More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16
http://www.journalofcloudcomputing.com/content/3/1/16

® Journal of Cloud Computing

a SpringerOpen Journal

REVIEW Open Access

Virtual machine introspection: towards
bridging the semantic gap

Asit More” and Shashikala Tapaswi

Abstract

Virtual machine introspection is a technique used to inspect and analyse the code running on a given virtual machine.
Virtual machine introspection has gained considerable attention in the field of computer security research. In recent
years, it has been applied in various areas, ranging from intrusion detection and malware analysis to complete cloud
monitoring platforms. A survey of existing virtual machine introspection tools is necessary to address various possible
research gaps and to focus on key features required for wide application of virtual machine introspection techniques.
In this paper, we focus on the evolution of virtual machine introspection tools and their ability to address the semantic

gap problem.

Keywords: Virtual machine introspection

Introduction

Security and safety are two principal factors gov-
erning future cloud computing research and develop-
ment. Research in virtualisation technology has fuelled
cloud computing growth and directly contributed to its
development. Our work of reviewing virtual machine
introspection (VMI) techniques predominantly targets
cloud computing enabler virtualisation, with security as its
major concern.

VMI is a technique initially suggested by [1] in 2003.
They defined VMI as a method of inspecting a Virtual
Machine (VM) from the ‘outside’ for analysing the soft-
ware running on the machine. Over the past few years,
VMI has seen concrete contributions, and various meth-
ods have been suggested to inspect VM data from the
outside. The difficulty in interpreting the low level bits
and bytes of a VM into a high level semantic state of a
guest Operating System (OS) is called the “semantic gap
problem” [2]. To interpret the low-level binary state infor-
mation about the VM, a virtual machine monitor (VMM)
must incorporate knowledge of the hardware architecture
or guest OS [3].

In majority of VMI techniques, VM which is observ-
ing the results of introspection is different than the VM

*Correspondence: asit_5@yahoo.com
ABV- Indian Institute of Information Technology & Management, Gwalior
474015, India

@ Springer

being introspected. The main motivation behind VMI is
to analyse every possible change taking place in a guest
OS due to the deployment of a given set of code over its
entire lifecycle. It is also possible that in presence of mon-
itoring code, deployed code may behave differently than
its legitimate behaviour. Presence of monitoring code on a
guest VM puts some limitations on execution of monitor-
ing code like, VMI code could start after OS being loaded
properly and it could continue till guest OS starts its shut
down routine. Introspection from outside the guest VM
addresses one or more of the above stated issues. Hence,
introspection from different VM is preferred over the
other options.

VMI, which has its roots in cloud enabling technol-
ogy virtualisation, has the potential to change security
deployment in cloud environments. The last couple of
years have seen considerable progress in exploring various
techniques for VMI. Path-breaking applications of VMI
have been developed in relation to cloud security, cloud
intrusion detection and cloud access management. There
are evidences of intrusion detection systems and rootkit
detection methods which have been proved effective only
because of use of VMI in their implementation [4-6].

The contributions of this paper are as follows:

e [t thoroughly inspects VMI techniques and outlines
their advantages and weaknesses.

© 2014 More and Tapaswi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: asit_5@yahoo.com
http://creativecommons.org/licenses/by/2.0

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

e It summarises various possible attacks and threats to
VMI techniques.

e [t proposes a VMI technique based on
microprocessor architecture features.

We expect the following outcomes from our
manuscript. We believe that it will provide a guide for
future developers of VMI tools looking to develop various
applications for cloud security and malware detec-
tion based on VMI. This paper is organised as follows:
Section ‘An overview’ describes the basics of virtualisation
and provides an illustration of the semantic gap problem.
The later part of this section is dedicated to the taxon-
omy that we used to classify VMI tools. Section ‘Charac-
teristic properties of VMI' reveals the properties of
an ideal VMI technique. Section ‘Memory introspec-
tion’ describes memory introspection, Section ‘I/O
Introspection’ defines 1/O introspection, and Section
‘System call introspection’ covers system call intro-
spection. Section ‘Process introspection’ is dedicated to
process introspection, and Section ‘Other techniques’
describes a range of possible techniques for VML
Section ‘Proposed architecture for VMI' describes the
proposed architecture for VMI. Section “VMI applications
& future’ outlines some predominant VMI applica-
tions. Section ‘Security issues in VMI discusses possible
attacks on VMI techniques and the VMI architecture.
Section ‘Conclusion’ presents the conclusion to our sur-
vey. Table 1 provides at a glance comparison of VMI
techniques reviewed in this document.

An overview

Different terminologies are applied to the virtualisation
framework. We adopt the following terminology through-
out this paper: A Guest VM is a virtual machine running
on a given hypervisor. The Guest OS is an OS system
running on a particular guest VM. A Secure VM is a
VM dedicated to security applications. Unless otherwise
stated, the guest VM introspection is done through the
same secure VM.

Virtualisation & hypervisors

The virtualisation technique is used to create a virtual
environment for computing by virtualising hardware, I/O
and processors. This virtual environment is possible with
the help of a special layer of software named a VM
monitor (VMM) or hypervisor. The VMM is the inter-
face between the hardware and the VMs running on the
system. Depending on the logical position of VMM in
operating system architecture, VMMs are distinguished
into two major types.

e Type I Hypervisor
e Type II Hypervisor

Page 2 of 14

Type I hypervisors run directly on available hardware,
eliminating the need for other layers, such as an OS, and
providing high efficiency compared to its counterpart.
Xen [7], VM Ware ESX [8] and Microsoft HyperV [9] are
well-known Type I hypervisors. As these hypervisors run
directly over hardware, they are also known as “bare metal
hypervisors”.

Type II hypervisors have the in-between interface of
the OS to communicate with hardware. They usually
depend on an OS to provide device drivers for hard-
ware interaction. KVM [10], QEMU [11] and the VM Ware
workstation [12] are well-known examples of this type of
hypervisor.

Semantic gap problem

The semantic gap problem in virtualisation was first stated
by [2]. To extract meaningful information about the cur-
rent state of a VM, detailed knowledge of the workings
of the guest OS is required. It is very difficult to derive
a complete view of a guest OS from outside a guest VM
due to the highly dynamic nature of modern OSes. Vari-
ous features, such as demand paging, parallel computing
and multithreading, make the architecture of an OS very
complex and volatile. View creation becomes extremely
complex. This problem is known as the semantic gap
problem. The preliminary aim of VMI is to generate a
complete view of a guest VM. Hence, the evolution of VMI
has been guided by the question: “How efficiently can the
given VMI technique bridge the problem of semantic gap”.

Characteristic properties of VMI

VMI is applied in widespread domains. With some listed
in Section ‘Introduction’, Section ‘VMI applications &
future’ details additional applications. It is obvious that
some properties of VMI are application domain spe-
cific. Still, there are a few important properties that all
VMI tools should possess, irrespective of their application
domain. Some of the properties are listed below:

¢ Minimum performance impact: The main goal in
virtualisation is to share resources between available
guests. The implementation of introspection
techniques should place as little burden as possible
on the operation of the existing system. Introspection
techniques should not place a burden on the
hypervisor and real hardware resources.

e Minimum modifications to hypervisor:
Introspection techniques should work independently
and make minimum modifications to the hypervisor
code. This is important in the application of VMI
during minor revisions and in future versions of the
VMM.

¢ No modifications to guest OS: Real-world
hypervisors provide support to almost every possible

Table 1 Comparison of VMI techniques

Category Technique Location of code VMM transparency VMM alteration Guest support Advantages
GuestVM SecureVM VMM
Memory introspection Using Xen Libraries N Y Y No Required PV Guests Safety of VMI code
I/O Introspection N N Y No Required All Types Driver and I/0 access inspection
System call introspection Using VT support N Y Y No Required All Types Processor support makes
introspection less complicated
By Hardware Rooting N Y N No Required All Types Protection from DKSM attacks
Process introspection Using Hooks Y Y Y Yes Required All Types Reverse remote control possible
Using Shadow Page Tables Y N Y Yes Required All Types Trusted Introspection
code execution
Using CFG Y N Y Yes Required All Types Novel approach for code
malfunction detection
Other techniques Code Injection Y N Y Required All Types Secure and less prone to attacks
Function Call Injection Y Y Y No Required All Types Novel approach
Page Flag Inspection Y Y N No No PV guests Detects packed & encrypted
malwares
Process Out-grafting Y Y Y Yes Required All Types A novel approach
Live Kernel Data Redirection Y Y Y Yes Required All Types Choice of selection for
introspection programme
Proposed technique Event Injection Y N Y Yes Required All Types Secure & almost every introspection

code can be used

91/1/€/3u91u02/Wwod buindwodpnojjojeusnof- mmm//:diy

91:€ 'y 10T suonpaiddy pub swalsAs ‘saoubApy :buinduio) pnoj jo jpuinor imsede] pue a0\

1 jo € abed

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

OS as a guest. If the introspection code needs to be
modified for each guest OS, its widespread
applicability becomes questionable. Even minor
revisions and periodical patches to a particular OS
may create problems.

e Transparency in operation: The operation of VMI
technique should be transparent to the hypervisor,
the guest VM and any program on the guest VM.

e Hypervisor independence: The VMI technique
should not depend on any exclusive feature of the
hypervisor architecture. It should be applicable to any
type of hypervisor, irrespective of its implementation
technology.

e No side effects: The implementation of
introspection tools should not generate any
unwanted results, which may lead to malicious
behaviour of system components. VMI tools should
also not produce any extraordinary results, which
may lead in the detection of its existence.

e Security of monitoring component: VMI modules
can be located in the hypervisor, guest VM or secure
VM. These modules must be secure from external
attacks. If a VMI module is present in a guest VM,
special protection must be provided to preserve its
integrity.

Taxonomy of VMI

There are different possible events related to a guest VM
and a guest OS running on it. These events can be grouped
to have introspection at various degrees A brief overview
is given below:

1. Memory Introspection
2. System Events Introspection

(a) System Call introspection
(b) Interrupt Requests Introspection
(c) 1I/O Device Driver Introspection

3. Live Process Introspection

Based on the above-mentioned classification, we have
divided the introspection techniques according to

Page 4 of 14

different types. Figure 1 describes a possible taxonomy
for VML

Memory introspection

Memory introspection deals with live memory analysis.
When the OS is running, all the important data struc-
tures are in the main memory. The main memory contains
process control blocks (PCBs), registry entries, loadable
kernel modules, kernel data structures and page tables,
etc. The main memory also contains pages related to data
segments and code segments of the process being exe-
cuted. Information related to the OS can be retrieved by
examining the content of the main memory. The majority
of malware analysis tools inspect program behaviour by
examining main memory contents of the given program.
A variety of VMI techniques are available to access the
main memory of a guest VM from a secure VM. These
can be used for tasks such as intrusion detection or pro-
cess analysis of the guest VM. A range of memory-based
VMI techniques are summarised in the remainder of this
section.

Introspection using Xen libraries
A guest VM can be introspected from a privileged domain
(Dom 0) associated with a Xen hypervisor [7]. Dom
0 is a control domain of Xen, and it provides access
to every data structure, driver and library implemented
by Xen. libxc is a control library for Xen. The mem-
ory of the guest VM can be monitored using the func-
tion xc_map_foreign_range(), which belongs to the same
library. A special high-performance disk driver named
blktap made for Xen’s paravirtualised guest VMs moni-
tors disk access and data transfer. In the case of a guest
VM, memory access needs to address translation from the
virtual to the physical address and then again from the
physical to the machine address. Xen has implemented
shadow page tables for the same purpose. The introspec-
tion of a paravirtualised guest VM is possible using libxc,
a blktap driver and the xen store library .

Xen_Access [13] is a good demonstration of mem-
ory and disk introspection with the Xen hypervisor. The
introspection code remains safe, as it resides in a secure

[VM Introspection]

o

R e re——

File System
Introspection

Interrupt Request
Introspection

J

System Call
Introspection

Figure 1 Classification of VMI techniques.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

VM (Dom 0). However, there is a possibility that mal-
ware could change the kernel data structure, causing
Xen_Access to produce irrelevant results. Xen_Access has
achieved performance improvement in memory access
by caching Xen Store mapping on a least recently used
(LRU) basis, which is analogous to translation look-aside
buffers (TLB). Xen Access provides very limited traces
of file access, with only the creation and the deletion
of a file traceable. Xen_Access also provides very lim-
ited support for hardware virtualisation machine (HVM)
domains. This restricts its widespread application to OSs.

1/0 Introspection

1/0O introspection deals with device drivers and other util-
ity hardware communications. dAnubis [14] is the tech-
nique suggested for VM introspection from outside of it.
This method is the successor of Anubis and exclusively
monitors Windows device drivers and kernel behaviour.
It generates a detailed report of malware activities on
machines running Windows. It is claimed that it detects
kernel patching, call hooking and direct kernel object
manipulation (DKOM). For kernel-side malicious code,
the analysis needs to be performed at a higher privileged
level than the privilege level of the kernel itself. It is only
possible via out of the VM analysis as a hypervisor is avail-
able at the higher privileged level than a kernel of the guest
OsS.

The focus of dAnubis is on monitoring all communica-
tion channels between the rootkit (device driver affected
by a rootkit) and the rest of the system. All necessary
information, such as exported symbols, data structure and
layouts are extracted from the Windows OS. To recon-
struct the necessary information, kernel symbols and data
structures are extracted from the Windows OS by using
a technique mentioned by [15]. dAnubis has been pro-
posed for detailed analysis of rootkits. This tool is capable
of conducting memory analysis and detecting attacks,
such as call table hooking, DKOM, runtime patching and
hardware access.

Stimulator: Malware is activated by some triggering
event. dAnubis has a stimulator engine that generates
such events. dAnubis works only on Windows OS. It is
a malware analysis engine and not a malware detection
engine.

System call introspection

The system call is a request by program for service from
the kernel. The service is generally something that only
the kernel has the privilege to perform, such as doing
I/O. Hence, system calls play a very important role in
events such as context switching, memory access, page
table access and interrupt handling. In case of the virtual-
isation technology (VT) support [16] enabled processors,
the transition of a guest VM to the hypervisor and vice

Page 5 of 14

versa is managed by special system calls. To maintain the
integrity of the system, specific system calls are banned
from execution by a guest VM.

Introspection using virtualization support

It has already been shown [13,17] that VT microprocessor
support features can be used for introspection activities.
Useful information related to guest VM implementation
can be retrieved by monitoring the VM control struc-
ture (VMCS) of the processor. This region is dedicated
to handling virtualisation support. Intel's VT-supported
microprocessors have two modes of operation: VMX root
operation and VMX non-root operation. The VMX root
operation is intended for hypervisor use. The VMX non-
root operation provides an alternative IA-32/64 environ-
ment controlled by a hypervisor. There are two transitions
associated with these two operation modes: 1) a transi-
tion from the VMX root operation to the VMX non-root
operation (i.e. from the hypervisor to the guest VM) called
hypervisor entry and 2) a transition from the VMX non-
root operation to the VMX root operation (i.e. from a
guest to the hypervisor) called hypervisor exit.

The CR3 register is responsible for holding the page
table address for currently running processes. Access to
the CR3 register by the guest VM causes hypervisor exit.
The hypervisor-based VMI module handles the hypervi-
sor exit. A communication channel is opened between the
VMI module in a secure VM and the VMI module in the
hypervisor by setting a covert channel for communica-
tion. The channel is set through the VMCS region using an
I/O bitmap. On receiving the CR3 change signal, the VMI
module obtains access to the page tables. This enables
tracking of current processes that are being executed.

Aquarius demonstrates the application of Intel VT and
AMD technologies for effective out of VM introspection.
Bit Visor [18] hypervisor was used for introspection pur-
poses. Some modifications were made to the Bit Visor to
inspect the guest’s system call activities.

Introspection by hardware rooting

An introspection approach that relies only on guest OS
knowledge might face attacks that change the architec-
ture of the guest OS. Hardware rooting offers a solution to
this type of attack, preventing malware from ever chang-
ing the structures of virtual hardware. Any trace which
begins from hardware assistance has very less probabil-
ity of such attacks. The hardware rooting mechanism
thwarts possible kernel data structure attacks mentioned
in Section ‘Kernel structure manipulation’.

Hardware rooting exploits system call trapping using an
interrupt descriptor table register (IDTR) and an interrupt
descriptor table. The IDTR value is set by the proces-
sor. Genuine interrupt descriptor table gets accessed using
system call trapping. Every time the value of the CR3

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

register needs to be changed, an interrupt needs to be gen-
erated. The VMI method traces this interrupt to detect
process switching. In this way, the value of the CR3 reg-
ister, along with the value of the first valid entry in the
corresponding top-level page directory, is accessed. The
value of CR3 register is unique for every process. It helps
to identify the required process executing inside the VM.

Nitro [3] is another tool based on the hardware rooting
technique. Nitro claims to work on any operating system
and have defined rules for OS portability. The unique fea-
ture of Nitro is its rule set. Simple changes in a rule set
enable it to work with almost any available OS. These
rules have provision for determining locations of system
call arguments, variables, etc. The locations of these argu-
ments is variable according to the implementation of the
OS. Generally, they reside in stack or CPU registers.

Nitro has modified QEMU [11], which is a monitor for
KVM VMM [10]. All administrative commands to Nitro
are given through the same monitor that is used by the
KVM hypervisor. It is stealthier to direct kernel structure
manipulation (DKSM) [19] types of attacks, as it depends
on CPU data structures. Importantly, its performance is
dramatically improved compared to its predecessor, Ether
[20]. The major drawback of Nitro is that it supports only
the x86 Intel 64-bit architecture.

Process introspection

Many application domains of VMI are limited to monitor
specific processes. A process could range from any legit-
imate code, such as API, user application or test code, to
malicious code, such as like malware and rootkit. Process
introspection should be able to debug any process at any
point of time during its entire execution cycle. It should
also be able to detect invocation of a specific module or
code snippet. Process introspection helps in the analysis
of code. Process introspection is also useful for malware
behaviour analysis, debugging, etc.

Introspection by hooks

Generally, this type of VMI technique comprises two sep-
arate parts. The design goal is to use a guest VM for
only a minimum amount of essential code and to use a
hypervisor layer or a secure VM for the remaining code.
It consists of two modules, a guest module and an out of
guest module described below:

® Guest module: It includes hooks for intercepting
guest OS events and a small specially crafted
trampoline code to pass events signalled by the hooks
to the hypervisor. A hook is a jump mechanism, and
it is generally associated with OS system calls. This
ensures that whenever some system call is invoked by
a process, the hook is activated. Hook transfers the
control flow of a process to another kernel

Page 6 of 14

component named the trampoline. The trampoline is
a module that acts as a bridge for communication
between hooks in a guest VM and a security driver
running in a secure VM. It also receives commands
from a secure VM.

e Out of guest module: It resides in a secure VM. This
module is responsible for processing signals received
from the trampoline. It consists of memory
monitoring and Intrusion Detection System (IDS)
tools, which inspect processes and memory on
receiving calls from hooks. It also consists of various
tools that analyse signals and makes decisions about
the fate of running processes. Based on the decision,
commands are issued to the guest OS to take
preventive steps/measures.

The Lares [21] is made up of two distinct modules. High
level implementation of the Lares is shown in Figure 2.

The Lares utilises a Xen hypervisor. Lares uses various
features of Xen, including split device drivers and mem-
ory address translation, to provide a robust and secure
introspection tool. It is appropriate for IDS or antivirus
software development where immediate reverse action is
needed upon detection of vulnerability. The trampoline
mechanism distinguishes Lares from other introspection
tools. However, the use of trampolines is a security bottle-
neck of Lares. Even the authenticity of calls generated by
hooks is questionable because malware aimed at consum-
ing system resources can invoke multiple false calls. False
calls may lead to disturbances in working of legitimate
programs.

An excellent feature of Lares is the availability of a
reverse path from a secure VM to a guest VM. This feature
is absent in almost every other existing VMI technique.
The trampoline in Lares makes it possible to send signals
to a guest VM resident code. This feature is referred to
here as reverse remote control.

(Guest VM) Secure VM
..................... (Introspection API J
Kernel Code
Hook (Security Application J
......... -
A\
(Trampoline } (Security Driver J
. \‘ 7 . ‘/ v
(/)
/
Hypervisor

Figure 2 High level view of Lares architecture.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

Introspection using shadow page tables

The hypervisor uses shadow page tables to convert a
guest VM physical address to an actual machine address.
Shadow page tables are accessible from the hypervisor and
can be manipulated easily. The introspection code can be
secured from guest VM-based applications using shadow
tables and Intel VT technology features. Intel's VT sup-
port and virtual memory protection can be used to secure
the monitoring code.

SIM [22] makes use of the above-mentioned techniques.
A protected address space is allocated to a guest VM
using memory mapping techniques. All methods and data
related to the SIM are located in a special memory region,
which is only accessible to the hypervisor. This region
includes the following elements: a gate for transferring
kernel calls, the SIM code and data, a separate copy of
kernel code and data that are only read access and spe-
cial call invocation checkers, which protect the SIM from
attacks. Figure 3 shows the high-level architecture of the
SIM. The gate is a special mechanism used by the SIM
to enter and exit a protected address space (PAS). A sep-
arate copy of the kernel code is retained by the PASs
because malware can easily infect kernel libraries. The
SIM’s introspection code uses its own copy of kernel
libraries rather than trusting libraries provided by a guest
OS. Hooks are placed within the kernel code to transfer
a call made to the SIM module. On invocation of hooks,
a hypervisor component of the SIM traces that call, and
context transfer is done using the SIM_SHADOW page
table. A CR3_TARGET LIST is used to switch between
page tables. A separate hypervisor level page table named
SIM_SHADOW is created to replace the original shadow
page table. A page table address of this shadow table is
replaced inside the CR3 register to allow access to the SIM
address space. The guest component of the SIM code is
loaded onto the guest VM as a device driver.

Kemel Code &
E Data
Flags

Handler : SELA
SIM Code [t)

Figure 3 High Level Overview of SIM IN-VM monitoring. Page
flags {R-Read, W-Write, X- Execute}.

GUEST VM

Kernel Code

Page

Page 7 of 14

SIM ensures that no code from a nontrusted address
space can be executed while introspection is ongoing
This method proved to be a milestone in VM monitor-
ing. Robustness and efficiency are the main advantages of
IN-VM monitoring tools.

Introspection using CFG

Another technique known as PsycoTrace, which monitors
the processes running on a guest VM, was introduced
by [23]. PsycoTrace [23] is a unique method that utilises
context-free grammar (CFG) for process activity monitor-
ing and detecting malware attacks. The technique consists
of two phases.

The first phase makes use of some static tools and
acts from inside the guest VM and utilises the guest
VM. These tools are responsible for capturing the legit-
imate workings of the process to be monitored. A CFG
for processes is generated using a grammar generating
algorithm developed for PsycoTrace. The CFG was devel-
oped according to custom-made rules (e.g. system call
invocation is considered a terminating symbol). Bison [24]
was modified to use C code and system calls as an input
and to generate a CFG for a given process.

In the next phase, the kernel of the guest VM is mod-
ified and injected with a module named HiMod. Himod
is responsible for monitoring system calls generated by
a given process. It stores parameters of every system
call and notifies the analyst module. The analyst mod-
ule is associated with a secure VM. Communication
between the HiMod and the analyst module takes place
via a communication channel. The analyst module val-
idates every system call with CFG to detect malware
infection.

Although PsycoTrace has a very innovative way of
detecting malware attacks, it has some weaknesses. It
is not capable of handling processes that use multiple
threads, and the kernel modification code is not well
secured from detection and attacks. PsycoTrace, on suc-
cessful malware detection, lacks malware counter-defence
mechanisms. However, PsycoTrace has zero possibility
of false positives, which is an achievement. The major
drawback limiting the use of PsycoTrace is its initial run,
during which the source code of the process has to be
monitored.

Other techniques

It is very difficult to classify some VMI techniques in
the categories mentioned above. Although some have the
capabilities to introspect two or more regions, few have
the additional capability to introspect system calls and
introspect interrupt requests from devices. This is possi-
ble with hypervisors like Xen that use a special data struc-
ture called an event channel for passing interrupts and
system calls and techniques such as process monitoring

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

of system calls and memory. These abilities of hypervisors
help in monitoring allied fields.

Introspection using code injection

Introspection is possible by implanting an introspection
process (monitoring code) inside a guest VM with the help
of the hypervisor. This implanted process is hidden under
existing legitimate process. This technique is similar to
camouflaging. The system consists of a victim process,
which is used as a camouflage to hide the monitoring
process. The victim process is a process or any user pro-
gram that is used to replace itself by introspection process.
The introspection process is a special program capable of
executing certain code, which inspects system variables,
parameters and the environment as per the introspection
needs.

This introspection process resides in the address space
of a secure VM. The hypervisor monitors every context
switch to detect the loading of the victim process. On
detection of the context switch to a desired victim pro-
cess, it replaces all necessary pointers, such as the start
processor instruction pointer (SIP). It ensures that instead
of running the victim process, the monitoring code is
initiated and run on a guest VM.

The memory required by the introspection process is
provided by a secure VM at runtime. This ensures the
address space of the monitoring process is hidden from
processes running on the guest OS. It also ensure that the
address space cannot be detected by malware programs
running on the victim machine.

Although introspection using code injection looks
promising, this method has the potential to alert malware
that it is being monitored due to the reasons outlined
below.

1. Every monitoring process is given explicit root
privilege, enabling it to monitor all user-level
applications.

2. The monitoring process exits on the request of the
hypervisor or the secure VM. This is achieved by the
hypervisor setting a control bit in a covert channel
created exclusively for message passing.

3. An unkillable flag is used in the monitoring process,
so that it cannot be killed in between the
introspection process. This flag is set only for init
processes.

4. Fork calls are blocked during execution of the
monitoring process.

Gu et al. [25] implemented a similar technique and took
various precautions to ensure the security of this tech-
nique. In the approach they used, all OS libraries needed
by the monitoring process are compiled statically to avoid
the use of guest VM libraries, which are possible baits
for a malware. There is no restriction on the choice of

Page 8 of 14

monitoring processes: It can be a malware catcher or user
code, which, in turn, can inspect processes running inside
a guest VM. This achievement is remarkable.

The introspection technique rectified almost all secu-
rity vulnerabilities detected with the process implantation
technique Virtuoso [25]. Virtuoso restricts the selection of
the monitoring process, and it can only use tools provided
by the OS [25]. The advantage of using Virtuoso is that
the user needs very limited knowledge of OSs, and little
effort is required to build OS-specific introspection rou-
tines. The process implantation technique is divided into
two phases.

The first phase is the training phase in which the mon-
itoring process is executed repeatedly. This phase is small
and runs parallel on the guest programme and calculates
the data required by the monitoring process. A slicing
algorithm and a trace logging algorithm are used to anal-
yse this monitoring code for different loops, jumps and
conditional statements. These algorithms reproduce the
monitoring programme, with almost the exact instruc-
tion code sequence. Whenever introspection is required,
this newly created code segment is mounted on guest VM
environment by the VMM.

According to the authors [25] , Virtuoso has been tested
on various OSs, such as Windows XP SP2 (kernel ver-
sion 5.1.2600.2180), Ubuntu Linux 8.10 (kernel version
2.6.27-11) and Haiku R1 Alpha 2. However, it has a serious
drawback: It requires continuous human intervention. In
addition, if any loop or conditional flow was not exercised
during training, there are chances of generating instruc-
tion sequences from such loops/conditional flows, which
may lead to ambiguous execution. Moreover, the slicing
algorithm cannot deal with interrupts, page faults and
external references to remote addresses. However, Vir-
tuoso is secure and much less susceptible to malware
detection and attacks. Repeated execution of the train-
ing phase has shown excellent results in monitoring code
generation.

Introspection with function call injection (FCI)
Function call injection is the amendment to code injection
technique. This method utilises the APIs of secure VM
OS to ensure the security from code manipulation. When
the introspection application residing in the guest VM is
called, the hypervisor and the introspection mechanism
patch these calls with equivalent function of a secure VM.
This makes this technique applicable to almost every OS
having APIs for monitoring. It removes the need for hooks
inside the guest and a trampoline. The API is called from
the secure VM, thereby strengthening the overall security
of function call injection.

Function call injection monitors guest data structures
and API locations. By pausing the Virtual Central Pro-
cessing Unit (VCPU) state, a special jump is introduced

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

to secure the API of the VM. This API is the code for
VM introspection. As the API resides inside a secure VM,
there is no possibility of malware infecting the API. This
ensures that the monitoring code of the API has access to
the data structures of the guest VM. This monitoring code
generates the introspection results in a secure VM.

Before invoking the monitoring process, VMM runs
another process named localised shepherding. The role
of the localised shepherding process is to ensure the
integrity of API monitoring. The shepherding process
avoids switches in between the execution of the monitor-
ing process. It is responsible for atomic execution of the
monitoring process.

Syringe [26] is based on the function call injection
technique. It utilises a VMWare ESX [8] server platform
and the introspection tool VMWare VMSafe. VMSafe
has a unique ability to debug guest VM execution dur-
ing Syringe implementation. Syringe provides flexibil-
ity in terms of OSs and the selection of introspection
tools. Syringe has no possibility of dynamic code out-
rage unlike its sibling Virtuoso. Syringe places a single
VCPU restriction on guest VMs because placing multiple
VCPU restrictions raises the possibility of the code being
detected by malware. Keeping performance degradation
in mind, atomic execution of the monitoring process is not
always favourable.

Introspection using page flag inspection
The dependence of process implantation technique [27]
on APIs of OS for introspection may lead to limited access
to guest information. Malware that is either encrypted or
packed (compressed) is very difficult to detect. Packed
malware is generally stored in data pages as user data.
Malware that resides in data pages will need to be page
faulted, and NX flag® (in the case of x86 and DX in the case
of AMD) needs to be set to make such pages executable.

Maitland [28] uses the Xen store utility and page flags
for accessing NX flags. Maitland observes each page fault
and makes these pages accessible to a security VM. The
secure VM is equipped to detect malware signatures
and inspects the shared pages for symptoms of malware.
Maitland uses a split device driver utility, which it uses for
paravirtualised guests of Xen. The application of Maitland
to HVM (fully virtualised) guests requires major reforms
in split device drivers. This restricts its use on Windows-
based guest VMs. In turn, Maitland needs very little
changes to the VMM, and its monitoring code for page
faults consumes little resources. Even the code running
on the guest VM incurs very little overheads. However,
this code is easily detectable by malware, something that
raises serious concerns with regard to its widespread
adoption.

The design goal of Maitland is to develop a lightweight
introspection tool. Maitland focuses on the detection of

Page9of 14

encrypted and packed malware over the cloud on VM
guests.

Introspection using process out-grafting

Many past VMI solutions are sensitive to version of OSs,
with even a simple patch for an OS having an adverse
effect on their operation. Numerous attempts have been
made to inject a function/process in guest VMs. Process
out-grafting proposes a solution for monitoring specific
processes from a number of guest VM processes. The
approach used here is exactly the reverse of that used
conventionally. Instead of grafting the monitoring process
running on a guest VM, process out-grafting relocates the
specific process on-demand from a guest to a secure VM.
The advantage of out-grafting is that monitoring tools
do not need any modification. They essentially view it a
normal process running in a secure VM.

The way in which “on demand grafting” works is very
interesting. It monitors the state of the VCPU of a guest
VM for user mode execution. Out-grafting begins when
VCPU is switched to user mode. Process grafting can be
achieved by transfer of the execution context (e.g. regis-
ters) and memory page frames. For memory page frames,
it depends on memory virtualisation support by the pro-
cessor. Process grafting is achieved by directly marking an
NX flag of the corresponding pages in the EPTP kernel
state of a guest VM that is maintained during out-grafting,
and page tables are synchronised with a secure VM.

Srinivasan et al. [29] used a similar method to pro-
cess out-grafting called mode-sensitive split execution for
introspection. The system calls by the out-grafted pro-
cess are redirected back to the guest VM. The same is
achieved by coordinating between the stub residing on the
guest VM and a helper module residing on a secure VM in
a loadable kernel module (LKM) mode. Only user mode
instructions are executed in a secure VM, and all kernel
mode instructions are redirected back to the guest VM.
The file system of the guest VM is in read only mode to aid
monitoring activity. This helps in tracing the system call
execution of the out-grafted process.

Although the guest process is out-grafted, a secure VM
is needed to handle system call migration, page fault han-
dling and kernel mode execution. All these events are
executed by the guest VM. The exec_ve calls from the pro-
cess have to be executed by the guest VM. In short, only
user mode execution is monitored by a secure VM. The
fate of out-grafting depends upon the efficient application
of the NX bit of the process pages. Malware that could
mask the NX bit could easily evade process out-grafting
technique. Another disadvantage of process out-grafting
is that if the kernel of a guest VM is compromised, then
entire process becomes vulnerable. Nevertheless, natural
support to any monitoring tool without any modification
is remarkable.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

Introspection using live kernel data redirection

As mentioned in Section ‘Introspection using code injec-
tion’, introspection using code injection has been sug-
gested as a novel approach for VMI However, it is
not fully automated, and it requires the intervention of
human experts. In the case of code injection, a monitor-
ing code is generated by repeated analysis. In contrast,
in kernel data redirection, the monitoring code remains
fixed, and the data required by the monitoring code are
provided by the corresponding guest VM that is to be
introspected.

The concept behind kernel data redirection is very
simple. It consists of a secure VM with all leading intro-
spection tools installed. The guest VM that is to be intro-
spected shares its memory with a secure VM. This is
achieved by mounting the guest memory on a secure VM,
using VMM. The secure VM uses its own code to intro-
spect the guest VM using data available from its shared
memory.

The VM space traveller (VMST) [30], utilises kernel data
redirection. VMST automates the introspection process.
The secure VM deploys a separate module named the
syscall execution context identification module. It is used
for identification of introspection-related system calls.
Another module named the redirectable data identifica-
tion module is responsible for redirecting the required
data of the guest VM to the monitoring process. To
retrieve data from the memory of the guest OS, it exploits
well-known taint analysis techniques [31,32]. A detailed
overview of the VMST is given in Figure 4.

VMST provides a very novel approach to VMI, with
secure execution of the monitoring process. It is trans-
parent to use on most Linux kernels. The user needs to
select and install a kernel (OS) and then install the mem-
ory in read only mode on a secure VM. With VMST,
any system API/programme can be used for introspec-
tion. It also requires no user intervention, and the user can
develop a tailored introspection programme. VMST only
depends on a guest VM for memory access. Moreover,

Page 10 of 14

unlike Virtuoso, it does not need to mask interrupts and
context switches.

Proposed architecture for VMI

We have already seen that VMI has very large scope
with regard to security and privacy. VT-based processors
provide additional support to hypervisors. Our proposed
architecture for VMI is based on Intel VT technology.
According to Intel’s VT [33] architecture, if the valid bit in
the VM_entry_interruption _information_field of VMCS
is 1, a logical processor delivers an event to a guest OS
after all the components of a guest VM state have been
loaded. For delivering an event, a vector is used that points
to a descriptor of a guest IDT.

This type of entry covers software interrupts, privileged
software exceptions and traps. The VMM or introspec-
tion software running on a VMM can easily generate these
types of interrupts. We have introduced a novel tech-
nique, which utilises this interrupt. Figure 5 represents the
architecture of our proposed technique.

Our technique is divided into three modules residing
at three different physical locations. Their operation is
explained as follows:

e Controller Module: This resides on a secure VM.
Whenever introspection is required, a command is
given through this module. It is responsible for
sending requests to a hypervisor-based module. As
this module is part of a secure VM, it is part of a
trusted computing base (TCB) and thus is secure.

® Injector Module: This module is located in the
hypervisor layer. It listens for requests from the
controller module. On receipt of an introspection
request, it waits for the next VM entry. It detects the
next VM Entry and introduces an artificial software
interrupt by an event injection. The injection takes
place after loading the IDT on a guest VM. The
module is responsible for putting a particular vector
entry in an event injection call. It corresponds to the

f) (Secure VM
Guest VM (Introspection Tools 1
Lps‘ netstat ‘ user defined J

VMST Module

Kernel Code
*************************** COW Kernel Kernel
Code Data
Hypervisor]
Figure 4 High level overview of VMST architecture.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16
http://www.journalofcloudcomputing.com/content/3/1/16

Page 11 of 14

Secure VM
Controller Module

Accepts User
Request

Shared Address
Space

Spy Module

Ghost
Fuction

with
Libraries

INTRO
SPECTION|

Interrupt
- Handler '

Guest VM

IDT

Kernel And User Space

Hypervisor

Insert Event
Injection Call

Listen Detect VM
For Request Entry

Injector Module

IDT : Interrupt Descriptor Table
R/W: Read Write Access
R/X: Read, Execute Acces

Figure 5 Working schematics of proposed technique.

user- defined interrupt descriptor in the IDT of a
guest VM. Thus far, we have defined a single IDT
entry, which corresponds to a single interrupt
handler routine.

Spy Module: This module has two parts. The first
consists of an installation patch, which installs our
own IDT entry and defines the interrupt handler
routine for that IDT entry. The second part is hidden
from the guest VM. The interrupt handler has a
single role: It redirects every call to a ghost function.
The ghost function contains the introspection code.
The address space of the ghost function is different to
that of the guest VM. The address space is mounted
on the guest VM in read only and executable mode
by the hypervisor, only after the controller module
has invoked the introspection signal. The function
first selects the required introspection type from the
available options and then executes it. This function
is pre-compiled, and the binary code of the function
contains the libraries that are required during
execution. This ensures the integrity of the code,
preventing tampering . The results generated by this
ghost function are saved in another part of the
address space shared with the guest VM.

Salient features of our technique are as follows:

e Minimum Performance Impact: This VMI technique

is invoked on demand i.e. if the valid bit in the VM
entry interruption information field in VMCS region
is 1, a logical processor delivers an event to a guest
OS after all the components of a guest VM state have

been loaded. This will trigger the Spy module and it
will start the introspection. This ensures that no
script or agent will be running on hypervisor or inside
the guest VM for the entire lifecycle of VM. The code
will be invoked on-demand and it will terminate on
completion of its execution.

Minimum hypervisor modification: The technique is
based on Intel VT technology and solely depends
upon it for functioning. Hence requires very few
modifications to hypervisor.

Transparency in operation: This technique makes
very few changes to the hypervisor and also do not
make any change in guest OS which makes this
technique transparent in operation.

No side effects: The technique does not produce any
unwanted results and outputs. The laboratory testing
revealed that the execution of guest OS with and
without VMI technique had no effect on a hypervisor
and guest OS execution. This ensures that there will
not be any unwanted site effect on existing setup.
Security of monitoring code: Our VMI technique is
divided in three parts. Controller and Injector module
works from Secure VM and Hypervisor respectively.
These two modules are never exposed to Guest VM
and to the entities inside it (i.e. Softwares, applications
and even malware running in Guest VM). Spy
Module interacts with Guest VM and runs various
custom scripts as per the user need, on Guest VM. It
is stored in a separate memory area which is not part
of the address scape of a Guest VM. This ensures that
entities on Guest VM cannot implicitly access,
modify this introspection code, making it secure.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

VMI applications & future

Malware detection

Day by day, malware detection is becoming a very cru-
cial task, with advanced malware development strategies.
The detection of encrypted malware is very challenging.
Maitland [28] is a VMI-based development effort to detect
encrypted malware. There is a new breed of malware,
which successfully hides itself, when it becomes aware of
malware detection code running on the system. VMI code
is not usually detectable by malware because it is run from
out of a guest VM most of the time . It also makes it easier
to detect and monitor malware behaviour without letting
malware detect it’s being monitored. VMI techniques can
help in providing cognitive immunity to systems affected
by malware. On detection of kernel modifying rootkit
infection, VICI restores the kernel back to an earlier state
to provide cognitive immunity [34]. VICI exploits VMI for
infection detection and restoration.

Another threat to security is through malware genera-
tion capable of attacking not only victim machines but also
capable of detecting system execution environment . Such
malware is equipped with techniques to detect whether
a given OS is running on a VMM or bare hardware.
This type of malware attacks VMMs and cloud setups.
Such type of malware could also be detected using VMI
techniques.

Hidden process monitoring

Many advanced malwares have the capability to hide
themselves behind a legitimate OS process. It can cause
greater infection, by detaching itself from a process tree
or a process node structure maintained by an OS. Such
type of malware may be present on the memory of an OS
but not detectable by an OS data structure enquiry using
legitimate tools, such as ps. Hidden process detection and
monitoring is possible using Aries [35], which utilises VMI
to detect hidden malware process. The application of pro-
cess monitoring has been extended to different domains,
such as web service monitoring [36]. It could be used to
record client and service communication over a service
oriented architecture (SOA). The interaction trace allows
a human or software agent to analyse, replay or debug the
code that was executed.

File system/memory management

It is possible to trace every possible activity between a
guest OS and hardware using VMLI. Lares [13] has already
reported preliminary efforts in tracing file system access.
Major problem in secondary memory access tracing is,
involvement of primary memory (main memory) and the
semantic gap problem. The OS loads files from the sec-
ondary memory to the main memory . All operations on
file are performed at file copy on the main memory. Disk
drivers (secondary memory) are included only in create,

Page 12 of 14

delete and write back activities. This restriction limits
introspection of file system activities. However, the use
of disk introspection has benefited by the development of
trusted domain development policy [37]. PsycoTrace [38]
has tried to bridge the semantic gap involved in file oper-
ation introspection. It is capable of providing access rights
based on file handling solutions for guest VM users.

Honeypot development

Honeypots were developed with the intention of expos-
ing them to as many attacks as possible. Their aim is to
catch malware and log and record features of the malware.
An ideal honeypot should record every possible event and
activity taking place on it. VMI is a considerable solution
for honeypot development. Hiding the honeypot imple-
mentation from attackers is a difficult task, and it is a key
problem in the majority of honeypot implementations.
The productivity of the honeypot depends entirely on it
remaining undetected. The chances of detection are much
lower when VMI-based monitoring is employed. Similar
type of work is possible using VMI. The Qemu Honeypot
[39] is an example of using VMI for honeypots. VMI was
used in more elaborate ways in honeypot development
[40] using a Xen_Access library [13]. Lengyel et al. [40]
also provided a good example of the potential use of VMI
for honeypots.

Security issues in VMI

It is clear from Section ‘VMI applications & future’ that
the majority of VMI applications are related to the security
domain. As stated in Section ‘Characteristic properties of
VMI, transparency remains a key feature for VMI tech-
niques, specially for those applications of VMI which are
developed for the security and privacy. In this section, we
have summarise possible attacks on VMI techniques.

Kernel structure manipulation

VMI tools that depend upon memory analysis are victims
of kernel structure manipulation. Memory introspection
tools derive information on the state of a guest’s OS state
and related information by analysing the memory of the
guest VM. These tools rely upon underlying data struc-
tures used by the kernel. In kernel structure manipulation,
some changes are intentionally made to kernel data struc-
tures. There are three types of modifications possible:

e Syntax manipulation: Certain fields of kernel data
structure are modified or changed.

e Semantic manipulation: The semantics of the data
structure are changed. Although they might not show
any malfunction, the results produced by VMI will be
irrelevant.

¢ Combination of semantic and syntactic manipulation:
This type of modification can result in VMI failure.

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

The above mentioned attacks can be implemented in
various ways, as demonstrated previously by [19].

As stated in Section ‘Characteristic properties of VMI’,
ideal VMI techniques should place minimum overheads
on the operation on the hypervisor and the involved sys-
tem. This is important not just for performance but also
for security. Recent malware and attack scripts have exam-
ined request-response parameters to detect underlying
VMI installation. Timing-based attacks have tried to tar-
get out-of-bound memory and query system resources to
record hypervisor replies . In many instances, the original
drivers are faster than the drivers that are patched for the
VMI technique. Such changes to the drivers by VMI tech-
niques, may get noticed by malware and could be used as
an alarm to take note of presence of VMI technique on
VM.

Conclusion

Beginning with an introduction to the semantic gap prob-
lem, we have summarised distinct techniques developed
for VML VMI has grown steadily over the past years.
Based on the analysis of VMI techniques presented herein,
it appears that the use of VMI is dominant in the security
domain. In turn, this makes VMI susceptible to attacks.
In the coming years, the security weaknesses of VMI will
need to be addressed to enable widespread adoption by
the industry.

VMI has great potential in the future development of
malware detection tools and intrusion detection systems.
Even cloud platforms could benefit from the use of VMI
in imposing access right mechanisms.

Existing VMI tools have limited introspection capabil-
ities. No one tool can provide process, memory, file and
I/0O introspection. In addition, the introspection capabili-
ties of these tools are mostly dependent on the underlying
hypervisor architecture. These architectural features are
modified or replaced over time, making the application of
these tools questionable in the current scenario.

Very limited work has been done to fully introspect
HVM guests. Some performance improvement features
of HVM guests, such as pass through drivers, place limi-
tations on VMI implementation. Introspection using VT
support has tremendous potential to enable VMI but
requires additional work. The VMI technique based on
VT support described in the current paper could be used
in the security domain.

Endnotes

2The NX bit, which stands for Never eXecute, is a
technology used in CPUs to segregate areas of memory
for use by either storage of processor instructions (or
code) or for storage of data

bExtended page table: This page table is part of the
memory virtualisation support of the microprocessor. It

Page 13 of 14

contains maps of guest-physical addresses to
host-physical addresses.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Both the authors made substantive intellectual contributions to the research
and manuscript. AM carried out the survey of the available literature and
drafted the manuscript. He is responsible for the overall technical approach
and architecture, editing and preparation of the paper. ST provided insight
and guidance in developing the VMI technique. She edited and revised the
final manuscript. Both authors read and approved the final manuscript.

Acknowledgements

Authors are grateful to the reviewers of this manuscript for their expert advice.
Authors are thankful to Indian Institute of Information Technology &
Management, Gwalior (IIIT, Gwalior) for support.

Received: 14 March 2013 Accepted: 30 June 2014
Published online: 25 October 2014

References

1. Garfinkel T, Rosenblum M (2003) A virtual machine introspection based
architecture for intrusion detection. In: NDSS. The Internet Society, San
Diego, California, ISBN 1-891562-15-0. http://www.isoc.org/isoc/
conferences/ndss/03/proceedings/papers/13.pdf

2. Chen PM, Noble BD (2001) When virtual is better than real. In: Hot Topics
in Operating Systems, 2001. Proceedings of the Eighth Workshop on. IEEE
Computer Society, Los Alamitos, CA. p 0133. http://doi.
jeeecomputersociety.org/10.1109/HOT0S.2001.990073

3. PfohJ, Schneider C, Eckert C (2011) Nitro: hardware-based system call
tracing for virtual machines. In: Proceedings of the 6th International
Conference on Advances in Information and Computer Security,
IWSEC'11. Springer-Verlag, Berlin, Heidelberg. pp 96-112. ISBN
978-3-642-25140-5 http://dl.acm.org/citation.cfm?id=2075658.2075669

4. Carbone M, Conover M, Montague B, Lee W (2012) Secure and robust
monitoring of virtual machines through guest-assisted introspection. In:
Balzarotti D, Stolfo SJ, Cova M (eds). Research in attacks, intrusions, and
defenses. Lecture Notes in Computer Science. Springer, Berlin Heidelberg
Vol. 7462. pp 22-41. http://dx.doi.org/10.1007/978-3-642-33338-5_2

5. ButtS, Lagar-Cavilla HA, Srivastava A, Ganapathy V (2012) Self-service
cloud computing. In: Proceedings of the ACM Conference on Computer
and Communications Security. Raleigh, North Carolina. ACM, Raleigh,
New York, NY. pp 253-264. http://doi.acm.org/10.1145/2382196.2382226

6. Harrison C, Cook D, McGraw R, Hamilton JA (2012) Constructing a
cloud-based IDS by merging VMI with FMA. In: Trust, Security and Privacy
in Computing and Communications (TrustCom), 2012 IEEE 11th
International Conference on. IEEE, Liverpool. pp 163-169.
doi:10.1109/TrustCom

7. Xen (2012) Xen homepage. http://www.xen.org/. Accessed date 15
March 2013

8. Ware VM (2012) Vmware esx homepage. http://www.vmware.com/files/
pdf/VMware\discretionary-ESX\discretionary-and\discretionary-
VMware\discretionary-ESXi\discretionary-DS\discretionary-EN.pdf.
Accessed date 15 March 2013

9. Microsoft (2012) Microsoft hyper -v homepage. http://www.microsoft.
com/en-us/server-cloud/hyper-v-server/default.aspx. Accessed date 15
March 2013

10. KVM (2012) Linux kvm homepage. http://www.linux-kvm.org/page/
Main_Page. Accessed date 15 March 2013

11. Qemu (2012) Qemu homepage. http://wiki.gemu.org/Main_Page.
Accessed date 15 March 2013

12. Ware VM (2012) Vmware workstation overview. http://www.vmware,
com/products/workstation/overview.html. Accessed date 15 March 2013

13. Payne BD, de Carbone MDP, Lee W (2007) Secure and flexible monitoring
of virtual machines. In: Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual. IEEE, Miami Beach, FL. pp 385-397.
doi:10.1109/ACSAC.2007.10

http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://doi.ieeecomputersociety.org/10.1109/HOTOS.2001.990073
http://doi.ieeecomputersociety.org/10.1109/HOTOS.2001.990073
http://dl.acm.org/citation.cfm?id=2075658.2075669
http://dx.doi.org/10.1007/978-3-642-33338-5_2
http://doi.acm.org/10.1145/2382196.2382226
http://www.xen.org/
http://www.vmware.com/files/pdf/VMwarediscretionary {-}{}{}ESXdiscretionary {-}{}{}anddiscretionary {-}{}{}VMwarediscretionary {-}{}{}ESXidiscretionary {-}{}{}DSdiscretionary {-}{}{}EN.pdf
http://www.vmware.com/files/pdf/VMwarediscretionary {-}{}{}ESXdiscretionary {-}{}{}anddiscretionary {-}{}{}VMwarediscretionary {-}{}{}ESXidiscretionary {-}{}{}DSdiscretionary {-}{}{}EN.pdf
http://www.vmware.com/files/pdf/VMwarediscretionary {-}{}{}ESXdiscretionary {-}{}{}anddiscretionary {-}{}{}VMwarediscretionary {-}{}{}ESXidiscretionary {-}{}{}DSdiscretionary {-}{}{}EN.pdf
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://wiki.qemu.org/Main_Page
http://www.vmware.com/products/workstation/overview.html
http://www.vmware.com/products/workstation/overview.html

More and Tapaswi Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:16

http://www.journalofcloudcomputing.com/content/3/1/16

20.

21.

22.

23.

24.

25.

26.

27.

Neugschwandtner M, Platzer C, Comparetti P, Bayer U (2010) danubis —
dynamic device driver analysis based on virtual machine introspection. In:
Kreibich C, Jahnke M (eds). Detection of Intrusions and Malware, and
Vulnerability Assessment, volume 6201 of Lecture Notes in Computer
Science. Springer, Berlin Heidelberg. pp 41-60. ISBN 978-3-642-14214-7.
doi:10.1007978-3-642-14215-4_3 http://dx.doi.org/10.1007/978-3-642-
14215-4_3

Jiang X, Wang X, Xu D (2007) Stealthy malware detection through
vmm-based “out-of-the-box” semantic view reconstruction. In:
Proceedings of the 14th ACM conference on Computer and
communications security, CCS '07. ACM, New York, NY, USA. pp 128-138.
ISBN 978-1-59593-703-2. doi:10.1145/1315245.1315262 http://doi.acm.
org/10.1145/1315245.1315262

Intel (2012) Intel virtualization technology. http://www.intel.com/
technology/virtualization

Pfoh J, Schneider C, Eckert C (2010) Exploiting the x86 architecture to
derive virtual machine state information. In: Proceedings of the 2010
Fourth International Conference on Emerging Security Information,
Systems and Technologies SECURWARE "10. IEEE Computer Society,
Washington, DC, USA. pp 166-175. ISBN 978-0-7695-4095-5.
doi:10.1109/SECURWARE.2010.35 http://dx.doi.org/10.1109/SECURWARE.
2010.35

Bitvisor (2012) Bitvisor hypervisor home page. http://www.bitvisor.org/.
Accessed date 15 March 2013

Bahram S, Jiang X, Wang Z, Grace M, Li J, Srinivasan D, Rhee J, Xu D (2010)
DKSM: subverting virtual machine introspection for fun and profit. In:
Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed
Systems, SRDS "10. IEEE Computer Society, Washington, DC. pp 82-91.
doi:10.1109/SRDS.2010.39. http://dx.doi.org/10.1109/SRDS.2010.39
Dinaburg A, Royal P, Sharif M, Lee W (2008) Ether: malware analysis via
hardware virtualization extensions. In: Proceedings of the 15th ACM
conference on Computer and communications security, CCS '08, ACM,
New York, NY, USA. pp 51-62. ISBN 978-1-59593-810-7.
doi:10.1145/1455770.1455779 http://doi.acm.org/10.1145/1455770.
1455779

Payne BD, Carbone M, Sharif M, Lee W (2008) Lares: an architecture for
secure active monitoring using virtualization. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy. IEEE Computer Society,
Washington, DC. pp 233-247. doi:10.1109/5P.2008.24. http://dx.doi.org/
10.1109/5P.2008.24

Sharif MI, Lee W, Cui W, Lanzi A (2009) Secure in-vm monitoring using
hardware virtualization. In: Proceedings of the 16th ACM conference on
Computer and communications security, CCS '09. ACM, New York, NY,
USA. pp 477-487.1SBN 978-1-60558-894-0. doi:10.1145/1653662.1653720
http://doi.acm.org/10.1145/1653662.1653720

Baiardi F, Maggiari D, Sgandurra D, Tamberi F (2009) PsycoTrace: virtual
and transparent monitoring of a process self. In: Proceedings of the 2009
17th Euromicro International Conference on Parallel, Distributed and
Network-based Processing. I[EEE Computer Society, Washington, DC.

pp 393-397. doi:10.1109/PDP.2009.45. http://dx.doi.org/10.1109/PDP.
2009.45

Bison (2012) Bison - gnu parser generator. http://www.gnu.org/software/
bison/. Accessed date 15 March 2013

Gu Z,Deng Z, Xu D, Jiang X (2011) Process implanting: a new active
introspection framework for virtualization. In: Proceedings of the 2011
IEEE 30th International Symposium on Reliable Distributed Systems, SRDS
"11. IEEE Computer Society, Washington, DC, USA. pp 147-156. ISBN
978-0-7695-4450-2. doi:10.1109/SRDS.2011.26 http://dx.doi.org/10.1109/
SRDS.2011.26

Carbone M, Conover M, Montague B, Lee W (2012) Secure and robust
monitoring of virtual machines through guest-assisted introspection. In:
Proceedings of the 15th international conference on Research in Attacks,
Intrusions, and Defenses, RAID'12. Springer-Verlag, Berlin, Heidelberg.

pp 22-41.1SBN 978-3-642-33337-8. doi:10.1007/978-3-642-33338-5_2
http://dx.doi.org/10.1007/978-3-642-33338-5_2

Dolan-Gavitt B, Leek T, Zhivich M, Giffin J, Lee W (2011) Virtuoso: narrowing
the semantic gap in virtual machine introspection. In: Proceedings of the
2011 IEEE Symposium on Security and Privacy, SP '11. IEEE Computer
Society, Washington, DC, USA. pp 297-312.1SBN 978-0-7695-4402-1.
doi:10.1109/SP.2011.11 http://dx.doi.org/10.1109/5P.2011.11

29.

30.

31.

32.

33

34

35.

36.

37.

38.

39.

40.

Page 14 of 14

Benninger C, Neville SW, Yazir YO, Matthews C, Coady Y (2012) Maitland:
Lighter-weight VM introspection to support cyber-security in the cloud.
In: Cloud Computing (CLOUD) 2012 IEEE 5th International Conference on.
IEEE, Honolulu, HI. pp 471-478. doi:10.1109/CLOUD.2012.145

Srinivasan D, Wang Z, Jiang X, Xu D (2011) Process out-grafting: an
efficient "out-of-vm” approach for fine-grained process execution
monitoring. In: Proceedings of the 18th ACM conference on Computer
and communications security, CCS '11. ACM, New York, NY, USA.

pp 363-374.1SBN 978-1-4503-0948-6. doi:10.1145/2046707.2046751
http://doi.acm.org/10.1145/2046707.2046751

Fu'Y, Lin Z (2012) Space traveling across vm: Automatically bridging the
semantic gap in virtual machine introspection via online kernel data
redirection. In: Security and Privacy (SP) 2012 IEEE Symposium on. IEEE,
doi:10.1109/SP.2012.40. pp 586-600

Chow J, Pfaff B, Garfinkel T, Christopher K, Rosenblum M (2004)
Understanding data lifetime via whole system simulation. In: Proceedings
of the 13th conference on USENIX Security Symposium - Volume 13,
SSYM'04. USENIX Association, Berkeley, CA, USA. pp 22-22. http://dl.acm.
org/citation.cfm?id=1251375.1251397

Newsome J (2005) Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In:
Proc. of the 14th Annual Network and Distributed System Security
Symposium (NDSS'05). The Internet Society, San Diego, California

Intel (2005) Intel® Virtualization Technology Specification for the 1A-32
Intel® Architecture

Fraser T, Evenson MR, Arbaugh WA (2008) VICI virtual machine
introspection for cognitive immunity. In: Computer Security Applications
Conference, 2008. ACSAC 2008, Annual. IEEE, Anaheim, CA. pp 87-96.
doi:10.1109/ACSAC.2008.33

Wen 'Y, Zhao J, Wang H, Cao J (2008) Implicit detection of hidden
processes with a feather-weight hardware-assisted virtual machine
monitor. In: Mu'Y, Susilo W, Seberry J (eds). Information Security and
Privacy, volume 5107 of Lecture Notes in Computer Science. Springer,
Berlin Heidelberg. pp 361-375. ISBN 978-3-540-69971-2.
doi:10.1007/978-3-540-70500-0_27 http://dx.doi.org/10.1007/978-3-540-
70500-0_27

Vaculin R, Sycara K (2008) Semantic web services monitoring: An owl-s
based approach. In: Hawaii International Conference on System Sciences.
IEEE Computer Society

Ando R, Kadobayashi Y, Shinoda Y (2008) An enhancement of trusted
domain enforcement using VMM interruption mechanism. In: Young
Computer Scientists, 2008. ICYCS 2008. The 9th International Conference
for. IEEE, Hunan. pp 2222-2229. doi:10.1109/ICYCS.2008.341

Zhao F, Jiang Y, Xiang G, Jin H, Jiang W (2009) Vrfps: a novel virtual
machine-based real-time file protection system. In: Software Engineering
Research, Management and Applications, 2009. SERA '09. 7th ACIS
International Conference on. IEEE, Haikou. pp 217-224.
doi:10.1109/SERA.2009.23

Tymoshyk N, Tymoshyk R, Piskozub A, Khromchak P, Pyvovarov V, Novak
A (2009) Monitoring of malefactor’s activity in virtualized honeypots on
the base of semantic transformation in Qemu hypervisor. In: Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2009. IDAACS 20009. IEEE International Workshop on. IEEE,
Rende. pp 370-374. doi:10.1109/IDAACS.2009.5342958

Lengyel A, Neumann J, Maresca S, Payne BD, Kiayias A (2012) Virtual
machine introspection in a hybrid Honeypot architecture. In: Presented as
part of the 5th Workshop on Cyber Security Experimentation and Test.
USENIX, Berkeley, CA. https://www.usenix.org/conference/cset12/
workshop-program/presentation/Lengyel

doi:10.1186/s13677-014-0016-2

Cite this article as: More and Tapaswi: Virtual machine introspection:
towards bridging the semantic gap. Journal of Cloud Computing: Advances,
Systems and Applications 2014 3:16.

http://dx.doi.org/10.1007/978-3-642-14215-4_3
http://dx.doi.org/10.1007/978-3-642-14215-4_3
http://doi.acm.org/10.1145/1315245.1315262
http://doi.acm.org/10.1145/1315245.1315262
http://www.intel.com/technology/virtualization
http://www.intel.com/technology/virtualization
http://dx.doi.org/10.1109/SECURWARE.2010.35
http://dx.doi.org/10.1109/SECURWARE.2010.35
http://www.bitvisor.org/
http://dx.doi.org/10.1109/SRDS.2010.39
http://doi.acm.org/10.1145/1455770.1455779
http://doi.acm.org/10.1145/1455770.1455779
http://dx.doi.org/10.1109/SP.2008.24
http://dx.doi.org/10.1109/SP.2008.24
http://doi.acm.org/10.1145/1653662.1653720
http://dx.doi.org/10.1109/PDP.2009.45
http://dx.doi.org/10.1109/PDP.2009.45
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://dx.doi.org/10.1109/SRDS.2011.26
http://dx.doi.org/10.1109/SRDS.2011.26
http://dx.doi.org/10.1007/978-3-642-33338-5_2
http://dx.doi.org/10.1109/SP.2011.11
http://doi.acm.org/10.1145/2046707.2046751
http://dl.acm.org/citation.cfm?id=1251375.1251397
http://dl.acm.org/citation.cfm?id=1251375.1251397
http://dx.doi.org/10.1007/978-3-540-70500-0_27
http://dx.doi.org/10.1007/978-3-540-70500-0_27
https://www.usenix.org/conference/cset12/workshop-program/presentation/Lengyel
https://www.usenix.org/conference/cset12/workshop-program/presentation/Lengyel

	Abstract
	Keywords

	Introduction
	An overview
	Virtualisation & hypervisors
	Semantic gap problem
	Characteristic properties of VMI

	Taxonomy of VMI
	Memory introspection
	Introspection using Xen libraries

	I/O Introspection
	System call introspection
	Introspection using virtualization support
	Introspection by hardware rooting

	Process introspection
	Introspection by hooks
	Introspection using shadow page tables
	Introspection using CFG

	Other techniques
	Introspection using code injection
	Introspection with function call injection (FCI)
	Introspection using page flag inspection
	Introspection using process out-grafting
	Introspection using live kernel data redirection

	Proposed architecture for VMI
	VMI applications & future
	Malware detection
	Hidden process monitoring
	File system/memory management
	Honeypot development

	Security issues in VMI
	Kernel structure manipulation

	Conclusion
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

