA_1001</ s l a >
< d e s c r i p t i o n >CA V i r t u a l Machine< / d e s c r i p t i o n >
< u r l > dep loyed_ image : / /CA. ami< / u r l >
< f i l e s >
< f i l e >∗/∗</ f i l e >

< / f i l e s >
<run>
<program>star tCA . sh< / program>

</ run>
<max_ ins tances >1< / max_ ins tances >

< / r e s o u r c e _ c l a s s >
< / r e s o u r c e _ c l a s s e s >

< / t i e r >
< t i e r >
< id >mOSAIC Pla t form </ id >
< r e s o u r c e _ c l a s s e s >

< r e s o u r c e _ c l a s s r e sou r ce_ t ype = " compute " name="PLATFORM_VM" >
<prov ide r >AMAZON</ prov ide r >
< s l a >SLA_1002</ s l a >
< d e s c r i p t i o n >PaaS Contro l VM</ d e s c r i p t i o n >
< u r l > dep loyed_ image : / /PLATFORM. ami< / u r l >
< f i l e s >

< f i l e >PLATFORM/∗</ f i l e >
< / f i l e s >
<run>

<program> i n i t _ p a a s . sh< / program>
</ run>
<max_ ins tances >1< / max_ ins tances >

< / r e s o u r c e _ c l a s s >
< r e s o u r c e _ c l a s s r e sou r ce_ t ype = " s t o r a g e " name="PLATFORM_KV_STORAGE" >

<prov ide r >AMAZON</ prov ide r >
< s l a >SLA_1002</ s l a >
< d e s c r i p t i o n >P la t form KV s t o r a g e < / d e s c r i p t i o n >
< u r l > s t o r a g e : / / kv_bucket_name</ u r l >

< / r e s o u r c e _ c l a s s >
< r e s o u r c e _ c l a s s r e sou r ce_ t ype = " compute " name="PLATFORM_EXEC_VM" >

<prov ide r >AMAZON</ prov ide r >
< s l a >SLA_1002</ s l a >
< d e s c r i p t i o n >PaaS Execut ion VM</ d e s c r i p t i o n >
< u r l > dep loyed_ image : / /PLATFORM_EXEC . ami< / u r l >
<run>

<program> i n i t _ e x e c _ p l a t f o rm . sh< / program>
</ run>

<max_ ins tances >5< / max_ ins tances >

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 6 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

</ r e s ou r c e _ c l a s s >
</ r e s ou r c e _ c l a s s e s >

</ t i e r >
< t i e r >
< id >Web se r v e r </ id >
< r e s ou r c e _ c l a s s e s >
< r e s o u r c e _ c l a s s r e sou r ce_ t ype =" compute " name="APP_WS_VM">

<prov ider >AMAZON</ prov ider >
< s l a >SLA_1003 </ s l a >
< de s c r i p t i on >App WS Tier VM</ de s c r i p t i on >
<ur l >dep loyed_ { i }mage : / / WebService . ami </ ur l >
< f i l e s >

< f i l e >APP/WebService /∗ </ f i l e >
</ f i l e s >
<run>

<program>ca_monitor . sh </ program>
<program> t i e r 1 . sh </ program>

</ run>
<max_instances >3</ max_instances >
< l oad_ba l anc ing >

<port >8080 </ port >
<protoco l >HTTP</ protoco l >

</ l oad_ba l anc ing >
</ r e s ou r c e _ c l a s s >

</ r e s ou r c e _ c l a s s e s >
</ t i e r >

</ t i e r s >
</ dep loyment_descr ip to r >

Use case
In their white paper “Architecture for Managing Clouds”
[13], Distributed Management Task Force (DMTF) iden-
tify a series of cloud management use cases and depict
these in close relation with the cloud service lifecycle,
starting from NIST’s definition of Cloud Computing [14],
at the same time identifying relations between various
actors.

Of the use cases presented by DMTF, the provision-
ing use case is the most important one as it essentially
defines the work carried out in this paper. The provision-
ing use cases defines “the process of selecting, reserving,
or creating an instance of a service offering” [13].
The normal steps for this use case are:
• Authentication – establishing the identity and

permissions with the cloud provider;

Figure 2 Cloud agency’s architecture presented in [10].

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 7 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Provide Proposal

Vendor Agent

Refuse
Proposal

Maintain Proposal

<<Include>>

<<Include>>

Accept
Proposal

Receive CFP

Proposals DB

Reject CFP

<<Include>>

<<Include>>

Figure 3 The resource provisioning use case.

• Offerings – evaluating and selecting from existing
offerings;

• Provisioning – the actual provisioning of the desired
resources;

• Provisioning monitoring – monitoring the activity of
the provisioning process;

• Information retrieval – retrieving meta information
about the provisioned resources;

The best example for this use case would be a company
that has a cloud application composed of two compo-
nents: one that runs on a public cloud and one that runs
on a private cloud.When provisioning, the company must
choose two cloud providers to match the components.

The ease of use provided by the CA enables the company
to provision the resource for its application on desired
cloud vendors as long as these vendors are supported
through specific Vendor Modules.
Thus, having an unified interface provides a vendor

agnostic approach to resource provisioning enables provi-
sioning without knowing the intricacies of cloud vendor
APIs, as well as it allows the addition of other cloud
vendors with great ease.

Describing resources
A resource class is uniquely identified by a name and
its type. After resource provisioning, it is tied to a spe-
cific provider and a specific SLA. Because of the nature

Vendor Agent

Create Resource

Perform Action on
Resource

Get Resource Info

Perceive Resource
Status Changes

Release Resource

Resources DB

Maintain Resource

Retrieve Resources

<<Include>>

<<Include>>

<<Include>>

stores/update into

<<Include>>

Figure 4 The resource management use case.

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 8 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

of SLAs, that of being cloud vendor specific, it is hard
to find common ground between different vendors, and
moreover it is hard to find common relationships between
SLA metrics and provisioned resources. A clear exam-
ple of this issue would be Amazon, the largest cloud
provider, which only has 1 SLA metric: Monthly Uptime.
The SLAs do not have to be the same for different resource
classes. Depending of the class resources type, there are
description tags which need to be specified in the class
description. For example in the case of compute resources,
the location of the image to use in order to create that VM
is specified. In the same situation, there could be a set of
files to be uploaded into that VM before using it. Also, one
or more programs have to be executed at startup. All this
information is present in the descriptor.

Listing 2 presents an example for the resource classes
for the Platform part. There are three resource classes in
the above descriptor extract:

1. Compute resources in order to run the VMs for the
core Platform. Specific files have to be installed on
the VMs and some programs to be run at the
initialization time;

2. Compute resources in order to host the components
of the Application which runs on top of the Platform.
These VMs have to be properly initialized as well;

3. A storage to be used by the Platform core. It is to be
attached to each core Platform VM, indication
specified accordingly in the core VM descriptor.

Listing 2 Cloud Application Resource Descriptor

< t i e r >
< id >mOSAIC Pla t form < / id >
<name>CA Par t 2< /name>
< d e s c r i p t i o n >mOSAICPlatform< / d e s c r i p t i o n >
< r e s ou r c eC l a s s e s >

< r e s ou r c eC l a s s >
< id >Platform_VM</ id >
<name>P la t form VM</name>
< d e s c r i p t i o n >P la t form VM</ d e s c r i p t i o n >
< type >COMPUTE< / type >
<vendorId >AMAZON</ vendorId >
< s l a I d >

< id >AMAZON_SLA_1342887364004_2< / id >
< c fp Id >

< id >CFP_1< / id >
< appDesc r ip to r Id >App_Dscr_Id < / appDesc r ip to r Id >

< / c fp Id >
< / s l a I d >
< image_ur l >
dep loyed_ image : / /AMI_WITH_LINUX . ami ? user−data =# ! pkg :mosaic−node−boot
< / image_ur l >
< f i l e sToDep l o y>

< f i l e >
< localURL>

h t t p : / / f t p . i n f o . uv t . ro / mosaic /mos / bundle− i n s t a l l e r / mosaic−t oo l s −bundle −0 . 2 . sh
< / localURL>
<remotePath>mosaic−t oo l s −bundle −0 . 2 . sh< / remotePath>

< / f i l e >
< / f i l e sToDep l o y>
<programsToRun>

<program>sh mosaic−t oo l s −bundle −0 . 2 . sh s t anda l one < / program>
<program>chroot / opt / mosaic / os< / program>
<program> / e t c / i n i t . d / mosaic s t a r t < / program>

< / programsToRun>
< f i r e w a l l >

<openPorts >
<range >
<min>0< /min>
<max>65535< /max>

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 9 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

</ range >
</ openPorts >

</ f i r e w a l l >
< s to r age >P l a t fo rm_S to r age_ Id </ s t o r age >
<max_instances >3</ max_instances >

</ r e sou r ceC l a s s >
< r e sourceC l a s s >

< id >Platform_Exec_VM </ id >
<name>Pla t form Execut ion VM</name>
<de s c r i p t i on >P la t form Execut ion VM</ de s c r i p t i on >
<type >COMPUTE</ type >
<vendorId >AMAZON</ vendorId >
< s l a I d >

< id >AMAZON_SLA_1342887364004_2 </ id >
<c fpId >

< id >CFP_1 </ id >
<appDescr ip tor Id >App_Dscr_Id </ appDescr ip tor Id >

</ c fpId >
</ s l a I d >
< image_ur l >deployed_image : / / AMI_WITH_LINUX . ami </ image_ur l >
< f i l e sToDep l oy >

< f i l e >
<localURL >

ht tp : / / f t p . i n f o . uv t . ro / mosaic /mos / bundle− i n s t a l l e r / mosaic−t oo l s−bundle −0 . 2 . sh
</ localURL >
<remotePath >mosaic−t oo l s−bundle −0 . 2 . sh </ remotePath >

</ f i l e >
</ f i l e sToDep l oy >
<programsToRun >

<program>sh mosaic−t oo l s−bundle −0 . 2 . sh s tanda lone </ program>
<program>chroot / opt / mosaic / os </ program>
<program >/ e t c / i n i t . d / mosaic_exec_machine s t a r t </ program>

</programsToRun >
< f i r e w a l l >
<openPorts >
<range >

<min>0</min>
<max>65535 </max>

</ range >
</ openPorts >

</ f i r e w a l l >
<max_instances >5</ max_instances >

</ r e sou r ceC l a s s >
< r e sourceC l a s s >

< id >P l a t fo rm_Stor age_ Id </ id >
<name>P la t form KV Storage </name>
<de s c r i p t i on >P la t form KV Storage </ d e s c r i p t i on >
<type >STORAGE</ type >
<vendorId >AMAZON</ vendorId >
< s l a I d >

< id >AMAZON_SLA_1342887364004_2 </ id >
<c fpId >

< id >CFP_1 </ id >
<appDescr ip tor Id >App_Dscr_Id </ appDescr ip tor Id >

</ c fpId >
</ s l a I d >

</ r e sou r ceC l a s s >
</ r e s ou r c eC l a s s e s >

</ t i e r >

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 10 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

To summarize it, Listing 2 contains a list of resource
types that need to be provisioned (two compute resources
and one storage). For the compute resources, information
related to the vendor, sla, vm image, deployment informa-
tion, security information are specified. Storage resource
has only information related to the vendor and sla defined.
For compute resources, the maximum number of

instances, open ports can be specified. Additionally, one
can specify if they are load balanced using some load bal-
ancers, like in the case of the Web server tier described in
Listing 1.
Generally speaking, deployment descriptors (e.g.

Listing 1) contain information like: files to upload, com-
mands to run, number of instances to start, and are
mostly used in conjunction with compute resources.
The first distinction between Cloud resources is made

by their traditional classification in the Cloud. We are
interested in the following resource types:

1. COMPUTE : a Virtual Machine;
2. STORAGE : a volume to be attached (mounted) to a

Virtual Machine;
3. NETWORK: networking for a compute resource;
4. LOAD BALANCER: a balancer associated with

Virtual Machines;
5. MAP-REDUCE : a resource implementing the map

reduce protocol;
6. CLUSTER: a set of COMPUTE resources being

subject of auto-scaling.

A second distinction came from the fact that two com-
pute resources (or, in general, resources of the same type)
may require different credentials or are subject of dif-
ferent provisioning restrictions. We consider the concept
of a resource class in order to cope with this distinc-
tion. In particular, resource types are important when
asking for credentials and when creating resources as, for
example, compute resources might require additional cre-
dentials (e.g. key pairs, ssh credentials) as opposed to stor-
age resources. A resource identifier includes information
about the resource class.

Cloud provider specifics
Different Vendor Agents are expected to have some com-
mon behavior which integrates with specific behavior. It
is important to share common functions and their imple-
mentation between different Vendor Agents in order to
minimize the development effort and to provide an uni-
form approach in the CA. The concept of Vendor Mod-
ule was introduced therefore to encapsulate the specifics
of Cloud providers. Such a module, pluggable into the
Vendor Agent, is based on an Abstract Vendor Module
entity intended to address all the common functionality
of the vendor agents and their integration in the CA. The

Figure 5 presents the relationship between the Abstract
Vendor Module and the Vendor Module.
As the Vendor Module is a component which is

intended to address the specifics of a Cloud provider in
terms of resource provisioning and resourcemanagement,
Vendor Modules are necessary to be developed for each
Cloud service provider. An API was designed therefore
to support the fast development of Vendor Modules. The
API includes an abstract behavior of the Vendor Mod-
ules, definitions and implementations of all the impor-
tant concepts related to resources, resources provisioning
and resources management. Also the API was concerned
about the deployment of the applications on the Cloud
infrastructures.
Because of the specifics of the Cloud providers affect

Cloud resourcemanagement, common elements had to be
identified and currently reflect in the design and imple-
mentation as they take into account important elements
like the provided resources by a specific vendor, the oper-
ations available on resources (like COMPUTE, VOLUME
and STORAGE), the way the credentials are managed, the
available APIs or administrative operations. Such com-
mon elements are discussed in what follows, for twelve
providers of hosted or deployable services (the ones con-
nected with the mOSAIC’s platform).

Provider resources
As can be seen in Table 1, COMPUTE and VOLUME
resources are available to all providers.

Compute operations
Table 2 basically reflects the availability of the major oper-
ations on virtual machine for all the considered Cloud
providers. However, there are some variations between
providers as some of them directly start the virtual
machine on creation or can only attach volumes after the
virtual machine creation.

Storage operations
The volume operations basically involve the ability to cre-
ate and delete drives (see Table 3). Then, the drives are
attached to the compute resources either at the creation
time or later.

Admin operations
Table 4 includes some common administrative operations
performed on virtual machine images and on the creden-
tials as they can be made using some API. In some cases
there is an ability to upload virtual machine images, but
most of the providers cannot do that. This is why the cur-
rent API of the Vendor Module is avoiding this step and is
relying on the users to upload the appropriate images on
the providers.

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 11 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

<<component>>
AbstractVendorModule

<<component>>
PersistencyService

<<component>>
LoggingService

<<component>>
CredentialsService

<<component>>
DeploymentService

<<component>>
CloudProviderVendorModule

CloudProvider

Figure 5 Vendor module.

Credentialsmanagement
The used credentials in order to manage resources vary
across the Cloud providers (Table 5). In general, user-
name/password authentication is possible. Amazon and
Eucalyptus put this into the form of Access/Secret keys.

API
There is a wide range of options related to the API to
use when accessing the services of a Cloud provider. The
Table 6 provides a reference. The current vendor mod-
ules rely on Java libraries whenever available. In some
cases there are Java libraries wrapping REST or SOAP
communication.

Resource provisioning andmanagement
The Abstract Vendor Module operations cover two
important goals of the Vendor Agent: resource provision-
ing and resource management. The operations specific to
the Vendor Module are presented in the Figure 6.
The operations outlined in the Abstract Vendor Mod-

ule description falls into few categories which are not
necessarily distinct:

1. public operations: are intended to be called in order
to address client requests. They can be implemented
at the level of the Abstract Vendor Module or
Vendor Module (those also being abstract);

2. protected operations: are intended to be
implemented by the Abstract Vendor Module (most
of them) or by the Vendor Module (the ones which
are also abstract: in italics);

3. abstract operations: are intended to be implemented
by the specific Vendor Modules.

Provisioning
The resource provisioning is projected in Vendor Agents
provisioning of proposals as answer to a Call for Pro-
posal (CFP). Once a proposal is accepted, the resource
classes involved in that proposal are prepared in order for
resource services to be created/activated.The creation/ac-
tivation of brokered SLA resources is not yet possible, as
resources are intended to be created and destroyed when

needed; however, for certain resource classes, the prepara-
tion step may be required, for example, to make sure some
image is available on the right place on the Cloud provider
environment. Resource class preparation also involves
ensuring the right credentials are in place before actually
managing resources (as instances of resource classes).

Management
The resourcemanagement refers here to all the operations
on resources once they are provisioned. The resource
management starts with the accepting of a proposal. Then,
the resource classes have to be prepared by obtaining the
needed credentials and by performing any required step
in order for the resources of that class to be created.

Vendor module services
There are four services in relationwith theVendorModule
coping with persistency, credentials, logging and serializa-
tion. These services are passed to the Vendor Modules by
the Vendor Agent at the module creation time, and they
can be potentially reused across Vendor Modules.

Credentialsmanagement
Different Cloud providers use different authentication
policies. Also, different resource types require specific
credentials in order to be created and managed. The cre-
dentials are not directly available to the Vendor Agents
and therefore the agents should query them from the
application deployer at the deployment time. The creden-
tials may no longer be requested at the execution time as
the agents are deployed in the Cloud and the CA is decou-
pled by the deployment tools. A Credentials Service is
therefore intended to manage all the needed credentials of
the vendor agent in relation with the resource classes and
SLAs. The Vendor Module can query the credentials for
a resource class defined in relation with a specific SLA in
order to perform operations on that resource class or its
instances.

Persistencemanagement
There are two kinds of entities which are identified to
be subject of persistence: vendor proposals (SLAs) and

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

12
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 1 Cloud resources

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFI Cloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

Compute � � � � � � � � � � � �
Storage � � � � � � �
Volume � � � � � �∗ � � � �
MapReduce �
Databases �
Load balancing � � � � � �
Firewall � � � � � � �
Clusters � �
∗Not persistent (created and destroyed with the appropriate VM).

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

13
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 2 Compute operations

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFICloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

Create � � � � � � � � � � � �
Destroy � � � � � � � � � � � �
Start � � � � � � � � � � � �∗

Stop � � � � � � � � � � � �∗

Reboot � � � � � � � � � �∗

Attach Volume � o o � o � � � � �
Detach Volume � � � � � � � � �
List details � � � � � � � � � � �
o: onCreate; ∗depends on particular driver load.

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

14
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 3 Storage operations

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFI Cloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

Create � � � � � � � � � � � �
Delete � � � � � � � � � �

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

15
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 4 Administrative operations

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFI Cloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

Upload Image � � � � � � � � �
Bundle Image � � �
Download Image � � � � � � �
Delete Image � � � � � � � � �
Manage Keys � � � � � � � � �

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

16
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 5 Credentialsmanagement

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFI Cloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

Private/Public Key � � � � �∗

Username/Password � � � � � � � � � �∗

Access/Secret key � � � � � �∗

External Authentication � L �∗

L - based on LDAP; ∗depends on the driver load and provider configuration.

M
unteanu

etal.JournalofCloud
Com

puting:A
dvances,System

sand
A
pplications

2014,3:3
Page

17
of23

http
://w

w
w
.journalofcloud

com
p
uting.com

/content/3/1/3

Table 6 API

Amazon Flexiscale CloudSigma Eucalyptus OpenNebula NIIFI Cloud OpenStack VMware OnApp GoGrid CloudStack DeltaCloud

REST � � � � � � � � � �
Java � E � � � � E E

SOAP � � �
Other R,H,N R,X R,L R,C

OCCI compliant � �
AWS compliant � � P � � P

E - external libs; P - EC2; R - Ruby; H - PHP: N - .NET; L - CLI; C - C/C++; X - XML-RPC.

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 18 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Abstract VM CloudProviderVMVM Client

15: performResourceReleasing

12: performActionOnResource

8.4: runProgramOnResource

8.3: uploadFilesOnResource

8.2: setupResource
6: newResourceCredentials

8.1: performResourceCreation

2: onProposalAvailable

2: onCFPRejection

10: onResourceStatusUpdate

9: onResourceCreated

16: onResourceReleased

13: onResourceActionRerformed

13: onResourceActionFailure

5: ensureResourceCredentials

7: createResource

1: submitCFP

3: acceptProposal

3: refuseProposal

4: deployApplication

14: releaseResource

11: actOnResource

Figure 6 Vendor module communications.

Cloud resources. The Vendor Agents can refer to vendor
proposals both when provisioning resources and when
using resources. Therefore the proposals have to be stored
and their status maintained in some persistent area. The
proposals are related to the submitted CFP which may
be stored as well. Once an SLA was agreed, the Vendor
Agents maintain information about the resources classes
and how they can be referred by the Cloud provider.
For example, the AMAZON’s Vendor Agent may keep
a mapping between an AMI image and the resource
class it is related to as this information comes from
the deployment descriptor or as the Vendor agent itself
may infer. When starting to create resources, the iden-
tifiers of these resources are also stored and mapped to
resource descriptions and resource classes in order for
future requests to be satisfied. The status of the resources
is maintained as well based on the received requests
from the clients and the received updates from the Cloud
provider.

Logging
Logging events is sometimes useful and necessary. The
Vendor Agent provides the Vendor Module with a logging
service in order for the significant events to be logged at
the level of the agency. There are different logging levels,
in a similar way the Java language itself provide logging
support.

Serialization
The CA uses its own protocol and serialization elements
in order to transport messages and their parameters
between agents. Once a message arrives to the Vendor

Agent, it has to be split and its components transferred
into an object oriented form in order for the agents’ ser-
vices’ methods to be called. The serialization service is
therefore tasked with message composition/decomposi-
tion as the objects are transmitted or received from the
CA API.
Note that currently in the open-source reposi-

tory of mOSAIC, on bitbucket.org, the codes of the
Vendor Agents and Modules are available in mosaic-
vendor-vendors sub-repository and are being
maintained by their authors.

Support for brokering
Within the mOSAIC’s Cloud Agency, it is the responsibil-
ity of the Vendor Agents to create an (SLA) offer in reply
to a Call-for-proposal received from the user. These offers
should contain a service description (hardware parame-
ters of the virtual machines, storage, network, and/or any
additional provider specific SLA related information) and
a price (e.g. hourly fee of the offered infrastructure). The
possible hardware configurations, and their price change
from provider to provider. In the current implementa-
tion of the Vendor Modules, this information is either
hardcoded in the corresponding module, or provided as
configuration files which are read by the VendorModules.
The main disadvantage of this solution is that whenever a
provider changes its offered services, or its prices, the cor-
responding vendor module, or its configuration file has to
be updated.
A more seamless integration could have been achieved,

if the Vendor Modules could directly query the avail-
able hardware configurations and their prices from the

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 19 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

providers. This method could be applied, if the providers
exposed public Web services to publish such informa-
tion. Unfortunately, none of the providers support this
functionality entirely. The most complete functionality is
provided by Flexiscale and CloudSigma. These providers
publish Web service calls to query the available hard-
ware configurations and the prices of certain services. For
instance, one can query the price of the available VM con-
figurations from Flexiscale, and the price of some network
and software (license) resources from CloudSigma. The
problem with these providers is that they do not expose
these calls as a public service, the user has to have a
username and a password to make such requests. Since
brokering happens before deployment, the user will typi-
cally not have a password to these providers at brokering
time.
An even lower level of service is provided by RackSpace

(using the OpenStack API) and Arctur-1 (using the
VMWare API). These providers do expose the available
hardware configurations, but there is no way of querying
the corresponding prices. Unfortunately, we expect the
prices to change more frequently than the offered hard-
ware configurations, therefore the configurations of the
corresponding vendor modules have to be changed any-
way. Finally, among the integrated vendors, Amazon and
GoGrid was found to lack any support for automated bro-
kering. Neither the offered hardware configurations, nor
their prices can be queried. Until this situation changes,
these vendor modules have to rely on the current off-line
approach.

Migration
The CA deployment procedure involves an initial sit-
uation when the CA agents are deployed into a local
environment, on the user’s machine and a follow-up
situation when the agents are migrated into a Cloud
environment as part of the application deployment
procedure.
There are few elements which concerns the Vendor

Agents as part of this process. In the initial phase, the Ven-
dor Agents only contribute to resource provisioning. The
resource creation and the resource management is subject
of the second phase when the agents are deployed in the
Cloud. During the first phase the Vendor Agents acquire
credentials for different resource classes and create con-
tent in the Proposals DB as it results from the provisioning
process. The Resources DB may also be populated with
resource class details. Apart of the information the Ven-
dor Agents themselves directly manage, there are a set
of application specific elements which have to be moved
into the Cloud context in order to be accessible to the
Vendor Agents at the resource creation time. Such ele-
ments include files as described in the Application Types
to Support section.

The Vendor Agents are directly interested about such
considerations as they are actually responsible to move
the application and all the needed elements from the local
context to the Cloud environment.

Proof-of-concept implementation
In order to make a preliminary validation of the design
and to have a reference implementation, a SampleVen-
dor Module was developed. Additional development was
made in order to interact with the PTC (Portable Testbed
Cluster) infrastructure by writing a specific Vendor Mod-
ule. After the initial validation on PTC, the remainder
of the vendor specific modules were developed, current
implementation of the modules covering several Cloud
providers including Amazon, CloudSigma, Eucalyptus,
Flexiscale, GoGrid, Niifi Cloud, OpenNebula, OpenStack,
PTC and VMWare and can be found on the BitBucket
repository (https://bitbucket.org/mosaic/mosaic-agency-
vendors/).
In order to support the development and testing of Ven-

dor Modules, an Eclipse based tool was developed. This
tool facilitates the creation and editing of the descriptors
that are used throughout the provisioning and manage-
ment of Cloud resources as well as enable the workflow
patterns under which the Vendor Modules have been
designed as follows:

• Cloud Application – enables creation and editing of
the description of the Cloud application with its tiers
and resources (Figure 7);

• Call for Proposal – enables generation of CfP from an
existing Cloud Application description and allows
customization of each resource attributes (Figure 8);

• Service Level Agreements – enables the brokering
(simple resource brokering) of the CfP by sending
it to enabled Cloud vendor modules and
receiving from each the suitable SLAs and enables
their visualization, acceptance and rejection
(Figure 9);

• Resource Deployment Descriptor – upon SLA
acceptance, this file is automatically created and its
editing enables the preparation and creation of
resources at the execution time.

• Resource management – based on the deployment
descriptor, the tool allows the creation of one or
several instances of brokered Cloud resources as well
as their management (resource information, starting
and stopping resources etc.).

Related work
As identified in [1] the Multi-Cloud middleware can be
library-based or service-based. In the first case, a library
facilitates a uniform way to access multiple services and
resources, as well as the provisioning of services and

https://bitbucket.org/mosaic/mosaic-agency-vendors/
https://bitbucket.org/mosaic/mosaic-agency-vendors/

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 20 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Figure 7 Application descriptor.

Figure 8 Call for proposal.

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 21 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

Figure 9 SLA inspection.

resources from multiple Clouds. In the second case, a
special service is offering brokerage between multiple
Clouds based on clients’ service level agreements or pro-
visioning rules and performs deployment, execution and
monitoring.
The most known library-based approaches are jclouds,

libcloud, and δ-cloud. Jclouds is an open source Java
library designed to support the portability of Java appli-
cations, which allows the uniform access to the resources
from various IaaS providers (jclouds.apache.org). Lib-
cloud is a Python library that abstract the differences
among the programming interfaces of Cloud services
(libcloud.apache.org). δ-cloud is a REST-based API writ-
ten in Ruby which allows also the connections to various
Cloud resources (deltacloud.apache.org). These libraries
are offering the common denominator of the underlying
services, and are loosing their individuality [15]. More-
over, they are compliant with portability requirement only
for off-line case (i.e. stopping the application in the cur-
rent Cloud, and restarting it entirely and from the begin-
ning in another Cloud). A more complex case is that in
which the relocated application is decomposed and relo-
cated over a new set of Clouds. Such use cases have been
rarely reported until now.
In mOSAIC each of these libraries can be used as Driver

interfaces with the Cloud services. The acquisition of the
resources is not a subject for these libraries, nor for the

Driver of mOSAIC (ensure only the second level of the
interface with the Cloud service).
We classify the service-based approach for Multi-Cloud

in two categories: hosted or deployable.
The most known hosted services are the commercial

offers of RightScale, Kavoo and Enstratus. RightScale
is offering a management platform for the control and
administration of deployments in different Clouds (www.
rightscale.com). Its Multi-Cloud Engine is able to broker
capabilities related to virtual machine placement in Pub-
lic Clouds. Kaavo allows the management of distributed
applications and workloads in various Clouds (www.
kaavo.com). Enstratius, allows the management, monitor-
ing, automation and governance of resource consumption
based on the services from various Cloud providers (www.
enstratius.com).
Several deployable services are results of open-source

projects like mOSAIC, Aoleus, Cloud4SOA or OPTIMIS.
Aeolus is an open-source Cloud management software
written in Ruby and provided for Linux systems by Red-
Hat and it is based on the δ-cloud library (aeolusproject.
org). Cloud4SOA is dealing with portability of applica-
tions between PaaSs by relying upon semantic technolo-
gies (www.cloud4soa.eu). OPTIMIS offers a deployable
Platform (-as-a-Service) that allows Cloud service provi-
sioning and the management of the life-cycle of the ser-
vices (www.optimis-project.eu). It is more comprehensive

jclouds.apache.org
libcloud.apache.org
deltacloud.apache.org
www.rightscale.com
www.rightscale.com
www.kaavo.com
www.kaavo.com
www.enstratius.com
www.enstratius.com
aeolusproject.org
aeolusproject.org
www.cloud4soa.eu
www.optimis-project.eu

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 22 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

thanmOSAIC PaaS in terms of facilities for brokerage and
run-time control, while mOSAIC offers more complex
tools to support the application developers.
The Cloud brokers are playing an important role in

both Multi-Cloud. The most known independent Cloud
brokers are: SpotCloud, Scalr and Stratos. SpotCloud
provides a marketplace for infrastructure service and
a matching service with the client requirements (www.
spotcloud.com). Scalr provides deployment of virtual
machines in various Clouds and includes automated trig-
gers to scale up and down (www.scalr.com). Stratos offers
single sign-on and monitors resource consumption and
the fulfillment of service level agreements and offers auto-
scaling mechanisms (wso2.com/cloud/stratos). None of
these brokers for Multi-Cloud are exposing their internal
interfaces for the Cloud resource acquisition. Moreover,
these brokers are not offering a complete solution for a
Multi-Cloud, with the full stack from software develop-
ment tools to run-time control; mOSAIC is trying to offer
a proof-of-concept of such full stack.
A Multi-Cloud enabler is invited to follow the current

Cloud standards. The current emerging standards, like
OCCI [16-18], CDMI [19], CIMI [20,21], or TOSCA [22],
along with others identified in [23] are still not adopted on
large scale. One reason is their limited scope: at IaaS level,
not yet for PaaS level [24].
In order to cope with the possible large adoption of the

OCCI as standard for managing virtual machine mOSAIC
is compliant with OCCI in the Call for Proposals [10].
Additional efforts were made for having aWS-Agreement
[25,26] and SLA@SOI [27] compliant versions of the Call
for Proposal and Service Level Agreement formats.

Conclusions
The variety of the Cloud services interfaces is a challenge
to be dealt with by theMulti-Cloud resource management
systems. Until standards in what concern these inter-
faces are are not adopted, practical approaches need to be
found.
We presented one of such approach that was adopted

by an open-source platform available as a deployable ser-
vice and which intends to offer a proof-of-concept in what
concerns the portability of Cloud-enabled applications.
The approach is relying on the modularity of the platform
architecture. The interfaces are different at the design, at
run-time and at deployment stages.
Unlike other solutions which provide similar function-

ality, our focus was to provide an open source, modular
solution which can be easily integrated and used due to
unified interfaces without the unnecessary dependencies
other solutions require.
Our approach alleviates developers of knowing the intri-

cacies particular to cloud vendors (interfaces, APIs), thus

dropping cloud application development time and allow-
ing them to focus on more important aspects of their
applications.
The focus of this paper was put on the deployment stage

in which the variety of interfaces has the highest impact.
We proposed to use Vendor modules to make the con-
nection with the particular services which are following
a given pattern in their description. Such modules are
integrable in the broker system that was reported earlier.
Moreover we proposed a pattern for describing the Cloud
resource and theCloud application that is compatible with
current emerging standards, as proved by the proof-of-
concept editor for application and resource description,
shortly described in this paper.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Approach for an unified interface with the Cloud services from multiple
providers at deployment stage. Proof-of-concept implementation of the
interface integrated in a brokerage system for Multi-Clouds. All authors read
and approved the final manuscript.

Acknowledgments
The research reported in this paper was partially supported by Romanian
grant PN-II-ID-PCE-2011-3-0260 (AMICAS), and refers to several parts of the
platform developed in the frame of European Commission
FP7-ICT-2009-5-256910 grant (mOSAIC). The tables that are included in this
paper are improvements of the ones presented in the mOSAIC deliverables
D2.5, D2.6 and D2.11. The team that has elaborate them is far from being
reflected in the list of authors of this paper. We express our thanks in this
context to Mariano Cecowksi and Miha Stopar (Xlab), Adrian Copie (Institute
e-Austria Timişoara), Salvatore Venticinque (Second University of Naples),
Támás Máhr (AITIA), Petr Škoda (Brno University of Technology), Jernej Južna
and Vlado Stankosvki (University of Ljubljana).

Received: 6 December 2013 Accepted: 14 April 2014
Published: 12 May 2014

References
1. Grozev N, Buyya R (2012) Inter-cloud architectures and application

brokering: taxonomy and survey. Software Pract Ex. doi:10.1002/spe.2168
2. Şandru C, Petcu D, Munteanu VI (2012) Building an open-source

platform-as-a-service with intelligent management of multiple cloud
resources. In: 2012 IEEE Fifth International Conference on Utility and
Cloud Computing (UCC), pp 333–338. doi:10.1109/UCC.2012.54

3. Petcu D, Martino B, Venticinque S, Rak M, Mahr T, Lopez G, Brito F, Cossu
R, Stopar M, Sperka S, Stankovski V (2013) Experiences in building a
mosaic of clouds. J Cloud Comput Adv Syst Appl 2(1): 12. doi:10.1186/
2192-113X-2-12

4. Petcu D, Macariu G, Panica S, Craciun C (2013) Portable cloud
applications-from theory to practice. Future Generat Comput Syst
29(6): 1417–1430. doi:10.1016/j.future.2012.01.009

5. Petcu D, Panica S, Crăciun C, Neagul M, Şandru C (2013) Cloud resource
orchestration within an open-source component-based platform as a
service. Concurrency Comput Pract Ex. doi:10.1002/cpe.3175

6. Ardagna D, Di Nitto E, Mohagheghi P, Mosser S, Ballagny C, D’Andria F,
Casale G, Matthews P, Nechifor C-S, Petcu D, Gericke A, Sheridan C (2012)
Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds. In: 2012 ICSE Workshop on Modeling in
Software Engineering (MISE), pp 50–56. doi:10.1109/MISE.2012.6226014

7. Rak M, Luna J, Petcu D, Casola V, Suri N (2013) Security as a service using
an sla-based approach via specs. In: 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science (CloudCom),
vol 2, pp 1–6, doi: 0.1109/CloudCom.2013.165

www.spotcloud.com
www.spotcloud.com
www.scalr.com
wso2.com/cloud/stratos

Munteanu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:3 Page 23 of 23
http://www.journalofcloudcomputing.com/content/3/1/3

8. Cretella G, Di Martino B (2012) Towards a semantic engine for cloud
applications development. In: 2012 Sixth International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pp 198–203.
doi:10.1109/CISIS.2012.159

9. Moscato F, Aversa R, Di Martino B, Fortis T, Munteanu V (2011) An analysis
of mosaic ontology for cloud resources annotation. In: 2011 Federated
Conference on Computer Science and Information Systems (FedCSIS),
pp 973–980

10. Venticinque S, Tasquier L, Di Martino B (2012) Agents based cloud
computing interface for resource provisioning and management. In: 2012
Sixth International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), pp 249–256. doi:10.1109/CISIS.2012.139

11. Venticinque S, Şandru C (2013) Agents based deployment of
heterogeneous iaas clouds. Int J Comput Sci Eng 9. http://www.
inderscience.com/info/ingeneral/forthcoming.php?jcode=ijcse.

12. Rak M, Aversa R, Venticinque S, Martino B (2012) User centric service level
management in mosaic applications. In: Alexander M, et al. (eds) Euro-Par
2011: Parallel Processing Workshops Lecture Notes in Computer Science,
vol. 7156. Springer, Berlin, pp 106–115. doi:10.1007/978-3-642-29740-3_13

13. Distributed Management Task Force (2010) Architecture for managing
clouds. Distributed management task force. http://dmtf.org/sites/default/
files/standards/documents/DSP-IS0102_1.0.0.pdf

14. NIST (2011) Cloud Architecture Reference Models: A Survey.
http://collaborate.nist.gov/twiki-cloud-computing/pub/
CloudComputing/Meeting4AReferenceArchtecture013111/
NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf

15. Bermbach D, Kurze T, Tai S (2013) Cloud federation: effects of federated
compute resources on quality of service and cost. In: 2013 IEEE
International Conference on Cloud Engineering (IC2E), pp 31–37.
doi:10.1109/IC2E.2013.24

16. Nyrén R, Edmonds A, Papaspyrou A, Metsch T (2011) Open Cloud
Computing Interface - Core. http://www.ogf.org/documents/GFD.183.pdf

17. Metsch T, Edmonds A (2011) Open Cloud Computing Interface -
Infrastructure. http://www.ogf.org/documents/GFD.184.pdf

18. Metsch T, Edmonds A (2011) Open Cloud Computing Interface - RESTful
HTTP Rendering. http://www.ogf.org/documents/GFD.185.pdf

19. Storage Networking Industry Association (SNIA) (2012) Cloud Data
Management Interface. http://snia.org/sites/default/files/CDMIv1.0.2.pdf

20. Distributed Management Task Force (DMTF) (2012) Cloud Infrastructure
Management Interface - Common Information Model (CIMI - CIM).
http://www.dmtf.org/sites/default/files/standards/documents/
DSP0264_1.0.0.pdf

21. Distributed Management Task Force (DMTF) (2013) Cloud Infrastructure
Management Interface (CIMI) Model and RESTful HTTP-baseds Protocol.
http://www.dmtf.org/sites/default/files/standards/documents/
DSP0263_1.1.0.pdf

22. Organization for the Advancement of Structured Information Standards
(OASIS) (2013) Topology and Orchestration Specification for Cloud
Applications. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-
v1.0-cs01.pdf

23. Harsh P, Dudouet F, Cascella RG, Jégou Y, Morin C (2012) Using open
standards for interoperability - issues, solutions, and challenges facing
cloud computing. CoRR abs/1207.5949

24. Lewis GA (2013) Role of standards in cloud-computing interoperability In:
2013 46th Hawaii International Conference on System Sciences (HICSS),
pp 1652–1661. doi:10.1109/HICSS.2013.470

25. Andrieux A, Czajkowski K, Dan A, Keahey K, Ludwig H, Nakata T, Pruyne J,
Rofrano J, Tuecke S, Xu M (2011) Web Services Agreement Specification
(WS-Agreement). http://www.ogf.org/documents/GFD.192.pdf

26. Venticinque S, Negru V, Munteanu VI, Sandru C, Aversa R, Rak M (2012)
Negotiation policies for provisioning of cloud resources. In: Filipe J, Fred
ALN (eds) 2012 4th International Conference on Agents and Artificial
Intelligence (ICAART). SciTePress, pp 347–350. http://www.bibsonomy.
org/bibtex/29a327c46d508a37eab3155ca147ac746/dblp.

27. Kearney KT, Torelli F, Kotsokalis C (2010) Sla*: An abstract syntax for service
level agreements. In: 2010 11th IEEE/ACM International Conference on
Grid Computing (GRID), pp 217–224. doi:10.1109/GRID.2010.5697973

doi:10.1186/2192-113X-3-3
Cite this article as: Munteanu et al.: Multi-cloud resource management:
cloud service interfacing. Journal of Cloud Computing: Advances, Systems and
Applications 2014 3:3.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijcse
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijcse
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://www.ogf.org/documents/GFD.183.pdf
http://www.ogf.org/documents/GFD.184.pdf
http://www.ogf.org/documents/GFD.185.pdf
http://snia.org/sites/default/files/CDMI v1.0.2.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0263_1.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0263_1.1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://www.ogf.org/documents/GFD.192.pdf
http://www.bibsonomy.org/bibtex/29a327c46d508a37eab3155ca147ac746/dblp
http://www.bibsonomy.org/bibtex/29a327c46d508a37eab3155ca147ac746/dblp

	Abstract
	Introduction
	Short overview of mOSAIC's approach for interaction with Cloud services
	Design time: language-dependent and vendor-independent abstraction of the Cloud services
	Run time: wrappers of cloud service interfaces
	Deployment time: cloud service representation for acquisition

	Vendor module role and functionality
	Supported applications
	Use case
	Describing resources
	Cloud provider specifics
	Provider resources
	Compute operations
	Storage operations
	Admin operations
	Credentials management
	API

	Resource provisioning and management
	Provisioning
	Management

	Vendor module services
	Credentials management
	Persistence management
	Logging
	Serialization

	Support for brokering
	Migration

	Proof-of-concept implementation
	Related work
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgments
	References

