Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

® Journal of Cloud Computing

a SpringerOpen Journal

Architecture-based integrated management of

diverse cloud resources

Xing Chen'?, Ying Zhang®*, Gang Huang™*, Xianghan Zheng'*", Wenzhong Guo'? and Chunming Rong’

Abstract

Cloud management faces with great challenges, due to the diversity of Cloud resources and ever-changing management
requirements. For constructing a management system to satisfy a specific management requirement, a redevelopment
solution based on existing management systems is usually more practicable than developing the system from scratch.
However, the difficulty and workload of redevelopment are also very high. As the architecture-based runtime model is
causally connected with the corresponding running system automatically, constructing an integrated Cloud management
system based on the architecture-based runtime models of Cloud resources can benefit from the model-specific natures,
and thus reduce the development workload. In this paper, we present an architecture-based approach to managing
diverse Cloud resources. First, manageability of Cloud resources is abstracted as runtime models, which could
automatically and immediately propagate any observable runtime changes of target resources to corresponding
architecture models, and vice versa. Second, a customized model is constructed according to the personalized
management requirement and the synchronization between the customized model and Cloud resource runtime
models is ensured through model transformation. Thus, all the management tasks could be carried out through
executing programs on the customized model. The experiment on a real-world cloud demonstrates the feasibility,
effectiveness and benefits of the new approach to integrated management of Cloud resources

Keywords: Cloud management; Software architecture; Models at runtime

Introduction

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared
pool of configurable computing resources that can be
rapidly provisioned and released with minimal manage-
ment effort or service provider interaction [1]. They al-
ways allocate virtual machine (VM)-based computing
resources on demand through the virtualization tech-
nology, and deploy different kinds of fundamental soft-
ware onto virtual machines, which are finally provided
in a service-oriented style. Nowadays, more and more
software applications are built or migrated to run in a
cloud, with the goal of reducing IT costs and complex-
ities. This trend brings unprecedented challenges to
system management of Cloud, which mainly comes
from the following two aspects:

* Correspondence: xianghan.zheng@fzu.edu.cn

'College of Mathematics and Computer Science, Fuzhou University, Fuzhou
350116, China

2Fujian Provincial Key Laboratory of Networking Computing and Intelligent
Information Processing (Fuzhou University), Fuzhou 350116, China

Full list of author information is available at the end of the article

@ Springer

First, the virtualization not only makes the physical re-
sources easier to share and control but also increases the
complexity of management [2]. For instance, there are dif-
ferent kinds of Cloud resources, which include CPU,
memory, storage, network, virtual machines and different
types of software, such as web servers and application
servers. All these resources have to be managed together.

Second, there are kinds of personalized management re-
quirements. In some scenarios, administrators need to
manage different kinds of resources together; while in
other scenarios, administrators have to manage Cloud re-
sources in appropriate styles [2]. For instance, a 3-tier JEE
(Java Enterprise Edition) application typically has to use
the web server, EJB server and DB server. These servers
have different management mechanisms. An EJB server
should comply with JMX management specification and
rely on the JMX API, while a DB server is usually man-
aged through the SQL-like scripts. In addition, the EJB
server could usually sustain running of several applica-
tions simultaneously. What’s more, all of the platforms are
in a resource sharing and competing environment [3].

© 2014 Chen et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:xianghan.zheng@fzu.edu.cn
http://creativecommons.org/licenses/by/2.0

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Administrators have to carefully coordinate each part to
make the whole system work correctly and effectively.

Actually, Cloud management is the execution of a group
of management tasks, from the view of system implemen-
tation. A management task is a group of management
operations on one or more kinds of Cloud resources. A
management operation is an invocation of a management
interface provided by Cloud resources themselves or a
third-party management service. Due to the specificity
and large scale of Cloud, management tasks of different
Clouds are not the same. For instance, Amazon EC2 [4]
mainly manages infrastructure level Cloud resources such
as virtual machines, while Google App Engine [5] man-
ages platform-level Cloud resources such as operating sys-
tems execution environment. To satisty the personalized
management requirements, Cloud administrators usually
conduct redevelopment based on the existing manage-
ment systems. However, the redevelopment is usually im-
plemented in general purpose programming languages
like Java and C/C++, which can bring enough power and
flexibility but also cause high programming efforts and
costs. For instance, the existing VM and middleware plat-
forms have already provided adequate proprietary APIs
(e.g., JIMX) to be used by monitoring and executing related
code. Administrators first have to be familiar with these
APIs and then build programs upon them. Such a work is
not easy due to diverse resources and personalized re-
quirements. In a management program, proper APIs have
to be chosen for use and different types of APIs (e.g., JMX
and scripts) have to be made interoperable with each
other. Such “boring” work is not the core of management
logics compared with analyzing and planning related code,
but it has to be done to make the whole program run ef-
fectively. During this procedure, the irrelevant APIs as
well as the collected low-level data can sometimes make
administrators exhausted and frustrated. Furthermore, the
programs are built on the code that directly connects with
runtime systems, so they are not easy for reuse. Adminis-
trators have to write many different programs to manage
different cloud applications and their platforms, even their
management mechanisms are the same.

The fundamental challenge faced by the development
of management tasks is the conceptual gap between the
problem and the implementation domains. To bridge
the gap, using approaches that require extensive hand-
craft implementations such as hard-coding in general
purpose programming languages like Java will give rise
to the programming complexity. Software architecture
acts as a bridge between requirements and implementa-
tions [6]. It describes the gross structure of a software
system with a collection of managed elements and it has
been used to reduce the complexity and cost mainly
resulted from the difficulties faced by understanding
the large-scale and complex software system [7]. It is a

Page 2 of 15

natural idea to understand management tasks through
modeling the architecture of the system. Current re-
searches in the area of model driven engineering (MDE)
also support systematic transformation of problem-level
abstractions to software implementations [8].

To address the issues above, we try to leverage
architecture-based runtime model for the management
of diverse Cloud resources. An architecture-based run-
time model is a causally connected self-representation of
the associated system that emphasizes the structure, be-
havior, and goals of the system from a problem space
perspective [9,10]. It has been broadly adopted in the
runtime management of software systems [11-13]. With
the help of runtime models, administrators can obtain a
better understanding of their systems and write model-
level programs for management. We have developed a
model-based runtime management tool called SM@RT
(Supporting Model AT Run Time [14-16]), which provides
the synchronization engine between a runtime model and
its corresponding running system. SM@RT makes any
state of the running system reflected to the runtime
model, as well as any change to the runtime model applied
to the running system in an on-the-fly fashion.

In this paper, we present an architecture-based ap-
proach to the integrated management of diverse Cloud
resources. First, we construct the architecture-based
runtime model of each kind of Cloud resource (Cloud
resource runtime model) automatically based on its
architecture meta-model and management interfaces.
Second, we define a customized model which satisfies
the specific management requirement, and describe
mapping relationships between the customized model
and Cloud resource runtime models. Then any operation
on the customized model is transformed to one on
Cloud resource runtime models automatically. Finally,
management tasks are carried out through executing op-
erating programs on the customized model, which could
benefit from many model-centric analyzing or planning
methods and mechanisms such as model checkers [17].
The whole approach only needs to define a group of
meta-models and mapping rules, thus greatly reduces
the workload of hand coding. As an additional contribu-
tion, we apply the runtime model to a real Cloud system,
which is a practical evaluation on architecture-based in-
tegrated management of diverse Cloud resources.

The rest of this paper is organized as follows: Section
II gives a motivating example of the architecture-based
approach to managing diverse Cloud resources. Section
III presents the construction of Cloud resource runtime
models. Section IV describes the construction of the
customized model. Section V illustrates a real case study
and reports the evaluation. Section VI discusses the re-
lated works. Section VII concludes this paper and indi-
cates our future work.

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Motivating example

In order to satisfy personalized requirements, Cloud ad-
ministrators conduct redevelopment based on existing
management systems. However, it may result in several
difficulties of integrated management in general ap-
proach. For instance, management scenarios may consist
of different types of resources which need to be man-
aged collaboratively. Administrators have to be familiar
with the APIs and then build programs upon them.
While conducting redevelopment, they have to choose
proper APIs for use and make different types of APIs in-
terpretable with each other, as shown in Figure 1.

Such code fragments are not the core of management
logics, but it has to be developed to make the whole
management program run effectively. Many similar code
fragments are required for a simple task. As shown in
Figure 1, the code fragment for fetching the value of the
“maxThreads” attribute in a JOnAS (a popular open

Page 3 of 15

source Java application server) through JMX API is more
than 20 LOC (Line of Code). During this procedure, the
irrelevant APIs as well as the collected low-level data
can sometimes make administrators exhausted and frus-
trated. Furthermore, as programs are built on the code
that directly connect with the running systems, they are
not easy for reuse. Administrators have to write different
programs to satisfy similar requirements even their man-
agement objectives are the same.

When using our approach, the procedure becomes
much simpler and shorter. Figure 2 shows an overview
of the runtime model based approach to integrated man-
agement of Cloud resources. The architecture-based
runtime models can shield administrators from the rela-
tively low-level details of redevelopment.

There are two steps in our approach. First, we con-
struct runtime models of Cloud resources. The Cloud
resource runtime model is abstracted from the software

15 /*
713 * JAVA: To get the value of the maxThreads of a JOnAS
3. * through the JMX.
4. x/
5. public int getMaxThreads(String port)
6. | {
7. //To prepare to invoke the interface
8. String objName = "jonas:type=Connector,port=" + port;
9. String attributeName = "maxThreads";
10 MBeanServerConnection mbeanServerConn = null;
11. try
12. {
13. JMXServiceURL connURL = new JMXServiceURL(
14 "service:jmx:mi://localhost/jndi/mmi://localhost
15. :1099/j rmpconnector_jonas");
16. JMXConnector connector = JMXConnectorFactory.
17. newJMXConnector(connURL, null):
18. connector.connect(null):
19. mbeanServerConn = connector.getMBeanServerConnection();
20 }
41. //To invoke the specific management interface
42. try
43, {
44 attributeValue = (Integer) mbeanServerConn.
45. getAttribute(obj, attributeName);
46. ¥
47. catch (AttributeNotFoundException e)
43. {
Figure 1 Example of invoking management interfaces.

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Page 4 of 15

ABC Management Requirement

BC Management Requirement

[ABC Customized Model] [’

—memmem>

Mapping Rules between the
ABC Customized Model and
A, B, C Runtime Models

BC Customized Model]

N
, Operations on the
Customized Model
________________ Yo ieeenas
Mapping Rules between the

BC Customized Model and
B, C Runtime Models

< Pl

"""""""::YF; """"""""""
--------------- L \‘\ Operations on Cloud
R T .. Resource Runtime Models
[VA - H--"‘%:‘ul
' N N A
A Runtime Model B Runtime Model C Runtime Model
- . v (. J
Resource A Resource B Resource C

Figure 2 Overview of the architecture-based approach to managing diverse Cloud resources.

architecture of this kind of resources and the correct
synchronization between the runtime model and the run-
ning system is ensured, which shields the heterogeneity of
management interfaces. Second, according to the specific
management style, we construct a customized model and
ensure its correct synchronization with Cloud resource
runtime models through model transformation. In our ap-
proach, we only need to define a group of meta-models,
mapping rules and model-level programs, so the workload
of hand coding can be greatly reduced.

With these two models, the SM@RT generator can auto-
matically generate the synchronization engine to reflect the
running system to the runtime model. The synchronization
engine not only enables any states of the system to be
monitored by the runtime model, but also any changes to
the runtime model to be applied on the running system.
Thus we can manage the resources through operations on
the runtime models, and these operations will finally
propagate to the underlying cloud resources. For instance,
in Figure 3, the synchronization engine builds a model
element in the runtime model for the running JOnAS plat-
form. When the model element of JOnAS is deleted, the
synchronization engine is able to detect this change, iden-
tify which platform this removed element stands for and
finally invoke the script to shut down the JOnAS platform.
Due to page limitation, the details of the runtime model
construction with SM@RT can be found in [20-22].

Construction of cloud resource runtime models
There are many different kinds of resources in Cloud.
For example, there are virtual machine platforms such
as Xen, VMware and KVM, operating systems such as
Windows and Linux, application servers such as JOnAS,
JBoss and WebLogic, web servers such as Apache, IIS
[18] and Nginx [19], database servers such as MySQL,
SQL server and Oracle. We construct their runtime
models in order to manage them in a unified manner.
The runtime model is abstracted from their software
architecture. It is done easily with the help of SM@RT
(The source code of SM@RT can be downloaded from
[16]), which is proposed in our previous work [14,15].
SM@RT consists of a domain-specific modeling lan-
guage (called SM@RT language) and a code generator
(called SM@RT generator) to support model-based run-
time system management. The SM@RT language allows
developers to specify: (1) the structure of the running
system by a UML-compliant meta-model; (2) how to
manipulate the system’s elements by an access model.

Construction of the customized model

There are different management requirements in Cloud
environment due to diverse Cloud resources and man-
agement styles. Different types of resources usually need
to run collaboratively to support the Cloud application
and the resources should be managed in an appropriate
management style. In our approach, administrators just
need to construct a customized model and define a set
of mapping rules, in order to satisfy a specific manage-
ment requirement. The customized model is abstracted
from the software architecture of the required manage-
ment system. The correct synchronization between the
customized model and Cloud resource runtime models

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Page 5 of 15

The Architecture-based Model

l—¢

[:operation system JONAS |

The Runtime System

l Modify

Monit
omiior | Physical Node

WVirtual Machine

Memory: 2048
Used Memory:836

:Connector

Max Thread Pool: 500
Min Thread Pool: 100

Synchronization

-

Engine Physical Node

CPU:2 Used Threads: 0 Monitor

Modify

Figure 3 Synchronization between the runtime model and the running system.

Virtual Machine

is ensured through model operation transformation,
which is completed automatically according to the
mapping rules.

Mapping rules definition

Mapping rules are used to describe mapping relationships
between the customized model and Cloud resource run-
time models. Every element in the customized model is
related with one in Cloud resource runtime models. As
shown in Figure 4, there are three types of basic mapping
relationships between model elements. Any other map-
ping relationship can be demonstrated as a combination
of them.

One-to-one mapping relationship

One element in the customized model is related to a
certain element in Cloud resource runtime models. Par-
ticularly, the attributes of elements in the customized
model are also corresponding to the ones of related ele-
ments in Cloud resource runtime models. For instance,
the Flavor element in the customized model and the

MachineType element in Cloud resource runtime models
both represent the configuration of virtual machine. The
id, name, memoryMb, imageSpaceGb and guestCpus at-
tributes of the Flavor element are related to the id,
name, ram, disk and vcpus attributes of the Machine-
Type element.

Many-to-one mapping relationship

One type of element in Cloud resource runtime models
is related to two or more types of elements in the cus-
tomized model. Particularly, the attributes of a certain
type of the element in Cloud resource runtime models
are related to the attributes of two or more types of ele-
ments in the customized model. For instance, Image and
Kernel elements in the customized model are both used
to describe the information about the type of virtual ma-
chine. In Cloud resource runtime models, all the related
information is described in the Image element. However,
in the customized model, there is not any attribute of
the Image element, related to the kernelDescription attri-
bute of the Image element in Cloud resource runtime

One-to-One Many-to-One One-to-Many
Mapping Relationshi, Mapping Relationshi Mapping Relationshi]
pping p pping p pping p
Classes in the B Flavor mage B Server
Customized o id = kind s
Model oid H Kernel © tenant_id
. © creationTimestamp = kind = name
= ram = name oid = .ﬂavar]d
= disk © description © creationTimestamp = imageld
o = sourceType = name =p
yopus © preferrediernel = description = status
Classes in Cloud £ MachineType Himage
resource runtime - ;"d oid H Apache H JonAs B MysQL
Models = creationTimestamp : name = id =id ' = id i
= name status © applianceld © applianceld = applianceld
© description = pr.ogr.‘ess = name = pame = pame
o guestCpus = minDisk =ip o ip @ ip
© hostCpus © minRam
= memoryMb o rawDiskSource
= imageSpaceGb o kernelDescription
Figure 4 Three types of basic mapping relationships between model elements.

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

models. The related attribute is in the Kernel element,
which is indicated by the preferredKernel attribute of the
Image element in the customized model.

One-to-many mapping relationship

One type of elements in the customized model is related
to two or more types of elements in Cloud resource run-
time models. For instance, Server elements in the cus-
tomized model represent virtual machines, and Apache,
JOnAS and MySQL elements in Cloud resource runtime
models represent virtual machines with software de-
ployed. During model transformation, any Server elem-
ent is mapped to one of Apache, JOnAS and MySQL
elements, according to its imageld attribute.

As shown in Table 1, we have defined some keywords
and presented the method to describe mapping relation-
ships between the customized model and Cloud resource
runtime models.

1. Helper: The “helper” tag is used to describe the
mapping relationship between elements. There are
usually three attributes in the “helper” tag, the key
attribute, the value attribute and the type attribute.
The value attribute describes the target element in
the customized model and the key attribute
describes the target element in Cloud resource
runtime models. The type attribute describes the
type of the mapping relationship. When its value is
“basic”, it is a one-to-one mapping relationship or a
many-to-one mapping relationship. When its value
is “multi”, it is a one-to-many mapping relationship.
The “helper” tag is used to describe the mapping
relationship between elements. Elements often have
attributes or other elements, so the “helper” tag
usually nests “helper” tags, “mapper” tags and
“query” tags.

2. Mapper: The “mapper” tag is used to describe the
mapping relationship between attributes of elements.
There are usually two attributes in the “mapper” tag,
the key and value attributes. The value attribute
describes the target attribute in the customized
model and the key attribute describes the target
attribute in Cloud resource runtime models. The
element, which the attributes belong to, is defined
in the outer “helper” tag.

Table 1 Keywords used to describe mapping relationships

Page 6 of 15

3. Query: The “query” tag is used to describe the
mapping relationship between attributes of
elements. There are usually four attributes in the
“query” tag. The key and value attributes in the
“query” tag are similar with the ones in “mapper”
tag. But the element, which the attribute belongs to,
is defined by the node and condition attributes; the
node attribute describes the type of the target
element and the condition attribute describes the
constraint that the target element should follow.
The “query” tag is usually used in the descriptions
of many-to-one mapping relationships between
elements.

Based on the key words above, we could define the map-
ping rules between elements, according to their mapping
relationships. As shown in Figure 5, there are three cases
of basic mapping relationships between elements.

One-to-one mapping relationship

The first case is to describe the One-to-One mapping re-
lationship between Flavor elements in the customized
model and MachineType elements in Cloud resource
runtime models. The “helper” tag is used to describe this
mapping relationship. The value of the key attribute is
“machineType” and the value of the value attribute is
“flavor”. The “mapper” tags are used to describe the
mapping relationships between the attributes of Flavor
and MachineType elements.

Many-to-one mapping relationship

The second case is to describe the Many-to-One mapping
relationship between Image, Kernel elements in the cus-
tomized model and Image elements in Cloud resource
runtime models. The “helper” tag is used to describe this
mapping relationship. The “mapper” tag is for describing
the mapping relationships between the attributes of Image
elements in the models above. The “query” tag is to de-
scribe the mapping relationship between description attri-
butes of Kernel elements in the customized model and
kernelDescription attributes of Image elements in Cloud
resource runtime models. The related Kernel element is
indicated by the preferredKernel attribute of Image elem-
ent in the customized model.

Keywords Descriptions Keywords Descriptions

Helper Mapping Rules between Elements Type Types of Mapping Relationships

Mapper Mapping Rules between Attributes Query Mapping Rules between Attributes

Key Elements or Attributes in the Objective Model Value Elements or Attributes in the Source Model
Condition Preconditions Node Types of Elements

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11 Page 7 of 15
http://www.journalofcloudcomputing.com/content/3/1/11
P
[o) o MachineType
£ Flavor | The Source Model The Descriptions of Mapping Rules The Objective Model ED kind P
n
oid oid
© name | v o creationTimestamp
9 ram = name
disk <helper key="machineType"” value="flavor" type= "composite" © description
O dis <mapper key="Id" value="id" type="basic" /> © guestCpus
S vcpus <mapper key="name” value="name" type="basic" />
& o hostCpus
<mapper key="memoryMb"” value="ram" type="basic"” />
- A TR © memoryMb
<mapper key= "ImageSpaceGb" value= "disk" type="basic” /> i S Gb
(==}
<mapper key= "guestCpus"” value="vcpus" type= "basic” /> Imageopace
</helper>
H Image
© kind H Image
el o id
© creationTimest. 5 : s
- ::,:,Ion M The Source Model The Descriptions of Mapping Rules The Objective Model O name
= description © status
= sourceType =
= preferredKernel > pl:Ogre:S
= minDis
= minRam
g Ke_""” <helper key="image" value="image" type="composite"> = rawD|skSou1:c§
Z ,l:"d <mapper key="id" value="id" type= "basic"/> = kernelDescription
I
o creationTimestamp <mapper key="name" value="name" type="basic"/>
© name <mapper key= "rawdiskSource” value="SourceType" type= "basic" />

= description

<query key="kernelDescription” value= "description” node="Kernel"” condition= "id=self.preferredkernel” type="query” />

</helper>

\

</helper>
. HApache |
! B Server The Source Model The Descriptions of Mapping Rules The Objective Model | o i
| o id [> o applianceld
. S name
O tenant_id aip
<helper key= "jonas" values "sever” conditions "self. imageld=1" type= "multi™
& name <mapper key= "ip” value= "ip" type= "basic” />
<mapper key="name” value= "name” type="basic” />
o flavorld B s v .
. elpe B JonAS B MysQL
(] |mage[d <helper key= “mysgl” value= "sever”condition= "self.imageld=2" type= "multi”> id id
. <mapper keys "ip” value= "ip" types="basic” /> = 3 = .
o p <mapper key= "name” values= "name” type= "basic” /> © applianceld | | © applianceld
</helper> © name © name
[O status <helper key= "3pache” value= "sever” condition= “self. imageld=3" type= "multi"™> S ip Sip
<mapper key="ip” value="ip” type="basic” />
<mapper key="name” value= “name” type= "basic” />

Figure 5 Descriptions of basic mapping relationships between elements.

One-to-many mapping relationship

The third case is to describe the One-to-Many mapping
relationship between Server elements in the customized
model and Apache, JOnAS, MySQL elements in Cloud
resource runtime models. The “helper” tag is used to de-
scribe the One-to-Many mapping relationship, so the
value of its type attribute is “multi”. The condition attri-
bute in the “helper” tag is to describe the mapping pre-
condition. For instance, if the value of the imageld
attribute of the Server element is “1”, the Server element
is mapped to the JOnAS element.

Model operation transformation
Model operations are aimed to monitor some system pa-
rameters or execute some management tasks. There are

five basic types of model operations, including “Get”,
“Set”, “List”, “Add” and “Remove”. In order to ensure the
correct synchronization between the models, operations
on the customized model need to be transformed to
ones on Cloud resource models, as shown in Figure 2.

We define the description and execution effect of each
type of basic model operation, as shown in Figure 6.
When Cloud administrators operate on the customized
model, an operation file will be generated automatically,
which is described in the form of “action” tag. If the type
of operation is “Get” or “List”, the result file is required,
which is describe in the form of “return” tag. Particu-
larly, the condition attribute of the operation or result
tag usually describes the identification of objective elem-
ent, such as “id = {9764071".

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11
http://www.journalofcloudcomputing.com/content/3/1/11

Page 8 of 15

<action node="TypeS" type=" List">
<query node="TypeF" condition="Constraint" />
<faction>
D inti <ruturn>
cscription <node="TypeS" condition="Constraintl" />
<node="TypeS" condition="Constraint2" />
List <freturn>
1t 3 TypeS sl, s2... 3 TypeF f,s1,s2... € f /A fin condition of Constraint
Post Condition ¥P! vp
. Find the “TypeF” element which satisfies the constraints and list “TypeS” elements
llustration which are its child nodes.
<action key="KEY" type="get">
e <query node="Type" condition="Constraint" />
Description | _ o
<return key="KEY" value="VALUE" />
Get —
Post Condition | 3 Type n, n in condition of Constraint /A prop € n.properties
ustration Find the “Type” element which satisfies the constraints and get the value of its “KEY™.
<action node="TypeS" type="add">
<query node="TypeF" condition="Constraint" />
Description <set key="" value="" />
<set key="" value="" />
<faction>
Add " .)
Post Condition | = TypeSs., 3 TypeF £, s € £ /A fin condition of Constraint /\ props =
s.properties
: Find the “TypeF” element which satisfies the constraints and add a “TypeS” element
[llustration as its child node.
o <action key="KEY" value="VALUE" type="set">
DeSCTlpthn <query node="Type" condition="Constraint" />
</action>
Set Post Condition | 3 Type n, n in condition of Constraint /\ prop € n.properties
: Find the “Type” element which satisfies the constraints and set the value of its “KEY”
[llustration attribute to “VALUE”.
D&‘SCI'iptiOIl <action node="Type" condition="Constraint" type="remove" />
Remove | Post Condition | ¥ Type n, nnot in condition of Constraint
Illustration Find the “Type” element which satisfies the constraints and remove it
Figure 6 Basic Types of Model Operations.

As shown in Figure 5, there are three types of basic
mapping relationships between model elements. We
have defined the model operation transformation rules,
as shown in Table 2. Then the operations on the element
in the customized model can be transformed to the op-
erations on the related element in Cloud resource run-
time models automatically, according to the mapping
relationships.

One-to-one mapping relationship

For instance, A elements in the customized model are
mapped to B elements in Cloud resource runtime model.
Thus, operations to add, remove and list A elements are
mapped to the same operations on related B elements.

The operation to get or set the value of A’s attribute is
mapped to the same operation on the related attribute
too.

Many-to-one mapping relationship

For instance, A elements in the customized model are
mapped to B elements in Cloud resource runtime
model, but some attributes of B element are related to
ones of C element in the customized model too. Thus,
the operation to get or set the value of the attribute of A
or C element is mapped to the same operation on the
related attribute of B element. The operation to add, re-
move or list A elements is also mapped to the same
operation on related B elements. In addition, when a

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Table 2 Mapping rules of model operation transformation

Page 9 of 15

One-to-one Many-to-one One-to-many
Mapping rule Mapping rule Mapping rule
Example A->B A->B A->BorC
Alal ->Blb]l Alal ->Blb1 Alal -> Blb]
Clcl -> B1.b2 A2al > Clcl
Get Get Al.al -> Get B1.b1 Get Alal -> Get B1.b1 Get Al.al -> Get B1b1
Get Cl.cl -> Get B1.b2 Get A2.al -> Get Cl.cl
Set Set ATal -> Set B1.b1 Set Alal -> Set B1.b1 Set Alal -> Set B1.b1
Set Cl.cl -> Set B1.b2 Set A2al -> Set Cl.cl
List List*A -> List*B List*A -> List*B List*A -> List*B and List*C
Get A.properties -> Get B.properties Get A.properties -> Get B.properties Get A.properties -> Get B.properties or
Get C.properties
Add Add*A -> Add*B Add*A -> Add*B Add*A -> Add*B or Add*C
Set A.properties -> Set B.properties Set A.properties -> Get C.properties and Set A.properties -> Set B.properties or
Set B.properties Set C.properties
Remove Remove*A -> Remove*B Remove*A -> Remove*B Remove*A -> Remove*B or Remove*C

B element is created, the initial values of properties
come from both of A and C elements.

One-to-many mapping relationship

For instance, A elements in the customized model are
mapped to B or C elements in Cloud resource runtime
models. Thus, the operations are mapped to the same
ones on the related elements or attributes. Particularly,
the operation to list A elements is mapped to the oper-
ation to list all of related B and C elements.

Case study

In a Cloud environment, the hardware and software re-
sources of virtual machines need to be managed together
in order to optimize allocation of resources. However, to
the best of our knowledge, there is currently no open
source product to satisfy the requirement above. There
are many Cloud management systems provide solutions to
manage different kinds of Cloud resources. For instance,
OpenStack [23] is an open source product which is used
to manage Cloud infrastructure. Hyperic [24] is an open
source product which is used to manage different kinds of
software including web servers, application servers, data-
base servers, and so on.

In order to validate the feasibility and efficiency of our
approach, we implement a prototype for integrated man-
agement of the hardware and software resources of vir-
tual machines based on OpenStack and Hyperic. Then
we conduct some experiments on the prototype to make
an evaluation.

Construction of cloud resource runtime models
OpenStack is used to manage the entire life cycle of vir-
tual machines. The management elements in OpenStack

include Project, Server, Flavor, Image and so on, as shown
in Figure 7. The virtual machine (the Server element) is
the basic unit of resource allocation, each of which is in-
cluded in a project. The resources of infrastructure are di-
vided into several projects. The configuration of virtual
machine contains the image, which describes the file sys-
tem of virtual machine, and the flavor, which describes the
hardware resource of virtual machine. The Images elem-
ent contains a list of images which are related to the pro-
ject. The Image element is regarded as one type of image
(For instance, web server image and DB server image).
The Flavors element contains a list of flavors which are re-
lated to the project. The Flavor element describes one
type of hardware resource configuration (such as tiny-
flavor: CPU 1G, Memory 512 M; large-flavor: CPU 4G,
memory 8G).

Hyperic provide management interfaces of middleware
software products, which is based on the agents (the
Agent element) deployed on each managed node. Due to
the large number of management interfaces, the model
of Hyperic in this case only contains the main manage-
ment interfaces of Apache, JOnAS and MySQL, as
shown in Figure 7. The attributes of Apache, JOnAS and
MySQL elements represent the metrics and configura-
tions of middleware platforms.

Given the architecture-based meta-models, we also
need to identify the changes enabled by the models [22].
There are hundreds of management interfaces in Open-
Stack and Hyperic, so we can model them into the
Access Models [14] through specifying how to invoke
the APIs to manipulate each type of elements in the
models. For instance, Figure 8 provides several manage-
ment operations about the virtual machine. For each oper-
ation we detail the management operation names, the

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Page 10 of 15

\

H Projects 1 « | B Project
Oip ¢— 3| Otenantid H Agents B Agent
= ip = ip
\ © Availability
© freeMemory
= loadAverage
H Flavors B Servers E Images
© tenant_id o tenant_id = tenant_id
1 1 1 H Apach B Mys
pache ySQL
* * © version H JOnAS © version
i H Image o status = version © status
H Fiovor EIDSizrver =id 9 o Availability = status < Availability -
oid 2 tenant id = name o RequestsPerSe.cond = Availability © ProcessMemorySize
S name inarie o status = Requestsp?rM;nute = UsedMemory = CpuUsage '
© ram e ivoiid © progress o BytesPerMinute = TotalMemory © TablesPerMinute
. . = minDisk © FilesPerMinute
i = imogeld = mi = QueriesPerMinute
= vepus = ip m'"R_am
et = rawDiskSource
© kernelDescription
£ ApacheSwConfig
H Apache © version
oid © status
« | = applianceld |1 1| © Availability
E Project = name RequestsPerSecond
o id o ip © RequestsPerMinute
= BytesPerMinute
1
5 JOnAS 8 Jona?SwConﬁg
= :, version
o i = Availabity
1 1 = name
4 - ; © UsedMemory
E Appliances | s o TotalMemory
o id
H MySQLSwConfig
© version
B MySQL © status
* | = id o Availability
© applianceld 1 1| & processMemorySize
H HwConfig = hame = CpuUsage
o flavor Swp © TablesPerMinute
© status © FilesPerMinute
= QueriesPerMinute
Figure 7 Architecture-based meta-models of OpenStack (up-left), Hyperic (up-right) and the required management system.

required arguments and the changes enabled by the oper-
ation. As shown in Figure 8, all types of manipulations of
model elements are summarized and management opera-
tions are also classified.

Based on architecture-based meta-models and Access
Models, the correct synchronization between runtime
models and management systems can be guaranteed by
the SM@RT tool. Thus, administrators are capable to
manage the hardware and software resource at an archi-
tecture level separately.

Construction of the customized model

According to the management requirement above, the vir-
tual machine and the software deployed can be regarded as
an appliance [25], which is the basic managed unit. Several
appliances compose a project that provides the infrastruc-
ture and software resources to a distributed application
system. We construct a customized model, according to this
management style. Figure 7 shows the main elements in the
customized model. The Project element contains an
Appliances element, which is regarded as a list of appliances.

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Page 11 of 15

Name Argument Post Condition
CreateAVM Node m, Image ri, Property[] props | 3VM rv, rv € rnvms A\ rv instanceof ri /\props < rv.properties
ShutdownAVM | Nodem, VM rv v € rn.vms
MigrateAVM Node ml, VM rv, Node mO v € rnlvms A\ rv € rnO.vms
PauseAVM Nodem, VM rv v € rnvms /\ rvstate = STOPED
UnpauseAVM Node m, VM rv v Ernvms /\ rv.state = STARTED
ConfPProp RuntimeUnit ru, Property[] props | props < ru.properties
Name Metaelement | Parameter | Description
Get Property(1) Get the value of the property Internal Changes | Manipulation
Set Property(1) |newValue | Set the property as newValue CreateAVM Add
List Property(*) |- Get a list of values of this property ShutdownAVM | Remove
Add Property(*) | toAdd Add toAdd into the value list of this property MigrateAVM Auxiliary
Remove | Property(™) |toRemove | Remove toRemove from the list of this property PauseAVM Set
Lookfor | Class Condition | Find an element according to condition UnpauseAVM Set
Identify | Class Other Check if this element equals to other ConfPProp Set
Auxiliary | Package User-defined auxiliary operations

Figure 8 Definitions of runtime changes.

The Appliances element contains a list of Apache elements,
a list of JOnAS elements and a list of MySQL elements,
which are all regarded as appliances. The elements of
each appliance contain configurations of the hardware
and software resources. For instance, the Apache element
contains an ApacheSwConfig element and an HwConfig
element. Therefore, management tasks could be described
as the sequences of operations on the customized model.

In order to ensure the correct synchronization between
the customized model and Cloud resource runtime models,
we define the mapping rules between them according to
their mapping relationships, as shown in Figure 9.

The key challenge is to describe the mapping from
Apache, JOnAS and MySQL elements in the customized
model to Server and Agent elements in runtime models
of OpenStack and Hyperic. We take the Apache element
for an example.

1. The Apache element is mapped to the Server element
in the OpenStack model. It is a one-to-one mapping
relationship. The id, applicanceld, name and ip
attributes of Apache element are mapped to the id,
tenant_id, name and ip attributes of Server element.
The flavor and status attributes of HwConfig
element, are mapped to the flavorld and status
attributes of Server element. In addition, the
Apache element in the customized model represents
the appliance with Apache platform deployed and
the id of the certain type of virtual machine image
is “6ebf952¢”. So the imageld attribute of the
related Server element in the OpenStack runtime
model should be “6ebf952¢” too.

2. The Apache element in the customized model is
mapped to the Agent element in the Hyperic
model. It is a one-to-one mapping relationship.

The Apache element in the customized model
contains the ApacheSwConfig element, which describes
the configurations of Apache instance, as the same
as the Apache element in the Hyperic model. So
the ApacheSwConfig element in the customized
model is mapped to the Apache element in the
Hyperic model. The attributes of ApacheSwConfig
element are also mapped to the ones of Apache
element.

According to the mapping rules, the operations on the
element in the customized model can be mapped to the
operations on the related element in runtime models.
Figure 10 shows an example of model operation trans-
formation. The original operation is to create an Apache
element and it is described as follows:

1. Query: Find the Appliances element whose id is
“f9764071”.

2. Add: Create an Apache element.

3. Set: Assign property values of the Apache element.

The original operation is mapped to the operation to
create a Server element in the OpenStack runtime
model. Model operation transformation is executed
instruction-by-instruction. For instance, the action to
query the Appliances node is mapped to the action to
query the Servers node, whose tenant_id is “f9764071".
The action to add an Apache node is mapped to the ac-
tion to add a Server node. The actions to set the prop-
erty values are mapped to the actions to set the values of
related attributes too. According to the mapping rela-
tionships, the imageld attribute of related Server element
should be “6ebf952c”, so there is an extra action to as-
sign the property value.

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11
http://www.journalofcloudcomputing.com/content/3/1/11

Page 12 of 15

The Customized Model The OpenStack Runtime Model
Project JOnAS JonasSwConfig Projects Project
id : 9764071 id:deSelec | A p— ip:192168.110 | yenant id : e8954352
applianceld :5cfe863d t
name:P-JOnAS1 id: 3°8f1CC2
ip: 192.168.1232 HwConfig tenant_id : 9764071]
Project
Appliances flavor : 5 | roest | Images Image
Appliar Status: runni tenant_id : 9764071 [5
P Status: running enant_1 tenant_id - 9764071 id : 6ebf952¢
id - 9764071 Server name : JOnAS4.7
Apache JonasSwConfig id:20feee |1\ [\ 1 |
id:209f0eee | A tenant_id : 9764071
i1 applianceld : 9764071 name : P-Apachel -
name:P-Apachel flavorld : 2 mim Flavors Haver
i 192.168.1.143 HwConfig imageld : 6ebf952¢c tenant_id : 9764071 id:2
T ip:192.168.1.143 tenant_id : f9764071 [—— name : SMALLSIZE
flavor : 2 —
status : ing ¢ e
Status: running | TS : uaning | —
S <actions>
i <actions> <act = Sever” type= "add™> H
<action node="Apache" type= "add"> @ P . “Mj:;:rr\)rd;od::"d!;v;:f:e:tsli‘ljlr;n="|=nanr id=9764071" /> |
: pplea;;cs; c({r:c};no W Model Operation Transformation oot key—"imageld® value="Gebi32c" /> i
<ot B i @ <set key="tenant_id" value="f2764071" />
- Y= name” v o L <set key="name" value="P-Aache1" />
) «:ﬁetfey= HwConfig.flaver" value="2" /> <set key="flavorld" value="2" />
i “/action <faction>
i, Yactions> <factions™
Figure 9 Snippets of mapping rules.

The generated operation file is transferred to the
OpenStack runtime model. When the operation is exe-
cuted, changes of the runtime model will be applied on
the running system.

Evaluation
We evaluate our approach from three aspects.

1) Development of the architecture-based tool for integrated
management of the hardware and software resources
For constructing Cloud resource runtime models, we
just need to define the architecture-based meta-models
and the Access Models on the Eclipse Modeling Frame-
work (EMF) [26]. The runtime model will be generated
automatically by our SM@RT tool. Construction of
Cloud resource runtime models is one-off work, so it is
acceptable for Cloud administrators. The existing forms
of models and model operations are documents in XML
format, and the process of model operation transform-
ation is fulfilled in XML format based on mapping rules.
We have developed an architecture-based tool for in-
tegrated management of the hardware and software re-
sources of virtual machines, as shown in Figure 11.
Every Appliance element stands for a virtual machine
with software deployed and these elements compose the
runtime model of the running system. Administrators
can manage the resources at an architecture level and
the operations are transformed to the invocations of
management interfaces of underlying Cloud resources.
Particularly, we just reuse and reorganize management
interfaces provided by OpenStack and Hyperic, instead
of modifying underlying systems. We manage a cloud in-
frastructure, which consists of 15 physical servers and

supports about 100 appliances, through our runtime
model based tool. It has been proved that management
tasks could be fulfilled exactly by the tool. Furthermore,
complex management tasks could be carried out through
executing operating programs on the customized model,
which may benefit from existing model-centric analyzing
or planning methods and mechanisms.

2) Comparison of programming difficulty between general
languages and model languages

According to our previous work [22], for the same
management tasks, the programs are simpler to write
in model languages like QVT [27], compared with in gen-
eral languages like Java. With the help of the architecture-
based model, Cloud administrators can focus on the
logics of management tasks without handling different
types of low-level management interfaces. In addition,
model languages usually provide model operations such
as “select” and “sum”, which makes it simpler to do
programming.

3) Comparison of performance between management
interfaces and the runtime model

To evaluate the performance of our approach, we de-
velop Java and QVT programs to execute two groups of
management tasks, respectively based on the manage-
ment interfaces or the runtime model. The first group
of management tasks is to query properties of the appli-
ances, and the second group of management tasks is to
create a set of appliances, as shown in Table 3. The exe-
cution time of Java programs is less than QVT ones.
The main reason is that the two sets of programs are
based on the same APIs and there are some extra

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11
http://www.journalofcloudcomputing.com/content/3/1/11

Page 13 of 15

<helper key="Project" value="Project" type="composite">
<mapper key="tenant_id" value="id" type="basic" />
<helper key="Servers" value="Appliances" type="composite">
<helper key="Server" value="Apache" type="composite">
<mapper key="imageld" value="" 6ebf952¢"" type="basic" />
<mapper key="id" value="id" type="basic" />
<mapper key="tenant_id" value="applianceld" type="basic" />
<mapper key="name" value="name" type="basic" />
<mapper key="ip" value="ip" type="basic" /> :
<mapper key="flavorld" value="HwConfig.flavor" type="basic" /> |
<mapper key="status" value="HwConfig.status" type="basic" />
<fthelper»
<helper key="Server" value="JOnAS" type="composite">

{"<helper key="Agent* value="Apache" type="composite’>
| <mapper key="ip" value="ip" type="basic" />
<helper key="Apache" value="ApacheSwConfig" type="composite">

<mapper key="version" value="version" type="basic" />
<mapper key="status" value="status" type="basic" />
<mapper key="Availability" value="Availability" type="basic" />
<mapper key="RequestsPerSecond" value="RequestsPerSecond" type="basic" />
<mapper key="RequestsPerMinute" value="RequestsPerMinute" type="basic" />
<mapper key="BytesPerMinute" value=" BytesPerMinute" type="basic" />

</helper>
</helper>

;}Hélpers-

Figure 10 Example of model operation transformation.

operations in the runtime model based approach, which
are aimed to ensure synchronization between the
architecture-based models and the underlying systems.
However, the difference is small and completely acceptable
for Cloud management.

Related work

There are many management systems, which are used
to manage different types of Cloud resources. For
instance, Eucalyptus [28] and OpenStack help adminis-
trators manage infrastructure level Cloud resources,
while Tivoli [29] and Hyperic help administrators man-
age platform-level Cloud resources. However, most of
these systems lack of efficient mechanisms to adjust or
extend their management interfaces for personalized
requirements.

There are some research works which try to integrate
existing management functions based on service-
oriented architecture. A solution to system management
in a distributed environment is proposed in the work
[30], which encapsulates management functions into

RESTful services and makes them subscribed by admin-
istrators. In our previous work [31,32], a “Management
as a Service (MaaS)” solution is proposed from the reuse
point of view. However, management services are not so
good as system parameters for reflecting the states of
running systems, and service subscription and compos-
ition are also more complicated, which may lead to
extra difficulties in Cloud management.

Runtime models have been widely used in different
systems to support self-repair [33], dynamic adaption
[34], data manipulation [35], etc. We have made lots of
research in the area of model driven engineering. For a
given meta-model and a given set of management inter-
faces, SM@RT [14,15] can automatically generate the
code for mapping models to interfaces with good
enough runtime performance. In addition, for the situ-
ation of incomplete formalized of modeling languages,
our previous work [36] has provided an MOF meta-
model extension mechanism with support for upward
compatibility and automatically generates a model
transformation for model integration, and the work

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

Page 14 of 15

-

y [Blue Cloud x
)

“WebServer

APACHE

= TOMCAT «TOMCAT» Wi croRebooty
Tomcat_1 MicroReboot_1
:App“cationserve' flavor:=ml.medium frequence:=5@
restart:=true «Linkn ;’;gg:s;’
status:=ACTIVE =
B0 8@se [flavor:=ml.large > 4
= apusIC restart:=true £
status : =ERROR «donitorings, <
“DBServer -
«links sese «Links s
-
MYSQL ’
«TOMCAT» «VSQL» «LoadAnalyzen
SQLSERVER S 3306 MySQL_1 fios LoadAnalyze_1
Hpnitorings
CloudService #lavor:=ml.medium flavor:=ml.medium B = S — — — - E
restart:=true K~ restart:=true — = " |keyVM:=JBOSS_2
MicroReboot status:=ACTIVE RS - status:=DELETING s

ReliabilityAnalyze I e 333§0nit0r‘in/gn_ - A
LoadAnalyze -“”_E"i‘j'jﬂﬂ ~ «Monitoring»
<«IBOSS» - e o
“Relation 38055_2 B S
flavor:=ml.large s Ca
EroscaTs «Link» e — — - = — — wionitorings ~ — _ [@ReliabilityAnalyzer

Link

Monitoring

Cloud Management piatiorm

-
e Lol

Tomcat_3

flavor:=ml.small

[localhost/SmartConsole/build/BlueCloud.html

=

8080

ReliabilityAnalyze_1

status :=ACTIVE

algorithm:=SBRA

restart:=true
status:=ACTIVE

keyVM: =JBOSS_2

< [

Figure 11 Architecture based integrated management of the hardware and software resources of virtual machines.

m r

implemented on architecture-level fault tolerance [37]
can also compensate for this to a degree. We have tried
to construct the runtime model of a real-world Cloud
and develop management programs in a modeling lan-
guage [22,38]. The approach in this paper is built on our
previous works. In addition, the approach is not intru-
sive, that is, neither instructs non-manageable systems
nor extends inadequate APIs. Therefore, it is a general-
purpose approach and is capable to interwork with
other similar works like Pi-ADL [39].

Table 3 Comparison of performance between
management interfaces and the runtime model

Management The number Management Runtime model
tasks of the appliance interfaces
Execution time Execution time
(second) (second)
Monitoring 5 1.2 26
20 4.2 85
100 20 37
Executing 1 0.2 0.5
5 1.0 1.7
20 4.0 6.1

Conclusion and future work

Due to the diversity of Cloud resources and personalized
management requirements, Cloud management is faced
with huge challenges. To satisfy a new management re-
quirement, the most common way is conducting re-
development based on existing management systems.
However, the difficulty and workload of redevelopment
are very high. This paper proposed an architecture-
based approach to integrated management of diverse
Cloud resources. For a new management requirement ,
we construct runtime models of Cloud resources and
the customized model which satisfies the requirement.
The operations on the customized model are mapped to
the ones on Cloud resource runtime models through
model operation transformation. Thus, administrators
could focus on the core of management logics and all
the management tasks could be carried out through exe-
cuting operating programs on the customized model,
which greatly reduces the workload of hand coding.

As future work, we plan to give more support for ad-
ministrators to manage Cloud resources. On one hand, we
plan to perform further analysis such as model checking
to ensure a deeper correctness and completeness of the
generated causal link between the runtime model and
underlying systems. On the other hand, we also plan to
add some more advanced management functions with

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:11

http://www.journalofcloudcomputing.com/content/3/1/11

the help of model techniques to ease management tasks
of Cloud.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

XC and YZ carried out the Cloud management studies, participated in the
study and drafted the manuscript. GH participated in the design of the study
and performed the statistical analysis. XZ and CR conceived of the study, and
participated in its design and coordination and helped to draft the
manuscript. WG participated in paper revision and made many suggestions.
All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Basic Research Program (973) of
China under Grant No. 2011CB302604, the National Natural Science
Foundation of China under Grant No. 61121063, the Technology Innovation
Platform Project of Fujian Province under Grant No. 2009 J1007 and the
Research Program of Fuzhou University under Grant No. 022543.

Author details

'College of Mathematics and Computer Science, Fuzhou University, Fuzhou
350116, China. “Fujian Provincial Key Laboratory of Networking Computing
and Intelligent Information Processing (Fuzhou University), Fuzhou 350116,
China. *Key Laboratory of High Confidence Software Technologies (Ministry
of Education), Beijing 100871, China. “School of Electronics Engineering and
Computer Science, Peking University, Beijing 100871, China. *Department of
Computer Science and Electronic Engineering, University of Stavanger,
Stavanger 4036, Norway.

Received: 11 November 2013 Accepted: 20 June 2014
Published: 29 July 2014

References

1. Mell P, Grance T (2009) The NIST definition of cloud computing. Special
publication 800-145. U.S. Department of Commerce. In: National Institute of
Standards and Technology.

2. Kotsovinos E, Stanley M (2010) Virtualization: Blessing or Curse? Managing
Virtualization at a large scale is fraught with hidden challenges. Comm ACM
54(1):61-65

3. Zhang Y, Huang G, Liu X, Mei H (2010) Integrating Resource Consumption
and Allocation for Infrastructure Resources on-Demand. In: Proc. of the 3rd
International Conference on Cloud Computing. IEEE Computer Society,
Washington, pp 75-82

. Amazon Amazon EC2. http://aws.amazon.com/ec2/

5. Google Google App Engine. https.//appengine.google.com/

6. Garlan D (2000) Software Architecture: A Roadmap. In: Proc. of the 22nd
International Conference on Software Engineering, Future of Software
Engineering Track. ACM, New York, pp 91-101

7. Hong M, Junrong S (2006) Progress of research on software architecture.
J Software 17(6):1257-1275, in Chinese with English abstract). http://www.jos.
0rg.cn/1000-9825/17/1257 htm

8. France R, Rumpe B (2007) Model-driven Development of Complex Software:
A Research Roadmap. In: Proc. of the 29th International Conference on
Software Engineering, Future of Software Engineering Trac. IEEE Computer
Society, Washington, pp 37-54

9. Bencomo N, Blair G, France R (2006) Summary of the Workshop Models@run.
time at MoDELS 2006. In: Lecture Notes in Computer Science, Satellite Events
at the MoDELS 2006 Conference. Springer, Heidelberg, pp 226-230

10. Blair G, Bencomo N, France R (2009) Models@ run.time. Comput 42(10):22-27

11. Huang G, Mei H, Yang F (2006) Runtime recovery and manipulation of
software architecture of component-based systems. Automated Software
Eng 13(2):257-281

12. Occello A, AM DP, Riveill M (2008) A Runtime Model for Monitoring Software
Adaptation Safety and its Concretisation as a Service. Models@ runtime 8:67-76

13. Wu Y, Huang G, Song H, Zhang Y (2012) Model driven configuration of fault
tolerance solutions for component-based software system. In: Proc. of the
15th International Conference on Model Driven Engineering Languages and
Systems. Springer, Heidelberg, pp 514-530

Page 15 of 15

14. Huang G, Song H, Mei H (2009) SM@RT: Applying Architecture-based Runtime
Management of Internetware Systems. Int J Software Informa 3(4):439-464

15. Song H, Huang G, Chauvel F, Xiong Y, Hu Z, Sun Y, Mei H (2011) Supporting
Runtime Software Architecture: A Bidirectional-Transformation-Based
Approach. J Syst Software 84(5).711-723

16. Peking University SM@RT: Supporting Models at Run-Time. http://code.
google.com/p/smatrt/

17. Rushby JM (1995) Model Checking and Other Ways of Automating Formal
Methods. In: Position paper for panel on Model Checking for Concurrent
Programs. Software Quality Week, San Francisco

18. Microsoft Internet Information Services. http://www.iis.net/

19. Igor Sysoev Nginx. http://nginx.org/en/index.html

20. Song H, Xiong Y, Chauvel F, Huang G, Hu Z, Mei H (2009) Generating
Synchronization Engines between Running Systems and Their Model-Based
Views. In: Models in Software Engineering (the MoDELS Workshops).
Springer, Heidelberg, pp 140-154

21, Song H, Huang G, Xiong Y, Chauvel F, Sun Y, Hong M (2010) Inferring
Meta-Models for Runtime System Data from the Clients of Management
APIs. In: Proc. of the 13rd International Conference on Model Driven
Engineering Languages and Systems. Springer, Heidelberg, pp 168-182

22. Huang G, Chen X, Zhang Y, Zhang X (2012) Towards architecture-based
management of platforms in the cloud. Frontiers Comput Sci 6(4):388-397

23. OpenStack The Open Source Cloud Operating System. httpz//www.openstackorg/

24. SpringSource Hyperic. http://www.hyperic.com/

25. Kecskemeti G, Terstyanszky G, Kacsuk P, Neméth Z (2011) An approach for
virtual appliance distribution for service deployment. Future Generation
Comput Syst 27(3):280-289

26. Eclipse Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/

27. Object Management Group Meta Object Facility (MOF) 2.0 Query/View/
Transformation (QVT). http://www.omg.org/spec/QVT

28. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,
Zagorodnov Z (2009) The Eucalyptus Open-Source Cloud-Computing
System. In: Proc. of the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid. IEEE Computer Society, Washington, pp 124-131

29. IBM IBM Tivoli Software. http://www-01.ibm.com/software/tivoli/

30. Ludwig H, Laredo J, Bhattacharya K (2009) Rest-based management of
loosely coupled services. In: Proc. of the 18th International Conference on
World Wide Web. ACM, New York, pp 931-940

31, Chen X, Liu X, Zhang X, Liu Z, Huang G (2010) Service Encapsulation for Middleware
Management Interfaces. In: Proc. of the 5th International Symposium on Service
Oriented System Engineering. IEEE Computer Society, Washington, pp 272-279

32, Chen X, Liu X, Fang F, Zhang X, Huang G (2010) Management as a Service:
An Empirical Case Study in the Internetware Cloud. In: Proc. of the 7th IEEE
International Conference on E-Business Engineering. IEEE Computer Society,
Washington, pp 470-473

33. Sicard S, Boyer F, de Palma N (2008) Using components for architecture-based
management: the self-repair case. In: Proc. of the 30th International Conference
on Software Engineering. ACM, New York, pp 101-110

34. Morin B, Barais O, Nain G, Jezequel JM (2009) Taming dynamically adaptive
systems using models and aspects. In: Proc. of the 31st International
Conference on Software Engineering. IEEE Computer Society, Washington,
pp 122-132

35. MoDisco Project. http://www.eclipse.org/gmt/modisco/

36. Chen X, Huang G, Chauvel F, Sun Y, Mei H (2010) Integrating MOF-Compliant
Analysis Results. Int J Software Informat 4(4):383-400

37. Junguo L, Xiangping C, Gang H, Hong M, Franck C (2009) Selecting Fault
Tolerant Styles for Third-Party Components with Model Checking Support.
In: Proc. of the 12th International Symposium on Component-Based
Software Engineering. Springer, Heidelberg, pp 69-86

38. Xiaodong Z, Xing C, Ying Z, Yihan W, Wei Y, Gang H, Qiang L (2013)
Runtime Model Based Management of Diverse Cloud Resources. In: Proc. of
the 16th International Conference on Model Driven Engineering Languages
and Systems. Springer, Heidelberg, pp 572-588

39, Flavio O (2008) Dynamic Software Architectures: Formally Modelling Structure
and Behaviour with Pi-ADL. In: Proc. Of the 3rd International Conference on Soft-
ware Engineering Advances. IEEE Computer Society, Washington, pp 352-359

doi:10.1186/513677-014-0011-7

Cite this article as: Chen et al.: Architecture-based integrated
management of diverse cloud resources. Journal of Cloud Computing:
Advances, Systems and Applications 2014 3:11.

http://aws.amazon.com/ec2/
https://appengine.google.com/
http://www.jos.org.cn/1000-9825/17/1257.htm
http://www.jos.org.cn/1000-9825/17/1257.htm
http://code.google.com/p/smatrt/
http://code.google.com/p/smatrt/
http://www.iis.net/
http://nginx.org/en/index.html
http://www.openstack.org/
http://www.hyperic.com/
http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/QVT
http://www-01.ibm.com/software/tivoli/
http://www.eclipse.org/gmt/modisco/

	Abstract
	Introduction
	Motivating example
	Construction of cloud resource runtime models
	Construction of the customized model
	Mapping rules definition
	One-to-one mapping relationship
	Many-to-one mapping relationship
	One-to-many mapping relationship
	One-to-one mapping relationship
	Many-to-one mapping relationship
	One-to-many mapping relationship
	Model operation transformation
	One-to-one mapping relationship
	Many-to-one mapping relationship
	One-to-many mapping relationship
	Case study
	Construction of cloud resource runtime models
	Construction of the customized model
	Evaluation
	1) Development of the architecture-based tool for integrated management of the hardware and software resources
	2) Comparison of programming difficulty between general languages and model languages
	3) Comparison of performance between management interfaces and the runtime model

	Related work
	Conclusion and future work

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

