Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications
(2015) 4:3
DOI 10.1186/513677-015-0029-5

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

A service oriented broker-based approach for
dynamic resource discovery in virtual networks

Sleiman Rabah', May EI Barachi®’, Nadjia Kara®, Rachida Dssouli* and Joey Paquet®

Abstract

In the past few years, the concept of network virtualization has received significant attention from industry and
research fora. This concept applies virtualization to networking infrastructures by enabling the dynamic creation

of several co-existing logical network instances (or virtual networks) over a shared physical network infrastructure
(or substrate network). Due to the potential it offers in terms of diversifying existing networks and ensuring the
co-existence of heterogeneous network architectures on top of shared substrates, network virtualization is often
considered as an enabler of a polymorphic Internet and a cornerstone of the future Internet architecture. One of
the challenges associated with the network virtualization concept is the description, publication, and discovery of
virtual resources that can be composed to form virtual networks. To achieve those tasks, there is a need for an
expressive information model facilitating information representation and sharing, as well as an efficient resource
publication and discovery framework. In this paper, we propose a service oriented, broker-based framework for
virtual resource description, publication, and discovery. This framework relies on a novel service-oriented hierarchical
business model and an expressive information model for resources/services description. The detailed framework's
architecture is presented, and its operation is illustrated using a REST-based content distribution scenario. Furthermore,
a proof-of-concept prototype implementation realized using various technologies/tools (e.g. Jersey, JAXB, PostgreSQL,

and Xen cloud platform) is presented along with a detailed performance analysis of the system. When compared to
existing virtual resource discovery frameworks, our broker-based virtual resource discovery framework offers
signification performance improvements of the virtual resources’ discovery operation, in terms of response time
(92.8% improvement) and incurred network load (77.3% improvement), when dealing with multiple resource
providers. Furthermore, relying on a broker as intermediary role simplifies the resources’ discovery and selection
operations, and improves the overall efficiency of the virtual network embedding process.

Keywords: Network virtualization; Dynamic resource discovery; Information modeling; REST; Xen cloud

Introduction

Network virtualization is an emerging concept that ap-
plies virtualization to networking infrastructures and
promotes a “network-as-a-service” model, in which a dy-
namic pool of virtualized networking resources can be
leased and released on demand. The basic idea behind
network virtualization consists in the dynamic creation
of several co-existing logical network instances (or virtual
networks) over a shared physical network infrastructure
(or substrate network) [1]. Offering full administrative
control and customization capabilities, virtual networks

* Correspondence: may.elbarachi@zu.ac.ae

2College of Technological Innovation, Zayed University, Khalifa City B, P.O.
Box 144534, Abu Dhabi, United Arab Emirates

Full list of author information is available at the end of the article

@ Springer

can be built according to different design criteria and op-
erated as service-tailored networks [2].

Recently, network virtualization has received a lot of
attention from industry and research fora, as it repre-
sents a promising way to diversify existing networks and
ensure the co-existence of heterogeneous network archi-
tectures on top of shared substrates [3-5]. In addition,
network virtualization enables the emergence of new ac-
tors and business roles to offer on-demand virtual net-
works (VNs), customized for particular service and user
requirements.

In the Internet domain, network virtualization is con-
sidered as a promising solution for the “Internet ossifica-
tion” problem — A condition by which the sheer size and
scope of the Internet architecture renders the introduction

© 2015 Rabah et al, licensee Springer. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:may.elbarachi@zu.ac.ae
http://creativecommons.org/licenses/by/4.0

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

and deployment of new technologies very difficult due to
the high cost of migration and the difficulty of achieving
wide consensus among the many involved stakeholders
[6]. By enabling a logical segmentation of the physical
Internet infrastructure and the co-existence of heteroge-
neous virtual networking architectures on top of it, net-
work virtualization is often seen as a cornerstone of the
future Internet architecture [3,6].

In order to provide a clean separation of services and
infrastructures, the network virtualization concept decou-
ples the traditional Internet Service Provider (ISP) role into
two main roles: the Infrastructure Provider (InP) role own-
ing/managing the physical infrastructure and partitioning
its resources into isolated slices using some virtualization
technology; and the Service Provider (SP) role relying on
the infrastructure to offer end-user services. Furthermore,
the Virtual Network Provider (VNP) is introduced as a
third intermediary role responsible for discovering and ag-
gregating virtual resources from one or multiple InPs in
order to instantiate virtual networks (VNs) satisfying cus-
tomers’ requests [1].

Forming the initial steps in the virtual network embed-
ding process, resource description, publication, and dis-
covery are critical phases that aim at assisting the VNP
in identifying potential InPs that possess the resources/
services needed to satisfy a certain VN request (request
coming from a client to instantiate a VN). While re-
source description focuses on the representation of the
functional (i.e. static) and non-functional (i.e. dynamic)
attributes of resources/services offered by different pro-
viders; resource publication enables the advertisement of
this information; and resource discovery enables the
searching and finding of resource candidates that com-
ply with the requirements specified in the VN request.

Despite their importance in the VN embedding (or
composition) process, little work has been done on re-
source description, publication, and discovery in virtual
networking environments. The solutions proposed so far
[7-10] rely on coarse-grained inexpressive information
models, and require the interaction between a VNP and a
potentially large number of candidate resource providers
to gather the necessary information needed for resource
selection. In a large scale virtual networking environment
in which many InPs offer virtualized resources for lease,
such solutions may introduce complexity and result in
excessive delays and communication overhead between a
VNP and a large number of potential InP candidates —
thus impacting the overall efficiency of the VN embedding
process. Furthermore, none of the proposed architectures
has been fully implemented.

In this work, we propose a service-oriented broker-
based framework for resource description, publication,
and discovery in virtual networking environments. Our
framework promotes the idea of “network-as-a-service”

Page 2 of 30

by defining different levels of services to which network-
ing resources are mapped. It relies on a novel service-
oriented hierarchical business model [11] that introduces
the broker as intermediary role, and proposes the concept
of vertical hierarchy between VNPs, as well as the concept
of service building block and service reuse and compos-
ition. At the heart of the framework lies an expressive
information model [12] enabling the representation of
physical/virtual resources and services, as well as the map-
ping between them, in addition to modeling the relations
between multiple business roles and their association to
resources and services offered. Unlike other approaches,
our proposed framework aims at offering an efficient dy-
namic resource discovery solution enabling the seamless
interaction and collaboration between various roles, while
coping with the complexity of managing and organizing
large numbers of virtualized resources/services.

The rest of the paper is organized as follows: Section 2
gives an overview of the network virtualization concept
and presents a review of related work. In Section 3, our
proposed approach for virtual resources’ description and
discovery is discussed in detail, including the business
and information models on which it relies, the architec-
tural framework design, the architectural components and
interfaces, as well as a REST-based secure content distri-
bution scenario illustrating the system’s operation. This is
followed by a presentation of the prototype implementa-
tion and performance measurements, in Section 4. The
last section ends the paper with our conclusions.

Background and related work

The network virtualization concept

A virtual networking environment can be seen as a dy-
namic and collaborative environment, in which a large
pool of virtualized networking resources can be offered
and leased on demand. In such an environment, a number
of logical network instances (virtual networks) co-exist
over a shared physical network infrastructure. A virtual
network essentially consists of a set of virtual nodes con-
nected by virtual links, and forming a virtual topology. In
this topology, each virtual node (guest) is hosted on a cer-
tain physical node (host) and each virtual link is established
over a physical path. In this environment, each virtual net-
work is managed/operated by a single entity, and virtual
networks are logically isolated from each other.

From an architectural perspective, network virtualization
promotes several design goals [1], the most prominent
ones being: the coexistence of multiple VNs (operated by
different providers) within the same environment; recur-
sion and inheritance between VNs allowing the nesting/
creation of a VN on top of another VN (thus forming a
hierarchy); flexibility by allowing a provider to implement
an arbitrary network topology, routing and forwarding
functionalities and customized control protocols in a VN;

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

manageability allowing a provider to have full administra-
tive control over a VN; isolation between co-existing VNs
to improve fault-tolerance, security and privacy; and het-
erogeneity of VNs as well as the physical infrastructures on
which they rely.

Three main business models were proposed for Net-
work Virtualization Environments (NVEs) [5,11-13]. The
initial model proposed in [13] decouples the traditional
Internet Service Provider role into two roles: the role of
infrastructure provider (InP) managing the physical infra-
structure; and the role of service provider (SP) creating
VNs by aggregating resources from multiple infrastructure
providers and offering end-to-end services. The second
model, which has been proposed in the 4Ward project [5],
refines the first model by defining four roles: physical in-
frastructure provider (corresponding to the role of infra-
structure provider in the first model); VNP responsible of
finding and composing an adequate set of virtual re-
sources from one or more infrastructure providers into an
empty virtual topology; virtual network operator (VNO)
that deploys different protocols over the VN topology and
is responsible for the control and management of the VN;
and service provider using the VN to offer end-to-end ser-
vices. The third model was proposed by us in [11], as a re-
finement to the previous two models. In this model, we
put the emphasis on the notion of services by defining
different levels of services that could be offered by net-
working resources, and introduced the broker role as an
additional role needed to enable the collaboration between
various entities for service provisioning. Furthermore, we
introduced the notion of hierarchy between VNs and vir-
tual infrastructure providers, as well as the idea of service
building blocks and service composition.

The virtual network embedding process

As shown in Figure 1, the virtual network embedding
process consists of multiple phases and involves the col-
laboration between different roles. We describe the dif-
ferent phases as follows:

e Resource Description: Prior to any VN provisioning
operation, physical/virtual infrastructure providers
need to describe their available resources. This
step relies on information models that enable the
description of the functional attributes (i.e. static
parameters such as node/link type, OS) and the
non-functional attributes (i.e. dynamic parameters
such as available capacity/bandwidth) of available
resources and services.

e Resource Publication and Discovery: Once
resources are described, their related information is
advertised and dynamically discovered by different
entities wishing to make use of those resources.
According to the literature, the description of the

Page 3 of 30

resources may be registered in public discovery
frameworks, or repositories, so that they can be
discovered by VN requestors. As for the discovery
process, it consists of searching and finding resource
candidates that comply with the requirements
specified in the VN request. In [14], two aspects of
resource discovery have been identified: resource
matching and resource splitting. The matching
mechanism identifies resources that meet a set of
functional and non-functional attributes using
clustering techniques and similarity based matching
algorithms [15,16]. The splitting mechanism divides
virtual network requests into sub-requests that can
be handled by different physical resource providers.
Resource Selection: Taking as input the list of
resource candidates identified by the resource
discovery process, the resource selection process
aims at selecting the best candidates that satisfy the
requirements specified in the VN request.
Depending on the sophistication of the selection
approach, multiple operations may be used to obtain
the best resources candidates, including filtering,
aggregating, ranking and multi-objective-based
selection [17]. The selection of the best resources
while maximizing the number of allocated virtual
networks over a shared physical infrastructure is
recognized as an NP-hard problem [18]. Therefore,
several approaches have been proposed to tackle this
issue, including: exact formulation [19]; heuristics-
based [20]; and economic-based models [21].
Resource Negotiation: Resource negotiation is
considered as an important process that enables a
service provider to negotiate with multiple
infrastructure providers (offering similar resources),
in order to select the best one. This involves the
negotiation of the resources’ cost, allocated
capabilities over the Service Level Agreement (SLA)
period, and the related quality of service scheme.
Resource Allocation and Mapping: Resource
allocation or resource provisioning [14] is the process
of mapping/binding virtual resources to physical
resources (such as nodes and links). Resource
allocation is performed by a physical infrastructure
provider, and mainly consists of virtual nodes and
virtual links creation, configuration and setup, thus
resulting in virtual topologies instantiation.

Dynamic Resource Management: Once allocated,
virtual networks may be subject to dynamic
variations, such as changes in service demands,
traffic loads, and resource conditions. To cope with
such variations, dynamic resource management
strategies are needed. Such strategies may include
virtual nodes’ migration and dynamic topologies’
adaptation.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 4 of 30

Actions

Information modeling

SRR

VNet embedding & virtual to
physical mapping

Dynamic topology adaptation
& virtual nodes migration

)

Figure 1 The virtual networking embedding process.

1. Resource
description

2. Resource
publication &
discovery

3. Resource
selection

4, Resource
Negotiation r

5. Resource
allocation and

mapping

6. Dynamic
resource
management

Roles involved

Infrastructure Provider
& Broker

Physical and
Virtual Providers

Physical
> Infrastructure
Provider

Resource description and discovery in virtual networking
environments
In a federated virtual networking environment (where
similar resources could be offered by many providers),
resource description and discovery are critical processes
that aim at assisting the VNP in identifying potential
InPs that possess the resources/services needed to satisty
a certain VN request. Despite their importance in the
VN embedding process, little work has been done on re-
source description and discovery in virtual networking
environments.

In [7], a virtual resource description and discovery
framework has been proposed for the 4WARD model.

As part of this framework, a UML-based information
model is proposed to describe resources. In this model,
the network element is considered as the basic building
component having functional and non-functional attri-
butes. Furthermore, this framework uses a conceptual clus-
tering technique to arrange resources’ information into a
tree structure (dendrogram) that facilitates the matching
and selection processes. In this case, only resources’
functional attributes are advertised and stored in exter-
nal repositories to be used for discovery purposes,
whereas non-functional attributes are updated and kept
in local repositories to be used during selection and
binding phases. A distributed peer-to-peer architecture

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

is proposed for the realization of the proposed resource
discovery framework.

Building on the solution proposed in [7], the authors
in [8] propose a similar framework that relies on a
hierarchical clustering architecture for virtual resource
organization and discovery. In this architecture, local
management nodes are used to store static (functional)
attributes and arranging them into conceptual clusters
called Micro Clusters (MiCs) at the InP level. The Clus-
ter Index Server groups/organizes the MiCs of multiple
InPs having the same root attribute, thus resulting in a
Macro Cluster (MaC). Time variant attributes such as
the residual capacity of a substrate link is stored in the
management node. This framework aims at reducing the
search range and cost as well as enhancing the efficiency
of the resource discovery process.

To benefit from WSDLs support for dynamic update
services, authors in [9] proposed a WSDL-based VN re-
source provisioning framework. With the help of local
agents deployed on local substrate networks, WSDL
documents containing resource description are dynamic-
ally generated and published to UDDI registries. For a
VNP to select the candidate resources, a search in all the
UDDI registries is required. In this framework, the UDDI
registries parse the information contained in WSDL and
use the greedy and shortest path algorithms to retrieve the
necessary information.

Aiming at enhancing the efficiency of the selection
process by considering dynamic attributes during the
discovery phase, the Aggregation-based Discovery for
Virtual Network Environments (ADVNE) is proposed in
[10]. In order to minimize the continuous monitoring
overhead of dynamic attributes, the authors propose to
calculate aggregated values of the monitored attributes
instead. In this approach, each InP has a monitoring
agent that monitors and calculates the aggregated values
of two dynamic attributes (nodes’ available CPU and links’
available bandwidth). Furthermore, InPs publish their re-
sources’ static attributes in VNPs managed repositories.
Later on, a VNP wishing to perform resource discovery
will use its discovery module to retrieve the needed static
attributes (from the VNP’s repository) and dynamic attri-
butes (from monitoring agents at InPs level). This infor-
mation will be used to conduct an initial filtering of
candidate InPs and provide the resulting list as input to
the selection and binding processes.

Despite the merits of the solutions proposed, they all
suffer from some drawbacks. In terms of virtual resources’
description, the main information model proposed in [7]
and adopted in [8,10] provides minimal description of
static/dynamic attributes, and lacks the expressiveness
needed to describe other important aspects, such as de-
scribing a virtual network as a whole, virtual-to-physical
mapping, network services description, and modeling of

Page 5 of 30

the relationships between roles and resources/services.
This lack of expressiveness and coarse-grained approach
will limit the ability to accurately describe VN requests
and virtual resources/services, thus impacting the selec-
tion likelihood and the VN embedding efficiency.

In terms of resource discovery architecture, all the so-
lutions proposed follow the 4WARD business model,
which does not define a broker role acting as intermedi-
ary between the other roles. As a result, a VNP must
gather information from multiple InPs (either through
communication with local monitoring agents [10], or
distributed repositories [7,9], or cluster heads [8]) before
initiating the resource selection process. In a large scale
virtual networking environment in which many InPs offer
virtualized resources for lease, such approach may intro-
duce complexity and result in excessive delays and com-
munication overhead between a VNP and a large number
of potential InP candidates — thus impacting the overall
efficiency of the VN embedding process. Furthermore,
none of the proposed architectures has been fully imple-
mented - the validation focusing mainly on evaluating the
performance of the matching and selection algorithms.

In the coming section, we propose a service-oriented
broker based framework for virtual resource description
and discovery in virtual networking environments. Our
framework relies on a novel service-oriented hierarchical
business model as well as an expressive information
model enabling the representation of physical/virtual re-
sources and services.

Virtual resources’ description and discovery
approach

In this section, we first give an overview of the virtual net-
working business model [11] and the information model
[12] that form the basis of this work. Then, we present a
novel architecture for the publication and dynamic discov-
ery of resources (PDDR) in network virtualization envir-
onment (NVE). Throughout this paper, we use the term
resource to refer to a computational/network resource
(physical or virtual), network service or role information.

Proposed virtual networking business model

Figure 2 depicts the business model we proposed in [11]
for virtualized networking environments. Four levels of
service are defined as part of our model, namely: Essen-
tial services constituting mandatory services needed for
the basic operation of the network (i.e. routing/transport
services); Service enablers consisting of the common
functions needed to support the operation of end-user
services (e.g. session/subscription management, charging,
security, and QoS management); Service building blocks
acting as elementary services that can be used/combined
to form more complex services (e.g. presence and call

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 6 of 30

Service
Provider < Supports other
[end user services] VIPs (vertical
I hierarchy)
y

Consumer (end user/
subscriber)

services]

F

Services & Resources
Registry (broker) >
[publication discovery

Virtual Infrastructure [
Provider

[Service enablers &
service building blocks]

i

F 3

Provider

Physical Infrastructure

[Essential services]

Figure 2 Service-oriented hierarchical business model for virtual networking environment.

control); and End user services constituting the value-
added services offered to users.

Unlike the current Internet business model that is based
on a single role (the Internet Service Provider - ISP), our
model distributes the functionalities of the traditional ISP
and introduces five business roles, namely: 1) The Physical
Infrastructure Provider (PIP) that owns and manages a
physical network infrastructure and can partition its re-
sources using some virtualization technology. The services
offered by the PIP are essential bearer services. 2) The Ser-
vice Provider (SP) that has a business agreement with the
subscriber and offers value added services, which could be
simple or composite (i.e. formed by combining service
building blocks); 3) The Virtual Infrastructure Provider
(VIP) that finds, negotiates, leases, and aggregates virtual
resources from one or more PIPs, deploys any protocols/
technologies in the instantiated VN, and operates it as a
native network. The VIP supports SPs or other VIPs with
service enablers and service building blocks and has no
direct business agreement with consumers; 4) The Con-
sumer who acts as the subscriber and the end user of
value-added services; and 5) The Services and Resources
Registry (SRR) acting as resource broker by providing
information to find other parties and the services/re-
sources they offer.

It is important to mention that while the VIP plays a
resource brokerage role to SPs by finding and aggregat-
ing virtual resources to form virtual topologies, this role
is not to be confused with the information brokerage
role played by the SRR. This last focuses on providing
information about the existing pool of virtual resources,
to facilitate the resources’ discovery and selection
process.

Integrated hierarchical information model

Figures 3 and 4 show a high level view of our integrated
information model, which was presented in [12]. As
depicted in Figure 3, our information model revolves
around three main concepts and their relationships: roles;

services; and resources. Roles are entities that collaborate
to offer/consume resources and services and exchange in-
formation related to these resources/services. A role can
act as resource provider offering and managing virtualized
resources, or as a resource consumer accessing virtualized
resources. In addition, a role can act as service provider
offering and managing network services, or as a service
consumer subscribing to network services. In our model,
network resources are mapped onto network services
(i.e. network resources are considered as low-level net-
work services). Furthermore, roles are considered to be
distributed and loosely coupled entities interacting via
programmable interfaces. Finally, just like web services,
various levels of network services can be published, dy-
namically discovered, composed, and used, in our model.
In Figure 4, we model the different roles and their
relationships to physical/virtual topologies and various
levels of services. We consider a TargetedNetwork to be
the base entity as well as the root element of all instanti-
ated description documents. A TargetedNetwork can be
composed of one or many virtual networks and one or
many physical networks. A PhysicalNetwork has a Physi-
calNetworkTopology and is composed of a set of physical
nodes connected by physical links. A VirtualNetwork has
a VirtualNetworkTopology, which is a subset of the under-
lying physical topology. A virtual network topology can be
composed of one or multiple virtual ones, thus forming a
hierarchy. A virtual network is composed of a set of Vir-
tualNodes, each node having one or many Virtuallnter-
faces and being connected to another virtual node by a
VirtualLink. Virtual nodes that are instantiated on the
same physical device are grouped in a VirtualNodeGroup
that is mapped to a physical node. Although we are not
concerned about modeling physical networks related en-
tities, we only model a physical network as a set of Physi-
calNodes where a given group of virtual nodes is mapped.
The different roles and their interactions with different
entities are modeled as follows: (1) A PhysicallnfrProvider
(PIP) owns and operates a PhysicalNetwork; offers

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3 Page 7 of 30

Owns)

Offers
. Manages
Subscribes to Accesses
Services T —— Resources

Map onto

Figure 3 Main concepts of the integrated hierarchical information model.

EssentialServices; and instantiates one or multiple Vir- EndUserServices. An end-user service can be created by
tualNetworks; (2) A VirtuallnfrProvider (VIP) manages combining one or more service building block; and (4)
and operates VirtualNetworks and offers ServiceEna- Considered as end-user, a Consumer subscribes to/uses
blers; (3) A ServiceProvider (SP) manages and operates one or multiple EndUserServices that are accessible via
VirtualNetworks and offers ServiceBuildingBlocks and PhysicalNetworks and VirtualNetworks.

NetworkTopology
(see resources page)
) PhysicalNetworkTopology
ownedBy
TargetedNetwork / subset
, 0.* children
has a
{ O VirtualNetworkTopology
ardnt
0.* ! operatedBy P
(see resources page) - -
PhysicalNetwork owns/operates paq | 1 EssentialService
physicalNetworkID _J' o i | (see services page)
listOfPhysicalNodes -
listOfPhysicalNodeGroup VirtualNetwork | PhysicallnfrProvider offgrs 1..*
i icalLi 1 listOfOwnedInfrastructure
listOfPhysicalLinks riralNetworkiD |
’ listOfVirtualNodes i-* instantiates ‘ 1
1 e listOfVirtualNodeGroup !
compoged of listOfVirtualLinks ServiceEnablers
’— J . manages/operates (see services page)
Lo B
I’,nyslra]N ode manages|operates VirtuallnfrProvider offers L*
physicalNodelD . - I listOfInstantiated VN
type I of acedsses _| I
offers iceBuildingB|
0 ServiceProvider Serviee |_n dingBlocks
accdsses - see services page
subscribers | I"‘nf'fc:s ices page)
L.* listOfProvidedServices ced of
i . cmposed o
| AgreementParameters 1.*
VirtualNodeGroup 1
virtualNodeGrouplD 1 | Consumer subscribes to EndUserService
l!sthVmu.alNodc[D - listOfSubscribedServices (see services page)
listOfPhysicalNodelD { - 1
1 <> VirtualNode Virtuallnterface 2 0.1
beldngs to virtualNodeID ‘:ﬁ\ virtuallnterfacelD _\ |rtua!Lmlc
type o |type virtualLinkID
|+ ListOfinterfaces " |listOfVirtualLinkID

Figure 4 High level view of the integrated hierarchical information model.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

To further detail our model, Figures 5 and 6 respectively
show the resource-level view and the service-level view.

In the resource-level view, we consider as the basic build-
ing component of a virtual network, a NetworkElement
(NE) that can be a Node, Link, Interface, or Path. A NE
has a name, availability, start time that specifies when
the resource is available, and a period that determines
for how long the resource is available. The status attri-
butes represent NE’s state (available, allocated, etc.). A
NE belongs to a NetworkDomain, which in turn has an
AdministrativeDomain.

A Node can be either a PhysicalNode or VirtualNode.
Represented in the class Node, a node has a GeoLocation
and encompasses common attributes needed for describ-
ing a network node, namely, a network stack, a type (i.e.
virtual switch, virtual router, virtual machine, etc.) and
an IP address. Besides attributes such as the vendor,
model, and substrate node group, a physical node may
aggregate virtual nodes and interfaces, whereas a Vir-
tualNode (VN) is uniquely identified; and has an initial
and maximum capacity in terms of computational cap-
abilities. Each VN aggregates one or multiple virtual
interfaces. An Interface represents a physical/virtual net-
work interface controller (NIC); and has a type (i.e.
Ethernet, radio), rate and MAC address. Depending on
its capacity, a physical link can be divided into slices
using virtualization techniques (i.e. ATM, MPLS) to sup-
port one or multiple virtual links. A Link has characteris-
tics such as minimal delay, type, bandwidth, throughput,
good-put and type of connectivity; and an end point that
determines the source node and destination node. Each
VirtualLink has a tag, and initial and maximum allocated
bandwidth. Virtual interfaces are connected by a virtual
link. A physicalLink has a limited number of supported
virtual links and an additional attribute for defining avail-
able bandwidth. A Path represents a set of links. A path
starts at beginNode and ends at endNode.

To represent nodes’ functional and non-functional
characteristics, a node has an association with the fol-
lowing two entities: (1) Node Functional Parameters:
consists of characteristics/properties related to the func-
tioning of a node such as operating system type, software
version, and the type of the network management sys-
tem. It is composed of: (a) Storage parameters which
determine the available disk space, storage type, and
number of storage units; (b) memory parameters which
represent the size, capacity, and type of the available
memory; and (c) CPU parameters which represent the
information about the available processing unit(s). (2) Node
Non-Functional Parameters: this class defines constraints,
QoS scheme, and desired criteria that should be met when
selecting a resource, namely: cost, rank, and percentage of
failure. In turn, non-functional attributes are composed of
the following: (a) Performance parameters representing

Page 8 of 30

node performance properties such as response time, up-
time, capacity, and reliability level. (b) Security level param-
eters defining security properties that a node supports like
hashing techniques (i.e. Checksums, cryptographic hash
functions), encryption methods (i.e. symmetric, asym-
metric) and security properties (i.e. confidentiality, in-
tegrity). (c) QoS parameters representing QoS related
characteristics including the average packet loss, jitter,
delay, and bit rate.

We model network topology as physicallvirtual top-
ology. In general, a network topology has name, type (i.e.
bus, ring), path list, and is composed of a set of nodes.
Representing the topology of a virtual network, a virtual
topology is a subset of a physical one and can be hier-
archical so that a virtual topology can be instantiated on
top of one or multiple virtual topologies. Thus, this leads
to hierarchical associations among VNs. Besides, it con-
tains attributes related to availability, start time, period,
and a reference to its operator.

In the service-level view shown in Figure 6, a role rep-
resents an organization, identified by a name or id and
has contact information. Different roles are modeled as
follows: (1) broker represents the SRR; (2) Service pro-
vider represents a SP; (3) consumer represents an end-
user which subscribes to services offered by a SP; (4)
Physical infrastructure provider represents a PIP; (5) Vir-
tual infrastructure provider represents a VIP. Each role
is associated with a service entity which indicates the
type of service he offers.

Just like NE, a service represents the base class for de-
scribing services. A service has the following sub-classes:
(1) description and discovery service offered by the bro-
ker and representing services needed for publishing and
discovering resources/services; (2) Essential service are
transport service and routing service; (3) End-user service
representing services destined to end-users and com-
posed of one or many service building blocks for example
call control, presence, conferencing, and messaging; and
(4) Service enablers defining the support functions needed
for the operation of end user services. Examples of service
enablers include: Interworking, security level, session man-
agement, subscription management, AAA service, QoS
control, media handler. Each service is associated with
functional attributes as well as non-functional attributes.
We divide the latter into three categories: (1) QoS defining
characteristics such as the offered class of service, support
level, error rate, average repair time, and transmission
delay; (2) Service performance representing properties that
are related to service performance, namely, scalability and
fault tolerance, response time, and uptime percentage,
etc; and (3) Service security defining the security service
and the level supported. Furthermore, common properties
like service rank, cost, and maximum number of sup-
ported users can be expressed as well.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3 Page 9 of 30

| NetworkTopology NetworkDomain -
1D :
name 0.1 providerName AdministrativeDomain
nodeList PhysicalNetworkTopology address
pathList ownedB
type Y belongg'to 0.1 has a
, A subset .
1 0.* children e
1. -
VirtualNetworkTopology NetworkElement
operatedBy ID -
GeoLocation VIPSLA name EndPoint
icountry availibility a\"aila_bim)’ sourceNodelD
compgsed of ciry startTime startTime destinationNodelD
address period parent |period
' uokn parentVirtualNetworks k] statusType |
e childrenVirtualNetworks constraints
panel 1
ane il has
. 5
a
. |
Interface Link 1 Path L
- Node interfaceType ed minimalDelay has a BeginNode .
L4 networkStack Type rate comnected to linkType /EndNode —
" |nodeType MACAddress | —|bandwidth o1 |IntermediateLinks
"PA'fi"-'SS 1. o connectivityType | ' IntermediateNodes
PhysicalNode [h“’"p“'
P — goodput
[maxNbrOfVirtualNode Ph face
SL_lbslra_lcNochmup 1 physicallnterfacelD PhysicalLink
virEnvironementType physicalLinkID
V;';;Z: cdnfains Virtuallnterface maxNbrVirLink
- availableBandwidth
virtuallnterfacelD N . 1
hak a supportedVirTechniques
VirtualNode
virtualNodelD L
resourceAllocationLevel VirtualLink
initialCapacity . virtualLinkID
maximumCapacity tag 0.*
NodeNonFunctionalParameters n_waIIoc.?deandmdlh
0.1 hasa linkHandlingType
— rank initial AllocatedBandwidth
01 |QoS LevclSu‘pportr:d I [resourceAllocationLevel
NodeFunttionalPar EnergyEfficiencyLevel
memoryParamerters pcrOleallurc
cpuParameters frecntiyLeveil mamesers PerformanceParameters
storageParameters performanceParameters -
(OSParameters cost resPonseTlme
(NetworkManagementSWType t uptime
nbrOfPorts 5 1 capacity
processingPower : . [relaibilityLevel
softwareVersion L.
NetworkManagementNodeType
! L SecurityLevelParameters
1 1 t Componentsinfo hashing TechniqueSupported
StorageParameters :izlldur L encryptionMethodsSupported
diskSpace nodel 1. security PropertiesSupported
nbrOfUnits partNumber
storage'[‘}rpe CPUParameters ~ l:;,ozpl"mﬂe“
storageState architecture Le ::g[;:acl 088
nbrOfCores grelay
MemoryParameters nbrOfThreads avelitter
. avgBitRate
size clockSpeed
capacity nbrOfUnit
specifications (CPUState
ryType
1.+ |memoryState
Figure 5 UML-based modeling of physical and virtual networking resources.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 10 of 30

-
QoSParameters L. ! NonFunctionalAttributes Functional Attributes
CoSOffered P —n
serviceSupportLevel 1 Y type
serviceOperability 1. co o providedBy
transimissionDelay servicePerformanceParameters N l[’?ﬂ' ormanceParameters
errorRate responseTime QoSParameters
repairTime ”me“““%° ns::Nc:;S;frT?:" :rrnelers e
serviceServability timeli ! tyar
scalability Le
ContactInfo fault Tolerance hash -
address 1.
phoneNumber serviceSecurityParameters
email securityServiceSupported Service hasa
securityLevel D
name
| Msa type 1
startTime
1 availability
duration
Role serviceStatusType
D serviceConstraint
name A
contactInfo
domain EssentialService
A
offers DescriptionAndDiscoveryService 1 A
Broker 1 serviceType TransportService
maxiDelay
minDelay
I |maxBandwidth
offers minBandwidth
ServiceProvider transport Options
subscribers ' |transport Protacol
listOfProvidedServices
|businessAgreementParameters . RoutingService
| bt s gEin
routing Algorithms
Consumer
[listOfSubscribedServices
! DTS
| PhysicalInfrProvider 1 J L -
|]istoﬂ)wncd]r|ﬁ'nslmc1.ure EndUserService composedo
1 ServiceEnablers - user AgentPlatform
offers "
l__* A 0..*
VirtualInfrProvider
listOfInstantiatedVN 1 |ServiceBulldlngBlocks
Interworking Service |
1. ‘
CallControl
|Secur[tyl..evel8uvlee
| AAAService
Presence
SessionManagementService
QoSControlService pom——
onferencing
SubscriptionManagementService
MediaHandler Service Messaging

Figure 6 UML-based modeling of virtual networking services and business roles.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Broker-based framework for virtual resource publication
and discovery

Figure 7 illustrates the system architecture of the pro-
posed framework.

We selected a broker-based approach aiming at resolv-
ing the issue of resources/services’ publication and discov-
ery in network virtualization environments. The main
objective of our work is to find an efficient solution that
enables seamless interaction and collaboration between
various roles. Within this framework, Physical Infrastruc-
ture Providers are network-related resource suppliers who
advertise (i.e. publish) the description of the resources of-
fered into the Broker’s service and resource repository.
Virtual Infrastructure Providers are virtual resource pro-
viders that discover the resources needed to instantiate a
virtual network, and negotiate these resources with the
selected potential PIPs. Moreover, VIPs request PIPs to in-
stantiate VNs on which they deploy network services. In
turn, Service Providers are end-to-end service providers
who require and discover virtual networks on top of

Page 11 of 30

which they deploy the services they offer. Additionally,
they negotiate the selected services with the appropriate
VIPs. A more detailed description of the functions of this
framework is presented in the following sub-sections.

Overall architecture
Figure 8 gives a detailed view of the proposed framework
architecture that is broker-based, multi-level (layered),
and composed of a set of loosely coupled components.
The PIP is represented at the Physical level. In turn, the
VIP is represented at the first virtual level, and the SP at
the second virtual level. Consequently, roles depend on
each other to perform the virtual network provisioning
process. We selected a resource-broker approach to cope
with the complexity of managing and organizing resources
[22]. We introduce a resource and service broker that
serves as mediator while coordinating the communication
between various roles.

The resource broker allows roles to publish their re-
sources and discover other roles’ resources, in addition

= Negotiate services
Virtual 2

Infrastructure
Providers
(VIP)

Negotiate resources

Discover resources and
services / Publish service
description

Deploy services

Service Providers
(SP)

Consume end-

and services

@]
o]

e—>»

o0

VN topology Selection

Deploy services

Resource and Service Broker

Local Local

repository repository

meo
Qﬁ";l_)
OON

Virtual Resources

Physical Infrastructure
Provider
(PIP1)

Provider
(PIP2)

Physical Infrastructure

user services

Resource
Publication

“_ Functional and
* non-functional
attributes

End users

Publish/Update
~ . resource description
~

OAe
OON

Virtual Resources

Local

repository

Physical Infrastructure
Provider
(PIP3)

Figure 7 System architecture of the proposed framework for resource publication and discovery.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 12 of 30

Discover
Second Virtual Level (L2) ¢ |/ resources
VN2 =N (" Service Manager i)
Ve
Resource Instantiation Resource Broker
e Manager Service Description
B & Publication
Resource Discovery : = (Resource Discovery)
& Selection Service Composition Maneger -
W e . Service Deployment o &
Negotiation Engine &Test Engine Ranking Engine
- - \) — . \ » -
! IJ Monitoring Engine .
% . - SD";‘WW& ™=
Negotiate Deploy 3 ecfmn :
Tesources SCTVICeS ———4— Ranking Service
L2
: . Clustering Engine
VNI e N B -
Resource Instantiation Service Manager
Manager Service Description
Resource Discovery esource Publication
& Selection Service Publish Msnager
it Composition Service/
Negotiation Engine Service Deployment Rols Info & Identification
) &Test Engine | 14 /’
Sub. Reg. B T Registration 1
g Negotiation Engine Service
Deploy ~ L 7 Templates
Provider Service
. V
Physical Level - B V.
Rﬂm{\r;: Allocation Resource Manager II A~ Publish
e resources/
Description & .
Negotiation Engine Publication Engine s Seryiee & Resonrer
— Registry
Resource Instantiation Service Deployment (SRR)
& Conliguration &Test Engine
Binding and Usage |Monitoring Engine
& 7 \& J
Sub. Reg. I X
Figure 8 Broker-based architecture for dynamic publication and discovery of virtual networking resources.

J

to providing the ability to find the most appropriate re-
source based on particular characteristics and constraints.
Thus, it manages the inventory of federated resources in
the SRR, which holds well-defined static and dynamic
resource properties. Both functional and non-functional
attributes are advertised and stored in the SRR. Addition-
ally, many providers (VIP, SP) can discover other roles and
the resources/services they offer through the broker’s
services. Upon receiving a resource discovery request, the
broker selects the most appropriate resources that comply

with the requirements as formulated in the request, and
returns to the requestor the list of candidate resources.
Requestors, in turn, can perform another selection stage
in order to refine the list based on some local preferences
(such as QoS, cost). Prior to resource allocation, and to
reach an agreement on the selected resources, requestors
negotiate resources’ related parameters (such as price,
availabilities, QoS-related parameters) with resource pro-
viders. At each level, we find local information sources
(repositories) that the respective role uses to manage

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

information about resources. However, only the informa-
tion about resources that are intended to be offered is
published into the resource broker. In this architecture,
communication between layers is bidirectional and can be
performed through standardized public interfaces (e.g.
web services).

Components’ description As part of the resource bro-
ker’s design, we distinguish two key services involved in
the resource publication and discovery process: (a) The
Registration Service enabling the registration, updating,
and deletion of information about resources; (b) The
Discovery Selection and Ranking Service receiving as in-
put a request containing the description/requirements of
resources of interest along with constraints. While taking
into consideration the resources’ rank and the specified
constraints (i.e. QoS, cost, etc.), it selects the most appro-
priate resources that satisfy the request, and returns, as a
result, the list of matching resources.

Supporting the resource publication/discovery process,
we find four support modules. 1) The Ranking Engine
evaluates the popularity among similar resources and at-
tributes a rank to each resource each time it is selected.
This rank could be based on their usage, functional and
non-functional characteristics (such as availability, up-
time, cost and QoS, etc.). 2) To facilitate resource selec-
tion, the Clustering Engine arranges information about
resources contained in the SRR into clusters (grouping re-
sources having similarities). 3) Following a well-defined
naming scheme, the Identification and Naming service is
responsible for dynamically instantiating a name (unique
identifier) for each resource registered in the SRR. Because
in a federated virtual resources environment, many pro-
viders could offer the same resource; a unique identifier
is needed to distinguish one resource from another. 4)
The Templates Service provides the different roles with
an up-to-date template for describing resources or net-
work services.

Communicating with the broker, the first layer of the
hierarchy (L1) provides components for describing, pub-
lishing, and instantiating virtualized networking resources
as well as negotiating resources with other roles. The
second and the top-level layer’s components are respon-
sible for describing, deploying, and publishing network
services. L1 contains components grouped into the fol-
lowing sub-systems:

The Resource Manager (RM) handles the management
and publication of resources and encompasses three com-
ponents: 1) The Description and Publication Engine con-
sisting of a key enabler of the resource publication process;
it enables a PIP to describe the resources he offers using an
instance of the information model and validates the gener-
ated instances to ensure data consistency and their con-
formance with the information model. Furthermore, it

Page 13 of 30

interacts with the broker (detailed below) in order to pub-
lish, update, or delete information about resources. 2) The
Service deployment and Test Engine enables the PIP to de-
ploy and test essential services such as routing or transport
services. 3) The monitoring Engine monitors the status of
the allocated resources, and the links connecting the
virtual nodes. Additionally, it continuously collects in-
formation about resources’ dynamic properties for sta-
tistics purposes.

The Resource Allocation Manager (RAM) coordi-
nates all the steps involved in the resource allocation
process (i.e. negotiation, instantiation, allocation, and
binding) and consists of the following components: 1) The
Resource Negotiation module handles and coordinates the
resource negotiation process with a given virtual layer. 2)
The Resource Instantiation and Configuration module is
responsible for the “slicing” of physical resources. It han-
dles the instantiation request and enables the creation and
configuration of virtual resources. 3) The Binding and
Usage module maps a virtual resource to a physical one
(i.e. maps resources to requests), reserves the allocated re-
sources, and triggers the monitoring process for dynamic
resource management purposes.

Since in a NVE, multiple virtual layers can be built on
top of physical one, we designed similar components to
be used at each virtual layer. However, the type of re-
source/services being offered is different. At the first and
second virtual layers, the Service Description and Publi-
cation Engine (SDPE) is responsible for describing net-
work services and publishing their information to the
broker. In order to get the list of resources of interest,
the Resource Discovery and Selection module interacts
with the broker on a request-response basis, and performs
another stage of resource selection involving some local
criteria/constraints. The Service Composition module en-
ables the combination of two or more services into a com-
posite service. The Service Deployment and Test module
coordinates the steps involved in service deployment and
performs some tests to validate the virtual-to-physical
mapping. The Service Monitoring module monitors the
status of deployed services to ensure QoS. Finally, the
Negotiation Engine module conducts the negotiation of
resources with one or more PIPs.

Interfaces In an open virtualization environment, the
communication between virtualization layers should be
conducted through public and flexible interfaces. For
our architecture, we have selected REST [23] as a light-
weight communication middleware. Our choice is moti-
vated by many reasons. Nowadays, virtualization solutions
(e.g. Xen, KVM, VMWare) are provided with RESTful
APIs to allow full programmatic control over virtualized
resources. In addition, RESTful web services rely on an
existing well known standard (HTTP) and allow the

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

representation of resources in a variety of formats (e.g.
XML, JSON, etc.). Furthermore, as opposed to SOAP-
based Web Services, RESTful Web Services are simple,
lightweight, and easy to develop.

In terms of design concept, REST is not an architecture
but rather an architectural style that revolves around the
notion of resources and follows the client—server architec-
ture. As per REST’s design principles, a resource is any-
thing that can be exposed to the world (i.e. the Web) and
be made available/accessible through a uniform interface
(URI) just like a web page. Therefore, REST Services are
URI-based, and each resource is addressed through a URI
but could have many data representations (XML, JSON,
binary, etc.) - which facilitate information sharing and
interoperability/integration with existing systems. Using
the same URI, but different HTTP methods (i.e. POST,
GET, and UPDATE), resources can be created, read, up-
dated, and deleted in “CRUD” style. As opposed to Big
Web services, RESTful services are not published in a ser-
vice registry (UDDI) to be later discovered. They are ra-
ther made available at uniform paths (or root URIs) that
are handed to the requester beforehand. In most cases,
services’ URIs are provided with the API documentation.
A well-defined URI template should be used to identity
entities and illustrate their relationships.

In our architecture, the SRR is an information store
that holds information about resources, which are ar-
ranged in a directory-like structure from a logical point of
view. We name the base URL of the services after the fol-
lowing pattern: http://{hostname}/api/{apiVersion}/. Fur-
thermore, we identify the entities on which the services
operate using the following URIs: /resources, /services,
/networks, /roles, /requests, /offers. Binding one of these
URIs to the base URL leads to a service’ path, e.g. a “ser-
vice” resource is available at http://broker.com/api/v1.0/
services/{service_id}. We notice the base URL has an API
version that is used for maintenance proposes. In addition,
it allows the web service clients to bind to a specific ver-
sion of the API. Although putting the API version in the
URI is against REST approach, however, putting it in the
resource representation itself is not supported by all the
formats (MIME types).

Table 1 summarizes the uniform interfaces that are used
to create, control, and manage resources. The resources
being managed are listed in the first column, while the
second column lists their URIs. We find in the last column
the HTTP methods applied on the corresponding URIL

Illustrative scenario Figure 9 illustrates the usage of
our proposed information model and architecture for dy-
namic resource discovery and selection, in a secure con-
tent distribution scenario.

In this scenario, we find the following roles: a PIP
managing the infrastructure offering communication

Page 14 of 30

capabilities; a VIP instantiating VN1 to offer security,
QoS, and content-based routing as service enablers; and
a SP instantiating VN2 to offer the secure content distribu-
tion value-added service to consumers. In our scenario, the
interactions between the different entities are REST-based,
and the following interactions are depicted: resource/ser-
vice publication, discovery, selection, negotiation, and vir-
tual networks’ instantiation. It should be noted that service
invocation and usage phase, which includes the security
and the content distribution related interactions are out of
the scope of this paper, which is focusing on the virtual
network instantiation process rather than the end-user ser-
vice invocation and usage process.

The scenario starts when a PIP publishes the informa-
tion about resources he offers to the broker. Hence, the
Resource Publication Engine (RPE) sends a POST re-
quest to the broker publication service’s URI with the in-
formation about resources, along with their constraints,
to create. The publication service creates new resources
and sends back a confirmation message (200 OK) as well
as the newly created resources’ URIs to RPE (steps 1&
2). To deploy service enablers, a VIP needs to instantiate
a virtual network (i.e. VN1) on top of aggregated resources
(possibly from different providers). Therefore, the Virtual
Resource Discovery and Selection (VRDS) module initi-
ates a discovery request containing the description of the
desired resources along with the requested availability and
constraints. This request is sent to the broker’s Discovery
and Selection Service (step 3) which, first, selects the best
resources that comply with the requirements specified in
the discovery request (using a selection algorithm and
with the help of the clustering engine), ranks the selected
resources, and replies back with a list of selected resources
(steps 4 & 5). In order to refine the received resources, the
VRDS performs another selection phase and applies some
local criteria and constraints (step 6). Subsequently, the
Resource Negotiation Engine (RNE) sends a negotiation
request to the corresponding RNE of the lower layer (step
7). The PIP processes the request and sends back an offer
with the negotiated resources, which will be later accepted
or rejected. Steps 8 and 9 are repeatedly executed until
reaching an agreement with the resource requester. The
Resource Instantiation and Configuration (RIC) module
allocates and configures the requested resources, and
instantiate the topology while taking into account the
specified constraints (step 10). Afterwards, the RPE up-
dates the allocated resources information, and describes
and publishes the newly created virtual network de-
scription in the broker. The RIC sends an acknowledge-
ment message confirming the allocated resources to the
RNE (at the VIP level), which, in turn, issues a topology
instantiated notification that is sent to the Service
Deployment and Testing (SDT) module (steps 11 to 13).
Upon successfully instantiating the virtual topology

http://broker.com/api/v1.0/services/%7Bservice_id
http://broker.com/api/v1.0/services/%7Bservice_id

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Table 1 Broker web services’ APIs

Page 15 of 30

Resources URI

Base URL: http://www.

HTTP action/Description

ResourceBroker.com/apiV1/

Management of resources: publication, /resources

update and deletion.
Network services /services

/services/{service_id}

Role information /roles

/roles/{role_id}

Topology (Virtual Network) /networks/

/networks/{network_id}

Requests (negotiation and service
deployment requests)

/requests

/ requests/{request_id}

/offers
/offers/{offer_id}/

Offers (negotiation offers)

/resources/{resource_id}

POST: create a new resource in the SRR. GET: get all resources.

GET: retrieve a resource. PUT: update a resource. DELETE: delete
an individual resource.

POST: create a new service. GET: get list of all services.

GET: retrieve a service. PUT: update a service. DELETE: delete an
individual service.

POST: create a new service. GET: get list of all services.

GET: retrieve a service. PUT: update a service. DELETE: delete an
individual service.

POST: create a new network. GET: get list of all networks.

GET: retrieve a network. PUT: update a service. DELETE: delete
an individual network.

POST: create a request GET: get list of requests.

GET: read a request. PUT: update a request. DELETE: delete an
individual request.

POST: create a new negotiation offer. GET: get all existing offers.

GET: read an offer. PUT: update the information of an offer.
DELETE: delete an individual offer.

(resulting in the creation of VN1), the SDT initiates a
request for service deployment and test along with the
required service information and their constraints, and
gets a confirmation message. Finally, SDPE describes
the newly created service and publishes its information
in the broker (steps 15 to 17).

The steps involved in the process of instantiating the
topology of VN2, and the deployment of the content dis-
tribution end user service offered by the SP are some-
what similar to the steps performed to instantiate VN1.
However, the negotiation process takes place between
the SP and the VIP (steps 19 to 38). Furthermore, the
content of the message parameters, which determines
the type of the services being offered, and the con-
straints related to each service are different. Thus, after
successfully deploying and testing the end-user service,
the SDPE sends its description to the broker to be pub-
lished. Finally, consumers (end-users) who wish to con-
sume end-user services, send a request to the broker for
discovering the services of interest. The broker pro-
cesses the request, selects, and ranks the services that
match the initial discovery request (steps 39 to 42).
Afterwards, the consumer submits a bind and invoke
service request to the chosen SP, which in response
sends an acknowledgment and grants access to the con-
sumer. The latter then carries the rest of the interac-
tions related to the end user service invocation and
usage (those interactions are not shown in the figure).

Proof-of-concept prototype

Prototype architecture

Figure 10 depicts the software architecture of the imple-
mented prototype and the technologies. Only a subset
of the components proposed in section 3.3.1.1 was im-
plemented. For simplicity reasons, we combine the VIP
and SP roles.

Our implementation consists of three management
nodes, namely: the PIP Management Node (PMN); the
VIP Management Node (VMN); and the Broker Node
(BN). Each node holds a repository that contains re-
source information and hosts the application logic that
realizes the functionalities of the corresponding roles
(e.g. PIP, VIP, and Broker). This application logic is a set
of software modules written in the Java programming
language and provides JFC/Swing-based user interfaces
for the administrators.

We use XML to describe the resources and formulate
the various requests (e.g. discover and negotiation re-
quests), and XSD (XML-Schema Definitions) to define
the structure of the data models and specify constraints
on the data contained in the XML documents. Each
document exchanged between two roles is a data model
(an instance of our proposed information model).

We selected Jersey [24], an open source JAX-RS (JSR
311) reference implementation, to implement the REST
interfaces, and Grizzly web server [25] to deploy the web
services. Moreover, we used JAXB 2 [26] for marshaling

http://www.ResourceBroker.com/apiV1/
http://www.ResourceBroker.com/apiV1/

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 16 of 30

SDPE: Service Description and Publication Engine

-

Figure 9 Virtual networks’ instantiation scenario.

PIP Functions VIP Network (VNet 1) SP Network (VNet 2) Broker (SRR)
LN [— 1 |
[RPE|RNE|RIC|3DT| | [RDS_ | RNE [SDT [SDPE] [RDS [RNE [SDT [SDPE Publication [Discovery & _ Icamnel
' | 1 ervice Selection Service
‘_: p hResourceDescription(resourcesinfo, QDS, cnnstrnmic‘l I > T
: 2
. i RN A —— ———4-———|———+———‘ b=l ==4 -
| VNet1 : +———3: findR (Infc .Q&» inms) : H I
L-Mlﬂﬂﬂ ’ | 4: select AndRankR esources(servicelnfo, cotistrainis) :
R ———— 1 iL »
| ' i 4 5: returnListOfSelectedResources-———--—: Hl
| 6: select BestResources(criteria, constraints) R - : |
| - i POST (http://broker.com/ {repoid)/resources) |
| N £ dNegotiationR. esourcelnfo e |
: ——— et | e — b — e | ddspiLnodel<fid> :
| | LDEIP | 8: makeOffer(offeredR esInfo! constraints)] e e |
I agreement <) alns> I
| =LA) 9: acceptOrRejectOffer(offeredResInfa, constraints) I xrmmmqwqw |
| == - 1 </virtpiNode> |
————f— — —— — — o — .
| ! 1 ! |
| 10: allocateR ceAndl Topolbgy i |
. < ‘. .
1 —ll updackﬁnur:e&ams(r:smelnfo cnnsr: : - |
| 12: publ|sthrtuaINemorkInfo{wrNetwnrldnfo Qﬂ‘“ ! »> :
| 13: ACK topology l -
] 14 ncmf ‘opol]nsunlmed() |
| YTopology : il
| 15: dcployAndTeslﬂcrwccEmhlcrs(mmc[nfo constramts] : i |
- I
I I
: 16: cunl'nnSu:'wceDepI"yment} —17: publlshServu:eDesmpllou(servlcelnfu cunﬁramlsl—b :
L ! H |
f il
| ! I
| ! 1
- ! |
: i 2: seledBeﬁSer\rice(cril.cria constninl.s) }
; - |
: i > 23: sendNegotiationR dsourcelnfo, :ons1mnls) i
| —_— e e e —] |
| [m | 24:makeOffer(offeredResinfo, constraints) _ | o] |
| L] ! i I
| I :nrhrd _ 25: acceptOrRejectOffer(offdredResInfo, : s) | }
: 3 I . g Ry e G I]
| 26: allocateR Andl iate Topology(l consiraints) ! |
| ' ' i i] I
| 27 allocalckesc.lrcmdlnstanllaleTupology] |
i - | | 1
: 28: upda!.c!lnsom:qsuws(mswrcc[nfo, constraints)t T > |
| 129: publlthlnualNetworkJnfo{veretw kinfo Qﬂ‘“ : - |
: ----30: ACK lopoloigy instantiation.- >- T nutlfyTupulugylnstanual:d() J|
| 32: dcployAnchsaEndUschcmccs(mmc[nfo constraints) |
| 33: testResourse Availabilty{resouroelafo) ! I
| . i o i |
| 34: testAllocatedResAndDeployedServices . ! |
O A I R e - !
| 3 mmm)' 36 confirm senrn:e dcplo}-mcnl = |
i H I
! i ; |
: i 1
RIS S RS A A S A S - .
: i } i
. . x s i 1 —
RPE: Resource PUblleﬂ.l?n Engn'le | 40: selectAndRankService(servicelnfo, constraints)
RNE: Resource Negotiation Engine i i e)
RIC: Resource Instantiation and configuration 41: return lis f matched services
RDS: Resource Discovery and Selection 42: selectBestService
. . . L
RNE: Resource Negotiation Engine
SDT: Service Deployment and Testing

and un-marshaling the XML data contained in REST
messages’ body.

In this implementation, the BN is the key node encom-
passing a resource naming/identification module, as well

as ranking and clustering engines, which are involved in

the resource publication and discovery processes. In our

approach, we store resource properties such as node
type (e.g. VM, vRouter), operating system type, and

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 17 of 30

Virtual Resource Discovery and Publication Framework Resource Broker Node
Grizzly Application Server
SQL/XPath
— = < L/XPa
Discovery &
Selection
I Request | ¢ , Request
Queue Dispatcher
v (PosigreSQL)
REST API (Jersey)
® ¥
- Discover resources
Physical Inf. Provider - Publish Virtual Virtual Inf. Provider
Network
Publish/update description

resource status & info

ML/HTTP)

PIP Management Node (XML/HTTP) VIP Management Node
Grizzly Application t/ \Q Grizzly Application
Server REST clients REST clients Server
[SaLAPath \I = Resource ¥ v - sauxpath
Local | Description & Negotiation = - Virtual Resource Local
SRR y Publication T v o Network Discovery
e Instantiation & iatal.| = | [Publication
5 Negotiati % +
— Test & Configuration resources| | =
- Resource description Monitoring + Resource Retrunrn
- VNet request info 1 E Naming i
- Description templates | || Substrate | | Resource Negc‘l‘ =
(PostgreSQL) Manager Request Pool -
‘ L]
b Create and Configure
—1 Virtual Resources
Substrate Resources
XAPI " Virtual Resources
VNetl VNet 2
Xen Control
Domain
VM
o el [
Xen Cloud Platform + Xen Hypervisor l

Figure 10 Network virtualization prototype’s software architecture.

virtualization environment, in separate columns in the
database. The document containing the resource de-
scription is stored in XML format in the same database.
When received, resource publication and discovery re-
quests are first stored in the Request Queue and later
forwarded by the Request Dispatcher to the appropriate
module. We use a 32 digits-based identification scheme
to identify each advertised resource. The issued identi-
fier consists of three parts: the first set of three digits
identifies the provider (PIP, VIP or SP), the second set of
13 digits determine information such as the resource

type, the virtualization environment being used and the
remaining set of 16 digits are GUID-based (automatic-
ally generated).

In this work, the discovery request contains two parts:
the first part is selection parameters such as OS type,
node type, virtualization environment and the second
part is a set of selection constraints that could be applied
on functional attributes such as CPU and memory. To
select the optimal resources, the Resource Discovery and
Selection Engine (RDS) queries the repository to get a
set of resources having similarities in their description.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

In such a query, the selection parameters described in
the discovery request are taken into consideration, which
helps in filtering the resources that do not match part of
the request. Afterwards, the RDS processes the returned
set of resources to evaluate their functional attributes if
they correspond to the selection constraints specified in
the discovery request. For instance, a constraint on the
desired CPU’s processing speed could be defined as a
range between two values (minimum and maximum).

The PMN sends resource publication requests to the
BN, and processes virtual network instantiation and re-
source negotiation requests for the PIP. It uses a local
database to store and manage resource information and
description templates. Furthermore, the PMN monitors
allocated resources and updates their status information
in the broker. In addition to other components, the PMN
architecture includes a Resource Instantiation and Config-
uration engine that handles virtual resource instantiation,
configuration, and testing. This engine allows for man-
aging and controlling the substrate resources (detailed
later in this section).

Finally, in addition to discovering the resources needed
to deploy end-user services, the VMN interacts with the
PMN to negotiate resources. To build the locals and the
broker databases, we first selected eXist-db [27] - a native
XML database. However, we conducted some perform-
ance and scalability experiments to evaluate eXist-db’s
ability of processing and storing a large number of re-
sources. Those experiments demonstrated that a native
XML database is not suitable for our prototype due to the
lack of flexibility in using the tools exposed to store and
retrieve information in it. Consequently, we selected the
open source RDBMS PostgreSQL [28] that offers native
XML support for storing XML documents, SQL/XML
publishing/querying functions, full-text search, as well as
full-text indexing and XPath support. Furthermore, Post-
greSQL stores an XML document in its text representa-
tion, which results in fast information retrieval and adds
flexibility in terms of resources’ description by eliminating
the need to change tables’ schema whenever additional
information is added to the document. Upon receiving a
resource publication request, the publication engine vali-
dates and parses the resource description, and stores the
received document in its XML text format in the database.
Resources are indexed based on their identifier that is
stored in a separate column. This enhances the selection
process by eliminating unnecessary parsing of an XML
document, since the resource identifier contains infor-
mation about the type of resource. We used Xen Cloud
Platform (XCP) [29] that includes the Xen Hypervisor
as well as Xen API (Xen Management API or XAPI) for
virtualizing substrate nodes. Based on para-virtualization
principles, Xen has demonstrated to be the virtualization
platform of choice due to its capabilities in terms of

Page 18 of 30

performance, features, and isolation level among virtual
machines. XAPI provides programmatic access to, and re-
mote administration of, Xen-enabled virtual resources
through XML-RPC services.

We implemented the Substrate Manager (SM) using
XenServer’s SDK that is provided by Citrix. The SM is
responsible for automatically instantiating a virtual top-
ology as described in the VN request. We automated the
resource provisioning process by eliminating the human
intervention needed to create the requested virtual re-
sources and configure their network settings. For this mat-
ter, we prepared a set of virtual machine templates on
which we deployed Shell scripts that enable the addition
or removal of Ethernet interface(s), changing a VM’s IP
address, as well as setting/removing a static route between
two nodes (in case of a virtual router). In order to execute
such scripts, the SM uses an SSH connection to the tar-
geted virtual machine. In addition to creating and config-
uring virtual resources, the SM monitors the status of the
running resources and displays their dynamic attributes
on the PIP’s interface. In this implementation, we selected
Vyatta [30] virtual router as shown in Figure 10 to con-
nect two or more virtual networks.

Prototype setup and test scenarios

As shown in Figure 11, the experimental setup consisted
of two management nodes (one PMN and one VMN), one
broker node, and four nodes that represent substrate re-
sources. The PMN and VMN and the substrate nodes are
DELL Precision 390 machines equally equipped with Intel
Core™ Duo E6550, 2.33GHz processor and 4GB of RAM,
10000 RPM HDD, and 100MBPS link. Since the Broker
node is expected to process all the incoming publication
and discovery requests, we used an HP Z210 Workstation
machine. It is equipped with Quad Core™ i5 processor,
4GB of RAM (1333 MHz DDR3), 7200 RPM HDD, and
100MBPS link. All the nodes are interconnected with
Ethernet links through a Cisco Catalyst 2950 series Switch
forming a LAN.

We installed Linux operating system (Ubuntu 12.04
LTS) and the required tools and frameworks on the man-
agement and the broker nodes. On the remaining four
machines, we installed XCP and prepared a set of virtual
machines templates configured with 1CPU, 512MB of
RAM, 20GB of disk space, and 5Mbps links. In this setup,
we run two to four VMs on the same node.

Prior to running the experiments, we generated a set
of resource description XML documents containing all
the possible resources description to be used during the
evaluation process. Such documents were published into
the broker using a PUT REST message in order to popu-
late its repository with the required data.

We successfully tested the interactions related to the vir-
tual network instantiation scenario as depicted in Figure 11.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 19 of 30

1. PUBLISH/UPDATE
(resource description)/
200 OK

5. Notify(negotiation
request event)
=

negotiation

e S
e

Broker Node

6. Accept or reject

4. Send resource
negotiation request

=l Instantiate virtual topology

3. Select
resources

2. DISCOVER (resource
description)/200 OK

7. Notify(negotiation
reply event)

request

VIP Management Node

—

Figure 11 The network virtualization prototype setup.

First, the PMN published the description of the virtual ma-
chines and Vyatta routers that we installed on the substrate
resources to the broker. Then, the VMN sent a discovery
request to the broker. Afterwards, the broker node re-
trieved the information needed as described in the request
from its resource repository and selected the resource can-
didates. After receiving the selected resources, the VMN
triggered a negotiation process by sending a request to the
PMN, which when detected, a notification message was
displayed on the PIP’s console. The negotiation process
went through two phases: First, the PMN rejected the offer
and sent back the request to the VMN; then the VMN sent
another request which was accepted by the PMN. Upon
reaching an agreement, the PMN instantiated the virtual
topology and started the virtual resources (using XAPI cli-
ent). When the requested resources started successfully,
the PMN updated their published information in the bro-
ker. Figures 12, 13 and 14 illustrate three the screen shots
of our prototype’s operation — namely the VIP resource
discovery view, the PIP resource publication view, and the
PIP virtual topology management view.

Basic performance evaluation

To assess the basic performance of the prototype, we used
the setup described in the previous section and evaluated
the interactions related to resource publication (between
the PMN and the BN), resource discovery (between the
VMN and the BN), resource negotiation (between the

VMN and PMN), and resource instantiation (between the
PMN and the machines representing substrate resources).
We used JMeter [31] to evaluate the REST APIs’ per-
formance, and we modified the application logic that is
deployed on the management nodes to add support for
measuring internal operations’ processing times.

Table 2 shows the evaluation results. Each result repre-
sents the mean value calculated over 40 trials, in addition
to some statistical distribution related results (such as the
standard deviation and the confidence level) giving indica-
tions about the variability of the mean values presented.

In the table, the response time for resource publication
is calculated at the PMN as the difference between the
time when the PMN’s publication module sends a publi-
cation request and the time it receives a response from
the BN. The time for publishing a resource includes the
time taken to extract description of resources from the
REST message’s body and the time to store it in the bro-
ker’s repository. The results shown in the table are the
average measurements over 40 trials. For each trial, we
sent one resource publication request containing a docu-
ment describing 2 virtual resources. On average, it took
204.25 ms to process this publication request, which gen-
erated 25.89 Kbytes of network load — values that we con-
sider as reasonable. However, as we increased the number
of publication requests, the response time and network
load measurements increased. This is due to the request
processing overhead and the concurrent access to the

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 20 of 30

1% Virtual Infrastructure Provider (VIP) Console —IC
Eile View Help B - B .
(d open ¥ cisar @ Showide Logs
Resource Discovery
¥ Requests Request file: L:] L_p _ i sterxr | Browse.. | Discover_ | | View Detail
Discovered Resources
Description Provider Vir. Environment 0S5 Type Node |
Vyana HOUTE! (LINUX-DAS.
clchecit-e Vyatta Router (Linux Bas Rou
7a735172-5d01-4380-9cd9-.. Xen-based Linux virtual PIP-1 XEN Linux vRouter
bocObAbb-02b4-4049-0494-. Vyalta Router (Linux-bas. PIP-1 XEN Linux vRouter
1icSebdd-Geac-47c1-b6b5-2.. Vyatta Router (Linux Bas. PIF-1 XEN Linux vRouter
256b4008-1021-4230-9c16-2_. Xen-based Linux virtual .. PIP-1 XEM Linux VRouter ¥ (& selectionParameters
c41c7904-4043-4019-8121-0. Vyatta Router (Linux-bas PIP-1 XEN Linux vRouter v (@ wType
d1ciBed5-aB21-43b3-b201-L.. Vyatta Router (Linux Bas. PIP-1 XEN Linux vRouter vRouter
1945d0a6-81d3-4d00-0876-2.. Vyatta Router (Linux Bas. PIP-1 XEN Linux vRouter - @_
545a3ale-Goed-4e9c-8201-. Xen-based Linuxwirual . PIP-1 XEN Linux VRouter WEMrnsment
366220M-7226-4141-8540-9._. Vyatta Router (Linux-bas. PIP-1 XEN Linux vRouter | XEN
T *» ([osType
| Create Request | | Hide Selected Resources | | Discover All Resources | | Delefe | | HidgDetail | | Up | | Down | » (@ interfaceType
- : » (@ networkStack
* [couType
L ﬁ quantity
5 = ¥ (@ selectionConstraints
= L ¥ (& selecionConstraint
25604008-1021-4230-9c45-2356 12e0d6ee Xen-based Linux virtual machine XEN v
CA1T9c4-4043-4¢10-8121-050421155384 Vyalta Router (Linux-based) XEN (& constainton
Ta735172-ba0l-4384-9cd: based Linux virtual machine XEN L] Memory
1945d0a6-81d3-4d1d-0876-23298 320268 Vyaita Router (Linux Based) XEN * (& params
v (& param
L] type = "size”
value = “range-min=512{ y
[=% = 7 T
[INFC] Opening request file. X
[INFO] Selected file: discovery-routerxmi
[INFO] Sending discovery request fo the broker.
[INFO] Discovery request sent successhully.
[INFO] Received broker's response. b
Messages _ErrotJ
[Reagy..
L J
Figure 12 Prototype operation - VIP resource discovery screenshot.

resources’ database. The load and stress testing results will
be presented in the next sub-section.

The resource discovery response time, which gives an
indication about the performance of the selection algo-
rithm, is calculated from the moment the VMN’s discov-
ery module sends a discovery request until it receives a
response with the selected resources. This includes the
time used for the execution of the selection algorithm
and the database query time to get the list of potential
resources. To perform the resource discovery experi-
ments, we populated the resources’ repository with the de-
scriptions of 5000 different resources. The results shown
in the table are related to the tests done with one resource
discovery request of two virtual resources and 50 proc-
essed resources during the selection process. On average,
it took 181.1 ms and 23.61 KB of generated network load
to process such a request. Additional tests show that as
the number of discovered resources increases, the re-
sponse time and the network load increase as well, due to
the increased number of resources that are taken into ac-
count by the selection algorithm and the increase in size
of the list of matched resources that is sent back.

The resource negotiation response time, measured at the
VMN level, is calculated from the moment the VMN’s ne-
gotiation module sends a negotiation request until the

response is received from the PIP. On average, it took
186.4 ms and 34.16 KB of generated load to process a re-
source negotiation request related to two virtual resources.

Finally, for virtual topology instantiation, the response
time is measured at the PMN level from the moment a
VNet instantiation request is received until the booting
of the virtual machines and the configuration of their
virtual interfaces (through the XAPI client) is completed.
In our test scenario, the virtual topology consisted of
four Vyatta virtual routers connected by three links, as
shown in Figure 13. On average, it takes one minute and
10 seconds to create and configure a Vyatta virtual ma-
chine, while it takes 5 minutes 58 seconds to create and
configure a virtual topology consisting of four Vyatta vir-
tual routers and three virtual links.

Analyzing those results, we conclude that the system
yields an acceptable performance for the recurring oper-
ations (i.e. resource publication, discovery, and negoti-
ation) — The response time for those operations ranging
from 181 ms to 204 ms, while the generated network
load ranged between 24 Kbytes and 34 Kbytes. As for
the virtual topology instantiation operation, it does result
in a significant response time due to its nature that re-
quires the creation and configuration of virtual machines
and their connection to form the requested topology.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3 Page 21 of 30

@ Physical Infrastructure Provider (PIP) Console

Eile View Help

e Open ¥ Clear @t Showide log

Resource Management
file
Available Resources
D Description Vir. Environ.. Vendor Model Nbr. Vir. Nod... Published Resource Details
994641ac-1098-47d5-88... Dell Precision 360 No... XEN Dell Precision 3 -] i ~
50b484ce-act-48b2-b7a3... Dell Precision 390 No XEN Dell Precision 2 (] i & Emand s o Colanon
100471d3-cbde-4d60-bee7... HP ProLiant DL320e .. VMWare HP DL320e 3 & v (& physicaiNode
7472e76512e1-4932-8d2.. |1BM BladeCenter KVM 18M HS21 3] I=“dbbad300-TAae-421
199048e6-6224-4907-04c.. Dell Precision 360 No.. XEN Dell Precision 3 & 4= b
8ec7b158-61c2-40d7-bbfl.. HP ProLiant DL320e ... VMWare HP DL320e 3 8 * (@ ownenD
18a6a602-1578-415a-92.. HP ProLiant DL320e .. VMWare HP DL320e 3 & > (@ name
2d749627-761a-4c57-b7.. HP ProLiant DL320e .. VMWare HP DL320e 3 O » [description
b3cedMa-47eb-4063-bb9... HP ProLiant DL320e . VMWare HP DL320e 3 < > (& availability
e - 3] > (& starfTime
d850aba3-cfad-dccd-01d 1BM BladeCenter KM 1BM HS21 3 7] > (@ period
61cb4763-49e1-4226-b0.. Dell PowerEdge VRTX... KVM Dell T320 3 - > (@ status
95414715-2c61-494c-9214-.. HP ProLiant DL320e ... VMWare HP DL320e 3 » [maorofvinuaiNode
55a79981-39ad-4a1d-b3.. IBM BladeCenter KVM =] HS21 3 » (i substrateNodeGrouplD
076f23d8-8cTa-4608-bad... Dell Precision 360 No... XEN Dell Precision 4 ' » ([virEmvironement
4133c607-4Mb-4300-bd1.. HP ProLiant DL320e .. VMware HP DL320e 3 L - @
8ba34c20-3fe4-4%89-3d0.. HP ProLiantDL320e . VMWare HP DL320e 3] & nodeType
19115597-603¢-4518-a17.. HP ProLiant DL320e ... VMWare HP DL320e 3 -] > (& vendor
60099a4i-ed38-4d32-b5d.. HP ProLiant DL320e .. VMWare HP DL320e 3 (] L ﬁ model
Tee255da-3150-440c-a26... Dell PowerEdge VRTX KV Dell T320 3 & » ([geoLocation
€21991cd-3e60-4455-b6.. HP ProLiant DL320e ... VMWare HP DL320e 3 (] v (& vitualNodes
* [virtuaiNode
* ([vitualNode
22 Resources | Publish | | LoadResources | | Delete | | HideDetail | | Up | | Down | s > (@ wisaode -
INFO Available resources have been loaded. [
INFO Loading available requests from the local DB... r\
INFO Available requests have been loaded..
INFO Loading available requests from the local DB,
INFOQ Publishing selected resources...
INFO Changing resource status.. {
INFO Resource has been published successfully.. ¥
=

B [Error | REST Senices | Servers |

[Ready..

Figure 13 Prototype operation - PIP resource publication screenshot.

However, this operation is only required once, when the
VNet is created. Furthermore, the automation of virtual
resources configuration using SSH and shell scripts eases
and speeds up the virtual topology instantiation process.

Load testing

In order to evaluate the behavior of the system under
variable loading conditions, we conducted some load
tests using the test setup shown in Figure 11. Figures 15,
16 and 17 show the load testing results for the resource
publication, discovery, and negotiation operations.

The resources’ publication operation involves the fol-
lowing steps: 1) at the PIP side — loading of the resources
description document from the local DB, its validation,
and the creation of a REST PUT message containing the
description document and its sending to the broker; and
2) at the Broker side — extraction of the resources docu-
ment from the received PUT message, it’s processing and
validation, its storage in the DB, and the sending of an
HTTP 201 response message to the PIP. As shown in
Figure 15, the resources’ publication operation shows a

polynomial (quadratic) growth pattern in terms of re-
sponse time, which ranged from 204 ms for 1 publication
request to 1 minute and 50 seconds for a 1000 publication
requests. This polynomial response time growth pattern
can be attributed to three time consuming steps related to
resources’ publication, namely: the concurrent access to
the broker’s DB for storage of different resource descrip-
tion documents; the publication messages’ processing; and
the marshaling and un-marshaling of XML documents.
As for the generated network load, it showed a logarith-
mic growth pattern with values ranging from 26 KB for 1
publication request to 240 KB for a 1000 publication re-
quests. The network load’s slow growth pattern can be ex-
plained by the fact that the publication requests generated
in this test all carried a small XML payload (description
document of 2 virtual resources), thus not imposing a high
overhead on the network.

As for the resources’ discovery and selection operation,
it involves the following steps: 1) at the VIP’s side - loading
and validation of the XML documents containing the de-
scription of the resources requested, as well as creation

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 22 of 30

@ Physical Infrastructure Provider (PIP) Console = |5 S
File View Help) - . —
& Showhidelog ¥ Ciear Servers (3] Add Host
Resources Virtual Resource Management
4 A
Requests Physical Servers ~ Properties
e swuavene
v »
W Hosss Host Lable localhost
¥ A 192.168.56.10 Host Description Defaultinstall of XenS...
@ camma S UL 162 o0 1) HostUUID 0bbd2edd-59e6-4363...
@ vyatta vm1 Hos.l IP Address 192.168.56.10
@ Aipha Edition free
Free memory 2761478144
10 Bela Supported Architecture xen-3.0-x86_64
Supported Architecture xen-3.0-x86_32p
| Stop Gamma [192 168.56.92] Supported Architecture
View Status Beta [192.168.56.91]
t Last Updated 17 Aug 2013 03:49:59
Is Live true
Total Memory 5878002784
Free Memory 2787713024
Alpha [192.168.56.90]
v
-t 7 S
II‘II'\: TS LANTTauNTY Vuan wpuToygy. — "_
INFO Created Beta node..
INFO Created Bravo node...
INFO Created Alpha node...
INFO Created Gamma node...
INFO Configuring nodes...
INFO Adding links...
INEN Addinn link frnm Bata tn nnde Alnha l
Messages - REST Senices ! Servers J
[Ready..

\

Figure 14 Prototype operation - PIP virtual topology management screenshot.

and sending of a GET REST request with the loaded
resource discovery document to the broker; and 2) at the
Broker’s side - extraction of the resource discovery
document from the received discovery request and its pro-
cessing/validation, execution of the resource selection al-
gorithm to select the resources that comply with the
request, and sending of the list of matched resources to
the VIP Node. As shown in Figure 16, the resources’ dis-
covery and selection operation shows a polynomial (quad-
ratic) growth pattern in terms of both response time and
generated network load. The quadratic trend line for the
response time gives insights about the performance of the
broker’s selection algorithm. As shown in the figure, the
response time shows a faster increase as the number of re-
sources processed during selection increases — with values
ranging from 181 ms for 2 discovered resources/50 proc-
essed resources during selection, to 17 seconds for a 1000
discovered resources/5000 processed resources during se-
lection. As for the network load’s quadratic trend line, it is
associated with the number of resources discovered, with
values ranging from 23 KB (for 2 discovered resources) to

1.37 MB (for a 1000 discovered resources). As the number
of discovered resources increases, so does the size of the
XML payload carried by the response message sent back
by the broker.

Finally, the resources’ negotiation operation consists in
the following steps: 1) at the VIP side — generation of re-
source negotiation document, creation and sending of
REST PUT request containing the negotiation docu-
ment, to the PIP node; and 2) at the PIP side - extrac-
tion/processing of the negotiation document embedded
in the received negotiation request, checking the avail-
ability of resources, changing the status of the request to
processed and marking the negotiation document as ac-
cepted, and embedding the accepted negotiation docu-
ment in a REST PUT message that is sent back to the
VIP node. As shown in Figure 17, the response time for
the negotiation operation follows a quadratic growth
pattern, while the network load follows a logarithmic
growth pattern. The response time’s quadratic growth
pattern can be explained by the delays caused by concur-
rent access to the PIP’s local repository for updating the

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Table 2 Network load and response time measurements

Page 23 of 30

Operations Interactions Response Response Time - Network Network Load -
Time - Mean Statistics Load - Mean Statistics
value (ms) value (KB)
Resource Publication PMN — BN 204.25 Standard Deviation 11.39656 25.89 Standard Deviation 1.371093
1 t/2 virtual
Eesfl?lrzzz fou‘tlyllris:;d] Confidence Level 5333754 Confidence Level 0641691
(95.0%) (95.0%)
Minimum 189 Minimum 236
Maximum 231 Maximum 283
Resource Discovery VMN - BN 181.1 Standard Deviation 11.0305795 2361 Standard Deviation 0.9623983
[1 request/2 virtual Confidence Level 5162470119 Confidence Level 04504162
resources discovered/ (95.0%) (95.0%)
50 resources processed e e
during selection] Minimum 156 Minimum 22.1
Maximum 197 Maximum 253
Resource negotiation VMN - PMN 1864 Standard Deviation 6.23572053 34.16 Standard Deviation 09275888
El!ff:iiiﬁ;ﬁ.‘ft'e gl Confidence Level 291840704 Confidence Level 04341249
(95.0%) (95.0%)
Minimum 174 Minimum 324
Maximum 198 Maximum 358
Virtual Topology PMN — substrate 358445.9 Standard Deviation 3956.246 143.465 Standard Deviation 0.9051170
:r;zt:\ er:tsla;u‘),?rt[:a\ln;:]ukasll nodes Confidence Level 1851.58 Confidence Level 04236078
! (95.0%) (95.0%)
Minimum 351670 Minimum 141.8
Maximum 367280 Maximum 1453

negotiated resources’ status and the negotiation mes-
sages’ processing. As for the network load’s slow loga-
rithmic growth pattern, it can be explained by the small
payload carried in resource negotiation messages.

Stress testing

In order to evaluate the behavior of the system under
heavy load conditions, we conducted some stress tests,
focusing on the publication and discovery related interac-
tions. As test setup, we built a LAN consisting of 5 ma-
chines connected by a Cisco Catalyst 2950 series switch.
One of those machines (HP Z210 workstation) acted as
the Broker, while the other four machines (DELL 390)
acted as either a PMN or a VMN (depending on the test
scenario). Different test scenarios in which the nodes’
roles and the number of generated requests were varied
were conducted. Figures 18 and 19 show the stress test-
ing results for the resource publication and discovery
operations.

Analyzing the stress testing results, we notice that
Grizzly is a suitable application server for the hosting of
the broker node, due to its robustness and ability to han-
dle a very large number of simultaneous requests (up to
2000 requests/sec can be supported). Due to those cap-
ability, our broker was able to handle very high traffic
loads, without crashing. In fact, the system was tested

for up to 15,000 publication requests (describing up to
120,000 resources) without failure. As the number of publi-
cation request increased, the response time to process the
requests increased in a quadratic fashion, while the net-
work load increased in a logarithmic fashion, when two
PIP nodes were used as message generators. However, this
pattern changed to a cubic growth pattern (for both net-
work load and response time) when four PIPs were used to
generate publication requests simultaneously, thus doub-
ling the number of requests generated and the number of
resources published. This polynomial (cubic) increase in
response time and network load is due to several factors
such as database overhead caused by reading/writing re-
cords, resource description marshaling and un-marshaling,
HTTP requests processing overhead, and increase in the
number of requests exchanged.

As for the discovery operation, the broker was success-
fully tested for up to 12,000 discovered resources (as
shown in Figure 19), and the response time and network
load both showed polynomial (quadratic) growth pat-
terns with respect to the number of discovered re-
sources, for both Two nodes and Four nodes setups. For
12,000 resources, the response time reached 23.7 mi-
nutes, and the generated network load reached 44.2 MB,
due to the resource property information that is embed-
ded in the response message.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 24 of 30

Resources' Publication Operation Performance

2 I 300
=@~ Response time (min) l
18 17| o~ Network Load (KB)
250
16 =
14
/ - 200
= @
E 12 -
- 1 150~
a =
E 2
0.8
; d 2
- 100
0.6
0.4
/ / - 50
0.2 4./
0 W= e 0
a 10 100 1000
No. of Publication Requests
Figure 15 Load testing results for resources’ publication operation.
Resources' Discovery/Selection Operation Performance
03 T 1600
~0— Network Load (KB)
=&~ Resporse Time (min) 1400
0.25
- 1200
0.2 |
- 1000
T —
E 0.15 800 @
£ o
L -
H 01 r
g 2
0.05
200
0 e = =l e O
1 10 100 1000

No. of Discovered Resources

Figure 16 Load testing results for resources’ discovery operation.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 25 of 30

Resources' Negotiation Operation Performance
18 .
== Response Time [Min]
1.6 1| —o—Network Load [KB]
14 —t—11 -
[0
—_ 12
= —_
E o =3
: 3
= » / L so0 =
& -
2 os g
8 / - 400 £
é' 0.6 F4
/ - 300
0.4 ' / - 200
0.2 ‘./ - 100
(o}
ol t 0
1 10 100 1000
No. of Negotiation requests
Figure 17 Load testing results for resources’ negotiation operation.

Comparative performance analysis
As discussed in Section 2.3, existing virtual resource dis-
covery approaches [7-10] do not rely on an intermediary
resources’ broker role, and follow a distributed approach
in which a VIP must gather information directly from
multiple PIPs, before initiating the resources’ selection
process. In order to compare the performance of our
centralized, broker-based architecture with the perform-
ance of the distributed, broker-less architectures pro-
posed in the literature, we modified our prototype to
operate in a decentralized fashion. This was achieved by
removing the broker node and modifying the PMN be-
havior so that the PIP publishes it resources’ description
information to a local repository/broker (instead of the
centralized BN). As for the VMN, it was modified to en-
able direct communication between the VIP and the PIP
for the discovery of resources’ information. Further-
more, the resource selection algorithm, which was ori-
ginally executed by the centralized BN when it received
a resource discovery request, was ported to the VIP
node, which now takes care of resource selection follow-
ing the discovery of candidate resources. Figures 20 and
21 illustrate the centralized and the distributed test bed
setups used to collect the comparative performance
measurements, while Figures 22 and 23 depict the col-
lected results.

As shown in Figure 22, both the centralized and the
distributed architectures achieve similar response times

for the resource discovery operation, when the VIP is
communicating with one PIP. However, as the number of
PIPs increases, the broker-based centralized architecture
shows a significant improvement in terms of response
time, when compared to the distributed architecture. In-
deed, in the centralized architecture, as the number of
PIPs increases, the time it takes to discover resources in-
creases in a slow rising linear fashion, while the distrib-
uted architecture exhibits a more rapid, quadratic growth
curve. While it took 6846.2 ms to discover information re-
lated to 10 PIPs in the distributed broker-less architecture,
it took 487 ms to discover the same information in the
centralized broker-based architecture (ie. a 92.8% per-
formance improvement). This is due to the fact that in the
distributed architecture, the VIP had to communicate with
the 10 PIPs to gather their resources related information,
then perform the selection locally, while in the broker-
based architecture, the VIP communicates only with one
node (the resources’ broker) that categorizes, matches,
and selects the most suitable resources (based on (non)
functional parameters) to be returned to the VIP node. It
should be noted that, in the distributed architecture, prior
to the resources’ discovery phase, the VIP should discover
the contact information of the PIPs (via a public reposi-
tory) in order to be able to communicate with them.

As for the network load’s comparative performance
measurements, we observed linear growth patterns for
both the centralized and the distributed architectures,

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3 Page 26 of 30

140

Respone Time [min]

Stress testing results - resources’ publication operation
10000
{2 nodes - Response time [min]
_ =—g==4 nodes - Response time [min]
120 7|~ @~ 2 nodes - Network Load [KB]
=« = 4 nodes - Network Load [KB]
™)
=
1000 B
S
=
E
t 100
100 1000 10000
No. of publication requests
Figure 18 Stress testing results for resources’ publication operation.

with a smaller change rate (slope) for the centralized
architecture with respect to the distributed one. In fact,
for discovery of resources related to 10 PIPs, the net-
work load generated in the distributed architecture was
868.9 KB, vs. 197.4 KB generated in the centralized
architecture for the same scenario — i.e. a performance
improvement of 77.3%. We also noticed that the gener-
ated network load for the case of 1 PIP is higher in the
distributed architecture, when compared to the central-
ized one. This is due to the fact that, in the centralized
architecture, the intermediary broker node performs an
initial selection operation, in order to return the most
relevant resources (satisfying functional requirements
and constraints on dynamic attributes), which results in
a more refined resources list and thus a reduction in the
size of the resources’ description document returned to
the VIP. In the distributed scenario case, since the selec-
tion is performed by the VIP, the PIP only performs a

simple matching operation (based on functional attributes
only), thus returning a less refined and larger list of re-
sources to the VIP.

Based on those results, we can conclude that our pro-
posed broker-based virtual resources discovery architec-
ture offers significant performance improvements, in
terms of response time and generated network load, when
compared to the existing distributed resources discovery
architectures presented in the literature. In fact, in a large
scale virtual networking environment in which many PIPs
offer virtualized resources for lease, introducing a re-
sources’ broker as intermediary role offers benefits in
terms of reduced complexity of the resources’ discovery
operation and the VIP node’s logic, as well as improved
response time and communication overhead (when a
VIP is communicating with a large number of PIP can-
didates) — thus improving the overall efficiency of the
VN embedding process.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 27 of 30

Stress testing results - resources' discovery operation

25 i »
=02 nodes - Response time [min]
=== 4 nodes - Response time [min] 3
(m]
O~ 2 nodes - Network load [KB] ,
20 1 | == 4 nodes - Network load [K8] !/ 0
-
,I
a
2 5T
E 15 1 ’. -
= -&a
g E-‘b’
s ’
8 ’ f‘
& -5
10 ‘-. D

No. of discovered resources
Figure 19 Stress testing results for resources’ negotiation operation.

10000
™
=
©°

L]

[=]

-

3

°
1000 <
100

PUBLISH/UPDATE
(resources description)/

DISCOVER (resources
description)/ 200 OK

PUBLISH/UPDATE
(resources description
pp2 2000K

VIP

Resources’
matching/ selection

PUBLISH/UPDATE
(resources description)/
200 OK

PIP 10
Figure 20 Broker-based architecture test bed.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 28 of 30

PUBLISH (resources
description)

DISCOVER (resources Sel
PIP1 description)/ 200 OK o
Resources
PUBLISH (resources
description)
DISCOVER (resources
= | description)/ 200 OK S
broker
PIP2
DISCOVER (resources VIP
description)/ 200 O

PUBLISH (resources
description)

Figure 21 Distributed architecture test bed.
.

Comparative Response Time Measurements - Resources' Disovery
Operation

o Resources discovered

w Resources processed during selection y |

=—#—EBroker based architecture

=@ Distributed architecture

8

Number of Resources
g

8

100

Number of PIPs

Figure 22 Comparative response time measurements.

Discovery Time [ms]

N

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Page 29 of 30

Comparative Network Load Measurements - Resources' Disovery
Operation
600 ~ 1000
Resources discovered
. . - 900
Resources processed during selection
500 - |
=—#—Broker based architecture - 800
@
- =&=Distributed architecture x
] r 700 g
g 400 ¢ ' ©
3 3
-] F 600 T
= S
w« 300 - + 500 é
°
E 400 =
E §
3 200 |
= - 300 g
200 ©
1m 4 4
- 100
0 + - - = r — - + 0
1 2 3 4 5 6 7 8 9 10
Number of PIPs
Figure 23 Comparative network load measurements.

Conclusions

Although network virtualization has received consider-
able attention lately and is seen as a promising way to
overcome the limitations and fight the gradual ossifica-
tion of the current Internet architecture, it raises many
challenges. One of the challenges relates to enabling the
dynamic publication, discovery, and selection of virtual re-
sources that can be aggregated to form a virtual network.
Another challenge is the definition of an expressive and
formal information model that enables the fine-grained
description of virtual resources and facilitates information
sharing between the various roles involved.

In this paper, we proposed a service oriented broker-
based framework for resource description, publication,
and discovery in virtual networking environments. The
proposed framework relies on a novel service-oriented
hierarchical business model as well as an expressive infor-
mation model. The detailed architectural framework was
presented, and its operation was illustrated using a REST-
based virtualized content distribution scenario. Further-
more, a proof-of-concept prototype was implemented
using a variety of technologies and tools, such as: Jersey,
Grizzly Web server, JAXB, PostgreSQL, Vyatta virtual
router, and the Xen Cloud Platform (XCP). A detailed per-
formance analysis of the system was also presented.

Based on the conducted performance evaluation and
comparative performance analysis, we can conclude that
our proposed broker-based architecture yields acceptable
performance (in terms of response time and network load)
for the resources’ publication, discovery, and negotiation

operations, while incurring some significant delay for the
virtual topology instantiation operation — a delay that is
unavoidable due to the nature of the operation and is only
incurred once, when a VNet is instantiated. When subject-
ing the system to variable loading conditions, we observed
that the response time of the system shows a quadratic
growth pattern for all three operations (publication, dis-
covery, and negotiation), and a network load’s logarithmic
growth pattern for all operations, except the discovery/se-
lection operation (in which a quadratic trend line was ob-
served). As for the stress tests results, they demonstrated
that the system’s response time and network load increase
in a quadratic fashion for the publication and the dis-
covery/selection operations. We also observed that our
resource brokerage system shows good scalability in
terms of traffic handling, since it was tested for up to
15,000 requests (describing up to 120,000 resources)
without failure. The deployment of the broker node in
existing cloud environments would ensure even more
scalability and resources’ elasticity. Finally, when per-
forming comparative performance testing, we found out
that our broker-based architecture offers significant
performance improvements in terms of response time
(92.8% improvement) and incurred network load (77.3%
improvement), when compared to a distributed broker-
less architecture. Such performance improvement, com-
bined with the reduced complexity of the resources’
discovery operation enabled by the intermediary broker
role, can contribute to an improved efficiency of the VN
embedding process.

Rabah et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:3

Abbreviations

VNs: Virtual networks; ISP: Internet service provider; SP: Service provider;
VNP: Virtual network provider; NVE: Network virtualization environments;
VNO: Virtual network operator; SLA: Service level agreement; MiCs: Micro
clusters; MaC: Macro cluster; ADVNE: Aggregation-based discovery for virtual
network environments; PDDR: Publication and dynamic discovery of
resources; PIP: Physical infrastructure provider; VIP: Virtual infrastructure
provider; SRR: Services and resources registry; RM: Resource manager;

RAM: Resource allocation manager; VRDS: Virtual resource discovery and
selection; RNE: Resource negotiation engine; RIC: Resource instantiation and
configuration; SDT: Service deployment and testing; PMN: PIP management
node; VMN: VIP management node; BN: Broker node.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SR carried the design and implementation work related to the framework,
and performed the performance evaluation of the solution. MEB is the lead
of the research team, proposing the research topic and managing/
coordinating research activities. NK is an expert in virtualization and had
contributions related to the information modeling and software architecture.
RD and JP are experts in distributed systems and contributed with ideas
related to the modeling and the performance evaluation. All authors read
and approved the final manuscript.

Acknowledgements

This paper is an extended version of the article presented at I[EEE WCNC
2013, under the title of “A Multi-Service Multi-role Integrated Information
Model for Dynamic Resource Discovery in Virtual Networks".

Author details

"Lavasoft Software Canada Inc, 210-4700 rue de la Savane, Montréal, Quebec
H4P 177, Canada. “College of Technological Innovation, Zayed University,
Khalifa City B, P.O. Box 144534, Abu Dhabi, United Arab Emirates.
3Department of Software and IT Engineering, University of Quebec, 1100
Notre-Dame West, Montréal, Quebec H3C 1K3, Canada. “Concordia Institute
for Information Systems Engineering, Concordia University, 1515 St. Catherine
W., Montréal, Quebec H4G 2W1, Canada. SIEacuIty of Engineering and
Computer Science, Concordia University, 1515 St. Catherine W., Montréal,
Quebec H4G 2W1, Canada.

Received: 8 September 2014 Accepted: 26 January 2015
Published online: 24 February 2015

References

1. Chowdhury NMMK, Boutaba R (2009) Network virtualization: state of the art
and research challenges. IEEE Communications Magazine 47(7):20-26

2. Martin D, Vlker L, Zitterbarta M (2011) A flexible framework for future
Internet design, assessment, and operation. Elsevier Computer Networks
55:910-918

3. Anderson T, Peterson L, Shenker S, Turner J (2005) Overcoming the Internet
impasse through virtualization. [EEE Comput Mag 4(38):34-41

4. A Bavier, N. feamster, M. Huang, L. Peterson, and J. Rexford, "VINI Veritas:
Realistic and controlled network experimentation,” In Proceedings of
SIGCOMM06, ACM Press, New York, USA, pp. 3-14

5. G. Schaffrah, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,
A. Wundsam, M. Kind, O. Maennel, and L. Mathy: “Network virtualization
architecture: proposal and initial prototype,” In Proceedings of SIGCOMM
st ACM workshop on Virtualized infrastructure systems and architectures
(VISA 2009), ACM Press, New York, USA, pp. 63-72.

6. J.S. Turner, and D. E. Taylor, "Diversifying the Internet,” In Proceedings of
IEEE Global Telecommunications Conference (GLOBECOM'05), IEEE Press, St.
Louis, MO, USA, pp. 1-6.

7. Houidi I, Louati W, Zeghlache D, Baucke S (2009) “Virtual Resource
Description and Clustering for Virtual Network Discovery”. In: Proceedings of
the IEEE International Conference on Communication., pp 1-6

8. LvB,Wang Z Huang T, Chen J, Liu Y (2010) "Virtual Resource Organization
and Virtual Network Embedding Across Multiple Domains”. In: Proceedings
of International Conference on Multimedia Information Networking and
Security., pp 725-728

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

Page 30 of 30

Xu'Y,Han 'Y, Niu W, Li Y, Lin T, Ci S (2012) A Reference Model for Virtual
Resource Description and Discovery in Virtual Networks. In: Proceedings of
ICCSA. Springer, Brazil, pp 297-310

H. Amarasinghe, A. Belbekkouche, and A. Karmouch, “Aggregation-based
discovery for virtual network environments’, In Proceedings of the IEEE
International Conference on Communications (ICC 2012), IEEE Press, Ottawa,
ON, pp. 1276-1280.

El Barachi M, Kara N, Dssouli R (2010) “Towards a Service-Oriented Network
Virtualization Architecture,”. In: Proceedings of the 3rd ITU-T Kaleidoscope
Event 2010 (K-2010), pp 1-7

El Barachi M, Rabah S, Kara N, Dssouli R, Paquet J (2013) “A Multi-Service
Multi-Role Integrated Information Model for Dynamic Resource Discovery in
Virtual Networks,”. In: Proceedings of the IEEE Wireless Communications and
Networking Conference 2013 (WCNC 2013),, pp 4777-4782

Feamster N, Gao L, Rexford J (2007) How to lease the internet in your spare
time. SIGCOMM CCR 37(1):61-64

Niebert N, Khayat IE, Baucke S, Keller R, Rembarz R, Sachs J (2008) Network
virtualization: a viable path towards the future Internet. Wireless
Communication Journal 45(4):511-520

H. Medhioub, I. Houidi, W. Louati and D. Zeghlache, “Design, implementation
and evaluation of virtual resource description and clustering framework’, 25th
IEEE International Conference on Advanced Information Networking and
Applications (AINA 2011), IEEE Press, Biopolis, 83-89.

Houidi I, Louati W, Zeghlache D, Papadimitriou P, Mathy L (2010)
Proceedings of the ACM SIGCOMM Workshop on Virtualized Infrastructure
Systems and Architectures., pp 41-48

J. Lakhani, P. Kumar, “Resource Selection Strategy Based on Propagation
Delay in Cloud,” In Proceedings of the International Conference on
Communication Systems and Network Technologies (CSNT 2012), IEEE Press,
Rajkot, pp. 11-13.

Yu M, Yi 'Y, Rexford J, Chiang M (2008) Rethinking virtual network
embedding: substrate support for path splitting and migration. ACM
SIGCOMM Comput Commun Rev 38(2):16-29

N. Malarvizhi and V. R. Uthariaraj, “A broker-based approach to resource
discovery and selection in Grid environments,” In Proceedings of the
International Conference on Computer and Electrical Engineering

(ICCEE 2008), IEEE Press, Phuket, pp. 322-326.

Kumar P, Pramanik PKD (2012) "Host selection methodology in cloud
computing environment”. International Journal of Advanced Research in
Computer Engineering & Technology (JARCET) 1(8):1-5

Zaheer, F.E; Jin Xiao; Boutaba, R, “Multi-provider service negotiation and
contracting in network virtualization,” In Proceedings of the IEEE Network
Operations and Management Symposium (NOMS 2010), IEEE Press, Osaka,
pp.19-23.

Serhani M, Dssouli R, Hafid A, Sahraoui H (2005) A QoS broker based
architecture for efficient web services selection. Proceedings of ICWS
2005:113-120

Richardson L, Ruby S (2007) “RESTful Web Services”, O'Reilly & Associates,
ISBN 10: 0-596-52926-0

"Jersey,” [Online]. Available: http:/jerseyjava.net/. [Accessed January 2013].
"Project Grizzly," [Online]. Available: http://grizzlyjava.net/. [Accessed January
2013]

"JAXB Project,” [Online]. Available: https:/jaxbjava.net/. [Accessed January
2013]

“eXist-db Project,” [Online]. Available: http://exist-db.org/. [Accessed January
2013]

"PostgreSQL Global Development Group,” [Online]. Available: http://www.
postgresgl.org/. [Accessed 15 February 2013]

“Xen Cloud Platform,” Xen Project, [Online]. Available: http://www.xen.org/
products/cloudxen.html. [Accessed 13 March 2013]

"Vyatta," Brocade, [Online]. Available: http://www.vyatta.com/. [Accessed
January 2013]

"JMeter™," Apache Software Foundation, [Online]. Available: http://jmeter.
apache.org/. [Accessed March 2013]

http://jersey.java.net/
http://grizzly.java.net/
https://jaxb.java.net/
http://exist-db.org/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xen.org/products/cloudxen.html
http://www.xen.org/products/cloudxen.html
http://www.vyatta.com/
http://jmeter.apache.org/
http://jmeter.apache.org/

	Abstract
	Introduction
	Background and related work
	The network virtualization concept
	The virtual network embedding process
	Resource description and discovery in virtual networking environments

	Virtual resources’ description and discovery approach
	Proposed virtual networking business model
	Integrated hierarchical information model
	Broker-based framework for virtual resource publication and discovery
	Overall architecture

	Proof-of-concept prototype
	Prototype architecture
	Prototype setup and test scenarios
	Basic performance evaluation
	Load testing
	Stress testing
	Comparative performance analysis

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

