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Abstract

Sensor network is an important approach of data capturing. User authentication is a critical security issue for sensor
networks because sensor nodes are deployed in an open and unattended environment, leaving them possible
hostile attack. Some researchers proposed some user authentication protocols using one-way hash function or
using biometric technology. Recently, Yel et al. and Wenbo et al. proposed a user authentication protocols using
elliptic curves cryptography. However, there are some security weaknesses for these protocols. In the paper, we
review several proposed user authentication protocols, with a detail review of the Wenbo et al.’s user authentication
protocol and a cryptanalysis of this protocol that shows several security weaknesses. Furthermore, we propose a
secure user authentication protocol using identity-based cryptography to overcome those weaknesses. Finally, we
present the security analysis, a comparison of security, computation, and performance for the proposed protocols,
which shows that this user authentication protocol is more secure and suitable for higher security WSNs.
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Introduction
With the application of big data, there are some base
manipulation processes: data capturing, data transport,
data storage, data extraction & integration, data analysis
& interpretation and data application. In the data cap-
turing, using all kinds of devices and methods to collect
data, such as smart devices, sensors, Web. So there are
three important approaches of data capturing: Internet,
Internet of Things (IoT) and sensor network [1]. Wire-
less Sensor networks (WSNs) is an open environment
distributed network, which is an important approach of
data capturing for big data. Nevertheless, with the appli-
cation of dig data, the requirement of real-time data
from WSNs is increasing highly. In some situations the
gateway impossibly does force a user to access the sen-
sor node directly. In such case the security and reliability
to inquire and data disseminate are very important. Only
when every client (remote sensor node, remote user) in
the WSNs proves his/her identity can he/she be allowed
to join the WSNs and access to resource, such as real-
* Correspondence: zhouqq@gzhu.edu.cn
1Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes, Guangzhou University, Guangzhou, China
2School of Mathematics and Information Science, Guangzhou University,
Guangzhou, China
Full list of author information is available at the end of the article

© 2015 Quan et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
time data. Thus, a key security requirement for WSNs is
user authentication [2-5].
In 2004, Sastry et al. [2] proposed a security scheme

using access control lists (ACL) for IEEE 802.15.4 net-
works in the gateway node. An ACL would be main-
tained in gateway node and sensor nodes. Watro et al.
[6] proposed a user authentication protocol using RSA
and Differ-Hellman algorithm, but which was open to
hostile attack by a user masquerading.
In 2005, Benenson et al. [7] proposed a user authenti-

cation protocol based on elliptic curve discrete loga-
rithm problem (ECDLP) to handle the sensor node
capture attack, which relied on a trusted third party.
In 2006, Wong et al. [8] proposed a dynamic user au-

thentication scheme for WSNs based on a light-weight
strong password using hash function, which included
three phases: registration phase, login phase and authenti-
cation phase. Nonetheless, Tseng et al. [9] and Das [10]
pointed out that this protocol had some weaknesses in
protecting against replay attack, forgery attack, stolen-
verifier attack, sensor node revealing and exposing the
password to the other node and no updating user’s pass-
word. In 2007, Tseng et al. [9] proposed an enhanced user
authentication protocol by adding an extra phase (pass-
word changing phase) on Wong et al.’s phases. However,
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in 2008 Ko [11] showed the Tseng et al.’s protocol was still
insecure and did not provide mutual authentication.
In 2009, Das [10] proposed a two-factor user authenti-

cation protocol based on password and smart card
against stolen-verifier attack. Nevertheless, Nyang et al.
[12] showed there were some security weaknesses in
offline-password guessing attacks.
In 2010, Vaidya et al. [13] demonstrated the Tseng

et al.’s protocol, Wong et al.’s protocol and Ko’s protocol
were still not strong enough to protect again replay at-
tack, stolen-verifier attack and man-in-the-middle at-
tack. Khan et al. [14,15] pointed out the Das’s protocol
did not provide mutual authentication, and against by
passing attack and privileged insider attack. Moreover,
Chen et al. [16] also demonstrated the Das’s protocol did
not provide mutual authentication between the gateway
node and the sensor node. And Chen et al. proposed a
more secure and robust two-factor user authentication
scheme for WSNs.
In 2011, Yeh et al. [17] found that the Chen et al.’s

protocol failed to provide a secure method for updating
password and insider attack. And Yeh et al. proposed a
new user authentication scheme for WSNs using elliptic
curve cryptography (ECC). Unfortunately, Han [18]
found this protocol still had some weaknesses: no mu-
tual authentication, no key agreement between the user
and the sensor node, and no prefer forward security.
Meanwhile, Yuan et al. [19] proposed a biometric-based
user authentication for WSNs using password and smart
card in 2010. Unfortunately, in 2011 Yoon et al. [20]
showed the integrity problem of the Yuan et al.’s proto-
col and proposed a new biometric-based user authenti-
cation scheme without using password for WSNs.
In 2012, Ohood et al. [21] pointed out Yoon et al.’s

scheme still had some drawbacks, such as no key agree-
ment, no message confidentiality service, no providing
against DoS and node compromise attack. Moreover,
Ohood et al. [22] proposed an efficient biometric au-
thentication protocol for WSNs.
Recently, Wenbo et al. [23] in 2013 proposed a new

user authentication protocol for WSNs using elliptic
curve cryptography to overcome the security weaknesses
of Yeh et al.’s protocol. Although they suggested security
improvements of Yeh et al.’s protocol, there were some
security weaknesses in their protocol, e.g. no mutual au-
thentication between the user and sensor node, no pro-
tecting against insider attack, forgery attack and DoS
(denial of service) attack.
To address all of the issues raised in the above stud-

ies, we propose a secure user authentication protocol
using identity-based cryptography on the basis of our
previous studies to trusted management and trusted
architecture of WSNs [24-26]. Our proposal addresses
the key security issues.
The remainder of this paper is organized as follows: in
Section Related works, we review the Wenbo et al.’s
protocol and a detail cryptanalysis; next we present our
user authentication protocol based on identity-based en-
cryption in Section Proposed protocol; in Section Security
and performance analysis, a security and performance
analysis of the related protocol is presented; in Sec-
tion Conclusion, we provide some conclusion remarks.

Related works
Notation
In Table 1, some notations used throughout this paper
and their corresponding definitions are shown.

Review of Wenbo’s scheme
In the Wenbo’s protocol, the gateway GW held two mas-
ter keys (x and y). And it was assumed that the gateway
and the sensor nodes shared a long-term common secret
key, SKGS = h(Sn||y). The Wenbo’s protocol involves the
registration phase, login phase, authentication phase and
password update phase, which can be briefly described
as follows.

Registration phase
In this phase, a user U submits his/her IDu and a hash of
his/her password to GW via a secured channel. Then, GW
issues a license to U. The steps are described as follows.
Step 1: U→GW: {IDu, PS′}.
U enters an identity, selects a random number br and a

password PS. And U computes PS′ = h(PS⨁br). Then U
sends message {IDu, PS′} to GW via a secured channel.
Step 2: GW→ a smart card of U: {Bu, Wu, h(.)}.
GW computes Ku = h(IDu||x) × P, Bu = h(IDu⨁PS′),

and Wu = Bu⨁Ku, where x is a master key of GW. Then
the GW stores (Bu, Wu) into a smart card and sends it
to U.

Login phase
When U access Sn, U needs enter his IDu and PS. And
the smart card must confirm the validity of U via the fol-
lowing steps.
Step 1: Validate U.
The smart card check whether Bu = h(IDu⨁h(PS⨁br))

hold. If the answer is no, the U’s identification validation
fails and the smart card will terminate this request.
Otherwise, the smart card continues to execute the
next step.
Step 2: U’s smart card generates a random number ru,

calculates X and a. X = ru × P, X′ = ru × (Bu⨁Wu), and
a = h(IDu||X||X′||Tu), where Tu is the curren time of
U’s system.
Step 3: U→ Sn: {IDu, X, Tu, a}.
The {IDu, X,Tu, a} is submitted to Sn via public channel.



Table 1 Notations

Symbol Define

p A big prime number

Fp A finite field

E An elliptic curve in Fp with a large order

P A point on elliptic curve E with order q
that is a big prime number

U A remote user

ID An identity

PS A user password

GW Gateway of WSNs

Sn Sensor node of WSNs

Qid Public key of id

did Private key of id

Pset A system parameter set of PKG

h(.) A public secure one-way hash function

H1(.) A public function: {0,1} *→ G1, the G1 is
a group G1 = {NP|n∈ {0,1…q-1}}

H2(.) A public function G2→ {0,1}*, G2 is subgroup
with an order q of GF (p2)*

f(.) A public function: G1→ {0,1}*

ê(.) An admissible pairing: G1 × G1→ G2

Ek(m) Encrypt message m with key k

Dk(c) Decrypt message c with key k

|| A string concatenation operation

⨁ A XOR operation
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Authentication phase
The authentication phase includes: Sn checking the val-
idity of the request message of U, GW authenticating Sn
and U, Sn authenticating GW and U, U authenticating
Sn and GW.

Sn checks the validity of the request message of U
When receiving the login message {IDu, X,Tu, a} at time T
′, Sn checks and generates request message which is sent
to GW for authentication. Sn executes the following steps.
Step 1: Checks Tu.
Sn checks if (T′-Tu)≦ΔT holds, where ΔT denotes the

expected time interval for transmission delay. If the an-
swer is yes, the validity of Tu can be assured, and Sn exe-
cutes the next step. Otherwise Sn rejects the login request.
Step 2: Picks a random number rs and calculates Y and b.
Y = rs × P, b = h(SKGS||IDu||X||Tu||a||IDSn||Y||Ts), where

Ts denotes the current request time of the Sn system.
Step 3: Sn→GW: {IDu, X, Tu, a, IDSn, Y, Ts, b}.
The {IDu, X, Tu, a, IDSn, Y, Ts, b} is submitted to GW

via public channel.

GW authenticates Sn and U When receiving the re-
quest message that sent by Sn at time T′′, GW checks
and validates Sn and U, and generates the response
message that will be sent to Sn. GW executes the follow-
ing steps.
Step 1: Validates if Ts and Tu.
GW checks whether (T′′-Ts)≦ΔT and (T′′-Tu)≦ΔT

hold. If the answer is yes, the validity of Ts and Tu can
be assured and GW executes the next step. Otherwise
GW rejects this request message.
Step 2: Calculates b*.

b� ¼ h SKGS IDuj jj jX Tuj jj ja IDSnj jj jY jjTsð Þ:

Step 3: Confirms whether b = b* and validates Sn.
GW checks if b = b* holds. If the answer is yes, GW ac-

cepts this request message and executes the next step.
Otherwise, GW rejects this request message.
Step 4: Calculates X′ and a*.
X′ = h(IDu||x) × X, a* = h(IDu||X||X′||Tu), where x de-

notes a master key of GW.
Step 5: Confirms whether a = a*.
GW checks if a = a* holds. If the answer is yes, GW ac-

cepts this request message and executes the next step.
Otherwise, GW rejects the request message.
Step 6: Calculates y and l.

y ¼ h SKGS IDuj jj jX Tuj jj ja IDSnj jj jY jjTGð Þ;

l ¼ h IDu Xj jj jX′ Tuj jj jY jjTsð Þ;

where TG denotes the current response time of GW.
Step 7: GW→ Sn: {TG, y, l}
The {TG, y, l} is submitted to Sn via public channel.

Sn authenticates GW When receiving the response
message that sent by GW at time T′′′, Sn checks and
validates GW, and generates the message that will be
sent to U. Sn executes the following steps.
Step 1: Validates TG .
Sn checks if (T′′′-TG) ≦ ΔT holds. If the answer is yes,

the validity of TG can be assured and Sn executes the
next step. Otherwise Sn rejects the response message.
Step 2: Calculates y*.

y� ¼ h SKGS IDuj jj jX Tuj jj ja IDSnj jj jY jjTGð Þ:

Step 3: Validates y.
Sn checks if y = y* holds. If the answer is yes, Sn ac-

cepts this response and executes the next step. Other-
wise, Sn rejects this response message.
Step 4: Calculates KSU, g and session key sk.

KSU ¼ rs � X; g ¼ h Y Tsj jj jljjKSUð Þ; sk ¼ h X Yj jj jKUSð Þ:

Step 5: Sn→U: {Y, Ts, l, g}
The {Y, Ts, l, g} is submitted to U via public channel.
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U authenticates GW and Sn When receiving the re-
sponse message that sent by Sn at time T′′′′, U checks
and validates GW and Sn. U executes the following
steps.
Step 1: Validates Ts.
U checks if (T′′′′-Ts)≦ΔT holds. If the answer is yes,

the validity of TS can be assured and U executes the next
step. Otherwise, U rejects the response message.
Step 2: Calculates KUS, l

* and g*.

KSU ¼ ru � Y ; l�

¼ h IDu Xj jj jX′ Tuj jj jY jjTsð ÞÞ; andg�

¼ h Y Tsj jj jljjKSUð Þ:

Step 3: Confirms l and g .
U checks if l = l* and g = g* hold. If the answer is yes, U

accepts the response message and executes the next
step. Otherwise, U rejects the response message.
Step 4: Calculates session key sk.

sk ¼ h X Yj jj jKUSð Þ:

Password update phase
When U wants to update his/her old password, U and
the smart card execute the following steps.
Step 1: U inserts his/her smart card into the smart ter-

minal and enters his/her identify IDu, the old password
PS and the new password PSn.
Step 2: The smart card calculates PS′ = h(PS⨁br), and

checks whether Bu = h(IDu⨁PS′) holds. If it does not hold,
the smart card stops U’s request. Otherwise, the smart
card continues to compute Ku = h(IDu||PS′)⨁Wu, PSn′ =
h(PSn⨁br), Bu′ = h(IDu⨁PSn′) and Wu′ = Bu′ ⨁Ku.
Finally, the smart card replaces (Bu, Wu ) with (Bu′, Wu′).

Cryptanalysis of Wenbo’s protocol
Security requirements in WSNs

(1)Secure user authentication in WSNs should be
based on full mutual authentication.

(2)Secure user authentication in WSNs should resist
masquerade, replay, forgery and DoS attacks.

(3)Secure user authentication in WSNs should resist
internal attack (compromise attack).

(4)Secure user authentication in WSNs with smart card
should reject Virus Injection attack.

No full mutual authentication
Because Wenbo’s protocol does not authenticate U
during the authentication phase (Sn checks the validity
of the request message of U), a malicious user can at-
tack Sn and GW by means of forging. The attack could
be accomplished as follows:
(1)The attacker sends a forging message {IDa, Xa, Tua,
aa} to Sn.

(2)Sn sends a message {IDa, Xa, Tua, aa, IDSn, Y, Ts, b}
to GW for authenticating the user when receiving
the forging message.

During the above process, since Sn does not authenti-
cate the user, Sn directly generates authenticating re-
quest message for GW to authenticate the user. When
GW receives this request message, GW can finish the
process from Step 1 to Step 4 of authentication phase
(GW authenticates Sn and U). This is because there is
no mechanism for Sn to be assured that U is real user of
WSNs. Thus, the Wenbo’s protocol does not provide
mutual authentication between U and Sn. There is no
full mutual authentication between Sn and U. This
protocol cannot reject DoS attack to Sn and GW.

No protection against forgery attack
Because the confidential information (Bu, Wu) is not
encrypted to be stored, the attacker can masquerade as a
legal user U. In the case that an attacker steals the (Bu,
Wu) from the smart card via some a Virus or a Trojan in
the user terminal, he/she maybe try to impersonate user
U to access resource in WSNs. The attack can be ac-
complished via the following means.

(1)The attacker steals the (Bu, Wu)} via some methods,
such as Virus software, Trojan.

(2)The attacker could compute Ku = Bu⨁Wu and gain
the secret Ku.

(3)The attacker picks a random number Ru.
(4)The attacker could computes Xa = Ru × P, Xa′ = Ru ×

Ku, and aa = h (ID||Xa||Xa′||Ta) because the point P
on elliptic curve E is public.

(5)The attacker sends the request message {IDu, Xa, Ta,
aa} to the Sn via public channel.

(6)Sn can finish the authentication phase processes.
And GW also can accomplish the authentication
phase processes.

After GW and Sn finish to authenticate, the attacker
can gains the session key sk. The attacker continues to
access Sn. Thus, the Wenbo’s protocol does not provide
sufficient protection against forgery attack.

No protection against insider attack
In the Wenbo’s protocol, U uses a single password for
accessing Sn. It is convenient for a user. Nevertheless, if
the system manager or a privileged user of GW obtains
(Bu, Wu) of U during U registration phase, he/she
maybe try to impersonate U to access the resource in
WSNs. The attacking processes are the same as the for-
gery attack. Thus, the Wenbo’s protocol does not
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provide sufficient protection against an insider attack on
GW by a privileged user.
No protection against compromise attack
In the Wenbo’s protocol, the gateway and the sensor
nodes shared a long-term common secret key SKGS. If
an attacker captures some a sensor node, he/she can at-
tain the shared secret key SKGS via some methods since
the SKGS is not encrypted. So it is very easy to imperson-
ate a sensor node in WSNs. Even the attacker may make
many sensor nodes to impersonate the sensor nodes of
in WSNs.
Proposed protocol
To solve the security weaknesses of the Wenbo’s proto-
col, we propose a new user authentication protocol for
WSNs using identity-based cryptography. First, we re-
view the fundamentals of identity-based cryptography,
and then survey the identity-based cryptography which
is suitable for our design of a secure authentication
protocol for WSNs. In the proposed protocol, GW inte-
grates the trusted and reputation scheme [24,26]. The
proposed five phases are described in detail later.
Identity-based cryptography
Identity-based cryptography is a kind of public-key
based scheme. The public key is the unique identity of
the user. The private key is generated by a third party
called a Private Key Generator (PKG) with its master se-
cret and user’s identity. In the identity-based cryptog-
raphy system, firstly, the PKG must create a master
public key and a master private key. Then any user may
use this master public key and also use the user’s iden-
tity to generate the user’s public. The user’s private key
is created by the PKG with the user’s identity.
For every two parties using in identity-based cryptog-

raphy, it is easy to calculate a shared secret session key be-
tween them using its own private key and public key of
another party. For example, a sensor node Sn with public
key QSn and private key dSn, and a user U with public key
Qu and private key du can calculate their shared secret ses-
sion key by computing key = ê(Qu, dSn) = ê(du, QSn).
In the proposed protocol, GW is the PKG. GW selects a

random number s∈Zq
* that is kept secret. GW computes

Kpub = s × P. This public-private key pair <Kpub, s > is the
master key pair of GW. And GW computes QGW =H1

(IDGW), dGW = s ×QGW. QGW is the authentication public
key of GW. dGW is the authentication private key of GW.
Registration phase
In the registration phase, Sn and U register to GW. The
processes are the follow as.
Sensor node registration
In the WSNs, all sensor nodes must register to GW be-
fore being deployed. GW creates a private key for every
sensor node. And the system parameters Pset, the public
functions and the private key are stored in the sensor
node. GW completes the following steps.
Step 1: Creates the public key QSn.
GW uses the identity IDSn of Sn to generate the public

key QSn, QSn =H1(IDSn).
Step 2: Generates the private key dSn.
GW uses the master key s and the public key QSn to

create the private key dSn, dSn = s ×QSn.
Step 3: Installs system parameters, public functions

and private key of Sn.
GW installs the system parameters Pset, dSn and other

public functions into Sn. That is to say, {Pset, dSn, h(.),
f(.), H1(.), e(.)} is stored into the Sn.

User registration phase
Before accessing a sensor node in WSNs, any user must
register to GW and gains a set Pset and other parameters.
The registration phase is shown in the Figure 1.
Step 1: U→GW: {IDu, Reg-inf, T1}.
U sends the register request message {IDu, Reg-inf, T1}

to GW at the time T1.
Step2: GW→U: {IDGW, P, xP, h(.), a1,T2}.
When receiving the register request message of U at

the time T′, firstly GW checks whether (T′-T1) ≤ ΔT
holds. If the answer is no, GW rejects the register re-
quest message of U. Otherwise, GW selects a random
number x∈Zq

* and computes xP = x × P. Then GW calcu-
lates a1 = h(IDGW||IDu||xP||T2), where T2 is the current
time of GW. Finally, GW sends the register response
message {IDGW, P, xP, h(.), a1 ,T2} to U.
Step 3: U→GW: {IDu, Ek (PS′), yP, b, T3}.
When receiving the register response message {IDGW,

P, xP, h(.), a1 ,T2} at the time T′, U checks whether
(T′-T2) ≤ ΔT holds. If the answer is no, U rejects the
register response message. Otherwise, U computes a1′ =
h(IDGW||IDu||xP||T2) and checks whether a1′ = a1 holds.
If the answer is no, U rejects the register response mes-
sage. Otherwise, U picks a random number y ∈Zq

*and
computes yP = y × P. And U selects a password PS∈Zq

*

and a random number br∈Zq
* . U calculates PS′ = h

(PS⨁br) and k = h(y × xP). Then U encrypts PS′ with the
session key k, Ek(PS′). Finally, U computes b = h(IDu||
IDGW||Ek(PS′)||yP||T3), where T3 is the current times of
U. And U sends a message {IDu, Ek(PS′), yP, b, T3} to
GW.
Step 4: GW→U: {IDGW, Pset, Eϴ(ϴ, Ϻ), a2, T4}.
Receiving the message {IDu, Ek(PS′), yP, b, T3} at the

time T′, GW firstly checks whether (T′-T3) ≤ ΔT holds.
If the answer is no, GW rejects this message. Otherwise,
GW computes b′ = h(IDu||IDGW||Ek(PS′)||yP||T3) and



Figure 1 Registration phase of the user.
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checks whether b′ = b holds. If the answer is no, GW re-
jects this message. Otherwise, GW generates the session
key k and decrypts Ek(PS′), k = h(x × yP), Dk(Ek(PS′)) to
gain PS′. Then GW computes ϴ = h(PS′||IDu), Qu =H1

(IDu) and du = s ×Qu. And GW also calculates Ϻ =ϴ⨁f
(du). GW encrypts the (Qu, Ϻ), Eϴ(ϴ, Ϻ) and computes
a2 = h(IDGW||IDu||xyP||T4). At last GW stores (Pset,
Eϴ(ϴ, Ϻ), h(.), f(.), H1(.), ê(.)) into a smart card that is
sent to U. Moreover GW sends the register acknowledge
message {IDGW, a2, T4} to U.
Step 5: U encrypts and stores br.
When receiving the register acknowledge message

{IDGW, a2, T4} at the time T′, U firstly checks whether
(T′-T4) ≤ ΔT holds. If the answer is no, U rejects this mes-
sage. Otherwise U computes a2′ = h(IDGW||IDu||yxP||T4)
and checks whether a2′ = a2 holds. If the answer is no, U
rejects this message. Otherwise, U computes ks = h(PS||
IDu) and encrypts br, Eks(br). Finially U stores Eks(br).

Login phase and authentication phase
Accessing the data in Sn, U must login Sn and be au-
thenticated by GW and Sn. And U must complete the
login phase and authentication phase. Login phase and
authentication phase are shown in Figure 2.
Login phase
U must enter his IDu and password PS firstly. Then,
after the smart card validates U via the following steps,
the smart card sends the access request message to Sn.
Step 1: Gains br.
U enters his identity IDu and password PS to the smart

terminal. And the smart terminal computes ks = h(PS||
IDu), and Dks(Eks(br)) to gain br.
Step 2: Validate U.
The smart card computes PS′ = h(PS⨁br), ϴ′ = h(PS′||

IDu) and Dϴ′(Eϴ(ϴ, Ϻ)) to gain the (ϴ, Ϻ). The smart
card checks whether ϴ =ϴ′ holds. If the answer is no,
the smart card stops and alarms. Otherwise, the smart
card continues to execute the next step.
Step 3: Computes QSn, QGW, du, X and Y.

QSn ¼ H1 IDSnð Þ; QGW ¼ H1 IDGWð Þ; du ¼ H1 M⊕θð Þ;
X ¼ ê du;QSnð ÞandY ¼ê du;QGWð Þ:

Step 4: Generates a, b and encrypts (a, b).
The smart card calculates a = h(IDu||IDGW||Y||Tu),

b = h(IDu||IDSn||X||a||Tu) and EX(a, b), where Tu is the
current time of the smart terminal system.
Step 5: U→ Sn: {IDu, IDSn, EX(a, b), Tu}.



Figure 2 Login phase and authentication phase.
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The smart card sends the login request message {IDu,
IDSn, EX(a, b), Tu} to the Sn.

Authentication phase
The authentication phase includes Sn authenticating U
and GW, GW authenticating Sn and U, U authenticating
Sn and GW. The authentication phase can complete the
mutual authentication.

Sensor node Sn authenticates user U When receiving
the login request message {IDu, IDSn, EX(a, b), Tu} sent
by U at time T′, Sn firstly checks the validity of the re-
quest message. Then Sn authenticates U.
Step 1: Validates login request message.
Sn checks whether (T′-Tu) ≤ ΔT holds. If the answer is

no, Sn rejects the login request of U. Otherwise, it con-
tinues to perform the next step.
Step 2: Decrypts EX(a, b).
Sn computes Qu =H1(IDu), X′ = ê(Qu, dSn) and DX′(EX

(a, b)) to gain (a, b).
Step 3: Computes b′ = h(IDu||IDSn||X′||a||Tu).
Step 4: Validates U.
Sn checks if b = b′ holds. If the answer is yes, the valid-

ity of U can be assured and Sn continues to perform the
next step. Otherwise, it rejects the login request message
of U.
Step 5: Computes QGW, Z, β and encrypts.
QGW =H1(IDGW), Z = ê(dSn, QGW) and β = h(IDu||
IDSn||Z||a||Tu||TSn), where TSn is the current time of Sn
system. And Sn encrypts (a, β), EZ(a, β).
Step 6: Sn→GW: {IDSn, IDGW, IDu, EZ(a, β), Tu, TSn}
Sn sends a request message {IDSn, IDGW, IDu, EZ(a, β),

Tu, TSn} to GW.

Gateway GW authenticates sensor node Sn When re-
ceiving the request message {IDSn, IDGW, IDu, EZ(a, β),
Tu, TSn} at time T′′, GW checks the validity of this mes-
sage firstly. And GW authenticates Sn and U. Finally,
GW creates a response message for Sn and U.
Step 1: Validates request message of Sn.
GW checks whether (T′′-Tu) ≤ ΔT and (T′′-TSn) ≤ ΔT

hold. If the answer is no, GW rejects the request mes-
sage. Otherwise, GW continues to perform the next step.
Step 2: Computes QSn, Z′ and gains (a, β).
GW computes QSn =H1(IDSn), Z′ = ê(QSn, dGW) and

DZ′(EZ(a, β)) to gain (a, β).
Step 3: Computes β′ = h(IDu||IDSn||Z′|a||Tu||TSn).
Step 4: Validates Sn.
GW checks if β′ = β holds. If the answer is yes, the val-

idity of Sn can be assured and GW continues to perform
the next step. Otherwise, it rejects the request message.
Step 5: Computes Qu, Y′ and a′.
GW computes Qu =H1(IDu), Y′ = ê(Qu, dGW) and a′ =

h(IDu||IDGW||Y′||Tu).
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Step 6: Validates U.
GW checks if a′ = a holds. if the answer is yes, the val-

idity of U can be assured and GW continues to perform
the next step. Otherwise, GW rejects the request
message.
Step 7: GW→ Sn:{IDGW, IDSn, IDu, EZ′(γ, δ),TGW}.
GW generates the response message for Sn and U.

GW calculates: γ = h(IDu||IDSn||IDGW||Y′||Tu||TSn) and
δ = h(IDu||IDSn||IDGW||Z′||γ||TSn||TGW), where TGW is
the current time of GW’s system. And GW encrypts
(γ, δ) with the key Z′, EZ′(γ, δ), and sends the response
message {IDGW, IDSn, IDu, EZ′(γ, δ), TGW} to Sn.

Sensor node Sn authenticates gateway GW When re-
ceiving the response message {IDGW, IDSn, IDu, EZ′(γ, δ),
TGW} sent by GW at time T′′′, Sn checks and authenti-
cates GW via the following steps.
Step 1: Validates the response message.
Sn checks if (T′′′-TGW) ≤ ΔT holds. If the answer is

no, Sn rejects this response message. Otherwise, Sn con-
tinues to perform the next step.
Step 2: Gains (γ, δ).
Sn decrypts the EZ′(γ, δ) with the key Z, DZ(EZ′(γ, δ)),

to gain (γ, δ).
Step 3: Computes δ′.

δ′ ¼ h IDu IDSnj jj jIDGW Zj jj jγjjTSnð jjTGW Þ:
Step 4: Validates GW.
Sn checks if δ′ = δ holds. If th answer is yes, the valid-

ity of GW can be assured and Sn continues to execute
the next step. Otherwise, it rejects the response message.
Step 5: Generates Ksession, ζ and encrypts.
Sn computes Ksession = h(X||Tu||TSn),

ζ ¼ h IDu IDSnj jj jKsession γj jj jTSnð Þ and EX ′ ζ; γð Þ:
Step 6: Sn→U: {IDSn, IDu, IDGW, EX′(ζ, γ), TSn}.
Sn sends the response message {IDSn, IDu, IDGW, EX′(ζ, γ),

TSn} to U.

User U authenticates sensor node Sn When U receives
Sn’s response message {IDSn, IDu, IDGW, EX′(ζ, γ), TSn} at
time T′′′′, U checks this message and authenticates Sn
and GW. U performs the following steps.
Step 1: Validates the response message.
U checks whether (T′′′′-TSn) ≤ ΔT holds. If the an-

swer is no, U rejects this response message. Otherwise, it
continues to perform the next step.
Step 2: Gains (ζ, γ).
U computes DX(EX′(ζ, γ)) to decrypt EX′(ζ, γ) with the

key X to gain (ζ, γ).
Step 3: Generates Ksession and ζ′.
U computes Ksession = h(X||Tu||TSn),
and ζ′ = h(IDu||IDSn||Ksession||γ||TSn)
Step 4: Validates Sn.
U checks whether ζ = ζ′ holds. If the answer is yes, the

validity of Sn can be assured and U continues to execute
the next step. Otherwise, U rejects the response
message.
Step 5: Computes γ′ = h(IDu||IDSn||IDGW||Y||Tu||TSn).
Step 6: Validates GW.
U checks whether γ′ = γ holds. If the answer is yes, the

validity of GW can be assured and U accepts this response
message. Otherwise, U rejects this response message.
After U authenticates Sn and GW, U will access the

data of the Sn with the session key Ksession.

Password update phase
When U updates his password, U enters his IDu, old
password PS and news password PSn to the smart ter-
minal or a update password program. The smart card
must compute a new password value, which is encrypted
and stored in the smart card. The user password update
phase includes the following steps.
Step 1: U enters his IDu, old password PS and news

password PSn to the smart terminal or a update pass-
word program.
Step 2: The smart terminal computes ks = h(PS||IDu)

and Dks(Eks(br)) to gain br firstly. Then it computes
PS′ = h(PS⨁br), PSn′ = h(PSn⨁br). The smart terminal
sends {IDu, PS′, PSn′} to the smart card.
Step 3: The smart card computes ϴ′ = h(PS′||IDu)

and Dϴ′(Eϴ(ϴ, Ϻ)) to gain (ϴ, Ϻ).
Step 4: The smart card checks whether ϴ′ =ϴ holds.

If the answer is no, the smart card rejects the password
update and alarms. Otherwise, the smart card continues
to perform the next step.
Step 5: The smart card calculates ϴn′ = h(PSn′||IDu)

and Ϻ′ =ϴn′⨁(ϴ⨁Ϻ).
Step 6: The smart card encrypts the new sensitive

password value (ϴn′, Ϻ′) with the key ϴn′, Eϴn′(ϴn′,
Ϻ′), and replaces the Eϴ(ϴ, Ϻ) with Eϴn′(ϴn′, Ϻ′).

Security and performance analysis
The proposed protocol provides message confidentiality
service
Proof
Message confidentiality service against eavesdropping at-
tack is performed by data encryption service. Our pro-
posed protocol can provide sufficient confidentiality for
sensitive data stored and transmitted with encrypting
data (e.g. Ek(PS′), Eϴ(ϴ,Ϻ), EX(a, b), EZ(a, β), EZ′(γ, δ)
and EX′(ζ, γ). More specifically, these sensitive informa-
tion are confidential against the attacker. If the sensitive
data is stored or transmitted without encryption in the
public channel , the attacker maybe view the plaintext
data. This attack maybe occur in Wenbo’s protocol and
Yoon and Yoo’s protocol [15]. Moreover, in Wenbo’s
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protocol the sensitive (Bu, Wu) that was not encrypted
was stored in the smart card and the long-term shared
secret key SKGW was not also encrypted in the Sn. In
the [15] Sn’s response message that was not encrypted
was sent to U by a public channel directly.

The proposed protocol resists an integrity attack
Proof
The data integrity attack includes data modification at-
tack, data corruption attack and data insertion attack.
The integrity service assures the transmitted data is not
modified by an unauthorized entity.
In our proposed protocol, Sn can guarantee the login

request message {IDu, IDSn, EX(a, b), Tu} from U has not
been modified by an unauthorized entity via decrypting
EX(a, b), recomputing and checking b. GW can also
guarantee the authentication request message {IDSn,
IDGW, IDu, EZ(a, β), Tu, TSn} from Sn has not been modi-
fied by an unauthorized entity via decrypting EZ(a, β),
recomputing and checking a, β. Similarly, Sn can guaran-
tee the authentication response message {IDGW, IDSn, IDu,
EZ′(γ, δ), TGW} from GW has not been modified by an
unauthorized entity via decrypting EZ′(γ, δ), recomputing
and checking δ. Moreover, U uses the same way to guar-
antee the authentication response message {IDGW, IDSn,
IDu, EX′(ζ, γ),TSn} from Sn has not been modified.

The proposed protocol resists a denial attack
Proof
This type of attack is that the participating entity denies in
all of the operations or part of its. However, in our pro-
posed protocol, we assume that GW is a trusted party.
And GW creates the unique private key for every entity
(sensor node, user) . Although GW does not store the pri-
vate key of an entity, it can trace the entity operations with
the entity’s public key and HMAC. Therefore, the entity
cannot deny that he/she performed all participation.

The proposed protocol resists a DoS Attack
Proof
The DoS attack can be occurred by the attacker who
transmitting the large number of request messages to Sn
or GW in the login phase or in the authentication phase.
In our proposed protocol, since every message associates
with a timestamp T and is authenticated, the unauthenti-
cated message or the timeout message is rejected. So the
proposed protocol can reject DoS attack.

The proposed protocol resists a sensor node compromise
attack
Proof
Since WSNs is normally deployed in an open environ-
ment, the attacker is easy to capture a sensor node and
may attempt to get some information stored in the
sensor node. When the attacker gets the secret from the
capturing sensor node, he/she can attack the WSNs. If
the authenticating user and data access from the sensor
node are allowed directly to the user without the license
of gateway, this attack is very high, which occurs in
Watro et al.’s scheme [19].
In our proposed protocol, And U does not access data

from Sn until it is authorized by GW and Sn. And U’s re-
quest message must be authenticated by Sn firstly, and
the request message must be authenticated by GW. After
that GW sends the license of U’s to Sn and U. Only U
can access the data of sensor node when his/her license
from GW is the same as Sn’s from GW. Moreover, in
our proposed protocol GW can monitor whether a sen-
sor node is captured with the trusted and reputation
management scheme [24,26]. If some a sensor node is
captured by an attacker, GW can detect and isolate it.
The proposed protocol resists a replay attack
Proof
The replay attacks are impossible if the previous infor-
mation is not reused again. In our proposed protocol,
the login message and the authentication message are
validated by checking timestamps. When an attacker
eavesdrops the communication between U and Sn or be-
tween Sn and GW, he/she does not reusable again. We
assume if an adversary intercepts a login request mes-
sage {IDu, IDSn, EX(a, b), Tu} and attempts replaying the
same message for login to Sn. The verification of the
login request fails because of (Ta-Tu) >ΔT, where Ta de-
notes the time when Sn receives the replaying message.
Similarly, if an adversary intercepts {IDSn, IDGW, IDu, EZ
(a, β), Tu, TSn}and attempts to replay it to GW, he/she
cannot pass the verification of GW because the time ex-
pires (i.e. (Tb-TSn) >ΔT and (Tb -Tu) >ΔT), where Tb de-
notes the time when the replaying message is received
by GW. Also if an adversary intercepts {IDGW, IDSn, IDu,
EZ′(γ, δ), TGW} and attempts replaying the same message
to Sn, he/she cannot pass the verification of Sn because
of (Tc-TGW) >ΔT, where Tc denotes the time when Sn re-
ceives the replaying response message. Moreover, if an
adversary intercepts {IDGW, IDSn, IDu, EX′(ζ, γ), TSn} and
attempts replaying the same message to U, he/she also
cannot pass the verification of U because of (Td-TSn >ΔT),
where Td denotes the time when U receives the replaying
response message.
The proposed protocol resists an impersonation attack
Proof
In our proposed protocol, all sensitive information that
is transmitted is encrypted with some a key. Addition-
ally, the messages are validated and authenticated. Only
when an attacker knows the master key s or solves
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Bilinear Differ-Hellman Problem can he/she attain the
private key. It is impossible for an attacker.
In the login phase, only when an attacker knows U’s

private key du can he/she generate a legal login request
message {Du, IDSn, EX(a, b), Tu} to impersonate the U.
Moreover it is impossible that an attacker gains the sen-
sitive key material (ϴ, Ϻ) that is encrypted to only be
stored in the smart card without the user U’s password.
Thus it is not possible to compute X without du for an
attacker. And as long as an attacker does not possess
Sn’s private key dSn, he/she cannot generate a legal au-
thentication request message {IDSn, IDGW, IDu, EZ(a, β) ,
Tu, TSn} and {IDGW, IDSn, IDu, EX′(ζ, γ), TSn} to imper-
sonate Sn. This is because that the attacker cannot com-
pute the key Z and the key X′ without dSn. Similarly, an
attacker also cannot generate a legal response message
{IDGW, IDSn, IDu, EZ′(γ, δ), TGW} to impersonate GW.
This is due to that an attacker does not know the private
key dGW of GW.

The proposed protocol resists a stolen verifier attack
Proof
An attacker who has stolen U’s private key materials
Eϴ(ϴ, Ϻ) from the smart terminal or the smart card via
the Trojan or other intruding methods cannot obtain
any useful information. This is due to that the private
key materials are encrypted. The attacker cannot decrypt
Eϴ(ϴ, Ϻ) to gain (ϴ, Ϻ) without U’s password PS. And
the attacker also cannot attain any useful private key in-
formation of U from GW because U’s private key mate-
rials are not stored in the GW database.
Table 2 Security comparison

Benenson
et al. [7]

Das [10] Chen and
Shih [16]

Yuan
et al.

Data Confidentiality NP NP NP NP

Data Integrity NP P P NP

Password Update NR NP R NP

Key Agreement NP NP NP NP

Mutual Authentication NP NP P NP

Denial Attack No No No Yes

DoS Attack No No No No

Compromise Attack Yes No No No

Replay Attack Yes Yes Yes Yes

Impersonation Attack No Yes Yes No

Insider Attack Yes No No No

Forgery Attack Yes No Yes Yes

Stolen-Verifier Attack Yes Yes Yes Yes

Guessing Attack Yes Yes Yes Yes

Man-in-the-Middle Attack No No Yes No

Yes: Resist Attack, No: Not Resist Attack, P: Provided, NP: Not Provided, R: Required,
The proposed protocol resists a stolen smart card attacks
Proof
The attacker who has stolen U’s smart card cannot im-
personate this user to access Sn. Because the attacker
does not know U’s password, the smart card does not
validate the login request and rejects the access request
of the attacker.

The proposed protocol resists an insider attack
Proof
The insider attack is intentionally misused by authorized
entities. In our proposed protocol, the gateway manager
or system administrator cannot attain U’s password PS
because in the registration phase U transmits Ek(PS′) to
GW instead of the plain password PS, and any sensitive
key material information of U and any verifier table are
not stored in GW. Additionally, the smart terminal man-
ager or administrator also cannot attain the useful infor-
mation of U’s key from the smart card and the smart
terminal because of the sensitive key material encrypted.
Therefore, the proposed protocol can resist the privi-
leged insider attacks.

The proposed protocol resists a man-in-the-middle attack
Proof
The man-in-the-middle attack is that an attacker intercepts
the communication between the legal user and other entity
(e.g. sensor node, gateway) and successfully masquerades
as the user or other entity by some methods. In our pro-
posed protocol, U is authenticated by Sn in the login phase,
Sn and U are authenticated by GW in the authentication
[19]
Yeh
et al. [17]

Yoon and
Yoo [20]

Ohood
et al. [21]

Wenbo and
Peng [22]

Ours

NP NP P NP P

NP P P P P

P NR NR P P

NP NP P P P

NP P P NP P

No Yes Yes No Yes

No No Yes No Yes

No No Yes Yes Yes

No Yes Yes No Yes

No Yes Yes No Yes

No Yes Yes Yes Yes

Yes Yes Yes No Yes

No Yes Yes Yes Yes

Yes Yes Yes Yes Yes

No Yes Yes No Yes

NR: Not Required.



Table 3 Computation performance comparison

Benenson
et al. [7]

Das [10] Chen and
Shih [16]

Yeh
et al. [17]

Yoon and
Yoo [20]

Ohood
et al. [21]

Yuan
et al.[19]

Wenbo
et al. [22]

Ours

Registration Phase 1Texp 1Th 1Th 4Th +2Tmp 3Th 2Th 4Th 3Th +1Tpm 4Th + 4Tpm +
3Taes

Login and Authentication
Phase

2nTh +3nTexp 5Th 7Th 11Th + 4Tpa +
8Tpm + 2Te

10Th 4Trc +8Th 9Th 15Th +6Tpm 14Th + 6Tpair +
8Taes

Total 2nTh +3nTexp
+1Texp

6Th 8Th 15Th + 4Tpa +
10Tpm + 2Te

13Th 4Trc + 10Th 13Th 18Th +7Tpm 18Th + 4Tpm +
11Taes + 6Tpair
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request phase, and Sn also authenticates GW in the au-
thentication response phase, U validates Sn and GW in the
authentication response phase. That is to say, our proposed
protocol can provide complete mutual authenticate among
entities and resists the man-in-the-middle attack.
Table 2 shows the security functionality comparisons

between our proposed protocol and the related protocols.
According to the Table 2, although the Ohood et al.’s
protocol presents the same security as ours, the Ohood
et al.’s protocol needs some complicated biometric equip-
ments. Compared against each other, our protocol pro-
vides is more security services than the other protocols.

Performance analysis The section summarizes the per-
formance results of the proposed protocol. We define
the notation Th as the hash function computation cost,
Texp as the modular exponential computation cost, Tpm
as the elliptic curve point multiply cost, Tpa as the ellip-
tic curve point addition cost, Tpair as pairing computa-
tion cost, Trc as RC5 computation cost, Taes as AES
computation cost, Te as the elliptic curve polynomial
computation cost. The comparison of related protocols
is illustrated in the Table 3.
According to Table 3, Chen et al.’s protocol needs eight

hash function computations, Yoon el at.’s needs thirteen
hash function computations, Yuan et al.’s also need thir-
teen hash function computations, Das’s protocol needs six
hash function computations. And Benenson et al.’s proto-
col needs 2n hash function computations and 3n + 1
modular exponential computations [22]. Ohood et al.’s
biometric authentication protocol needs four RC5 compu-
tations and ten hash function computations. Yeh et al.’s
protocol needs fifteen hash function computations, four
elliptic curve point addition computations , ten elliptic
curve point multiply computations and two elliptic curve
polynomial computations. Wenbo et al.’s protocol needs
eighteen hash function computations and seven elliptic
curve point multiply computations. Our proposed proto-
col needs eighteen hash function computations, four ellip-
tic curve point multiply computations, eleven AES
computations and six pairing computations. Although our
protocol needs more computations than their protocols,
their protocols suffer from security issues or need compli-
cated biometric equipments. Our protocol addressed these
issues and provides better security and more security ser-
vices than the other related protocols.

Conclusion
In the paper, we discussed an approach of data capturing
for big data that is data collecting via sensor networks
and its user authentication protocol. We have analyzed
Wenbo et al.’s user authentication protocol for WSNs.
The Wenbo’s protocol, which does not provide mutual
authentication between user and sensor node and confi-
dentiality service, is susceptible to insider, replay, denial,
compromise, forgery, man-in-the-middle and DoS at-
tacks. We have also reviewed the protocols of Yeh et al.,
which does not provide mutual authentication and pro-
tect against insider, denial, compromise, man-in-the-
middle and DoS attacks, of Das, which is vulnerable to
forgery, denial, compromise, DoS, man-in-the-middle at-
tacks, of Benenson et al., which susceptible to denial,
compromise, DoS, man-in-the-middle attacks, of Chen
et al. which is vulnerable to denial, insider, compromise
and DoS attacks, of other biometric authentication pro-
tocols. Since WSNs need more secure mutual authenti-
cation method in an insecure network environment,
we use the IBE mechanism to design a news user au-
thentication protocol. Our protocol can prevent all the
problems of the former schemes. Furthermore, it en-
hances the WSNs authentication with higher security
than the other protocol. Therefore, the protocol is more
suited to open and higher security WSNs environment
in despite of more computation cost.
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