
Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13
http://www.journalofcloudcomputing.com/content/3/1/13

RESEARCH Open Access

Utilising stream reasoning techniques to
underpin an autonomous framework for cloud
application platforms
Rustem Dautov1*, Iraklis Paraskakis1 and Mike Stannett2

Abstract

As cloud application platforms (CAPs) are reaching the stage where the human effort required to maintain them at an
operational level is unsupportable, one of the major challenges faced by the cloud providers is to develop appropriate
mechanisms for run-time monitoring and adaptation, to prevent cloud application platforms from quickly dissolving
into a non-reliable environment. In this context, the application of intelligent approaches to Autonomic Clouds may
offer promising opportunities. In this paper we present an approach to providing cloud platforms with autonomic
capabilities, utilising techniques from the Semantic Web and Stream Reasoning research fields. The main idea of this
approach is to encode values, monitored within cloud application platforms, using Semantic Web languages, which
then allows us to integrate semantically-enriched observation streams with static ontological knowledge and apply
intelligent reasoning. Using such run-time reasoning capabilities, we have developed a conceptual architecture for an
autonomous framework and describe a prototype solution we have constructed which implements this architecture.
Our prototype is able to perform analysis and failure diagnosis, and suggest further adaptation actions. We report our
experience in utilising the Stream Reasoning technique in this context as well as further challenges that arise out of
our work.

Keywords: Cloud computing; Autonomic computing; Monitoring; Analysis; Stream reasoning

Introduction
Cloud computing impacts upon almost every aspect of
daily life and the economy – pervasive cloud services
are revolutionising the way we do business, maintain
our health, and educate and entertain ourselves. Along
with recent advances in computing, networking, software,
hardware andmobile technologies, however, come emerg-
ing challenges to our ability to ensure that cyberspace
resources and services are properly regulated, maintained
and secured. The ubiquitous insertion of increasingly
automated processes and procedures into traditional per-
sonal, scientific and business activities dictates a need
to design such systems carefully, so as to guarantee that
these associated challenges are properly met. Managing
such large scale systems effectively inevitably means that

*Correspondence: rdautov@seerc.org
1South-East European Research Centre, International Faculty of the University
of Sheffield, City College, 24 Proxenou Koromila Street, 54646 Thessaloniki,
Greece
Full list of author information is available at the end of the article

resources will need to become increasingly “autonomous”,
capable of managing themselves – and cooperating with
one another - without manual intervention.
In particular, the Platform-as-a-Service (PaaS) segment

of cloud computing has been steadily growing over the
past several years, with more and more software devel-
opers choosing cloud application platforms as convenient
ecosystems for developing, deploying, testing and main-
taining their software. Following the principles of Service-
Oriented Computing (SOC), such platforms offer their
subscribers a wide selection of pre-existing and reusable
services, ready to be seamlessly integrated into users’
applications. However, by offering such a flexible model
for application development, in which software assets are
assembled from existing components just like a Lego®
construction set, cloud platform providers increasingly
find themselves in a situation where the ever-growing
complexity of entangled cloud environments poses new
challenges as to how such systems should be monitored
and managed.

© 2014 Dautov et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: rdautov@seerc.org
http://creativecommons.org/licenses/by/2.0

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 2 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

In this context, we present a novel approach to devel-
oping autonomic cloud application platforms, based on
our vision of treating cloud platforms as sensor networks
[1]. Our approach makes intelligent re-use of existing
solution strategies and products (specifically, Stream
Reasoning and the Semantic Web technology stack),
to create a general-purpose autonomous framework. In
this paper we consider how cloud application platform
providers can benefit from our approach. As will be
explained in more detail below, our approach relies on
annotating monitored values with semantic descriptions,
thereby enabling the framework to combine observation
streams with static ontological knowledge and perform
run-time formal reasoning. This in turn opens promising
opportunities for performing run-time analysis, problem
diagnosis, and suggesting further adaptation actions. We
also discuss potential shortcomings of our approach and
consider ways of overcoming them.
The rest of the paper is organised as follows.

Section “Background and motivation” is dedicated to
background information and motivation of the research
presented in this paper. It briefs the reader on the cur-
rent state of the art and known limitations in service-
based cloud environments and also summarises existing
research efforts in the area of managing the ever-
expanding complexity of cloud application platforms.
Section “Related technology: stream reasoning” intro-
duces the reader to Stream Reasoning – a promising com-
bination of traditional stream processing systems with
Semantic Web technologies. This section also explains
why these techniques are suitable for developing moni-
toring and analysis mechanisms. In Section “Description
of the framework” we present the autonomous frame-
work: we present a high-level conceptual architecture
based on the MAPE-K reference model, then describe the
prototype implementation of the framework, and finally
summarise our initial experimental results.

Background andmotivation
A fundamental goal of cloud computing is to achieve
economies of scale by providing seemingly unlimited
access to computing resources, while at the same time
avoiding the sunk costs associated with acquiring dedi-
cated systems and personnel. The core underlying archi-
tecture of the cloud is, accordingly, one of service-oriented
computing (SOC): services are provided as basic build-
ing blocks from which applications can be constructed
both rapidly and cheaply, without compromising on relia-
bility or security [2]. Today’s providers consequently need
to host an ever-increasing number of online services, and
make these available both reliably and securely to large
numbers of users spread across a wide range of geographi-
cal locations.Meeting these demands has naturally shaped
the way services are provided: it has long been recognised

that the ’service cloud’ will ultimately comprise a federated
collection of resources distributed across multiple infras-
tructure providers [3], and cloud application platforms
can be expected to play an important role in this con-
text. Creating andmaintaining the required infrastructure
is, inevitably, an increasingly complex issue, and one that
needs careful consideration.
As in all industries, cloud service providers face the

problem of monitoring their customers’ changing needs,
and responding in an appropriate and timely manner. This
is particularly problematic in the context of cloud ser-
vices, because these are, by definition, targeted at users
whose needs can be expected to change both rapidly and,
at times, dramatically. Providers therefore need to moni-
tor service usage in real time, so as to identify bottlenecks
and failures that might undermine their ability to hon-
our their customers’ service-level agreements (SLAs) –
and having identified ’broken’ services, these need to be
replaced seamlessly with new services whose behaviour
is, in some contractually meaningful sense, equivalent to
those being replaced. Given that services also need to be
ubiquitous and available to customers using them in new
and potentially unexpected ways, it is clear that cloud ser-
vices will need to become increasingly autonomous and
self-describing, reusable, and highly interoperable. This is
particularly important at the PaaS level, given the large
and increasing number of generic platform services and
apps that are available, offering everything from basic
calculator functionality to multi-environment distributed
business processing [4].
Such cloud platforms, which not only provision cus-

tomers with an operating system and run-time envi-
ronment, but additionally offer a complete supporting
environment to develop and deploy service-based appli-
cations, including a range of generic, reliable, composable
and reusable services, are known as cloud application plat-
forms (CAPs) [5,6] (see Figure 1). By offering integrated
services in this way, CAPs further reduce the human effort
and capital expenses associated with developing complex
software systems. This means that software developers –
CAP end users – can concentrate on their immediate,
domain-specific tasks, rather than expend effort on, for
example, developing their own authentication or e-billing
mechanisms – instead, existing components are offered,
managed and maintained by the CAP. The integration of
users’ applications with platform services usually takes
place by means of APIs, through which software develop-
ers can easily couple necessary services with their applica-
tions and also perform further service management. Some
of the most prominent and commercially successful CAPs
already provision their subscribers with tens of built-ins
and third-party services. For example, Google App Engine
[7] offers 38 services, andMicrosoft Azure [8] provides 20
built-in services and 35 add-ons (i.e., third-party services

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 3 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

Figure 1 General structure of a Cloud Application Platform (CAP). By offering integrated services together with PaaS provision, CAPs reduce the
costs associated with complex development.

registered with the platform). Appealing opportunities
to significantly decrease time to market, introduced by
the combination of cloud computing and SOC, has been
attracting more and more attention over the past several
years. Gartner forecasts that the PaaS market will grow
from $900 M (in 2011) to $2.9B (in 2016) with the aPaaS
(application Platform-as-a-Service) as the largest segment
[9]. IDC, another leading IT market research and analysis
agency, predicts that in 2014 “value will start to migrate
“up the stack”, from IaaS to PaaS and from generic PaaS to
data-optimized PaaS” [10].

From SOC to clouds and its consequences
Given the continuing shift towards cloud computing, the
complexity of next-generation service-based cloud envi-
ronments is soon expected to outgrow our ability to
manage them manually [11,12]. For instance, Heroku
[13] already offers more than 120 different ’add-ons’,
including such services as data storage, searching, e-mail
and SMS notification, logging and caching, and more.
These can be re-used and integrated by users, generat-
ing complex interrelationships between services and user
applications – indeed, add-ons are already being repli-
cated across multiple computational instances, coupled to
more than a million deployed applications [14,15].
Maintaining the ever-expanding software environment

of a CAP is, consequently, a major challenge. Platform
providers must be able to monitor the resulting “tangled”
environment for failures and sub-optimal behaviours,
while simultaneously addressing the needs of customer
SLAs. They must be able to exercise control over all crit-
ical activities taking place on the platform, including the
introduction of new services and applications and the
modification of existing ones to maintain the platform’s
and deployed applications’ stability and performance [16].

As we have argued above, this requires the introduc-
tion of autonomic features to the system, thereby allow-
ing services, and the platform as a whole, to adapt
their behaviours as required, following the principles
of self-management, self-tuning, self-configuration, self-
diagnosis, and self-healing [17].
While cloud providers arguably offer suitable adapta-

tion mechanisms at the Infrastructure-as-a-Service (IaaS)
level [18] - mainly dealing with load-balancing and elas-
ticity - the same does not appear to be true at the PaaS
level, where providers do not currently provide prompt,
timely, and customisable self-management mechanisms
[4] – mechanisms which would support intelligent, flexi-
ble, prompt and timely analysis of monitored values and
detection of potential failures. At the PaaS level, a vast
stream of data is constantly being generated and pro-
cessed by a far wider range of agents than are present
at the IaaS level, including a wide variety of platform
components, generic and third-party services, deployed
applications, and more.
For instance, WhatsApp – the world’s leading instant

messaging application for mobile devices [19] – is hosted
on Google App Engine, utilises its XMPP-compatible chat
messaging service and reports activity of 400 million
monthly active users [20]. Heroku also reports several
notable examples [21]: PageLever, an analytics platform
for measuring a brand’s presence on Facebook, processes
500million Facebook API requests/month, which are then
stored in a database. Quiz Creator saw activity peaks of
over 10,000 user requests/minute. Playtomic, an applica-
tion for run-time game analytics, claims to have around
15-20 million gamers generating over a billion events per
day at the rate of 12,000 requests/second. Heroku itself
hosts over one million deployed applications at a smaller
scale and offers more than one hundred add-ons (20 of

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 4 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

which are purely concerned with data storage). As these
examples demonstrate, systems as dynamic as CAPs must
handle numerous rapidly-generated streams of raw data
at an unpredictable rate – that is, they must be capable of
performing continuous monitoring and analysis of all crit-
ical activities taking place within the platform in order to
maintain the overall stability of the platform and hosted
applications.

State of the art in cloud self-management
Maintaining cloud environments has been a task of
paramount importance ever since the emergence of cloud
computing. Such complex environments clearly dictate
the need for automated monitoring and analysis of vast
amounts of dynamically flowing data so as to per-
form, for example, resource planning and management,
billing, troubleshooting, SLA and performance manage-
ment, security management, etc. [18].
According to [22,23], a cloud can be logically repre-

sented in terms of seven interconnected layers: facility,
network, hardware, operating system (OS), middleware,
application and user. Accordingly, monitoring and analy-
sis activities can be performed at each of these layers or in
a cross-layer manner. Based on this taxonomy, Aceto et al.
[18] recently surveyed 28 existing cloud monitoring tools
and solutions with respect to such criteria as scalability,
timeliness, autonomicity, adaptability, reliability, accuracy,
resilience, extensibility, intrusiveness and others. Most of
the analysed works are specifically designed to perform
low-level monitoring [24] (at facility, network, hardware
and OS levels) – that is, to monitor the Infrastructure-
as-a-Service (IaaS) level of cloud computing. Performing
monitoring activities at this level primarily enables cloud
providers to adapt to varying volumes and types of user
requests by allocating the incoming workload across com-
putational instances (i.e., load balancing), or by reserving
and releasing computational resources upon demand (i.e.,
elasticity) [25,26].
However, more sophisticated adaptation scenarios at

higher levels (middleware and application), such as modi-
fying the actual structure and/or behaviour of a deployed
application at run-time, are much more difficult to auto-
mate, and are currently beyond the capabilities of com-
mon CAPs. Unfortunately, at the moment there seem
to be no self-management mechanisms of such a kind
at the Platform-as-a-Service (PaaS) level. Even though
there are several approaches which perform monitoring
at the middleware level, the values they collect are pri-
marily used to perform adaptations at theIaaS, rather
than PaaS, level – for example, instead of replacing
a “slow” service with an equivalent (but faster) alter-
native (PaaS-level adaptation), additional computational
resources are provisioned to the given service (IaaS-level
adaptation).

An alternative approach to PaaS-level adaptations
performed by CAP providers is to require deployed appli-
cations to implement their own built-in adaptation func-
tionality. As with IaaS solutions, this means that platform
providers do not offer solutions which would allow hosted
applications to modify their internal structure and/or
behaviour at run-time by adapting to changing context
(e.g., by substituting one service for another). Instead, this
task has been shifted to the Software-as-a-Service (SaaS)
level – that is, it has been left to software developers,
the target customers of the PaaS offerings, to implement
self-adaptation logic within their applications.
Given these considerations, we believe that self-

adaptation capabilities at the PaaS level itself, and in CAPs
in particular, are as yet immature and not well theo-
rised. It is our belief that self-management at the PaaS
level is equally important, and that development of self-
adaptation mechanisms at this level is essential in order
to prevent cloud platforms from dissolving into “tangled”
and unreliable environments. Our goal in this paper is to
present and justify one possible strategy for addressing
this gap.

Related technology: stream reasoning
Since the early 2000s, when data volumes started explod-
ing, the challenge of data analytics has grown consider-
ably. Nowadays, the problem is not just about giant data
volumes (“Big Data”) – it is also about an extreme diversity
of data types, delivered at various speeds and frequencies
[27]. In the modern world, heterogeneous data streams
are to be found everywhere – sensors networks, social
media sites, digital pictures and videos, purchase trans-
action records, and mobile phone GPS signals, to name
a few [28] – and on-the-fly processing of newly gener-
ated data has become an increasingly difficult challenge.
Two important aspects of traditional database manage-
ment systems make them unsuitable for processing con-
tinuously streamed data from geographically distributed
sources at unpredictable rates, so as to obtain timely
responses to complex queries [29], namely: (i) data is (per-
sistently) stored and indexed before it can be processed,
and (ii) data is processed only when explicitly queried by
users, i.e. asynchronously with respect to its arrival. In
contrast, streamed data cannot sensibly be stored for any
length of time if it is to be used for real-time adapta-
tion; and we cannot rely on users issuing one-off queries.
Rather, we need some way for adaptation to be triggered
automatically, as and when problems arise.
To cope with the unbounded nature of streams and tem-

poral constraints, so-called continuous query languages
[30] have been developed to extend conventional SQL
semantics with the notion of windows. This approach
restricts querying to a specific window of concern which
consists of a subset of statements recently observed on

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 5 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

the stream, while older information is (usually) ignored,
thereby allowing traditional relational operators to be
applied [31].
The concepts of unbounded data streams and windows

are visualised in Figure 2. The small circles represent
tuples continuously arriving over time and constituting
a data stream, whereas the thick rectangular frame illus-
trates the window operator applied to this unbounded
sequence of tuples. As time passes and new values are
appended to the data stream, old values are pushed out
of the specified window, i.e. they are deemed irrelevant
and may be discarded (unless there is a need for storing
historical data for later analysis).
Stream Reasoning goes one step further by enhancing

continuous queries with run-time reasoning support –
that is, with capabilities to infer additional, implicit knowl-
edge based on already given, explicit facts. The concept
was introduced by Barbieri et al. [32], who defined it as
“reasoning in real time on huge and possibly noisy data
streams, to support a large number of concurrent deci-
sion processes”. In the Big Data paradigm, for example,
where data streams are becoming increasingly perva-
sive, the combination of stream processing techniques
with dynamically generated data, distributed across the
Web, requires new ways of coping with the typical open-
ness and heterogeneity of the Web environment – in
this context, Semantic Web technologies facilitate data
integration in open environments, and thus help to over-
come these problems by using uniform machine-readable
descriptions to resolve heterogeneities across multiple
data streams [33]. The primary segment of Big Data
processing, where Stream Reasoning is being adopted is
the Semantic Sensor Web [34] – “an attempt to enable
more expressive representation and formal analysis of
avalanches of sensor values in such domains as traffic
surveillance, environmental monitoring, house automa-
tion and tracking systems, by encoding sensor observation

data with Semantic Web languages” [35]. Other prob-
lem domains, where Stream Reasoning techniques are
expected to be effective, include, e.g., analysis of social
media streams, understanding users’ behaviour based on
their click streams, and analysis of trends in medical
records to predict spread of a disease over the world. [36].
As Semantic Web technologies are mainly based on

Description Logics, their application to data stream pro-
cessing also offers new opportunities to perform reason-
ing tasks over continuously and rapidly changing flows of
information. In particular, Stream Reasoning utilises and
benefits from the following Semantic Web technologies:

• Resource Description Framework (RDF), as a uniform
format for representing streamed heterogeneous data
as a collection of (subject, predicate, object) triples
using a vocabulary defined in an OWL ontology;

• OWL ontologies and SWRL rules, as a source of static
background knowledge. OWL ontologies may also
act as a vocabulary of terms for defining RDF triples;

• SPARQL-based continuous query languages, as a way
of querying RDF streams and performing reasoning
tasks by combining them with the static background
knowledge.

As a result, several prominent Stream Reasoning
approaches have emerged, including, e.g., C-SPARQL
[37], CQELS [38], ETALIS [39], and SPARQLstream [30].
These systems aim at preserving the core value of data
stream processing, i.e. processing streamed data in a
timely fashion, while providing a number of additional
features [33]:

• Support for advanced reasoning: depending on the
extent to which Stream Reasoning systems support
reasoning, it is possible not only to detect patterns of
events (as Complex Event Processing already does
[29]), but in addition to perform more sophisticated

Figure 2 Querying of streamed data. Continuous query languages address the problem of querying an unbounded data stream by focussing on
a well-defined window of interest.

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 6 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

and intelligent detection of failures by inferring
implicit knowledge based on pre-defined facts and
rules (i.e., static background knowledge).

• Integration of static background knowledge with
streamed data: it is possible to match data stream
values against a static background knowledge base
(usually represented as an ontology), containing
various facts and rules. This separation of concerns
allows for seamless and transparent modification of
the analysis rules constituting the static knowledge
base.

• Support for expressive queries and complex schemas:
ontologies also serve as a common vocabulary for
defining complex queries. This means that the classes
and properties constituting an ontology provide
“building blocks” and may be used for defining
queries of any required expressivity.

• Support for logical, data and temporal operators: to
cope with the unlimited nature of data streams,
Stream Reasoning systems extend conventional
SQL-based logical and data operators with temporal
operators. This allows us to limit an unbounded
stream to a specific window, and also to detect events
following one after another chronologically.

• Support for time and tuple windows: windows may be
specified either by time-frame, or else by the number
of entries to be retained, regardless of arrival time.
Taken together, these features facilitate evaluation of
expressive queries over streamed data and, as a result,
have the potential to allow us to benefit from
increased analysis capabilities when processing data
streams, such as monitored values within CAPs.
However, no solution is ever perfect, and Stream
Reasoning at its current state is not an exception.
Accordingly, in order to realise its potential in the
context of analysing large data streams of CAPs, we
need to address following shortcomings [35]:

• Need for unified data representation format: before
formal reasoning can be applied, heterogeneous
values have to be represented in a common format –
RDF. Although this process can be seen as a way of
tackling, e.g., the “variety” aspect of Big Data [40], it
requires establishing mappings between source data
formats and their RDF representations, which has to
be performed manually.

• No standards yet: the lack of common standards
resulted in several independent and hardly
interoperable approaches.

• Immature reasoning support: as opposed to static
SPARQL reasoning capabilities, querying over
dynamic data streams with the reasoning support is
not fully implemented yet, and the conventional
SPARQL 2.0 specification is not supported by any of
the existing Stream Reasoning approaches.

• Low performance: the Stream Reasoning research
area is still in its infancy, and suffers from low
performance. Since expressivity of a query language is
known to be inversely related to its performance [33],
evaluation of rich and complex queries always bears
the penalty of performance, which is particularly
critical when performing data analytics on very large
data streams.

• Low scalability: one of the main shortcomings of
formal reasoning, both static and stream, is that it is
not linearly scalable [41]. This means that the larger
the knowledge base over which reasoning is
performed, the slower this process is. In the context
of analysing large data sets within CAPs, this
shortcoming becomes a major concern and cannot be
neglected.

In summary, Stream Reasoning is not a “silver bullet” –
its shortcomings, unless properly addressed, may
outweigh its positive aspects and seriously hinder the
implementation of the autonomous framework.

Description of the framework
In this section we explain the underlying organisation of
the autonomous framework, starting from a high-level
description of the architecture and then going into imple-
mentation details. Through our experiments with Heroku,
we discovered that simply deploying the autonomous
framework to a cloud is not enough. Shortcomings asso-
ciated with Stream Reasoning required us to address
unexpected performance and scalability issues relating to
our approach, as will be further discussed in Subsection
“Evaluation and future work” below.

Conceptual architecture
We will describe our approach by sketching out a high-
level architecture of the framework, taking the established
MAPE-K framework [17] as our underlying model for
self-adaptation (see Figure 3). In order to support both
self-awareness and context-awareness of the managed ele-
ments, we need to employ some kind of architectural
model describing the adaptation-relevant aspects of the
cloud environment (e.g., platform components, available
resources, connections between them, etc.) and the man-
aged elements (e.g., entry-points for monitoring and exe-
cution). We therefore used OWL ontologies to represent
the self-reflective knowledge of the system. Such an archi-
tectural model also serves as a common vocabulary of
terms shared across the whole managed system, and cor-
responds to the Knowledge component of the MAPE-K
model. Moreover, our ontological classes and proper-
ties, as explained below, also serve as “building blocks”
for creating RDF streams, SPARQL queries and SWRL
rules.

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 7 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

Figure 3 Prototype framework. Our framework architecture implements the established MAPE-K control model for autonomic computing.

Within the framework, raw data generated by sensors
passes through three main processing steps:

• The triplification engine is a software component
responsible for consuming and “homogenising” the
representation of incoming raw observation values.
The use of time-stamped RDF triples, incorporating
OWL-based subjects, predicates and objects,
promotes human-readability while at the same time
allowing us to exploit the extensive capabilities of
SPARQL query languages.

• The continuous SPARQL query engine is a software
component which supports situation assessment by
taking as input the continuous RDF data streams
generated by the triplification engine and evaluating
them against pre-registered continuous SPARQL
queries. By registering appropriate SPARQL query
against a data stream, we are able to detect critical
situations – for example, service failures, high
response time from services, overloaded message
queues and network request time outs – with minimal
delay: the continuous SPARQL engine will trigger as
soon as RDF triples in the stream match the WHERE
clause of any registered query. Using SPARQL and
RDF triples in this way also makes it possible to
benefit from inference capabilities – in addition to
querying data and detecting complex event patterns,
we are able to perform run-time analysis by reasoning
over RDF triples [35]. Employing existing RDF
streaming engines with “on-the-fly” analysis of
constantly flowing observations from hundreds of
sensors is expected to help us achieve near real-time

behaviour [36] of the adaptation framework (as
opposed to “static” approaches where monitored
data is first stored on the hard drive before being
analysed) – a key requirement when developing an
adaptation mechanism.

• The OWL/SWRL reasoning engine is the software
component responsible for generating a final
diagnosis and an appropriate adaptation plan
whenever a critical condition is detected, a process
which typically requires rather complex reasoning
over the possible roots of a problem, and the
identification of multiple potential adaptation
strategies. We address this challenge (at least
partially) using OWL ontologies and SWRL rules,
since these provide sufficient expressivity to define
adaptation policies [42], while at the same time
avoiding the potentially error-prone and intensive
task of implementing our own analysis engines from
scratch. Instead, we apply the built-in reasoning
capabilities of OWL and SWRL, so that the routine of
reasoning over (i.e., analysing) a set of situations and
adaptation alternatives is achieved using an existing,
tested, and highly optimised mechanism. This also
enhances opportunities for reuse, automation and
reliability [12].

Prototype implementation
As a first step towards a proof of concept, a prototype
solution implementing the conceptual architecture has
been developed. As a test bed for our experiments we
have chosen Heroku – a well-established and trustable

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 8 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

cloud PaaS offering with sufficient levels of support
and documentation for our purposes. As outlined in
Section “Background and motivation”, Heroku qualifies
as a cloud application platform, and it offers a range of
add-on services to experiment with. The main criteria
used when choosing services for our experiments were:
(i) pervasive use by deployed applications to make sure
that the service is widely used and thus emits enough
data to be monitored and analysed, (ii) easy and straight-
forward provisioning of the service, and (iii) presence
of clear and simple metrics for monitoring. Accordingly,
from the more than 100 Heroku add-ons available, we
chose for our experiments an implementation of the
RabbitMQ messaging queue service called CloudAMQP
[43] – a widely adopted solution for decoupled com-
munication between various components of cloud-based
distributed applications. We then developed the following
simple use-case scenario, both to test the viability of our
general approach, and to identify directions for further
work and experimentation.
Let us consider a typical cloud-based scenario, in which

worker applications responsible for background process-
ing of various tasks are decoupled from the main appli-
cation by means of a messaging queue service. At some
point, the job queue gets overloaded and workers spend
too much time processing their tasks. This may hap-
pen, for example, on a cheaper subscription plan when
the rate of incoming messages is faster than the queue

service can write to disk, or the volume of incoming
messages exceeds the available memory [44]. In order
to satisfy SLAs we wish to detect such situations in a
timely manner and, where possible, launch additional
worker instances to offload the job queue. In investi-
gating this scenario our main focus has been on the
monitoring and analysis steps of the MAPE-K model,
whereas the planning and execution steps have been
left aside (this example is intended only to demonstrate
the viability of our approach, and is correspondingly
simplified).
Figure 4 shows the architecture of the prototype and

illustrates the steps constituting the use-case scenario.
The client application sends tasks to the RabbitMQ job
queue, which are then picked up and processed by an
available worker instance on a first-come first-served
basis. Once a job task is processed, the worker acknowl-
edges the queue of accomplishing the task.
Accordingly, in order to support proper functioning

of this simple application system, we are interested in
monitoring the followingmetrics associated with themes-
saging queue:

(i) Size of the message queue (i.e., current number of
messages in the queue).

(ii) Message queuing time (i.e., difference between the
time when a message is published to the queue and
the time when it is consumed by a worker).

Figure 4 Prototype architecture. The prototype architecture used in our proof-of-concept use-case scenario involves real-time monitoring of
service performance by an Autonomic Manager. The Autonomic Manager responds to critical situations at the PaaS level by identifying when ‘slow’
services should be replaced by faster alternatives.

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 9 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

(iii) Workers’ execution time (i.e., time between the
moment when a worker picks up a message from the
queue and the moment when it acknowledges the
queue of accomplishing the task).

We chose these particular metrics because they are eas-
ily monitored within Heroku (hence suitable for test pur-
poses), and when violated they unambiguously indicate a
critical situation. Simultaneous violation of threshold val-
ues of these three metrics represents a critical situation
where the current number of worker instances is not able
to cope with the workload, so that additional instances
have to be launched to prevent the whole system from
crashing.
To implement this simple use-case, we used Java as

a programming language, Eclipse IDE (with the Heroku
plug-in) for coding and testing, and Protégé IDE [45] for
developing the OWL ontology and SWRL rules. We also
used OWLAPI [46] to create, manipulate and reason over
the OWL ontology and SWRL rules programmatically,
and the C-SPARQL library [47] to create and query RDF
streams.
The main components we implemented were:

• The RabbitMQ job queue – used to decouple the
client application from workers, and for transferring
tasks. The CloudAMQP implementation of
RabbitMQ, offered by Heroku, is easy to use and
configure within Java applications.

• Client – a GUI application responsible for sending
jobs to the corresponding queue. From the GUI it is
possible to specify the number of parallel threads
sending tasks to the queue.

• Workers – computational instances responsible for
picking tasks from the queue, executing them and
notifying the queue when the task is accomplished.

• Sensors – pieces of programming code responsible
for measuring: (i) size of the message queue – every
time the client sends a new task to the queue, it
receives back the current number of awaiting
messages; (ii) time when a new task is published and
time when it is consumed by a first available worker;
(iii) workers’ execution times – workers calculate
their own execution time by subtracting the time
when a job was picked up from the queue from the
time when it was processed. The measured values are
then transformed into RDF triples using terms from
the OWL vocabulary, and sent to the RabbitMQ
monitoring queue. The following three samples
demonstrate how data, generated by sensors as
described in the above-mentioned cases, is
represented in the RDF format (where ex is
shorthand notation for a purpose-built ontology
containing corresponding classes and properties):

The main components constituting the monitoring
framework are:

• The RabbitMQ monitoring queue – used to collect
monitored values of the job queue workload and
workers’ response times.

• Autonomic Manager – this is the core component of
the framework responsible for collecting and
analysing monitored values, detecting/predicting
critical conditions, and generating corresponding
adaptation actions. By registering appropriate
C-SPARQL queries against the monitoring queue,
the Autonomic Manager is notified as soon as the
RDF triples in the stream satisfy the WHERE clause
of the query. Let us now consider the following
queries for each of the monitored metrics:

This query is triggered whenever the number of
awaiting messages exceeds 10000.

This query is triggered whenever the difference
between the time when a message is published and
the time when it is consumed exceeds 10 seconds.

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 10 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

This query is triggered whenever the execution time
of a worker exceeds 5 seconds.

Querying over the RDF stream allows the autonomic
manager to detect if there are too many messages in the
queue, and to identify execution time violations. Once
queries are triggered, fetched values are added to the
OWL ontology in order for traditional static reasoning to
be applied. The AutonomicManager is able to deduce that
the overloaded queue and workers represent a critical sit-
uation for which a possible adaptation strategy would be
the launching of additional worker instances. These activ-
ities are performed by reasoning over the OWL ontology
and SWRL rules, which are declaratively defined by plat-
form administrators at design-time with respect to given
SLAs, and can be modified at run-time if needed. The
following is illustrates a typical SWRL rule, which allows
the Autonomic Manager, based on the violated values
received at the querying stage, to deduce that the observed
critical situation requires some adaptation actions – that
is, that additional worker instances have to be launched:

We have run initial experiments on Heroku’s Cedar
stack using a free account – each computational instance
(or dyno in Heroku terminology) has 512MB of RAM and
1GB of swap space (1.5 GB RAM in total), and 4 CPU
cores (Intel Xeon X5550 2.67 GHz). Single instances of the
autonomic manager and the client application and three
worker instances were deployed on separate dynos. To
simulate the critical workload on the queue we: (i) com-
pletely turned workers off to let messages accumulate to
reach critical level (the threshold level we specified in a
corresponding C-SPARQL queue was set to 10000 mes-
sages); and (ii) made workers “sleep” for 1000 ms every
time they picked a task from the queue (the threshold level
of message queuing time was set to 10000 ms, and the
threshold level of workers’ execution times was set to 5000
ms). These initial experiments show that we are able to
detect all critical conditions within 1 second – this is the
minimum time frame between two consecutive evalua-
tions of registered queries against the data streamwhich is
allowed by the current implementation of the C-SPARQL
engine.

Evaluation and future work
Unfortunately, as the number of incoming RDF triples
increases, the performance of the framework decreases.

As explained in Section “Related technology: stream rea-
soning”, Stream Reasoning on its own currently suffers
from performance and scalability issues. Existing exper-
iments suggest that with the increase of RDF data sets
from 10K to 1M triples, the average execution time of
C-SPARQL queries increases at least 50 times [38]. Such
performance drops make our framework potentially inca-
pable of monitoring and analysing large data sets within
CAPs and need to be addressed, especially if at some later
stage we wish to expand the technique to handle Big Data
scenarios.
A possible solution to this problem, to be investigated in

the next stage of our work, is to parallelise reasoning tasks
across several instances of the Autonomic Manager [48]
by fragmenting incoming data streams into sub-streams,
so that each instance only deals with a subset of the
incoming values. Unlike static data fragmentation, where
the set of values is finite, partitioning of streamed data,
due to its unbounded nature and unpredictable rate, is
associated with a risk of splitting semantically connected
RDF triples into separate streams, which in turn may
result in incorrect deductions. Therefore, careful design of
the fragmentation logic is crucial in order to confirm that
no valuable data is misplaced or lost.
In order to address this challenge, there already exist

several technologies, both commercial (e.g., Oracle Fast
Data solutions [49] and IBM InfoSphere Streams [50]) and
open-source (e.g. Apache S4 [51] or Storm [52]). These
solutions provide infrastructure and tooling in order to
handle massive data streams, and as the next step we will
integrate our autonomous framework with one of these
data stream solutions. We anticipate that this will allow
us to address two of the five Stream Reasoning chal-
lenges identified in Section “Related technology: stream
reasoning”, namely, scalability and performance.
We also want to emphasise that we expect our main

contribution to be in the area of prompt, dynamic and
intelligent analysis of the monitored values (which is quite
difficult to benchmark), rather than in terms of perfor-
mance. We also anticipate that further on-going develop-
ments in Stream Reasoning will see the resolution of two
further shortcomings – the immature reasoning support
and the lack of standards. The requirement to homogenise
data and represent it in RDF format is expected to be less
problematic. There already exist tools for converting data
stored in relational databases into RDF, using special map-
ping languages (e.g., R2RML [53]), and analogous tools
can be envisaged for RDF stream generation.
Our prototype case study suggests that once we have

implemented the whole MAPE-K chain for a small num-
ber of key parameters (e.g., the number of messages
in the queue, message queuing time, and the execution
times from workers), the introduction of additional mon-
itoring parameters becomes a trivial task, and does not

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 11 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

necessarily bring scientific contribution. Rather than cre-
ate a comprehensive adaptation framework which would
monitor and analyse all possible metrics of a cloud plat-
form, our future research activities will therefore focus
on further enriching the background knowledge base
(i.e. OWL/SWRL policies) to see what kind of knowledge
can be inferred from a limited number of observed param-
eters to support the analysis and diagnosis of potential
failures.
We also plan to experiment with other continuous

query engines, such as CQELS and SPARQLstream, and
compare them in terms of the analytical support they
can offer. At the moment, on-the-fly reasoning support
of continuous SPARQL query languages is quite limited
(at least compared to traditional static SPARQL) [35], and
depends on the supported entailment regimes of particu-
lar query languages. Research in the direction of bridging
the gap between static and dynamic reasoning support in
SPARQL queries is continuing, and we can also reason-
ably hope for truly run-time reasoning to appear in the
relatively near future.

Conclusion
In this paper we have presented a novel approach to
enhancing cloud platforms with self-managing capabili-
ties. It utilises the Semantic Web technology stack for
annotating observation values with semantic descriptions,
and techniques from Stream Reasoning for performing
run-time analysis and problem diagnosis within cloud
application platforms. We have also introduced a con-
ceptual architecture which follows the MAPE-K reference
model to implement closed adaptation loops, and a pro-
totype framework developed in Java and deployed on
Heroku. Initial experiments demonstrate the viability of
the proposed approach, both in terms of performance and
in terms of the analysis capabilities of the autonomous
framework. More specifically, the framework is able not
only to monitor values, but also to detect and diagnose
critical situations, and to propose a simple adaptation
strategy within 1 second. Our results are, however, based
on a relatively small-scale case study, and we have identi-
fied further challenges associated with Stream reasoning
that will need to be overcome for the approach to become
adopted in practice. Even so, we believe that the applica-
tion of Stream Reasoning and Semantic Web – two areas
where intelligence lies at the very core – to Autonomic
Clouds is a promising direction.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The research presented in this paper is part of the Ph.D. dissertation of the first
author under the supervision of the second and the third authors. All authors
equally contributed to the paper. All authors read and approved the final
manuscript.

Acknowledgements
The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7-PEOPLE-2010-ITN) under grant
agreement n◦264840.

Author details
1South-East European Research Centre, International Faculty of the University
of Sheffield, City College, 24 Proxenou Koromila Street, 54646 Thessaloniki,
Greece. 2Department of Computer Science, University of Sheffield, Regent
Court, 211 Portobello Street, S1 4DP Sheffield, UK.

Received: 9 January 2014 Accepted: 30 June 2014

References
1. Dautov R, Paraskakis I (2013) A vision for monitoring cloud application

platforms as sensor networks. In: Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference. CAC ‘13. ACM, New York, pp 25–1258

2. Papazoglou MP, Traverso P, Dustdar S, Leymann F (2008) Service-oriented
computing: a research roadmap. Int J Coop Inf Syst 17(2):223–255

3. Clayman S, Galis A, Chapman C, Toffetti G, Rodero-Merino L, Vaquero LM,
Nagin K, Rochwerger B (2010) Monitoring service clouds in the future
internet. In: Tselentis G, et al. (eds) Towards the future internet – Emerging
trends from European research. IOS Press, Amsterdam, pp 105–114

4. Wei Y, Blake MB (2010) Service-oriented computing and cloud computing:
Challenges and opportunities. Internet Comput IEEE 14(6):72–75

5. Kourtesis D, Bratanis K, Bibikas D, Paraskakis I (2012) Software
co-development in the era of cloud application platforms and
Ecosystems: The case of CAST. In: Camarinha-Matos LM, Xu L,
Afsarmanesh H (eds) Collaborative networks in the internet of services,
vol. 380. Springer, Berlin Heidelberg, pp 196–204

6. Ried S, Rymer JR (2011) The Forrester Wave™: Platform-As-A-Service For
Vendor Strategy Professionals. Q2 2011. Technical report, Forrester
Research, Cambridge, MA, USA

7. Google App Engine. http://appengine.google.com/
8. Windows Azure. http://www.windowsazure.com/

9. Gartner Says Worldwide Platform as a Service Revenue Is on Pace to
Reach $1.2 Billion. http://www.gartner.com/newsroom/id/2242415

10. IDC Predicts 2014 Will Be a Year of Escalation, Consolidation, and
Innovation as the Transition to IT’s “Third Platform” Accelerates.
http://www.idc.com/getdoc.jsp?containerId=prUS24472713

11. Brazier FM, Kephart JO, Van Dyke Parunak H, Huhns MN (2009) Agents
and service-oriented computing for autonomic computing: a research
agenda. Internet Comput IEEE 13(3):82–87

12. Dautov R, Kourtesis D, Paraskakis I, Stannett M (2013) Addressing
self-management in cloud platforms: a semantic sensor web approach.
In: Proceedings of the 2013 international workshop on hot topics in cloud
services. ACM, New York, pp 11–18

13. Heroku. http://www.heroku.com/
14. Harris D Heroku Boss: 1.5M Apps, Many Not in Ruby. http://gigaom.com/

2012/05/04/heroku-boss-1-5m-apps-many-not-in-ruby/
15. Heroku – CrunchBase Profile. http://www.crunchbase.com/company/

heroku
16. Kourtesis D (2011) Towards an ontology-driven governance framework

for cloud application platforms. Technical report. South-East European
Research Centre (SEERC), Thessaloniki, Greece

17. Kephart JO, Chess DM (2003) The vision of autonomic computing.
Computer 36(1):41–50

18. Aceto G, Botta A, de Donato W, Pescapè A (2013) Cloud monitoring: a
survey. Comput Netw 57(9):2093–2115

19. WhatsApp Leads The Global Smartphone Messenger Wars With 44
Percent Market Share. http://www.1mtb.com/whatsapp-leads-the-
global-mobile-messenger-wars-with-44-pc-market-share/

20. 400 Million Stories. http://blog.whatsappcom/index.php/2013/12/400-
million-stories/

21. Heroku – Success. http://success.heroku.com/
22. Spring J (2011) Monitoring cloud computing by layer, part 1. Secur. Priv.

IEEE 9(2):66–68
23. Spring J (2011) Monitoring cloud computing by layer, part 2. Secur Priv

IEEE 9(3):52–55

http://appengine.google.com/
http://www.windowsazure.com/
http://www.gartner.com/newsroom/id/2242415
http://www.idc.com/getdoc.jsp?containerId=prUS24472713
http://www.heroku.com/
http://gigaom.com/2012/05/04/heroku-boss-1-5m-apps-many-not-in-ruby/
http://gigaom.com/2012/05/04/heroku-boss-1-5m-apps-many-not-in-ruby/
http://www.crunchbase.com/company/heroku
http://www.crunchbase.com/company/heroku
http://www.1mtb.com/whatsapp-leads-the-global-mobile-messenger-wars-with-44-pc-market-share/
http://www.1mtb.com/whatsapp-leads-the-global-mobile-messenger-wars-with-44-pc-market-share/
http://blog.whatsappcom/index.php/2013/12/400-million-stories/
http://blog.whatsappcom/index.php/2013/12/400-million-stories/
http://success.heroku.com/

Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 12 of 12
http://www.journalofcloudcomputing.com/content/3/1/13

24. Caron E, Desprez F, Rodero-Merino L, Muresan A (2012) Auto-scaling, load
balancing and monitoring in commercial and open-source clouds.
In: Benatallah B (ed) Cloud computing: methodology, systems, and
applications. CRC Press, Boca Raton, pp 301–323

25. Armbrust M, Fox A, Joseph A, Katz R, Konwinski A, Lee G, Patterson D,
Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a berkeley view of
cloud computing, EECS-2009-28. Technical report, University of California
Berkeley, Berkeley, CA, USA

26. Natis YV, Knipp E, Valdes R, Cearley DW, Sholler D (2009) Who’s who in
application platforms for cloud computing: the cloud specialists.
Technical report, Gartner Research, Stamford, CT, USA

27. Russom P (2011) Big data analytics. TDWI Best Practices Report, Renton,
WA, USA

28. Botts M, Percivall G, Reed C, Davidson J (2008) OGC® sensor web
enablement: overview and high level architecture. In: Nittel S, Labrinidis
A, Stefanidis A (eds) GeoSensor Networks. Lecture Notes in Computer
Science, vol. 4540. Springer, Berlin Heidelberg, pp 175–190

29. Cugola G, Margara A (2012) Processing flows of information: from data
stream to complex event processing. ACM Comput Surv (CSUR) 44(3):15

30. Calbimonte J-P, Jeung H, Corcho O, Aberer K (2012) Enabling query
technologies for the semantic sensor web. Int J Semantic Web Inform
Syst (IJSWIS) 8(1):43–63

31. Barbieri D, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Stream
reasoning: where we got so far. In: Proceedings of the 4th workshop on
new forms of reasoning for the semantic web: scalable & dynamic.
Springer, Berlin Heidelberg, pp 1–7

32. Della Valle E, Ceri S, Barbieri DF, Braga D, Campi A (2009) A first step
towards stream reasoning. In: Future Internet–FIS 2008. Springer, Berlin
Heidelberg, pp 72–81

33. Lanzanasto N, Komazec S, Toma I (2012) Reasoning over real time data
streams. http://www.envision-project.eu/wp-content/uploads/2012/11/
D4.8-1.0.pdf

34. Sheth A, Henson C, Sahoo SS (2008) Semantic sensor web. Internet
Comput IEEE 12(4):78–83

35. Dautov R, Stannett M, Paraskakis I (2013) On the role of stream
reasoning in run-time monitoring and analysis in autonomic systems.
In: Proceedings of the 8th south east European doctoral student
conference. Thessaloniki, Greece

36. Valle ED, Ceri S, van Harmelen F, Fensel D (2009) It’s a streaming world!
Reasoning upon rapidly changing information. Intell Syst IEEE 24(6):83–89

37. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2009) C-SPARQL:
SPARQL for continuous querying. In: Proceedings of the 18th international
conference on World Wide Web. ACM, New York, pp 1061–1062

38. Le-Phuoc D, Dao-Tran M, Parreira JX, Hauswirth M (2011) A native and
adaptive approach for unified processing of linked streams and linked
data. In: The semantic Web–ISWC 2011. Springer, Berlin Heidelberg,
pp 370–388

39. Anicic D (2011) Event Processing and Stream Reasoning with ETALIS. PhD
thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

40. IBM: Four Vs of Big Data. http://www.ibmbigdatahub.com/infographic/
four-vs-big-data

41. Baader F (2003) The description logic handbook: theory, implementation,
and applications. Cambridge University Press, Cambridge

42. Hitzler P, Krotzsch M, Rudolph S (2011) Foundations of semantic web
technologies. Chapman & Hall/CRC, Boca Raton

43. CloudAMQP – RabbitMQ as a Service. https://addons.heroku.com/
cloudamqp

44. Message Throughput in RabbitMQ Bigwig. http://bigwig.io/docs/
message_throughput/

45. The Protégé Ontology Editor and Knowledge Acquisition System. http://
protege.stanford.edu/

46. OWL API. http://owlapi.sourceforge.net/
47. Continuous SPARQL (C-SPARQL) Ready To Go Pack. http://

streamreasoning.org/download/csparqlreadytogopack
48. Urbani J (2010) Scalable and parallel reasoning in the Semantic Web. In:

The semantic web: research and applications. Springer, Berlin Heidelberg,
pp 488–492

49. Oracle Fast Data Solutions. http://www.oracle.com/us/solutions/fastdata/
index.html

50. IBM - InfoSphere Streams. http://www-03.ibm.com/software/products/
en/infosphere-streams

51. Apache: S4: Distributed Stream Processing System. http://incubator.
apache.org/s4/

52. Storm – Distributed and Fault-tolerant Realtime Computation.
http://storm-project.net/

53. R2RML: RDB to RDF Mapping Language (W3C Recommendation 27
September 2012). http://www.w3.org/TR/r2rml/

doi:10.1186/s13677-014-0013-5
Cite this article as: Dautov et al.: Utilising stream reasoning techniques to
underpin an autonomous framework for cloud application platforms.
Journal of Cloud Computing: Advances, Systems and Applications 2014 3:13.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.envision-project.eu/wp-content/uploads/2012/11/D4.8-1.0.pdf
http://www.envision-project.eu/wp-content/uploads/2012/11/D4.8-1.0.pdf
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://addons.heroku.com/cloudamqp
https://addons.heroku.com/cloudamqp
http://bigwig.io/docs/message_throughput/
http://bigwig.io/docs/message_throughput/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://owlapi.sourceforge.net/
http://streamreasoning.org/download/csparqlreadytogopack
http://streamreasoning.org/download/csparqlreadytogopack
http://www.oracle.com/us/solutions/fastdata/index.html
http://www.oracle.com/us/solutions/fastdata/index.html
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams
http://incubator.apache.org/s4/
http://incubator.apache.org/s4/
http://storm-project.net/
http://www.w3.org/TR/r2rml/

	Abstract
	Keywords

	Introduction
	Background and motivation
	From SOC to clouds and its consequences
	State of the art in cloud self-management

	Related technology: stream reasoning
	Description of the framework
	Conceptual architecture
	Prototype implementation
	Evaluation and future work

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

