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Abstract

in/out.

Many efforts have been made in optimizing cloud service resource management for efficient service provision and
delivery, yet little research addresses how to consume the provisioned service resources efficiently. Meanwhile,
typical existing resource scaling management approaches often rest on single monitor category statistics and are
driven by certain threshold algorithms, they usually fail to function effectively in case of dealing with complicated
and unpredictable workload patterns. Fundamentally, this is due to the inflexibility of using static monitor, threshold
and scaling parameters. This paper presents Off-the-Cloud Service Optimization (OCSO), a novel user-side optimization
solution which specifically deals with service resource consumption efficiency from the service consumer perspective.
OCSO rests on an intelligent resource scaling algorithm which relies on multiple service monitor metrics plus dynamic
threshold and scaling parameters. It can achieve proactive and continuous service optimizations for both real-world
laaS and Paas$ services, through OCSO cloud service API. From the two series of experiments conducted over Amazon
EC2 and ElasticBeanstalk using OCSO prototype, it is demonstrated that the proposed approach can make significant
improvement over Amazon native automated service provision and scaling options, regardless of scaling up/down or
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Introduction

Historically, the efforts made in optimizing ICT (Infor-
mation Communication Technology) energy consump-
tion have been largely focusing on efficient utilization of
physical computational resources e.g., green networking,
storage and computation in large scale data centers [1].
In the era of cloud computing (CC), however, green
optimization should involve two sets of major objectives:
green service (resource) provision [2] as well as green
service (resource) consumption [3]. While the former is
largely focused with a diversity of approaches proposed,
the latter is seldom adequately addressed.

Statistics shows that large and complex server farms
and data centers all over the world constitute the major-
ity of global ICT energy consumption [4,5]. This attracts
several attentions and results into numerous research
practices. Addressing the service pool and data center
resources utilization, the optimization approaches are
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seen as resource virtualization [6], server consolidations [7],
workload consolidations [8], dynamic voltage and frequency
scaling (DVES) [9], as well as a series of optimized resource
allocation and scheduling techniques. These approaches are
typically designed for infrastructure owners, e.g., cloud ser-
vice providers, so that they can run their own infrastructure
efficiently [10]. Yet, these optimizations should seldom be
regarded as achieving the ultimate energy efficiency, since
they only deal with one side of the problem: the service/
resource provision efficiency [11]. Currently, very few ap-
proaches try to enable service consumption optimization
from the service consumer perspective. In fact, while con-
sidering the full life-cycle of cloud services/resources, the ef-
ficiency in relation to how end users utilize the provisioned
services/resources also matters significantly.

For instance, Infrastructure-as-a-service (IaaS) services
which provide cloud virtual machines (VMs) allow users to
select customizable VM sizes (types), but if users always
have to choose over-provisioned VMs and inefficiently use
them (even if they only occasionally need that much of
computing power), considerable reserved unused resources
will be wasted. Similarly, although Platform-as-a-Service
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(PaaS) services provide automatic scaling options for
developers to build scalable applications, it is critical
that whether the automatic scaling feature would func-
tion effectively and flexibly enough to serve ultimate
green efficiency requirements while experiencing ex-
treme workload dynamics.

The key factors that result into the above inefficient
service resource utilizations are considered twofold: I)
Green efficiency is only one of the many criteria that
service providers concern; it is hardly taken as the pri-
mary key factor [12]. II) Due to a wide range of reasons
such as security, privacy, audition, users are typically left
with limited control and customizability over a great
deal of service configuration parameters [13]. Nonetheless,
nowadays, many service providers offer advanced granular
service manipulation through service APIs (Application
Programming Interfaces), which actually enables a pos-
sible means of third-party optimization solutions: Firstly,
customized API requests would provide advanced access
and control to cloud services (resources) from a much
lower level. This can be used for implementing appropri-
ate service customizations towards the green efficiency
requirements. Secondly, with proper efficiency-aware
algorithms which are controlled by some user-specified
optimization parameters, a user-side service optimization
would be a promising alternative to address service effi-
ciency issues via the greener service consumption.

To fill the above research gaps, this paper proposes Off-
the-Cloud Service Optimization (OCSO) - a novel user-
side service consumption optimization approach towards
ultimate energy-efferent resource utilizations. OCSO en-
ables IaaS and Paa$ users to manipulate service resources
utilizations so that the optimized service instances can
scale up/down or in/out automatically and intelligently
using OCSO cloud service APL The contributions of the
work are: 1) A heuristic-based off-the-cloud green cloud
service optimization approach which enables customizable
and intelligent scaling control by using dynamic green
boundaries and thresholds according to multiple monitor
categories data for the excessive high/low workload vol-
umes encountered; 2) An IaaS-specific resource consump-
tion optimization approach which can scale VMs up/
down proactively by transiting the inefficient running
VMs to their successors at appropriate VM sizes and re-
allocating their workloads to them; 3) A PaaS-specific re-
source consumption optimization approach which can
scale VMs in/out effectively by calculating the optimal
number of VMs needed to provision for dynamically var-
ied workloads and then facilitating application platform
environment modifications on-the-fly.

The rest of the paper is organized as follows: Section
“Related work” discusses the related research of service
optimization regarding optimized resource scheduling
and scaling approaches, as well as a series of well-known
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CC industry solutions. Section “OCSO system architec-
ture” describes the overview and detailed design of
OCSO. Section “Implementation” outlines OCSO proto-
type implementation, plus two optimization scenarios, i.e.,
Amazon EC2 [14] IaaS optimization and Amazon Elastic-
Beanstalk [15] PaaS optimization. Section “Experiments
and evaluation” demonstrates and evaluates a series of
experiments conducted over EC2 and ElasticBeanstalk.
Section “Discussion” provides the discussion of OCSO ap-
proach. Finally, Section “Conclusions and future work”
concludes the paper with summaries and future work.

Related work

In the context of cloud service efficiency optimization,
much research focuses on optimizing service resource
management through relevant resource scheduling/scal-
ing techniques. Formal methods-based optimization ap-
proaches often rely on studying the relationships among
the service’s workload, deadline, cost, resource utilization,
etc. With certain given constraints (e.g., time, budget, re-
source), the approaches mostly rely on a diversity of
threshold controlled algorithms such as workload/dead-
line-constrained [16,17], and cost/budget-aware scaling
management solutions [18,19]. While commonly resting
on linear programming methods, they generally have lim-
ited applicability considering a diversity of user require-
ments, whereas they usually fail to function effectively
while facing sophisticated unpredicted workloads.

On the other hand, heuristics-based resource manage-
ment approaches usually count on relevant analytical
models to facilitate optimized resource provisions and al-
locations. For instance, the power models with utilization
threshold algorithm [6] are argued to assist dynamic VM
placement and migration so that a considerable amount of
energy consumption and CO2 emissions can be reduced
compared with static resource allocation approaches. The
cognitive trust model with dynamic levels scheduling algo-
rithm [20] is proposed as a better resource scheduling
technique which rests on resources trustworthiness and
reliability parameters matchmaking. The resource alloca-
tion and application models with resource allocation and
task scheduling algorithms [21] are advocated in which
real-time task execution information is used to dynamic-
ally guide resource allocation actions. The workload
prediction models with capacity allocation and load al-
gorithms [22] is proposed to minimize overall VM allo-
cation cost while meeting SLA requirements. The cost
and time models with deferential evolution algorithms
[23] would enable generating the optimal tasks sched-
ules to minimize job completion cost and time. The
Dual Scheduling of Cloud Services and Computing
Resources models with Ranking Chaos algorithm [24]
are designed to mitigate the inefficient service compos-
ition selection and computing resources allocation
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issues. Additionally, IACRS [25] proposes a multi-
metric group cloud-ready heuristic algorithm that
would deal with compute, network and storage metric
statistics simultaneously while performing scaling deci-
sions. InterCloud [26] advocates an effective resource scal-
ing approach seen as to distribute workload appropriately
across multiple independent cloud data centers without
compromising service quality of service (QoS) aspects.

Consequently, despite of their better resource scheduling
and allocation outcomes, the primary objectives of all the
above approaches either focus on minimized job comple-
tion time, meeting QoS/SLA requirements, or budget con-
straints, etc., whereas few of them can be implemented
from the user end so that service users can achieve certain
efficiency proactively. Moreover, none of them try to imple-
ment a native green resource utilization efficiency-oriented
optimization, i.e., a typical approach through managing VM
scaling up/down or in/out behavior regardless of varied
workload dynamics.

Meantime, many industry cloud service providers allow
monitoring service recourses through their native service
interfaces, e.g, Amazon Web Services (AWS) has Cloud-
Watch [27] and Rackspace uses Cloud Monitoring [28].
While most IaaS services offer VMs of a variety of sizes
for users to select and scale from, the majority of PaaS
service platforms are provisioned with automatic scal-
ing capabilities so that the applications deployed over
them can behave elastically despite of varied workloads,
e.g., Amazon Auto Scaling [29], IBM SmartCloud Ap-
plication policy-based automated scaling [30], Windows
Azure Autoscaling Application Block (WASABI) [31],
Rackspace Auto Scale [32]. Relying on similar threshold
triggering algorithms which ask for a certain monitor
metric for a specific interval/duration/breach time period,
these policy/rule-based scaling solutions provide a simple
and convenient means of customized resource scaling con-
trol depending on the applications’ real-time monitor data.
Specifically, they are designed to facilitate scaling in/out ac-
tions over certain numbers of equally sized VMs, where
jobs (network traffics) are distributed evenly (mostly using
a round-robin load balancing algorithm) through load bal-
ancers to each VM node.

However, for the reason that none of the above official
industry service functions is primarily designed to achieve
efficient resource utilization, these native service “add-ups”
cannot facilitate ultimate green efficiency contributions.
Specifically, for scaling up/down support, despite the moni-
tor and alarm notification functions of Amazon Cloud-
Watch and Rackspace Cloud Monitoring, while their VMs
experience excessive high/low CPU utilization, the only
available reactions are to shut down or terminate them and
send notifications automatically (EC2 users can manually
scale VMs up/down while they are in “stop” state) [14,33].
For scaling in/out operations, none of Auto Scaling
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(AWS), policy-based automated scaling (IBM), Auto Scale
(Rackspace) or WASABI (Azure) tends to utilize “sophisti-
cated” resource provision algorithms so that optimal
numbers of VM can be provisioned instead of the
“rough” scaling actions. Consequently, for such cloud
VM resources that are not running efficiently, no solu-
tion would react appropriately to manipulate the scal-
ing activities so that they can scale up/down while
alone or in/out within a group towards the utmost each
individual’s green effectiveness.

In summary, existing resource scaling management
approaches seldom directly address service resource
utilization efficiency, whereas they have considerable
limitations due to the inflexibility of using limited re-
source metric monitor as well as static threshold and
scaling parameters. In contrast, OCSO is unique as a na-
tive and proactive service optimization approach that
serves to achieve service resource utilization efficiency;
OCSO’s focus is the client-side green service optimization
via dynamic scaling. Advanced from other existing ap-
proaches, OCSO’s intelligent resource scaling algorithm
utilizes dynamic threshold and scaling parameters under
multiple service metric monitor statistics, which can in-
struct more accurate scaling actions considering the tim-
ing control as well as the scaling behaviors. In addition,
OCSO is adaptable for implementation over multiple
clouds, provided that there is a formal cloud service re-
source/interface/property description and orchestration
specification framework available. One of the mainstream
forces is OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA) [34]. Adding with such
complete cloud service standard and reference support,
OCSO has the potential to achieve much more for ad-
vanced service optimization scenarios.

OCSO system architecture

System overview

OCSO is an approach designed for service users to work
with real-world cloud services to ensure efficient utilization
of the provisioned service resources. OCSO system is rule-
based, and once the mandatory service optimization pa-
rameters are completed, it would function fully automatic-
ally. As it detects inefficient service resource usage due to
the workload changes, it reacts to add/remove certain re-
sources by launching appropriate scaling up/down or in/
out actions dynamically.

In our previous work [3], we have demonstrated the
VM transition and workload reallocation approach that
can actively transit VMs to appropriate VM sizes for var-
ied workloads, called TARGO. In contrast, OCSO is a
more advanced approach as: 1) it works for a wider
range of cloud services, i.e., both IaaS and PaaS services;
2) it runs a more advanced and sophisticated threshold
algorithm that rests on dynamic threshold and scaling
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parameters. Figure 1 describes the architecture of OCSO
including its five components, namely Optimization
Gateway, Optimization Facilitator, Optimization Executor,
Optimization Rule Repository, Logging and Notification
Controller, as well as their data and process dependencies.

Optimization Gateway

Optimization Gateway is seen as the interface between
OCSO system components and service provider clouds. It
sends various service requests through OCSO cloud ser-
vice APIs, which are developed using official cloud service
API libraries. There are three types of service requests in
general: general service information request for retrieving
service specification, setting and status information; ser-
vice utilization data request for acquiring service resource
monitor data; and service manipulation request which
makes certain changes to the services. These requests are
launched by Service Information Collector, Optimization
Facilitator and Optimization Executor respectively.

Optimization Facilitator
Optimization Facilitator comprises Service Resource
Utilization Monitor and Utilization Data Regulator two
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components which work together handling service metric
monitors and regulating resource utilization data. On
detecting dramatic utilization changes which imply that
the service instance is running inefficiently, it makes
appropriate optimization decisions and then triggers
appropriate optimization actions according to user spe-
cified optimization rules. Currently, OCSO supports
both IaaS and PaaS scaling optimizations under a
threshold triggering algorithm. Therefore, there are two
separate sets of rule parameters. Shown in Figure 2, the al-
gorithm takes input of optimization rules. Then, according
to relevant monitoring period, frequency, up/down green
limits and thresholds specified in the optimization rules,
OCSO implements periodical service resource monitor
actions. Then if the regulated monitoring utilization data
violates the up/down green limits for the respected
thresholds, appropriate scaling optimization will be trig-
gered (refer to full algorithm in Additional file 1).

OCSO rests on enabling proactive and effective verti-
cal scaling for IaaS services and horizontal scaling for
Paa$ services, which are controlled by a dynamically ad-
justed threshold triggering algorithm. Specifically, for
IaaS optimization, when the (dynamic) up/down threshold

Optimization Gateway

Cloud Services
EC2, ElasticBeanstalk

0OCSO Cloud Service API

Service information

'

Figure 1 OCSO system architecture.
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INPUT:
optimizationRules R;, R ..., R,

1.FOR R, to R,

2. INITIALIZE schedule,, timer,, upCounter,, downCounter,
serviceUtilizationList , UtilizationRgulator, Rule Evolution

3. GET VMID,, applicationName,, serviceType,,
serviceProvider,, period,, frequency,, metric,, upLimit,,
downLimit,, upThreshold,, downThreshold,

4. END FOR

5.FORR; to R,

6.  SET timer, with schedule, at frequency, to START

(REPEAT)

7. SET upCounter, to 0; SET downCounter, to 0

8. INITIALIZE and GET serviceUtilization, by CALL
UtilizationRegulator.getLatestRegulatedMonitorData with
VMID,/applicationName,, serviceType,, serviceProvider,,
period,, frequency,, metric,

9.  ADD serviceUtilization, to serviceUtilizationList,

0. IF number of serviceUtilization, in serviceUtilizationList, >
period,/frequency, THEN

11. REMOVE the first serviceUtilization, from
serviceUtilizationList,

12. ENDIF

13.  FOR each serviceUtilization, in serviceUtilizationList,

14. IF serviceUtilization, < downLimit, THEN

15. INCREMENT downCounter,

16. END IF

17. ELSE IF serviceUtilization, > upLimit, THEN

18. INCREMENT upCounter,

19. END ELSE IF

20. DISPLAY notification information

21. END FOR

22.  WHILE DownCounter, >= DownThreshold, or
UpCounter,, >= UpThreshold, DO

23. DISPLAY notification information
24. SET timer, with schedule, to STOP
(UNTIL STOP)
25. SET upCounter, to 0; SET downCounter, to 0
26. CALL scalingOtimization.scale with

VMID,/applicationName,, serviceUltilizationList,
27. CALL RuleEvolution.evolveRule with
serviceUtilizationList, (refer to (2.1) — (5))

28. IF no error occurred during scaling and rule evolution
processes THEN

29. DISPLAY notification information

30. SET timer, with schedule, at frequency, to START

31. END IF

32. ELSE THEN

33. DISPLAY notification information (Failed, retry next

time)
34. SET timer, with schedule, at frequency, to START

35. END ELSE
36. END WHILE
Figure 2 The optimization triggering algorithm.

is met for a VM, which implies that it is under/over sized
for the real-time workload, OCSO scales it up/down by
transiting it and reallocating its workload to a successor
VM of the green optimal size (considering its real-time
workload volumes). For PaaS optimization, when the
current application environment monitor data violates its
current green up/down limit for the respected threshold,
which indicates the environment is under/over provi-
sioned, OCSO scales it in/out with the exact green optimal
numbers of VMs (necessity for the real-time workload).

Optimization Rule Repository and optimization rule formats
Optimization Rule Repository stores optimization rules
which detail relevant parameters for each optimization
type. It instructs OCSO how to implement cloud service
monitoring and optimizations for IaaS and Paa$S respect-
ively. While the monitor parameter and threshold parame-
ters are generally the same, the optimization parameters
vary significantly. Figure 3 illustrates a couple of rule lay-
out examples representing the IaaS and PaaS optimiza-
tions supported by OCSO. Rules parameters are presented
with standard XML syntax. A rule starts with “type” which
tells the optimization type. Generally, a rule has three sec-
tions. The first section involves some general information
such as the service information, rule name, id, times, etc.
The second part details various details regarding the rele-
vant optimization monitor, green boundary and trigger pa-
rameters. The last part comprises notification information.

Take the sample PaaS rule as an example, it provides
OCSO the following instruction: I) This is an optimization
designed for “PaaS” service of “Amazon ElasticBeanstalk”.
II) The rule is associated with an application named
“2602test”. III) Notification is switched “On” and data will
be sent to the destination Email address. IV) The system
periodically collects “Average” “CPUUtilization” data at
the “Period” of “40” minutes and “Frequency” of every “5”
minutes. V) With the specified green boundary between
“40-80” in “Percentage”, the respective “UpCounter”
and “DownCounter” will be updated if the application
monitor data violates the limits. VI) If either the “UpThres-
hold” of “5” or “DownThreshold” of “3” is met, a scaling
optimization will be initiated. VII) Some secondary metric
monitors are also implemented, seen as “RequestCount”
and “NetworkIn” using the same monitor parameters as
for the “Dominant” CPU metric.

Optimization Executor

Optimization Executor implements optimizations and up-
dates the rules according to both the excessive amount of
workload for the original service resource provision and
the new provisioned resource capacity. For IaaS and PaaS
optimizations there are different scaling control mecha-
nisms which execute separate optimization processes
(refer to the two scenarios in the next section).
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Sample laaS optimization rule

<?xml version="1.0" encoding="UTF-8" 7>
- <Rule type="IaaSOptimization">
<Provider>EC2.AWS</Provider>
<Ruleld>1363739083143</Ruleld>
<Time>Wed Mar 5 00:24:43 GMT 2014</Time>
<Vmld>i-4aesfe73</Vmid>
- <Optimization metric="CPUUtilization">
<Statistics »-Average</Statistics>
<Unit>Percentage </Unit>
<Period>20</Period>
<Frequency>2</Frequency>
<UpLimt=80</UpLimt=
<DownLimit30</DownLimit:
<UpThreshold>8</UpThreshold>
<DownThreshold>8</DownThreshold>
<UpCounter>4</UpCounter>
<DownCounter=1</DownCounters
</Optimization>
<Notification>0n</Notification>
- <Notification method="Email">

</Notification>
<fRule>

Figure 3 Sample OCSO optimization rules.

<Destination>d.fang@napier.ac.uk</Destination=

Sample PaaS optimization rule

<?xml version="1.0" encoding="UTF-8" 2>
- <Rule type="PaaSOptimization">
<Provider>ElasticBeanstalk.AWS</Provider>
<Ruleld>14226937356 28 </Ruleld>
<Time>Wed Mar 5 10:26:49 GMT 2014</Time>
<ApplicationName>2602test</ApplicationName>
<Notification>On</Notification>
- «Optimization metric="CPUUtilization">
=<Statistics>Average </Statistics >
=<Unit>Percentage</Unit>
«<Period >40</Period >
<Frequency>5</Frequency:>
<UpLimt>80</UplLimt>
<DownLimit>40</DownLimit>
<UpThreshold>5</UpThreshold>
<DownThreshold>3</DownThreshold>
<UpCounter>4</UpCounter>
<DownCounter>1</DownCounter>
«Dominant>Yes</Dominant>
</Optimization>
- <Optimization metric="RequestCount">
<Statistics>>Average </Statistics>
<Period >40</Period >
<Frequency>5</Frequency>
<Dominant>No </Dominant=>
</Optimization>
- =Optimization metric="NetworkIn">
«<Statistics>Average</Statistics>
«Period >40</Period >
<Frequency>5</Frequency>
«<Dominant>No </Dominant>
</Optimizationz>
- =<Notification method="Email">
<Destination>d.fang@napier.ac.uk</Destination>
</Notification>
</Rule>

Optimization rules are evolved to make sure the new rule
can best instruct the next optimization. Basically, if the sys-
tem detects that there is excessive high/low workload in-
coming than the provisioned resource could possibly
handle, the next up/down green limit will be adjusted to
relatively a lower/higher value whilst the threshold will
probably also be tuned to a smaller value (depending on
whether it is a continued scaling). As a consequence, the
next optimization would be triggered more easily if the
workload continues to increase/decrease. Then the updated
values are validated with the new provisioned VM resources
as well as against appropriate green boundary regulations.

Logging and Notification Controller

Due to the automatic and self-initiative nature of OCSO
optimization, it is essential to inform users what has hap-
pened before, during and after the optimization and leave
complete service optimization trace records. Logging and
Notification Controller enters the resource information,
utilization, decision and optimization details to logs and
notifies the user where necessary and at each critical state.

Implementation

OCSO prototype is implemented in Java. Currently it is
fully integrated with Amazon EC2 and ElasticBeanstalk
using OCSO API originated from AWS Java SDK. As illus-
trated in Figure 4, it allows users to view their owned ser-
vice instances and other information through its built-in
service panes. For instance, for EC2, VMs' ID, status, size,
etc. are displayed; for ElasticBeanstalk, applications’ name,

health, instances attached, etc. are showed. The buttons in
the middle of the panels provide service optimization man-
agement: “Console” opens the console log subpanel of the
system; “Monitor” opens the service utilization monitor
subpanel; “New Rule”, “Delete Rule” and “Modify Rule”
allow users to create and edit optimization rules. To
optimize a service, a user simply selects the target from the
owned [aaS VMs or PaaS applications, and then enters a
series of parameters, e.g., period(s), frequency, monitor
metric(s), thresholds, green up/down limits, notification
methods, etc. The example given in Figure 4 (the top “IaaS
Optimization panel”) illustrate how an optimization rule is
created for the VM instance with ID “i-alfcd8e0” with pa-
rameters of the following: period: “10” (minute), frequency
“2” (times per minute), green up limit: “80” and down limit:
“40” (% of CPU usage), up and down threshold: “4”, “3”
(times), and notification: “d.fang@napier.ac.uk” (by email).
As the optimization rules are completed, the optimizations
would begin once the user clicks the “Start/Restart
Optimization” button. Afterwards, the optimizations would
run on their own initiatives continuously, whereas it can
be interrupted manually. OCSO does not need any human
intervention during the optimization. In addition, it would
log any critical optimization data and events when neces-
sary whilst notification emails will be sent automatically if
the user chooses to do so.

Scenario 1: EC2 laaS optimization
IaaS optimization works similarly as TARGO: by period-
ically monitoring the CPU utilization of the target VM,
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laa$ Optimization Panel initiated
Green laa$S Optimisation Green Paas$ Optimisation i | ElasticBeanstalk Console l EC2 Console ] Config
You have 5 VM instances in total. Please specify a rule name
Detailed information of your instance(s) is shown below: Ilinux0202 l
ID Status Size Tags 0s il . s
i-fad257b0 |stopped mismall  |Key: Name,..|windows Please choose instance(s) from left, then select metric, and statistics,
i-D2485df8  |stopped m1.medium [Key: Name,._|windows followed by Period(minute), Interval and threshold
i-a1fcd8e0 |running t1.micro Key: aws:cl... Otherthan ... Metrics Statistics Period (P>1 Min) Frequency (F>1 Min)
i-95d4fad4 |running t1.micro Key: aws:cl... \windows S l |
152273c11 |running  [H.micro  |Key: aws:cl.. |Other than - (cPutization() |v | |Average |v | [ | 2 |
Up Limit Down Limit Up Threshold Down Threshold Notification
|SU I |40 ‘ E4 | ]3 ‘ |j0hn.smith@gmail.com ‘
Reset Rule
[Period:10,Frequency:2.0,Threshold:3!4,Down:40,Up:80, Statistics:A
q] M I D Save rule
Console New Rule Modify Rule Delete Rule Monitor Refresh Pause/Stop Start/restart Optimisation I
Platform Optimization Panel initiated
Green laa$S Optimisation | Green Paa$ Optimisation ‘ ‘ ElasticBeanstalk Console | EC2 Console | Config
You have 4 applications in the current region. Please specify a rule name
Detailes of your application(s) are shown below: [0103 I Add rule
AppName Status Health Instances Type O . -
[python0103 |Ready Green {i-52273c11] |64bit Amaz.. Please choose _an ap;_)llcauon from Ief!. then select metric, and statistics,
lis_2014_t.. |Ready Green [-95d4fad4] |64bit Wind... followed by Period(minute), Interval(minute) and threshold, etc.
2602test Ready Green [li-a1fcd8e] [64bit Amaz... Metrics Statistics Period (P>1 Min) Frequency (F>1 Min)
BERTAL i |CPUUtiIilation(%) |v| ’Average |v| m | 2 ]
Up Limit Down Limit Up Threshold Down Threshold Notification
|80 || [s0 | |20 [ | |ionn.smith@gmail.com |
Secondary Metrics Statistics Unit Period Frequency
|Reqest€oun( |v| ’Average |v| |Cou nts [v| ’60 ‘2
| Add secondary monitor metric |
New Rule Modify Rule Delete Rule Monitor Pause/Stop Startirestart Optimisation
You have 3 Green Rules in total. Detailed information is shown below:
Name Rule Info
RulelD:1863420486... | [Period:5,Frequency:1.0,Threshold:313,Down:40,Up:80,Statistics:Average Metric:CPUUlilization,Counter:2!0;] [Period:5Frequency:1.0,St...
RulelD:1394058303... | [Period:50,Frequency:10.0, Threshold:4!3,Down:33,Up:60,Statistics:Average, Metric. CPUULtilization,Counter:0!0;] [Period:50 Frequency:1...
RulelD:1483139583... | [Period:20,Frequency:2.0, Threshold:8!5,Down:50,Up:75,Statistics:Average Metric.CPUUtilization,C ounter:0!1;] [Period:20,Frequency:2.0...
Figure 4 OCSO prototype screenshots.

the system reacts to scale it up/down proactively when-
ever the real-time workload changes concretely. The VM
live scaling is performed by transiting the original VM to
its successor in the optimal size that would fit the varied
workload and then reallocate the workload to it. There-
fore, it appears to the user that the optimized VM is op-
erating at a dynamically adjusted size that can always
run its workload green efficiently.

In order to guide such optimization, TARGO intro-
duces VM performance gap ratios (PGRs). They are seen
as the performance differences among VMs of distinct sizes
(with the same VM image and other configuration settings).
Figure 5 shows three series of VM performance statistics
with regard to their capabilities of processing CPU-intensive

tasks and throughput of disk and network performances. It
can be seen from the data that, the larger the size a VM
is, the quicker it completes the compute-intensive tests
(considering both their single and multi-core performances)
whilst the better the overall throughout is. Then, from the
overall differences, a series of PGRs are formulated, which
are used to guide appropriate scaling up/down actions from
an inefficient VM size to the most efficient size. For in-
stance, if a tl.micro VM runs a workload with 99.9% CPU
utilization, an m1.small would manage it with a CPU usage
of approximately 24% whilst an m1.medium would run at
only 12%. Conversely, if a workload causes a VM of size
m3.double extra large running at 71% CPU usage, it would
drive an m3.extra large running at full load.
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180
m3.2xlarge 160
140
m3.xlarge 120
100
m1.xlarge 80
60
m1.large 40
20
m1.medium 0
158.021
m1.small
m Disk Sequential Write(MB/S)m Disk Sequential Read(MB/S)
m CPU Multi Core(Seconds) = Network Ping(ms) m Network Download(MB/S)
m CPU Single Core(Seconds) u Network Upload(MB/S)
EC2 instance T1. Ml. Ml1. Ml. Ml. Ma3. Ma3.
types Micro | Small Medium | Large | Extralarge Extra large Double extra large
Performance 0.24 0.51 0.57 0.69 0.61 0.71
Gap Ratio:

Figure 5 Performances and PGRs of Amazon EC2 VM:s.

The known limitation of TARGO approach is the optimization lags. As a result, it cannot strictly hold the VMs in
the specified green efficient boundary with its fairly simple threshold algorithms. In fact, this is due to the fact that
threshold mechanisms would act only after green limit violations, by which time the VMs have already been running
inefficiently for a while. This work eliminates such limitation by advocating OCSO IaaS optimization, which rest on
optimized threshold algorithms and rule evolution equations as following:

For resource utilization regulation:

F
RV =2 o Y% (1)

For optimization rule parameter evolution:
1) While scaling up:
1 RV
2% CLy- CTy * Z}(ZIURVZ’; (continuedscaling ufa whilem < 110%)
RV
CLy * 90%; <continuedscaling up whilea > 110%)
u

NewLimit; =

OL,y; (intermittent scaling up or no optimization needed)
(2.1)

CLy * Ratioo-ny; (if OLp > CLy * Ratioyo )
NewLimitp = { CLy * Ratiog o y; (lf OLp < CLy * Ratioy; N))
OLp; (else)
(2.2)
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NewThreshold;; = {

where NewLimitp > = 10; NewThreshold;; > = 1;

2) While scaling down:

7 (
— %
CTD n=1
NewlLimitp =

CTy % 90%; (continued scaling up)
OT y; (intermittent scaling up or no optimization)

RV
CLp x 110% <continued scaling down while oL < 90%)
u
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(2.3)

CTDRVZ’) ; (continued scaling down whilegTV > 90%)

! (3.1)

OLp; (intermittent scaling down or no optimization needed)

CLp
RdtiOM(o,N)
CLp
Ratiofw(o_N)

NL
; <tf OLy < 2

NewLimity = NLp

| if OLy >

OLyy; (else)

NewThresholdp = {

where NewLimit;; < = 90; NewThresholdp > = 1;

Here RV’ stands for the regulated value at specified fre-
quency F in monitor period P for that moment of time ¢.
MV indicates the nth raw monitor data value recorded
at time tn. U means “Up” and D means “Down”. CT is the
current threshold value whilst CL stands for the current
limit, whereas OT and OL are original threshold and limit
respectively. RV represents the regulated utilization
value at time ¢, Ratioa o - ny means the respected PGR of
the metric from the original instance size to the new size.

The regulated utilization values are calculated from
the raw CPU usage monitor values recorded at the spe-
cified frequency for the entered period, using (1). This
provides relatively stable monitor values that can reflect
the overall resource utilization changes of the monitor
period, compared with the raw real-time monitor data.
Then, in order to mitigate the optimization delays,
OCSO IaaS optimization adopts a dynamic adjusted
threshold algorithm that uses variable green boundary
limits and violation thresholds. Basically, the amount of
dynamic scaling adjustment is controlled according to
two aspects: I) whether an optimization is a continued or

RﬂtiOM(o,N)

)

Ratiojzw(o_N)

CTp * 90%; (continued scaling down)
OT p; (intermittent scaling down or no optimization)

; (32)

(3.3)

intermittent scaling; II) how much the regulated utilization
monitor values exceed the green limits (i.e., within, by or
over 10%). In this way, whenever an optimization occurs,
the successor’s green boundary limit and threshold values
are evolved, using (2.1), (2.3), (3.1) and (3.3). More specific-
ally, depending on whether its successor could keep up
with the workload for the incoming period of monitor
cycle, two sets of triggering parameters are used: in case of
a continuous optimization, the respected up/down limit is
lowered/raised for a certain amount depending on the
utilization data recorded during the current monitor
period (using (2.1)/(3.1)), whereas the respected threshold
value is lowered (using (2.3)/(3.3)); in case of intermittent
optimization or no optimization, the evolved parameters
are restored to the initial user specified values. Addition-
ally, whenever an up/down limit is changed, the other limit
must be validated (using the relevant PGR). This is to
ensure that the gap between the up and down limits is
always appropriate for later optimizations, regardless of
the volumes of workload. Without this validation and
the mandatory supplement updates, as the gap becomes
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too large or too small, the optimizations would either
miss the optimal timing or be triggered too early. The
validation updates stay the same as they are in TARGO,
using (2.2) and (3.2). The above complete rule evolu-
tion process creates a dynamic green boundary and
respected thresholds specifically for every new VM suc-
cessor considering its size as well as the current work-
load volume. In this way, the system would act more
proactively while responding to extremely altered work-
loads. By doing so, OCSO Iaa$S optimization overcomes
TARGO’s lagging limitations by upsizing VMs quicker
while facing dramatically/continuously increasing work-
loads and downsizing VMs earlier in case of rapidly/
constantly descending workloads.

EC2 laa$S optimization flow

OCSO IaaS optimization flow is illustrated in Figure 6.
Basically, the contents in the left column are executed
by OCSO, whereas the right one shows the flow activ-
ities in EC2. The scaling optimization starts when a VM
violates its green limit for the specified threshold. Firstly,
the optimal VM size is calculated according to the pe-
riod’s resource utilization data against its provisioned
VM size. Here, new rule parameters are also prepared
for use of the VM successor once it is successfully de-
ployed. Then, the system requests the detailed settings
of the current VM from EC2 such as VM image infor-
mation, resource settings, security setups, IP address,
etc. on receiving the request, EC2 replies the informa-
tion. Next, an EC2 VM instance creation request is initi-
ated using the creation parameters gathered earlier,
which is to be handled by EC2. While the request is be-
ing handled, the system periodically requests and checks
the status of the new successor VM. Once EC2 notifies
that the new VM is up and running, the profile informa-
tion (IP address, name tag, etc.) of the original VM is
transferred to its successor, and the workload is auto-
matically passed to the new VM (due to the IP address
reallocation). Accordingly, the optimization rule is up-
dated for the successor. Finally, the original VM termin-
ation request is sent and executed by EC2.

To the service user, as the service is being optimized,
every VM successor launched would be exactly the same
as the previous one. This is seen as each one of them is
of the same VM image, settings and profiles; the only
difference is that it is deployed in the green optimal size
for the real-time workload volume. Therefore, a succes-
sor ought to work efficiently until the workload changes
again, by then another optimization would be triggered.
In this way continuously, IaaS resource utilization effi-
ciency is achieved, since users do not need to run a con-
stant over-provisioned VM for just occasional large
volumes of workloads, or vice versa.
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Scenario 2: ElasticBeanstalk PaaS optimization
OCSO PaaS optimization implements optimized moni-
tor and scaling control which can implement scaling ac-
tivities more effectively than official dynamic scaling
solutions. With the proposed monitor and scaling con-
trol algorithms, OCSO calculates the optimal number of
VMs to provision and performs the modification by
requesting to add/remove VMs at the best scaling tim-
ing. In order to do so, OCSO PaaS optimization disables
the applications’ native automatic scaling functions and
modifies the environments by requesting service envir-
onment updates with API requests on-the-fly. In case of
only one VM is presented in the environment, OCSO
would continue to scale in by downsizing the single VM,
provided that the workload continued to drop. Conse-
quently, OCSO achieves Paa$ service resource utilization
efficiency since the effective scaling controls would save
considerable VM hours while managing varied workloads.
Except the application environment CPU utilization
being monitored as the main basis to trigger scaling op-
timizations, frequently, some secondary monitor metric
data can present useful information to assist in calculat-
ing the appropriate capacity to provision. For instance,
the number of VMs needed is often proportional to the
increased count of the application visits/requests, net-
work in/out volumes, disk write operations, etc. In an-
other words, while an application is running, it would
build up a dynamic ratio which is of these metric data to
the number of VMs needed for it (for a certain prefera-
ble environment resource provision). Here we name it as
“CapacityRatio”. It is seen an average value of the ratios
of the monitored secondary metric data values to the
number of VMs in the environment (refer to (4)).

N
2

P/F
E a1 SecondaryMetric,
P/FxCapacity,

C ityRatio =
apacityRatio N

(4)

Where N is the number of total VMs at specified fre-
quency F in monitor period P.

Next, the new environment resource capacity (opti-
mal VM number) and rule evolution take the form (the
utilization regulation equation stays the same as (1)):

T
Capacity. g =1 RV}
N=1 T X
N, SecondaryMetricc

Capacity,,,,, = UTD

2 * CapacityRatio
(5)

Here RV* stands for the regulated value at time f,
whereas T is the total number of collected utilization
values (most likely the respect threshold value). U/ and D
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Figure 6 OCSO laaS optimization activity flow.

means the up and down limit respectively. Capacityc
represents the current capacity, i.e., the current total
number of VMs in the environment.

The new application environment capacity is gener-
ated by considering two factors: the secondary metric
data-reflected capacity; the current combined CPU utili-
zations of all involved VMs towards the specified green
limit. They produce two provisional capacity values: the

first is extracted by dividing the sum of all VMs’ regulated
monitor usage values by the optimal usage value (the aver-
age value of the green up and down limits); the second is
produced by dividing the latest secondary metric monitor
value by the CapacityRatio. Using (5), the final identical
capacity values (number of VMs needed) is determined,
which is the average value of the two provisional values.
Additionally, OCSO PaaS optimization utilizes similar
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dynamic green limit and threshold evolution as for its Iaa$S
optimization using (2.1), (2.3), (3.1), (3.3), except that
there is a gap of 30 (at least) between the new up and
down limit, which is to prevent fault scaling.

ElasticBeanstalk PaaS optimization flow

OCSO PaaS optimization is initiated when the real-time
green up/down threshold is met for an application. Figure 7
illustrates the flow diagram of OCSO PaaS optimization
and the activities incurred in ElasticBeanstalk. Firstly,
the application environment resource information is ac-
quired from ElasticBeanstalk. With the responded ap-
plication running parameters along with the calculated
optimal VM numbers (environment capacity), the sys-
tem initiates service modification request to update the
capacity of the application environment. As the modifica-
tion request is received, ElasticBeanstalk begins to handle
the modification by launching appropriate number of
VMs of the appropriate VM image and configuration,
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and then adding/removing the VMs from the load bal-
ancer (i.e. Elastic Load Balancing) which is attached
with the application (These background service envir-
onment modifications are processed automatically by
AWS). During this period, the application status be-
comes “updating”. While the update is successfully im-
plemented, OCSO verifies the modification against the
updated application environment. Finally, the optimization
rule parameters are updated for the new environment re-
source provision, which ends the optimization cycle.

Experiments and evaluations

Overview of the experiments

A series of experiments are conducted to evaluate the
effectiveness of the proposed approach. The IaaS service
used is Amazon EC2 whilst the PaaS service used is
Amazon ElasticBeanstalk. The reasons for adopting AWS
are: the overall EC2 VMs boot time is faster compared to
other providers’ such as Rackspace’s [35] and GoGrid’s

0CSO PaaS$ Optimization Flow

?

Get the current application running environment resources

Get the optimal VM numbers to provision

AWS Elasticbeanstalk
Modification Flow

Response the application environment resource d39

VA

Initiate application environment update requea
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Figure 7 OCSO PaaS optimization activity flow.
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[36]; ElasticBeanstalk offers more detailed control to the
service components and their configurations (scaling op-
tions, monitor parameters, load balancers, VM groups,
etc.) via service API in contrast with Google AppEngine
[37] and WASABI [31]. For workload generation, Apache
JMeter [38] is used to send scheduled workload in con-
trolled volumes.

For both series of experiments, the allocated workloads
are of different dynamics: at certain time intervals, they ei-
ther alter slightly or dramatically. This is to test the effect-
iveness of OCSO when dealing with different workload
patterns. The IlaaS optimization experiment illustrates
how OCSO can achieve improved result over TARGO as
well as using EC2 VMs of static provision sizes, under the
same workload dynamics. The PaaS optimization experi-
ment demonstrates the differences between how Elastic-
Beanstalk and OCSO PaaS would scale while experiencing
the same altered workloads.

EC2 laaS optimization experiment and evaluation

Figure 8 illustrates the results of the experiments con-
ducted over EC2 the EU region. The workloads used in
the experiment have an overall span of 150 times of the
initial unit value. For the first hour, it increases slowly at
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first and fairly dramatically until reaching the maximum
value; subsequently, it decreases rapidly for the following
10 minutes and rather gradually until the end. Under
such a workload, CPU utilizations of two ordinary VMs
respond reasonably as the overall trend of the workload.
When the workload goes beyond its capacity, the ml.
xlarge VM becomes unresponsive, with its CPU utilization
at constant 100% for nearly 20 minutes. The m3.2xlarge
VM can load the work perfectly, yet the overall utilization
is considerably low, with the majority of the usages under
50% throughout the experiment. This suggests that ordin-
ary EC2 VMs in fixed sizes can hardly achieve optimal re-
source utilization efficiency in case of dynamic workload.
On the other hand, TARGO and OCSO IaaS optimization
strive to retain the most suitable VM to meet resource
utilization efficiency requirement fully automatically.
The arrows in the figures designate the scaling up/
down optimizations occurred from an instance to its
successor. Seen in the two bottom CPU usage figures in
Figure 8, with a green CPU utilization range of 40-80%
and starting with VMs at size of ml.small, both ap-
proaches manages to scale the VMs up and down as the
workload changes, by launching successors in ml.
medium, and then ml.large... and finally ending at m1.

Workload
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small. Between these better results due to the scaling
optimizations, it can be found that TARGO cannot
guarantee the VM CPU utilizations to perfectly stay
within the specified boundary, with plenty of usage
values over 80% and less than 40% for the majority of
the VMs. In contrast, OCSO IaaS optimization achieves
more effective scaling optimizations by maintaining
relatively stable VM CPU utilizations for most of the
VMs. Due to the dynamic threshold and green limit evolu-
tion used in the optimized scaling algorithm, OCSO initi-
ates faster optimization cycles to closely cope with the
changes of the workload.

This series of experiments shows that the proposed
IaaS optimization achieves distinguished outcome com-
pared with ordinary EC2 VMs whilst it overcomes the
limitations of TARGO. It can scale the original VM up/
down as the workload varies, regardless of it is in a slow
or fast pace. With a user specified green boundary, it
can react instantly while the current VM is about to
reach the up/down limit. Consequently, the VM resource

utilization efficiency can be improved significantly with
OCSO IaaS optimization.

Paas optimization experiments and evaluation
A couple of experiments are conducted on ElasticBean-
stalk the US region to evaluate the effectiveness of the
proposed PaaS optimization approach against the native
Amazon Auto Scaling functions (Figure 9). The sample
worker tier application is deployed in Tomcat 7 which is
contained in Amazon Linux 64-bit VMs. The scheduled
workload requests in different volumes are sent to the
application using Apache JMeter. With the illustrated pat-
terned workload, we demonstrate the differences (with
equivalent scaling settings) between using Auto Scaling
and OCSO PaaS optimization (to scale freely from 1-
20 m1l.medium VMs with period of 5, breach/threshold of
4, monitor frequency of 1 and CPU usage up/down limits
at 30-70%).

As Figure 9 demonstrates, the workload for the experi-
ment can be divided into two parts: from start to
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01:40:00, the workload decreases and increases gradually
in a slow pace; afterwards, the increase and decrease be-
come radically. Under such workloads, both scaling op-
tions manage to scale up and down as workload increases/
decreases, seen as that both combinations of the VM CPU
utilizations can reflect the general trend of the workload
(refer to the “Combined environment VMs CPU utiliza-
tions” figure). Here the combined CPU utilization under
OCSO optimization is slightly lower than it from using
AutoScaling. The reason for this difference is that, OCSO
utilizes smaller numbers of VMs for considerable amount
of time whilst smaller numbers of VMs would mean
smaller amount of VM (idle) running overhead, which
then produces a smaller total CPU usages. Additionally,
from the “AWS EB environment CPU utilizations” figure,
the one under OCSO PaaS optimization shows relatively
higher values than the other under AutoScaling. While
the workload continuous descending and rising in such a
rapid rate, both environment CPU utilizations could only
be maintained within a rough boundary of 20-90%. Yet
overall speaking, OCSO achieves a better result than Auto
Scaling, seen as it owns more utilizations within the speci-
fied 30-70% green limit than AutoScaling, especially while
scaling down. Moreover, as the workload drops to almost
none, AutoScaling could only maintain a single original
ml.medium VM despite of very low CPU utilizations.
Nonetheless, OCSO is able to scale down to a ml.small
VM as the last step to guarantee ultimate resource
utilization efficiency (which is why the CPU utilization
fluctuates and seems higher from 02:30:00).

The most obvious differences are that OCSO manages
to provision smaller numbers of VMs for the workload
for the majority time during the experiment, seen from
the “No of provisioned VMs” figure in Figure 9. As the
workload begins to fall, OCSO scales in much quicker
than AutoScaling: the numbers of provisioned VMs are
constantly lower than them from AutoScaling; it reaches
the minimum VM number 10 minutes earlier than it.
Then as the workload starts to climb, it scales out a little
slower than AutoScaling. By the time the workload
reaches its peak, AutoScaling scaled to 15 VMs in total
whilst OCSO utilizes 14 VMs only. Subsequently, when
the workload drops again and in a much faster pace,
OCSO manages to scale in reasonably, whereas Auto-
Scaling experiences considerable scaling. By the time
AutoScaling scales to 1 VM, it is 15 minutes later com-
pared with OCSO.

From the compared experiment results, it is noticeable
that AutoScaling solution cannot scale in effectively while
the volume of the workload continuous descending (re-
gardless of gradually or dramatically), with its slow “one
VM by another” manner. In contrast, OCSO can scales in
much faster, whereas each optimization would reduce a
group of VMs in an appropriate number according to the
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real-time utilizations. On the other hand, for scaling out
effectiveness as workload increase, there are not many dif-
ferences between the two approaches, except that OCSO
scales out a little slower than AutoScaling. As a result, the
overall outcome is that OCSO Paa$S optimization utilizes
far less necessary VMs (hours) while managing scaling ac-
tions to cope with the same workload dynamics. This sug-
gests it a better solution considering the VM resource
utilization efficiency. OCSO can achieve a better result
due to the dynamic threshold and green up/down limit
used in its intelligent scaling algorithm, whereas AutoScal-
ing would fail to achieve ultimate VM utilization efficiency
with its fairly simple auto scaling algorithm.

Discussions

As a unique approach designed for off-the-cloud use
and by service users, OCSO is capable of achieving dis-
tinguished effectiveness in optimizing service resource
consumption from a new perspective. Meanwhile, it still
suffers from a series of concerns, which would be im-
proved via introducing additional optimization modules.
In fact, the optimization premise of OCSO implementa-
tion relies on the sufficiency and effectiveness of the tar-
get cloud services’ resource monitor and configuration
options. More specifically, they are reflected by the fol-
lowing service API and property factors.

Firstly, with regard to the various service interfaces
which OCSO cloud service API rests on, the availability,
stability and functionality of these official released ser-
vice APIs are vital as they would determine the ultimate
capability of OCSO approach. Fortunately, as seen from
the current trend, all mainstream cloud service providers
tend to provide the official versions of complete SDK/
API kit/libraries for different types of users/developers
for their mainstream services. Moreover, a series of third
party cloud service APIs are becoming more and more
mature in recent two years, such as Apache jclouds [39]
and mOSAIC [40], this better supports OCSO as they
offer an alternative route and sometime may even enable
more advanced service manipulations. By seeing that
both the official and the third-party service APIs have
been maintained and updated regularly and “lively”, we
envision that OCSO approach would not be restricted
by service API-related issues in the future. Ultimately,
OCSO service API may later on become another service
access and management alternative that allows service
users to manipulate cloud resources effortlessly and ef-
fectively, as a unique interface.

Secondly, the effectiveness of OCSO is directly af-
fected by a cloud services’ functional and non-functional
properties, such as options available for various service
controls, elasticity and QoS attributes, and SLAs and se-
curity aspects. In case that the target cloud services (of
the same kind) from different providers share similar
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properties, there should not be many clear differences
while optimizing them; however, if the target services
share very different service properties, the effectiveness
may vary distinctively. For IaaS optimization, the time
for VMs creation would be a critical factor. For some
providers, the long waiting time would compromise the
overall optimization effectiveness, since OCSO would
not be able to react as quickly as it should. This makes
such service providers unideal while dealing with rapidly
changing workloads (with/without the optimization). On
the other hand, for PaaS optimization, certain service
providers offer unique VM provision and scaling control
options, e.g., the dynamic (frontend) VMs provisioned in
Google AppEngine environment are “inaccessible” as an
individual complete VM, but they can be added in as
quickly as seconds; AppEngine users only needs to select
min/max idle instances and pending latency for scaling
parameters [37]. While dealing with the uniqueness,
OCSO would need certain small modifications. As a
matter of fact, through different optimization modules,
specific off-the-cloud service optimizations can always
be implemented for such providers, towards the best in-
dividual optimization outcome.

Conclusions and future work

Differently from the majority of efforts which are made in
achieving energy-efficient service provision from the ser-
vice provider perspective, in this paper, we present a novel
user-side off-the-cloud service optimization solution that
facilitates efficient service (resource) utilizations, know-
ingly OCSO. Typical formal methods or heuristics-based
resource management optimizations as well as the official
service provider resource scaling options expose various
limitations in satisfying native green efficiency require-
ments when dealing with different workload patterns/
types and multiple metric monitor data. To correct these
weaknesses, an intelligent resource scaling algorithm is
proposed for OCSO where the green boundary limits and
thresholds are adjusted dynamically according to the real-
time service resource utilization statistics. With the devel-
oped OCSO tool prototype, a number of experiments are
conducted over Amazon EC2 and ElasticBeanstalk. The
results prove that OCSO is uniquely able to: proactively
scale the inefficiently running IaaS VMs up/down by tran-
siting them to their successors at green optimal VM sizes
and then reallocate the workloads to the successors auto-
matically; effectively scale application environment re-
sources in/out so that only necessary numbers of VMs are
provisioned depending on the real-time workload vol-
umes. To this extent, OCSO saves IaaS service resources
by allowing users to use only necessary sized VMs and re-
duces overall numbers of VMs needed for applications de-
ployed using Paa$ service resources.
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Although currently OCSO has limited service provider
support, it is clear and promising that the proposed ap-
proach and algorithm can adapt and be deployed to a
wide range of IaaS and Paa$S services easily for very few
modifications. The only limit of OCSO would be whether
there are sufficient authorization and options available for
adequate service access, request and configuration. In the
future work, we will focus on providing more provider
support for extended use cases and achieving service con-
sumption efficiency through service compositions.
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