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Abstract

This paper does a systematic review of the possible design space for cloud-hosted applications that may have

changing resource requirements that need to be supported through dynamic service level agreements (SLAs). The
fundamental SLA functions are reviewed: Admission Control, Monitoring, SLA Evaluation, and SLA Enforcement — a
classic autonomic control cycle. This is followed by an investigation into possible application requirements and SLA
enforcement mechanisms. We then identify five basic Load Types that a dynamic SLA system must manage: Best
Effort, Throttled, Load Migration, Preemption and Spare Capacity. The key to meeting application SLA requirements
under changing surge conditions is to also manage the spare surge capacity. The use of this surge capacity could be
managed by one of several identified load migration policies. A more detailed SLA architecture is presented that
discusses specific SLA components. This is done in the context of the OpenStack since it is open source with a known
architecture. Based on this SLA architecture, a research and development plan is presented wherein fundamental
issues are identified that need to be resolved through research and experimentation. Based on successful outcomes,

further developments are considered in the plan to produce a complete, end-to-end dynamic SLA capability.
Executing on this plan will take significant resources and organization. The NSF Center for Cloud and Autonomic
Computing is one possible avenue for pursuing these efforts. Given the growing importance of cloud performance
management in the wider marketplace, the cloud community would be well-served to coordinate cloud SLA
development across organizations such as the IEEE, Open Grid Forum, and the TeleManagement Forum.

Keywords: Service level agreements; Autonomic computing; Live migration; OpenStack

Introduction

Service level agreements (SLAs) are used to define the
necessary Quality of Service (QoS) for an application or
user in an IT system. SLAs originally were defined as a
contractual document between IT resource providers and
consumers that involved cost analysis and pricing, along
with financial incentives or penalties. For performance-
critical applications, though, such contractual SLAs are
not sufficient. Performance-critical applications require
SLAs whereby the computing infrastructure monitors,
detects, and responds to changes in demand to ensure that
application-level processing requirements are met. Fur-
thermore, changes in demand may be caused not just by
new applications being instantiated, but also by changes
in demand by the running applications themselves. Some
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applications may have unpredictable changes in their pro-
cessing demands and associated service levels. Even if
changes in demand are somewhat predictable, it would
still be desirable for the cloud service provider to be able to
accommodate such changes without having to renegotiate
anew SLA.

Hence, dynamic SLAs are required. This will be partic-
ularly necessary in computing cloud that are, by nature,
multi-tenant environments where many applications may
have changing service level requirements. What we want
to avoid is forcing users to over-specify their service level
requirements in order to satisfy future changes in their
demand. If users were allowed to do so, then applications
would simply acquire excess resource capacity and then let
it sit idle the vast majority of the time. This would effec-
tively fragment the cloud capacity and reduce the overall
utilization.

By providing dynamic SLAs, we are attempting to satisfy
competing goals: (a) ensure that every running application
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component meets its deadlines, while (b) enabling the
cloud scheduler to maximize resource utilization, thereby
“doing more with less”. By maximizing resource uti-
lization, and understanding the possible aggregate surge
requirements, it should be possible to do better overall
capacity planning. That is to say, it should be possible to
better determine the minimum amount of excessive surge
capacity that needs to be available at any time. Doing so
should help minimize the necessary overall cloud size, and
reduce all associated costs, e.g., footprint, power, HVAC,
staffing, etc.

Much work in cloud SLAs involves enforcing non-
functional properties, such as compute node locality
(zones), long-term storage preservation, and storage
redundancy. For this white paper, however, we will focus
just on performance metrics. Addressing non-functional
properties will be addressed at a later time.

As noted already, the SLA mechanisms presented and
discussed here will not be contractual in nature. That is to
say, they will not involve two human organizations enter-
ing into an agreement for specific service levels between a
provider and a consumer that carry penalties and rewards.
We will also be considering performance management
from both the consumer’s and provider’s perspective. We
will not be considering one-sided goals, such as optimiz-
ing revenue. While many optimization problems, such
as optimizing revenue [1], can be NP-hard requiring
heuristic solutions, they do not address the performance
requirements of individual user applications.

Hence, we will be developing technical, machine-
enforceable SLA mechanisms, that a cloud provider
can offer as a service, and a consumer can choose to
use or not. These machine-enforceable mechanisms for
dynamic SLAs will provide a probabilistic guarantee for
performance. The goal is to provide the user with a
reasonable expectation that performance requirements
will be met, through mechanisms that are reasonable
for the provider to implement and support for multiple
applications.

In this paper, we begin by reviewing the fundamental
functions necessary for SLAs and their enforcement. We
then survey and investigate the possible design choices
and implementation options. We conclude with a draft
research and development for SLAs in OpenStack. While
this particular R&D plan targets OpenStack as the test
vehicle for planned work, any research results should be
widely applicable to other cloud software stacks.

Fundamental SLA functions

Dynamic SLAs are actually an instance of an autonomic
control cycle: monitoring, analysis, planning, execution —
whereby systems can monitor themselves and maintain
a target behavior [2]. In the context of dynamic SLAs,
however, we will use the following four major functions:
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e Admission Control. When a user wishes to

instantiate a new application, the user must specify
the required performance parameters for each of the
application components to be instantiated. The cloud
provider must then make a determination whether if
sufficient capacity is available to adequately service
the new application once started. An application
component may consist of multiple servers that
communicate in a specific topology. Hence, the cloud
provider must determine if there are adequate cycles,
memory space, disk space, and disk bandwidth for
each application server, along with adequate network
bandwidth among them. If there is, then the
application can be started.

Monitoring — Metrics Collection. While
applications are running, the cloud infrastructure and
the applications must be monitored. Monitoring must
be as unobtrusive as possible, but must also capture
essential data to determine if performance goals are
being met. One or more monitoring systems could be
used to collect data from different levels of the entire
computing infrastructure. In a cloud environment,
this could include monitoring the physical servers,
hypervisors, the guest OSs, and the virtual
applications themselves. While different monitoring
systems could be used, all collected information must
be collated and made available for the next functions.
SLA Evaluation. Once an SLA has been established,
the application has been started, and various
performance metrics are being collected, there must
be an agent that compares the SLA targets with the
observed metrics, and determines when an
application’s performance has gone, or is going, “out
of spec”. For contractual SLAs, this could be termed
an SLA violation, but for dynamic SLAs, this more
accurately denotes that simply a threshold has been
crossed requiring a response. A key issue for this
agent is how to map the SLA metrics to the
observable metrics. SLA metrics may be expressed in
units that are meaningful at the application level and
a semantic gap may exist between the metrics that
are actually being collected.

SLA Enforcement — Violation Response. An
important issue for SLA Enforcement is whether an
application’s resource demands are expected to be
static throughout its execution, or whether they can
vary in a predictable or unpredictable manner. If an
application’s demands are expected to be relatively
constant, then static throttling methods can be used.
However, if an application’s demands can vary,
perhaps unpredictably, then it’s behavior must be
monitored to determine if it has gone “out of spec”.
For a performance-critical application, the primary
goal of a machine-enforceable, dynamic SLA is to
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pro-actively bring the application back into
compliance. This requires some type of “control
knobs” on the infrastructure or on the application
itself.

SLA design options and approaches

Within each one of these fundamental SLA functions,
there are further technical design issues that must be
addressed. For each there are usually several implementa-
tion options with different challenges and trade-offs. We
now put these fundamental functions into a general SLA
architecture, as illustrated in Figure 1, and discuss them in
more depth.

Admission control

Admission Control must maintain a total cloud capacity
document, from which the currently available capacity can
be derived or maintained. A total cloud capacity docu-
ment must capture the capacity of all resources within a
cloud data center, in addition to their network topology.
Hence, in the most general case, all servers must be iden-
tified, along with their clock speeds, amounts of memory,
local disk, and total network bandwidth. These resources
must be placed in a network topology that includes routers
and switches that have their own performance capabili-
ties. Such network topologies are typically represented as
a graph.

Likewise when a user submits an application for admis-
sion, the user must submit a service level request that
captures the desired performance requirements that could
be in a similar graph structure. Clearly for many applica-
tions, these resource graph structures may be simple, such
as an individual server, or have a well-known, stereotypical
structure. An example of this might be simply streaming a
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movie to a viewer. Some applications, however, may have
detailed, highly structured, and even hierarchical SLA
requests.

When the Admission Control agent receives a service
request, it must consult the available capacity document
and determine if the service request can be supported by
the available capacity. When expressing network capac-
ity and requirements as graph structures, this entails a
graph embedding or graph matching problem. This is a
well-known problem encountered in many other areas of
computer science and IT. Timberwolf [3], for example, is
a successful tool for doing die layout for integrated cir-
cuits consisting of millions of transistors and the wire runs
that must connect them. Metis [4] is graph partitioning
tool that might be applicable in this application domain.
Also, a Network Calculus [5] could be used to provide
a theoretical framework from which to model resource
allocations and service guarantees. In computer networks,
the concept of service curves are used that determines
the relationship between arriving and departing network
flows.

Admission control could, however, be greatly simpli-
fied by avoiding explicit graph presentations. The network
switches connecting servers in a data center are often
arranged in a hierarchy to achieve scalable bandwidth.
That is to say, the switches are arranged in a fat tree
where more bandwidth is available higher up in the tree,
thereby avoiding tree saturation for network flows closer
to the root, or backbone, switches. Under such conditions,
the topology of the switch fabric becomes less important.
Hence, we could ensure that the switch fabric does not
become saturated simply by managing the aggregate BW
demand in to and out of each of the servers. In this case,
Admission Control only requires that each application
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process is allocated where there are sufficient cycles and
network bandwidth at the network interfaces.

While this addresses the issue of network bandwidth,
an application may also have network latency constraints
between pairs of servers. In this case, then Admission
Control must ensure that the servers are allocated “close”
to one another by some metric, e.g., the number of net-
work hops. While using a graph structure to represent sets
of latency requirements is most general, latency require-
ments could be addressed by evaluating such a distance
metric for simple pair-wise allocations.

In terms of existing standards, WS-Agreement [6] could
be used to represent SLA service terms. WS-Agreement
defines a domain-agnostic protocol whereby agreements
can be established. This means that WS-Agreement can
be used with different term languages as needed by the
application domain. Hence, the challenge here is to define
a term language that could capture the necessary appli-
cation component performance characteristics, be they
graph structures or simpler sums. WS-Agreement pro-
vides a formal definition for SLA representations and
defines a single round of offer-accept message exchange.
The provider offers an initial template of possible ser-
vice terms. A service consumer replies with a completed
template. The provider must then accept or reject the
offer. There are a growing number of implementations for
WS-Agreement, along with some valuable lessons learned
[7].

Building on this, WS-Agreement Negotiation [8]
defines a protocol for multiple rounds of negotiation,
whereby a tree of offers and counter-offers is built. The
tree root is the initial offer. Tree branches represent differ-
ent sequences of offers and counter-offers, where service
terms are adjusted in an effort to find mutually satisfactory
terms.

It is actually very important that tools like WS-Agree-
ment are domain-agnostic, since application domains can
have widely different terms that are relevant to possible
SLAs. Nae et al. [9], for example, present an interest-
ing collection of SLA terminology and parameters for
Massively Multiplayer Online Games that are of interest
to providers and users. Given that many other domains
will have similar but different sets of parameters, we
can conclude that a flexible, pluggable architecture for
SLA monitoring and reporting of performance metrics is
highly preferable. While it might be possible to define a
very basic SLA nomenclature, taxonomy and terminology,
some degree of extension and customization will have to
be allowed.

An outstanding issue here that we do not directly
address in this paper is how to map high-level sys-
tem requirements into lower-level metrics that can be
measured and managed. Work has been done in this
area, however. As part of the SLA@SOI project [10], the
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EVEREST Reasoning Engine translates SLA Abstract Syn-
tax Objects into events in an Event Calculus [11]. This
Event Calculus specifies patterns of events that should,
or should not, occur within a specified period of time.
The Detecting SLA Violation infrastructure (DeSVi) also
enables mappings between SLA parameters and resource
metrics by utilizing mapping rules with domain spe-
cific languages [12]. Similarly, the Quality Assurance
for Distributed Services project (Qu4DS) manages the
translation of SLA parameters by profiling the service
provider [13]. Further work in managing the transla-
tion of application-oriented SLA requirements needs to
be addressed as future work. For near-term experimen-
tal purposes, such translations can be managed by hand,
since we will be focusing on the effectiveness of the SLA
enforcement mechanisms themselves.

Another key challenge here is how to represent
and manage the notion of encumbered surge capacity
for dynamic SLAs. Many applications and application
domains can be managed by static SLAs. A prime exam-
ple here is simply streaming a video to a consumer. The
consumer wants to watch the video with smooth perfor-
mance, i.e., no pauses or drop-outs. The resource alloca-
tion necessary to accomplish this is known and constant.
In multi-tenant clouds, however, with complex applica-
tions that will have varying computational needs, the
challenge is how to dynamically meet these requirements
within the context of an existing agreement, without
having to resort to a heavy weight renegotiation and re-
instantiation process. In a very real sense, a dynamic SLA
is a quintessential use of the on-demand resources and
flexibility offered by cloud computing.

This notion of encumbered surge capacity is also key for
overall capacity management. Many dedicated systems are
currently sized based on their expected worst case behav-
ior rather than their average case behavior. This means
there is dedicated excess capacity only to be used dur-
ing worst case surge processing requirements. Having this
dedicated excess capacity drives the overall system size,
and total cost of ownership and operation, e.g., footprint,
power, staffing, etc. One of the value propositions for
cloud computing is the available of on-demand resources.
That is to say, a cloud should be able to offer a joint pool of
spare capacity to all tenant applications. Hence, a smaller
pool of excess capacity should be needed, rather than
having dedicated excess capacity for each application.

An alternative to maintaining surge capacity, however, is
simply to allow resource overbooking [14]. An application’s
usage patterns for CPU, memory use, storage, and net-
working can be profiled and factored into the model for
overbooking to achieve optimal packing of applications
into a given set of virtualized resources. That is to say,
the expected usage patterns can be used as an aid for the
opportunistic packing of different types of applications
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(or differently-behaving instances of the same application)
onto resources in order to achieve balanced overall uti-
lization of the resources over all types of utilization within
the application portfolio. As a simple example, I/O inten-
sive applications might be booked with cpu-intensive ones
that do not require a lot of I/O, to achieve an optimal
overbooking. As reported in [14], though, a combination
of modeling, monitoring, and prediction techniques must
be used to avoid exceeding the total infrastructure capac-
ity. In any case, application scheduling schemes should be
sufficiently flexible to recognize performance degradation
in a given metric that may come from overuse reported
in another metric, and the SLA control scheme must be
sufficiently powerful to allow for dynamic control over
application types that can be mixed for optimal overall
usage.

Once the cloud manager has determined that there is
sufficient capacity to host the new application compo-
nent — by whatever means used — the user can actually
submit the component VMs, along with the SLA docu-
ment, to the Cloud Scheduler. At this point, the Cloud
Scheduler informs Admission Control that the compo-
nents are actually being instantiated. This “inks the deal”.
The SLA is not in force until this point. The Scheduler
starts the VMs on one or more Compute Nodes, and
informs the SLA Manager of the new processes and the
load that is expected. The SLA Manager may inform one
or more Monitoring Agents on each Compute Node of
metrics that need to be collected.

Monitoring
The actual monitoring could be done by a number of dif-
ferent existing tool sets. These include Ceilometer [15],
Ganglia [16], Nagios [17], and Zenoss [18], to name a few.
We will not review the details of these tools here. Rather,
we identify key design alternatives that can determine the
effectiveness and responsiveness of any SLA enforcement
mechanism.

These design alternatives involve what, where, and when
to monitor. The Monitoring Agents could monitor at dif-
ferent levels in the system stack on each Compute Node:

e Host OS/Hypervisor. Here the Monitoring Agent
could capture all traditional operating system metrics
at the hardware level, e.g., percentage CPU time per
VM, memory usage, disk I/0, network /0, etc.

e Guest OS. Monitoring here enables the Agent to
collect operating system information specific to one
VM.

e Application Level. As opposed to the previous two
levels, this requires that the application be modified
to provide a monitoring interface whereby
application-level performance metrics can be
obtained.

Page 50f 13

After this data is initially captured, it can be used at dif-
ferent times. All of the monitored data is archived in a
database that can be queried by the SLA Manager. The
Manager can periodically apply a rule set from the SLA
information, provided by the Cloud Scheduler when VMs
were instantiated, to determine if an SLA is being vio-
lated, or requires any corrective action. Given the amount
of data in the database, the SLA Manager could also do
long-term trending analyses that could not be identified
from single metrics or events. However, rather than wait-
ing for information to be deposited in the database, the
SLA Manager could also set stream triggers as close to
the meters themselves in the Monitoring Agents. These
stream triggers are lightweight, state-less (or very low
state) triggers that are easy to evaluate. Hence, they could
provide the SLA Manager with an earlier notification of a
potential problem.

These monitoring options, however, are all reactive —
they only react to SLA violations after the fact. It is
possible to do more pro-active SLA enforcement by mon-
itoring further up in an application’s processing chain.
By doing so, the conditions that cause an SLA viola-
tion might be detectable before the violation actually
occurs.

Consider that an application consists of an Input Buffer
that partitions work units over a number of servers,
as illustrated in Figure 2. After processing, these work
units are collected by a Collector that monitors the
how long it took each work unit to get processed after
entering the Input Buffer. If work units are exceeding
the application’s latency requirement, additional servers
could be spun-up to process more work units and reduce
overall latency. This is reactive downstream monitoring
since the SLA Manager can only decide to add more
servers after latencies have exceeded some threshold.
However, if the depth of the Input Buffer were mon-
itored, then more pro-active SLA enforcement could
be done, where more servers could be added when
the buffer depth exceeds a threshold, but before the
work unit latency actually starts to exceed application
requirements.

Figure 2 also illustrates the fact that a large cloud
data center may require and be composed of multiple
SLA Managers to address issues of scalability. SLA Man-
agers could be distributed across the cloud infrastruc-
ture, and also the applications themselves. These man-
agers could communicate, or gossip, in a peer-to-peer
fashion, be organized into hierarchies, or into other use-
ful structures. This notion of distributed SLA managers
implies that there must also be distributed SLA models by
which overall system behavior, and individual application
behavior, can be managed. The development and evalu-
ation of such distributed SLA models is an outstanding
goal.
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Figure 2 Distributed Monitoring of Different System Components.

SLA evaluation

Deciding when a server has crossed a load threshold is
not a simple numerical comparison. A server’s load at any
one instant in time may fluctuate about a fixed thresh-
old value. Basing decisions on each fluctuation could
cause load migrations and VM instantiations that involve
more overhead than the benefits realized. To prevent such
behavior, more robust statistical methods are typically
employed. Such methods include Median Absolute Devi-
ation, Interquartile Range, and Iterative Local Regression.

In addition to dampening out some of the “high fre-
quency” noise in system measurements, some amount of
hysteresis should be built into SLA evaluations. This will
prevent the SLA Manager from trashing between differ-
ent enforcement mechanisms, such as load migration and
load consolidation, in a cascading chain reaction.

We also note that if the surge probability of each applica-
tion component is known, then the joint probability of any
process on the server going into SLA violation could be
determined. This joint probability could possibly be used
to determine the best amount of spare capacity to main-
tain on a server, in order to minimize overall application
impact due to load migration.

Developing such predictive models of system behavior
is a common application of machine learning techniques.
While machine learning has been a central topic in Arti-
ficial Intelligence for decades, the use of reinforcement
learning in autonomic applications has been getting
renewed attention [19]. A reinforcement learning system
is essentially exposed to a sequence of state-action pairs
to converge on a model of system behavior and optimal
management policies. While reinforcement learning can
be used “in the absence of explicit system models, with lit-
tle or no domain-specific initial knowledge”, model-based
reinforcement learning can shorten the training process,
but can also be constrained by the defined model. Thus,
reinforcement learning is commonly recognized as having
the following issues:

e The number of observed state-action pairs needed to
converge on optimal policies may be huge,

e When in an initial training period, the results might
be very poor, which can be very problematic for use
on an operational system,

e Some number of exploration actions need to be taken
that may produce sub-optimal results in the
short-term, but enable better results in the long-term,
and

e Real-world applications must not exhibit incomplete
observability — that is to say, the RL system must be
able to monitor all system metrics that are relevant to
understanding and controlling the target system’s
behavior.

To address some of these concerns, hybrid reinforce-
ment algorithms have been developed to shorten the
training process and improve the overall quality of system
management [20]. Reinforcement learning has also been
recently applied to cloud computing [21]. In this work, a
reinforcement learning algorithm was used to configure
sets of VMs for their (1) number of virtual cpus, (2) num-
ber scheduler credits, and (3) the available memory capac-
ity to optimize the response time and throughput when
servicing a canonical, three-tiered web application. Efforts
are also being made to commercialize this technology.
Numenta’s Grok architecture, for example, uses a bio-
inspired cortical learning algorithm implemented using a
modified Hadoop engine that is hosted on Amazon EC2
[22]. This provides automated streaming analytics that
can be used for system behavior prediction and anomaly
detection.

While such approaches to managine cloud-based SLAs
are intriguing, much work needs to be done to estab-
lish how well this would work in practical applica-
tions. Such predictive modeling could be coupled with
monitoring system behavior from widely different parts
of the cloud and its applications. Learning algorithms
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could also be used to do on-the-fly load classifica-
tion and comparison to established system models.
The SLA mechanisms should also be able to deal
with inaccurate or untruthful estimations of applica-
tion requirements being provided by users [23]. Ulti-
mately, the ability to serve both behavior prediction and
anomaly detection is an advantage that should also be
investigated.

SLA enforcement

Once it has been determined that an SLA in not in spec,
what can the system do to bring it back into spec? We
discuss some options here.

¢ Notification or Call-back. This is the simplest
option. The SLA Manager simply notifies an operator
who manually changes application parameters to
reduce resource demand. While this is not a
machine-enforceable mechanism, it will nonetheless
be a practical alternative in many situations.

¢ Throttling. Throttling mechanisms exist in modern
operating systems that can limit the amount of
resources a process can consume. Under throttling,
applications have no dynamic options and an SLA
violation is not possible. This is suitable for
applications that have very stable service level
requirements, or where being throttled will not
adversely affect application goals. (An example is
processing a work load “over night” where there is
significant lee-way in how long the processing
actually takes.)

¢ Load Migration. If a server becomes overloaded by
any metric, e.g., cpu load, memory usage, disk IO or
network IO, this can be remedied by migrating some
of the load to other servers with more available
capacity. This can be done by either process migration
or live VM migration. Clearly the overhead of either
migration technique would limit how quickly service
levels could be effectively re-established. Process
migration may take less time since a smaller memory
volume may have to be transferred, but migrating
entire VMs allows sets of processes to be transferred.
While migration can be done without interaction
with the running application, the application is
“down” during the migration. Hence, migration itself
may precipitate, or contribute to, an SLA violation.
Some clouds currently support live VM migration.

® Acquiring Additional Resources On-Demand.
Rather than moving load, the offending application
could be notified (through a call-back) that it needs
to acquire more resources on demand. This requires
that the application know how to incorporate more
servers into its processing chain, i.e., how to partition
its workload across more servers. That is to say, the
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application developer must design the application to
be able to incorporate additional servers.

¢ SLA Renegotiation. As a final option, SLA
renegotiation could be done. This is obviously a
heavy-weight option of last choice since it could
potentially entail restarting parts of the application
on newly acquired resources.

While these are all options for managing SLAs, in this
paper we are focusing on those mechanisms whereby
dynamic SLAs can be managed. Users must have confi-
dence that if they don't over-specify their average SLA
requirements, the infrastructure will be able to gracefully
respond to changes in requirements. This fundamental
requirement affects how SLA must be defined, evalu-
ated, and enforced. SLAs must be defined in a term lan-
guage whereby the relevant terms and parameters can be
expressed. These terms and parameters must be evaluated
with regards to the available enforcement mechanisms.

For the SLA mechanisms that have been identified, we
now can define the following Server Load Types that can
be used by the Cloud Scheduler and SLA Manager to
enforce SLAs (as illustrated in Figure 3):

Type I Service Loads are simply Best Effort, i.e., applica-
tion VMs that are allocated using existing methods with
no SLAs. As a practical matter, not all user applications
may need or want an SLA, and the cloud provider may
not want to require that all tenants must specify an SLA.
These processes may change their processing, memory,
disk and network demand whenever they want. All ten-
ant processes on a particular server, however, but will be
constrained by the physical capabilities of that server. If
a server becomes resource-bound in any way (compute,
memory, disk, or network), then all processes on that
server will simply slow down, depending on their profile
of resource demands.

Type II Server Loads are strictly throttled. As noted
before, this is appropriate for those application processes
that have known and stable resource requirements. By
knowing those requirements, the cloud scheduler can co-
locate such processes and maximize server utilization.
Since each process is throttled, each is guaranteed a mini-
mum level of service.

Type IlI Server Loads depend on live migration to rem-
edy an SLA violation. By identifying those processes that
can be migrated, the cloud scheduler can better manage
server utilization. When a server exceeds a load thresh-
old (by some metric), either a process or entire VM can be
migrated to another server that has sufficient capacity to
reduce the load on the local server. However, some pro-
cesses or VMs may tolerate migration better than others.
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Figure 3 Server Load Types.

Since migration may take a non-trivial amount of time,
migration itself may contribute to, or even cause, an SLA
violation.

Hence, we can partition Type III Server Loads into
Type Il1a and Type IIIb Server Loads that can, and can
not, tolerate migration, respectively. For Type IIIb Server
Loads that are less tolerant of live migration, a cloud
scheduler could delay or reduce the number of necessary
migrations by maintaining some amount of spare capacity
on servers with migratable loads. The amount of this spare
capacity could be managed to perhaps hit the “sweet spot”
in the trade-off between wasting capacity and avoiding
(or delaying) migration. Consider the policy whereby the
cloud scheduler ensures there is enough spare capacity on
a server such that any one application process can surge
without triggering a migration. This can be expressed
as:

k—1
ZNormLoadi + maxg<i<k—1(SurgeLoad;) < MaxLoad
i=0

By ensuring that enough capacity is available for the
maximum surge requirements of any process on that
server, then any one process can surge without trigger-
ing migration. If multiple processes surge, then migration
would be triggered at some time. (For this reason, it is
important when application processes may surge for cor-
related reasons.) Of course, enough spare capacity could
be maintained to enable j < k processes to surge simulta-
neously, but this raises the amount of excess capacity that
is maintained and its associated costs.

To limit the amount of excess capacity that is wasted,
less than max(SurgeLoad;) spare capacity could be
maintained. In this case, migration may not be avoid-
able for any one process, but at least migration would be

delayed, depending on how long or how bad a surge is. The
number of migrations over time might also be reduced.

For Type III SLAs (both a and b), it must be decided
which process to migrate and to which target server. Such
decisions must be codified as migration policy. Different
migration policies can be defined that attempt to opti-
mize different system or application metrics, sometimes
defined as an objective function. For commercial operators
that are concerned about power consumption and server
utilization, this can be a monetized objective function
based on the cost of power and the cost of SLA violations.
This has been called the Dynamic VM Consolidation
problem [24].

For performance-sensitive applications, however, mi-
gration policies could be based on a variety of different
metrics to choose which process or VM to migrate:

Fastest Migration Time (least time needed)
Application Value (priority)

Application Availability

Maximum Load Reduction

Load Reduction to Just Below Maximum

Highest Correlation with Causing Excessive Load

Also, managing applications with non-stationary work-
loads with dynamic SLAs represents a fundamental
autonomic control challenge. Given these applications’
dynamic behavior, simple threshold comparisons will
clearly be inappropriate. Methods will be needed for
building hysteresis into the decision mechanisms. This has
been investigated using multi-size sliding window algo-
rithms whereby the mean intermigration time can be
maximized [25].

It is clear that effectively using load migration for Type
IIIa and IIIb SLAs will require extensive experimentation
and experience. Which processes are appropriate for Type
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IIla and IlIb SLAs, which migration policies work the best,
and how to manage their parameters, such as local surge
capacity, are all open questions.

Rather than simply wasting the spare capacity to delay or
reduce the number of live migrations, however, a similar
technique to that used in [26] could be used to back-fill
the spare capacity with preemptible processes or VMs.
These are called Type IV Server Loads. Type IV Server
Loads can be preempted without warning, and possibly
restarted somewhere else at a later time, without signif-
icantly affecting the user’s overall requirements. Thus,
when a Type IIIb load goes into a surge, Type IV loads
resident on the same physical server can be terminated,
on-demand, to delay or reduce any necessary migrations.

Finally, Type V Server Loads simply represent spare
capacity that is available on-demand, for both live migra-
tions and for new VM instantiations. The amount of this
spare capacity depends on the aggregate surge require-
ments of all applications.

Overall, the goal is to ensure that all application pro-
cesses can meet their processing requirements, while
minimizing the resources that must be maintained. This
means strictly managing the excess capacity that must be
maintained for surge requirements. It also means man-
aging the spare capacity that is fragmented across all
servers that are not fully loaded, and the total spare capac-
ity available within the cloud as a whole. Theoretically,
server load could be managed completely dynamically by
live migration and on-demand instantiation, but stating
Service Levels gives the cloud scheduler valuable informa-
tion concerning the expected demands. Ideally this should
enable the cloud scheduler to minimize the number of live
migrations and instantiations that are necessary.
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An SLA research and development plan

Having reviewed the fundamental SLA functions, and
identified the available SLA enforcement mechanisms for
OpensStack, along with the resulting Load Types, we now
put all of this together into an architecture and a develop-
ment plan.

An SLA architecture for OpenStack

Figure 4 presents an integrated SLA architecture for
OpenStack. The User begins by sending an SLA request to
the Nova-AC (Admission Control) service, using the stan-
dard WS-Agreement format. When Nova-AC is booted,
it is initialized with the Total Capacity Document for this
cloud. This document specifies the cloud’s current total
capacity, e.g., number and type of servers, amount of stor-
age, network bandwidth, etc. The exact format of this
document needs to be defined, but presumably it could
follow the SLA template that the Nova-AC provides to
potential users as part of the WS-Agreement process.

Based on the incoming SLA request, Nova-AC consults
its database of allocated and available capacity. According
to the discussion in Section ‘Admission control’, an admis-
sion control decision could be made simply by identifying
a host where there is sufficient cycles and network band-
width available, according to the requested Load Type
(without having to maintain more complicated, graphi-
cal representations). If multiple rounds of negotiation are
required, the WS-Agreement Negotiation [8] standard
defines how this can be done.

Once the User essentially has an “SLA offer”, the Vir-
tual Machine Image and the SLA are submitted through
the Nova-API to the Nova-Scheduler. Like all OpenStack
services, the Nova-API is designed using a configurable
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Figure 4 An SLA Architecture for OpenStack.
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command pipeline. When booted, the command pipeline
can be configured with different pipeline stages to include
or omit different functionalities. To support SLAs, a new
SLA pipeline stage will be included. When any operation
involving an SLA is encountered, Nova-API will inform
Nova-AC of the change in resources being allocated or
released. It will likewise inform the SLA Manager of the
same changes.

When VMs are actually being allocated, the Nova-
Scheduler uses a Filter and Weight approach, as illustrated
in Figure 5. To choose the host on which to allocate a
VM, Nova-Scheduler first applies a set of filters to iden-
tify which hosts are possible candidates. A set of weighting
functions are then applied to rank the candidates and
identify the best one. This design allows OpenStack to
support many different scheduling paradigms, depending
on the filters and weighting functions available. Open-
Stack currently support several basic scheduling algo-
rithms, e.g., random placement, random placement within
an availability zone, and placement on the least loaded
host. To support SLAs, additional SLA Filtering and
Weighting functions will need to be written that makes
the correct selections based on the SLA Load Type and
capacity requested.

Once instantiated on a host compute node, a monitoring
agent will have to be used to acquire the necessary per-
formance information. Ceilometer is the OpenStack mon-
itoring service under development. This uses the same
RabbitMQ [27] instance used by Nova to collect all per-
formance information and deposit it in a database. Other
monitoring tools, besides Ceilometer, could be used.
Zenoss, for instance, is much more mature than Ceilome-
ter and offers many ZenPacks that can be installed to
monitor many different parts of a system software stack,
e.g., Apache Tomcat servers, PostgresSQL databases, and
Java SNMDP, just to name a few examples. Nonetheless, for
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initial development and evaluation purpose, Ceilometer
could be used completely adequate.

Based on the Load Type requested, the SLA Manager
will look for specific performance metrics from different
host servers. For Type II throttled work loads, a mecha-
nism, such as cgroups [28] in Linux, could be used. Linux
cgroups allow hierarchical control groups to be defined.
Each control group is associated with a limit on the
amount of resources that can be consumed on that server,
e.g., the percentage of cpu time, memory, disk IO, and
network IO. These limits are actually enforced by tools
such as Linux CPUsets [29]. User processes are assigned
to different control groups based on the limit of resources
they are allowed to consume. The operating system then
enforces those limits when scheduling a process to run. To
use this mechanism, the SLA Manager will have to man-
age the available cgroups on a specific servers, and which
VM processes are assigned to them.

For Type IIla and IlIb work loads, the SLA Manager
will need to employ live migration to enforce policy.
Live VM migration can generally be done transparently
to the running applications. However, the time required
for a live migration depends on the amount of mem-
ory currently in use by a VM, Mem, the number of
open file descriptors (i.e., open files and network connec-
tions), nOpenConn, and the available network bandwidth,
BW, between the current host and the migration target
host.

Tnigration = O(nOpenConn + (Mem/BW))

Further refinements to this relationship can be made. The
performance costs of live migration can also depend on
the internal details of the cloud implementation, such as
the type of hypervisor used, as well as the storage and
memory architectures [30]. A truly flexible SLA control
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architecture will allow for selection of the application
parameters for which the cost model should be tuned.

Even if live migration is otherwise transparent to the
application, this time delay may precipitate, or contribute
to, an SLA violation. This underscores the importance
of accurately evaluating Tyuigration that applications may
encounter, and how it may affect their SLAs. It may also be
the case that CPU-intensive applications may be easier to
migrate than ones that are highly inter-connected. Hence,
a key goal will be to develop an accurate and predictive
model of live migration that takes in all of these possible
factors, and can be used to support different migration
policies.

Finally we note that using the SLA architecture
described here to effectively manage cloud resources will
require a certain population of Load Types. That is to say,
processes and VMs of each Load Type must be repre-
sented in some number and distribution whereby a cloud
scheduler can effectively use them to manage the overall
cloud utilization, while ensuring that individual applica-
tion performance requirements are being met. This will be
especially true for Load Types III and IV where back-fill
scheduling is used to improve utilization. Experimentally
determining workable Load Type populations will only be
possible once there is a significant SLA architecture in
place.

A research and development plan

With these design options and goals in mind, we now
present a draft development and test plan. Clearly this
SLA system will depend on Linux cgroups and live migra-
tion in OpenStack. cgroups are an established capability,
so that is considered to be low risk. Live migration in
OpenStack, however, is still maturing.

Live migration has been demonstrated in the Open-
Stack Folsom release, using KVM with libvert on ubuntu
10.09 or 12.04. Live migration using Xen has also been
reported. The initial use for live migration in Open-
Stack, however, is not load balancing or SLA enforce-
ment. Rather it will be used for VM evacuation. This
is for basic server maintenance purposes, where all run-
ning VMs can be moved off of a server to allow soft-
ware upgrades, hardware replacement, or other routine
maintenance functions to be done. Server evacuation is
currently intended to be manually managed by cloud
administrators.

Given that the basic live migration capability has been
demonstrated in OpenStack (since Folsom) for manual
maintenance purposes, it should be possible to add the
SLA “intelligence” whereby live migration can be used
for performance management. Hence, we defined the
sequence of tasks for the Research and Development Plan
given below. This plan starts by building and evaluat-
ing just the core SLA enforcement mechanisms (Tasks 1
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and 2). We must first show that these mechanisms are
effective in providing reasonable guarantees of application
performance. Once that is established, we can then con-
sider building the rest of the supporting SLA management
tools, i.e., Tasks 3, 4, 5 and 6. Proposing specific sched-
ule milestones and budget are outside the scope of this

paper.

A Research and Development Plan
1. Build Core Enforcement Infrastructure

e Install Ceilometer on existing OpenStack cloud
e Build a basic SLA Manager by enhancing the
Ceilometer client

— DPeriodically queries database for specific
metrics

— Applies rule sets to detect specific
performance conditions on a per
application basis

e Demonstrate process throttling with cgroups
e Demonstrate processes and VMs live migration

2. Demonstrate SLA Manager Capabilities

e Build/construct synthetic/manufactured work
loads

— Provide work loads programmed to go
through variable changes in demand

— Build work load scenarios relevant to
various application domains

® Develop and evaluate migration policies

— Assess migration parameters: spare
capacity, migration time, load
reduction/correlation, etc.

— Evaluate how well live migration can be
managed (inter-migration time)

— Develop accurate, predictive model(s) of
migration overhead

— Compare process migration vs. VM
migration

e Evaluate overhead, responsiveness, and stability

— How much overhead does monitoring
incur to produce useful information

— Evaluate how quickly can the system
respond to and maintain SLA targets

— Evaluate responsiveness vs. stability
trade-off

3. Develop Nova-AC Service

e Develop common WS-Agreement term
language
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Develop Total Cloud Capacity Document
Develop Allocated Capacity Document
Investigate semantic mapping from
application-level requirements to
infrastructure-level metrics

4. Develop Nova-API Pipeline Stage

e Establish interaction with Nova-AC and SLA
Manager when instantiating application VMs

— Enable accurate tracking of allocated and
available capacity

— Enable live migration managed by SLA
Manager

5. Develop Nova-Scheduler SLA Functions

e Develop the filtering and weighting functions to
identify the best host for relevant Load Types

6. Demonstrate End-to-End Integrations

e Develop or acquire non-trivial “operational-like”
work loads
Manage SLAs for multiple apps simultaneously
Demonstrate that individual application
requirements can be met while managing
overall cloud requirements, e.g., utilization

e Evaluate minimal population of Load Types
(number and distribution) to effectively manage
overall cloud resources

7. Develop and Evaluate Learning Algorithms

e Identify all relevant system metrics necessary
understand and control system behavior

e Evaluate the trade-off between the length of
training period versus eventual effectiveness

e Develop and evaluate methods for enabling
exploration actions that do not adversely affect
operational systems

8. Develop and Evaluate Distributed SLA Managers

Evaluate P2P and hierarchical organizations
Develop and evalaute distributed SLA models,
ultimately including learning algorithms

e Evaluate overhead, responsiveness, stability of
distributed SLA methods

Summary and recommendations

This paper has reviewed the basic requirements for
providing dynamic service-level agreements, and devel-
oped a draft plan for implementing and evaluating
such dynamic SLAs in OpenStack. This SLA archi-
tecture does require that applications understand what
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their own resource requirements are. For some exist-
ing applications, this information may be difficult to
acquire. When an application is deployed on dedi-
cated hardware, there may have been no provision for
determining the actual requirements of each applica-
tion component. As long as an application component
never became an egregious bottleneck, everything was
fine.

The proposed SLA architecture could, in fact, be used
to determine a application’s actual requirements. Without
specifying or enforcing SLAs in a separate test environ-
ment, the monitoring infrastructure could simply cat-
alog the application’s behavior over time and various
“operational” conditions. Once known, the application
could be moved to an SLA-controlled infrastructure with
appropriate SLAs in force. In any case, any further work
should leverage other relevant projects in the overall cloud
marketplace. The NSF Center for Cloud and Autonomic
Computing has a number of projects concerning cloud
SLAs [31].

The European Union has reported the results of a num-
ber of research projects, ranging from business-level SLAs
to scientific SLAs [32]. These include the OPTIMIS [33],
CONTRALIL [34], and SLA@SOI [10] projects. Given the
wide interest in SLAs and the recognition that SLAs
will be critical for a wide segment of the cloud market-
place, the TeleManagement Forum (TMF) has started an
SLA working group [35] to develop industry best prac-
tices and standards, using the OGF WS-Agreement and
WS-Agreement Negotiation as a starting point [36]. With
these developments, the OpenStack community might
eventually incorporate support for some form of dynamic
SLAs.

Acknowledgments

The authors gratefully acknowledge the many useful comments from the
organizers and participants of the 3rd International Workshop on Intelligent
Techniques and Architectures for Autonomic Clouds (ITAAC 2013) that improved
the scope and completeness of this paper.

Competing interests
The authors declared that they have no competing interests.

Authors’ contributions

CL produced an earlier version of this paper that laid out the fundamental
capabilities necessary for dynamic service level agreements, identified possible
control mechanisms based on the load types, and cast this as potential
augmentations to the OpenStack service architecture. AS greatly improved
this earlier version by clarifying and emphazing key concepts, identifying
highly relevant citations, and fleshing out the research and development plan,
as relevant to the new NSF Center for Cloud and Autonomic Computing at
Texas Tech University. The authors read and approved the final manuscript.

Author details

Computer Systems Research Department, The Aerospace Corporation, P.O.
Box 92957, El Segundo, CA 90009, USA. 2High Performance Computing
Center, Texas Tech University, Lubbock, TX 79409, USA.

Received: 25 January 2014 Accepted: 4 June 2014
Published online: 07 November 2014



Lee and Sill Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:17

http://www.journalofcloudcomputing.com/content/3/1/17

References

1.

10.

21.

22.

23.

24.

25.

Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource
provisioning in cloud systems with availability goals. In: Proceedings of
the 2013 ACM cloud and autonomic computing conference. CAC "13.
ACM, New York. pp 1:1-1:10

Kephart JO, Chess DM (2003) The vision of autonomic computing. IEEE
Comput 36(1):41-52

Sechen C, Sangiovanni-Vincentelli A (1985) The Timberwolf placement
and routing package. IEEE J Solid-State Circuits 20(2):510-522

Karypis G METIS: Serial Graph Partitioning and Fill-Reducing Matrix
Ordering. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
Jiang Y, Liu Y (2009) Stochastic network calculus. Springer, London, 2008.
doi:10.1007/978-1-84800-127-5, ISBN 978- 1-84800-126-8

Waeldrich O, Battré D, Brazier F, Clark K, Oey M, Papaspyrou A, Wieder P,
Ziegler W (2011) Web services agreement negotiation, Version 1.0. OGF
GFD-R-P.193. http://www.ogf.org/documents/GFD.193.pdf

Battre D, Hovestadt M, Waldrich O (2010) Lessons learned from
implementing WS-agreement. In: Wieder P etal. (ed). Grids and
service-oriented architectures for service level agreements. Springer
Andrieux A, Czajkowski K, Dan A Keahey K, Ludwig H, Nakata T, Pruyne J,
Rofrano J, Tuecke S, Xu M (2011) Web services agreement specification
(WS-Agreement). OGF GFD-R.192. http://www.ogf.org/documents/GFD.
192.pdf

Nae V, Prodan R, losup A (2013) Autonomic operation of massively
multiplayer online games in clouds. In: Proceedings of the 2013 ACM
Cloud and Autonomic Computing conference. CAC '13. ACM, New York.
pp 10:1-10:10

The SLA@SOI Project. http://www.sla-at-soi.eu

Mahbub K, Spanoudakis G, Tsigkritis T (2011) Translation of SLAs into
monitoring specifications. In: Wieder P, Butler JM, Theilmann W,
Yahyapour R (eds). Service level agreements for cloud computing.
Springer

Emeakaroha VC, Netto MAS, Calheiros RN, Brandic |, Buyya R, De Rose CAF
(2011) Towards autonomic detection of SLA violations in cloud
infrastructures. Future Generat Comput Syst 28(7):1017-1029.
doi:10.1016/j.future.2011.08.018

Freitas AL, Parlavantzas N, Pazat J-L (2012) An integrated approach for
specifying and enforcing slas for cloud services. In: 5th IEEE intl. conf. on
cloud computing. IEEE

Tomas L, Tordsson J (2013) Improving cloud infrastructure utilization
through overbooking. In: Proceedings of the 2013 ACM Cloud and
Autonomic Computing conference. CAC '13. ACM, New York. pp 5:1-5:10
The OpenStack Foundation. Welcome to the Ceilometer Developer
Documentation! http://docs.openstack.org/developer/ceilometer/

The Ganglia Monitoring System. http://ganglia.sourceforge.net

Nagios Enterprises. Nagios. http://www.nagios.org

Zenoss Inc. Zenoss. http://www.zenoss.com

G Tesauro (2007) Reinforcement learning in autonomic computing: a
manifesto and case studies. IEEE Internet Comput 11(1):22-30

Z Wang, X Qiu, TWang (2012) A hybrid reinforcement learning algorithm
for policy-based autonomic management. In: 9th International
Conference on Service Systems and Service Management (ICSSSM). IEEE
C-Z Xu, JRao, X Bu (2012) URL: A unified reinforcement learning approach
for autonomic cloud management. J Parallel Distrib Comput 72(2):95-105
Ahmad S (2012) Automated machine learning for autonomic computing.
In: 9th ACM International Conference on Autonomic Computing (ICAC).
New York

Mashayekhy L, Nejad MM, Grosu D (2013) A truthful approximation
mechanism for autonomic virtual machine provisioning and allocation in
clouds. In: Proceedings of the 2013 ACM Cloud and Autonomic
Computing conference. CAC '13. ACM, New York. pp 9:1-9:10

Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and
adaptice heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers. Concurrency
Comput Pract Ex 24:1397-1420

Belograz A, Buyya R (2013) Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints. IEEE Trans Parallel Distr Syst 24(7):1366-1379

26.

27.
28.

29.

30.

31

32.

33.
34.
35.

36.

Page 13 0f 13

Marshall P, Keahey K, Freeman T (2011) Improving utilization of
infrastructure clouds. In: CCGRID ‘11 Proceedings of the 2011 11th
IEEE/ACM international symposium on cluster, cloud and grid
computing. pp 205-214

GoPivotal, Inc. RabbitMQ. http://www.rabbitmg.com

Menage P, Jackson P, Lameter C (2006) CGroups. http://www.kernel.org/
doc/Documentation/cgroups/cgroups.txt

Derr S, Jackson P, Lameter C, Menage P, Seto H (2006) CPUSets. http://
www.kernel.org/doc/Documentation/cgroups/cpusets.txt

Hu W, Hicks A, Zhang L, Dow EM, Soni V, Jiang H, Bull R, Matthews JN
(2013) A quantitative study of virtual machine live migration. In:
Proceedings of the 2013 ACM Cloud and Autonomic Computing
conference. CAC "13. ACM, New York. pp 11:1-11:10

The NSF Center for Cloud and Autonomic Computing. http://www.
nsfcac.org

Kyriazis D (ed) (2013) Cloud computing service level agreements:
exploitation of research results. http://ec.europa.eu/digital-agenda/en/
news/cloud-computing-service-level-agreements-exploitation-
research-results

The OPTIMUS Project. http://www.optimis-project.eu

The CONTRAIL Project. http://www.contrail-project.eu

The TeleManagement Forum. SLA Management. http://www.tmforum.
org/SLAManagement/1690/home

(2013) The TeleManagement Forum. Enabling End-to-End Cloud SLA
Management, TR 178, Version 0.7. http://www.tmforum.org/
TechnicalReports/TR178EnablingEndtoEnd/50148/article.html

doi:10.1186/513677-014-0017-1

Cite this article as: Lee and Sill: A design space for dynamic service level
agreements in OpenStack. Journal of Cloud Computing: Advances, Systems
and Applications 2014 3:17.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.ogf.org/documents/GFD.193.pdf
http://www.ogf.org/documents/GFD.192.pdf
http://www.ogf.org/documents/GFD.192.pdf
http://www.sla-at-soi.eu
http://docs.openstack.org/developer/ceilometer/
http://ganglia. sourceforge.net
http://www.nagios.org
http://www.zenoss.com
http://www.rabbitmq. com
http://www.kernel.org/doc/Documentation/cgroups/ cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/ cgroups.txt
http://www.kernel.org/doc/ Documentation/cgroups/cpusets.txt
http://www.kernel.org/doc/ Documentation/cgroups/cpusets.txt
http://www.nsfcac.org
http://www.nsfcac.org
http://ec.europa.eu/digital-agenda/en/news/cloud-computing-service-level-agreements-exploitation-research-results
http://ec.europa.eu/digital-agenda/en/news/cloud-computing-service-level-agreements-exploitation-research-results
http://ec.europa.eu/digital-agenda/en/news/cloud-computing-service-level-agreements-exploitation-research-results
http://www.optimis-project. eu
http://www.contrail-project.eu
http://www.tmforum.org/SLAManagement/1690/home
http://www.tmforum.org/SLAManagement/1690/home
http://www.tmforum.org/TechnicalReports/TR178EnablingEndtoEnd/50148/article.html
http://www.tmforum.org/TechnicalReports/TR178EnablingEndtoEnd/50148/article.html

	Abstract
	Keywords

	Introduction
	Fundamental SLA functions
	SLA design options and approaches
	Admission control
	Monitoring
	SLA evaluation
	SLA enforcement
	Type I Service Loads
	Type II Server Loads
	Type IlI Server Loads



	An SLA research and development plan
	An SLA architecture for OpenStack
	A research and development plan

	Summary and recommendations
	Acknowledgments
	Competing interests
	Authors' contributions
	Author details
	References

