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Abstract

In this paper, we introduce a model of task scheduling for a cloud-computing data center to analyze energy-efficient
task scheduling. We formulate the assignments of tasks to servers as an integer-programming problem with the
objective of minimizing the energy consumed by the servers of the data center. We prove that the use of a greedy
task scheduler bounds the constraint service time whilst minimizing the number of active servers. As a practical
approach, we propose the most-efficient-server-first task-scheduling scheme to minimize energy consumption of
servers in a data center. Most-efficient-server-first schedules tasks to a minimum number of servers while keeping the
data-center response time within a maximum constraint. We also prove the stability of most-efficient-server-first
scheme for tasks with exponentially distributed, independent, and identically distributed arrivals. Simulation results
show that the server energy consumption of the proposed most-efficient-server-first scheduling scheme is 70 times
lower than that of a random-based task-scheduling scheme.
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Introduction
Cloud computing has risen as a new computing
paradigm that brings unparalleled flexibility and access
to shared and scalable computing resources. The increas-
ing demand for data processing and storage in this digital
world is leading a significant growth of data centers, the
size of which has grown from 1000’s to a few hundred
thousands servers [1].
Cloud-computing data centers offer information tech-

nology (IT) resources as services. The hardware systems
(servers, data center network systems, storage, etc.) and
software systems (operating systems, management soft-
ware, etc.) represent the resources the data center pro-
vides as Infrastructure as a Service (IaaS) and Platform as
a Service (PaaS), respectively. Applications, such as web
search, social networking, computation, etc., offered by
cloud-computing data centers are hosted as Software as a
Service (SaaS) [2]. These applications run on virtualized
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IT resources, namely, virtual machines (VMs), provided
by IaaS and PaaS. Based on the request, the cloud service
providers provision resources such as different types of
VMs to the requests.
Energy consumption of a data center constitutes a major

operation cost [3-5]. The energy consumed by these large-
scale data centers has reached billions of Kilowatt-hours
per year and is expected to continue to grow [6]. The
increasing energy demand could become a hurdle to
data center scalability, let alone the carbon footprint they
would leave [3-5]. An Emerson report estimates that the
servers of a data center account for 52% of the total
consumed energy, while the cooling systems account for
38%, and other miscellaneous supporting systems, such
as power distribution, account for the remaining 10% [5].
These three different sub-systems of a data center may be
optimized for energy efficiency.
In this paper, we target the reduction of energy expendi-

ture of the servers of a data center and address this issue by
bounding the number of active servers for workloads that
require a constrained response time.Wemodel the energy
consumption of a data center and analyze the trade-off
between the response time and the number of active
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servers as an integer-programming optimization problem.
Optimization of resource allocation in large-scale data
centers is non-trivial and non-scalable.
As a practical solution, we propose the most-efficient-

server-first (MESF) task-scheduling scheme to minimize
the energy consumption while keeping the response
within a constrained time. Here, a task is a request for a job
of the contracted application that may require a defined
amount of resources and the creation of a VM to sup-
port the application. The job may be data transmission
(uploading and downloading), data processing, software
access and execution, or storage functions. Each task, as
the corresponding VM, is then assigned to one of the
available servers. In turn, the task is performed and the
result (or a completion notice) is returned to the user. Fur-
thermore, because tasks are assigned to servers as soon
as they arrive, queues build up on some of the servers.
Therefore, we analyze the queueing delay of tasks for the
proposed MESF scheduling scheme and prove that the
scheduling scheme is weakly stable under independent
and identically distributed (i.i.d.) task arrivals that follow
an exponential distribution. By simulation, we show the
impact of MESF on the energy consumed by a data cen-
ter, and compare it to that of a data center that assigns
tasks to servers randomly [7]. Our simulation results show
that MESF may reduce the data center energy consump-
tion 70 times that consumed by the scheme that assigns
tasks randomly.
The remainder of this paper is organized as fol-

lows. We discuss the related work in the next section.
The Data center model section presents the model
of the cloud-computing data center adopted in this
paper. Task scheduling and energy consumption section
introduces the proposed energy consumption model
for a cloud-computing data center. The most-efficient
server first scheme section introduces the MESF task-
scheduling scheme. The Stability analysis of MESF section
presents the stability analysis of the proposed schedul-
ing scheme. The Simulation results section presents
our simulation results of energy consumption and task
response time for the proposed MESF and random task-
scheduling schemes. The Conclusions section presents
our conclusions.

Related work
The servers of a data center account for the largest amount
of energy consumed by the data center [5]. Recent works
focus on schemes aiming at reducing energy consump-
tion by servers through efficient job scheduling, resource
allocation optimization, and virtual machine consolida-
tion [8-12]. A conservative allocation of resources and
jobs in data centers may lead to powering ON a large
number of servers, contributing to a large amount of con-
sumed energy [13]. Energy-aware job allocation schemes

may be used towards receding the energy consumed by
servers [14]. In such a scheme, the traffic distribution and
link states of a data-center network are considered for
deciding to which servers jobs are allocated. The objec-
tive of these schemes is to consolidate network traffic and
server load to reduce the fraction of active network equip-
ment, set link speeds to match traffic demand, and turn
off non-critical servers.
Cloud-computing data centers may use VMs to consol-

idate workloads to reduce the number of active servers
[9-12,15-19]. To ensure that the service level agreement
(SLA) is met, cloud-computing data centers may set up
upper limits for resource utilization while placing VMs.
This may lead to poor utilization of resources due to the
dynamics of data center workloads. A scheme that uses
dynamic thresholds was proposed considering the follow-
ing policies for placing VMs: minimization of VM migra-
tion, balancing of resource utilization and SLA violation,
and random selection [9]. This scheme achieves energy
efficiency by allowing a level of SLA violations. Another
approach introduces a power management scheme that
implements multiple feedback controllers at the levels of
racks, servers, and VMs to improve data center energy
efficiency [11]. Although reducing the number of active
servers in a data center may improve energy efficiency,
over-consolidation may jeopardize the quality of the ser-
vice (QoS) provided by the data center. Maintaining QoS
whilst increasing energy efficiency is critical for the eco-
nomical sustainability of a data center [10,15-17]. Mini-
mizing the number of virtual-machine migrations may be
employed to maintain service guarantees and to reduce
the energy consumption of cloud-computing data centers
[16]. In a more direct approach, jobs may be mapped to
the existing computing resources to ensure that the satis-
faction of the required QoS of different applications [20].
However, these methods require global knowledge of the
state of the data center and, in turn, a fast central con-
troller to perform timely decisions for the dynamic data
center networks.

Data center model
Data center network
A data center houses a large number (e.g., hundreds
to thousands) of servers and storage units, which are
interconnected through a network with a number of
switches/routers, in an arrangement that resembles a
Clos-network or fat-tree topology [21-25]. Figure 1 shows
the data center architecture considered in this paper. We
assume that the network infrastructure provides enough
bandwidth to avoid queueing delays in the intermediate
network nodes.
The resources in the cloud-computing data center

are shared among a large number of tenants through
the data center network. Each tenant may run multiple
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Figure 1Model of cloud computing data center.

applications in the data center, thus requesting a large
amount of resources. Therefore, the number of servers
(and VMs) leased by each tenant is large. Resource pro-
visioning in cloud data centers is a complex process that
requires matching of a large number of requests with a
large amount of software and hardware while satisfying
the SLA. In this paper, we focus on resource provision-
ing at the SaaS level to study the effect of task scheduling
schemes on the energy efficiency of a data center. In this
paper, we consider the creation and allocation of VMs
in cloud data centers as a part of the task, requiring a
well-defined amount of resources such as CPU, memory,
storage, etc. from the servers.

Data center workload
Data centers have different types of servers with each type
dedicated to handle a specific type of tasks. The process-
ing time and computing resources for different types of
tasks may also be different. In 2011, Google released the
first set of one of its cluster workload traces to the pub-
lic, which provides data from a 12K-machine data-center
cell recorded over about a month, in May 2011 [26]. The
data have enabled studies on trace analysis to charac-
terize data center workload [27,28]. These studies show
that the data center workload is highly dynamic and het-
erogeneous. The workload includes both bursty jobs that
demand quick response times and long-running jobs with
intensive computing resource requirements. In this paper,
we provide a perspective on evaluating the energy con-
sumption of cloud-computing data centers by considering
various task deadlines, resource requirements, and server
energy profiles.

Task scheduling and energy consumption
A data center is required to handle a large number of tasks
demanding different computational resources, e.g. CPU,
memory, and communications. Under this variety, servers
may provide different response times and consume dif-
ferent levels of energy for different types of tasks. In this
paper, we focus on the study of efficient task scheduling
to minimize the energy consumption of a data center by
reducing the number of active servers.

Optimization of energy consumption by minimizing the
number of active servers
Terminology and definitions
We consider a data center withM servers, each denoted as
Sj, where 1 ≤ j ≤ M. The data center can process V types
of tasks. A task of type i processed at server j is associated
with a deadline or a maximum response time, denoted as
Bi,j, where 1 ≤ i ≤ V , 1 ≤ j ≤ M. Task deadlines may
be required by users or self-imposed by the data center
[29]. Here, we assume that time is slotted with fixed dura-
tion. Considering a constant service rate at the servers, the
response time increases proportionally to the number of
tasks waiting in the server. Therefore, we use the response
time and number of tasks in servers interchangeably in
this paper. The processing time for a type-i task at Sj is
denoted as μi,j. The number of tasks arriving to the data
center is denoted as N , and the number of type i tasks is
ni, where

1 ≤ i ≤ V and N =
V∑
i=1

ni.

The data center has a scheduler that assigns tasks to
servers. Figure 2 shows an example of the task scheduler
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Figure 2Model of the data center task scheduler.

assigning tasks to servers. Tasks assigned to each server
are processed on a first-come first-serve basis. If a server
is busy, tasks are queued in the server queue awaiting pro-
cessing. The task scheduler may also be implemented in a
distributedmanner [30]. For simplicity but, without losing
generality, we set the queue capacity of Sj for type i tasks
equal to the task deadline Bi,j. The number of type-i tasks
assigned to Sj is denoted as xi,j. The order in which tasks
are scheduled to Sj by the central scheduler is indicated as
a task schedule vector Xj.

The schedule matrix, Xj, is an V ×
V∑
i=1

xi,j, where
V∑
i=1

xi,j
is the total number of tasks assigned to Sj.
Here, the matrix elements are either 0 or 1, where the

position of the elements of the matrix represents the task
sequence. The row of the matrix indicates the task type
and the column indicates the time slot or sequence in
which tasks are scheduled. For example, for three types
of tasks (V = 3) and four tasks scheduled for Sj, and the
schedule vector is presented as a 3×4 matrix,

Xj =
⎛
⎝ 1 1 0 0

0 0 1 0
0 0 0 1

⎞
⎠

where the top row shows two type-1 tasks, the second row
shows one type-2 task, and the bottom row shows one
type-3 task. The columns show that two type-1 task are
sent to the server in the first two time slots, a type-2 task
is sent to the server in the next time slot, and a type-3 task
is sent to the server in the four time slot.

The average queueing delay for type-i task at Sj is
denoted as τi,j. The average task response time, Tw,
includes the task processing delay and queueing delay. The
number of type-i tasks queued at Sj at a given time is
denoted as wi,j. Table 1 summarizes the definitions and
nomenclature used in this paper.
In this paper, we aim to find an optimum task-

scheduling scheme to minimize task response time and
energy consumed by the data center servers.

Table 1 Terminology definition

Terminology Definition

V Total number of task types

N Number of task arrivals

ni Number of type-i task arrivals, where 0 ≤ i ≤ V

M Number of active servers in data center

Sj Server j, where 1 ≤ j ≤ M

Bi,j Capacity of Sj to store type-i tasks

xi,j Number of task i assigned to Sj

μi,j Average processing time of type-i task by Sj

τi,j Average queueing delay of type-i tasks on Sj

wi,j Queue occupancy of type-i tasks at Sj

Tw Average task response time

Xj Schedule in which tasks are processed by Sj

ω Weight vector

Pi,j Power consumed by Sj to process a type-i task

Ei,j Energy consumed by Sj to process a type-i task

E Total server energy consumption in a data center
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Optimization problem
We formulate the energy consumption of the data center
in function of the number of active servers as an integer-
programming problem with the objective of minimizing
data center energy consumption. We denote the power
consumed by Sj to complete a type-i task as Pij. The
amount of energy consumed by all the data center servers
is denoted as E, which is the sum of energy consumed by

servers processing all the tasks
(

V∑
i=1

M∑
j=1

xi,j

)
for the period

of time used to process these tasks. Therefore,

E =
V∑
i=1

M∑
j=1

μi,jPi,jxi,j (1)

The objective function is defined as

min
x

E =
V∑
i=1

M∑
j=1

μi,jPi,jxi,j

s.t.
M∑
j=1

xi,j = ni, xi,j ≤ Bi,j − wi,j

(2)

Here, the number of tasks assigned to a server is such
that the server ensures that all tasks can be processed
within the task deadline constraint. We set the capacity
of a server queue at Sj to store type i tasks equal to this
deadline or Bi,j. Considering the queueing delay, wi,j, the
number of task arrivals, xi,j, needs to be no larger than
Bi,j − wi,j.
The average response time per task, Tw, is defined as the

average queueing delays, xi,jτi,j, plus the average process-
ing delays, TjXjω divided by the total number of tasks in
the data center, N.

Tw =

M∑
j=1

[ V∑
i=1

xi,jτi,j + TjXjω

]
N

(3)

Tj is the processing time vector at Sj, Tj =
(μ1,j,μ2,j, · · · , μV ,j), and ω is the weight vector. It
accounts for the scheduling delay associated with the
sequence a task is scheduled to be processed by Sj:

ω =
( V∑

i=1
xi,j − 1,

V∑
i=1

xi,j − 2, · · · , 1, 0
)T

(4)

When the data center has a light load and there is
no backlogged tasks in the queues at the servers, the

upcoming tasking are immediately assigned to servers
and this assignment incurs no queueing delay. In this
case, the optimization problem is a subset of the general
problem, or:

min
x

E(x) =
V∑
i=1

M∑
j=1

μi,jPi,jxi,j

s.t.
M∑
j=1

xi,j = ni, xi,j ≤ Bi,j

(5)

Here, Tw is bounded by the average processing time of
the number of different types of tasks assigned to each
server and the sequence of the task allocation in the task
scheduler:

Tw = Tj Xj ω (6)

Analysis of homogeneous tasks
In the remainder of this section, we analyze the assign-
ment of a single type of tasks (V = 1) and estimate
a bound of the number of servers required to comply
with the maximum response time. This can be considered
under the assumption that other task types can be decom-
posed into a linear combination of a unitary task of a basic
task type.
For simplicity, we remove the subscript i in the nota-

tion for μi,j, xi,j, and τi,j in the remainder of this section.
Eqn. (3) becomes:

Tw =
M∑
j=1

μj

2
xj(xj − 1) (7)

with
M∑
j=1

xj = n.

Let us assume that

F(xj, λ) = T =
M∑
j=1

μj

2
xj(xj − 1) + λ

⎛
⎝ M∑

j=1
xj − n

⎞
⎠ (8)

to find the minimum response time, we take the partial
derivatives of F with respect to xj and λ, where λ is the
Lagrange multiplier, or:

∂F
∂xj

= μj

2
(2xj − 1) + λ = 0 (9)

∂F
∂λ

=
M∑
j=1

xj − n = 0. (10)
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Therefore,

xj = 1
2

− λ

μj
, forj = 1, . . . , M (11)

and

M
2

− λ

M∑
j=1

1
μj

= n (12)

From (11) and (12):

λ = M − 2n

2
M∑
j=1

1
μj

(13)

xj = 1
2

− M − 2n

2μj
M∑
j=1

1
μj

(14)

Since 1 ≤ xj ≤ Bj, the number of servers,M, is bounded
by

2n − (2Bj − 1)μj

M∑
j=1

1
μj

≤ M ≤ 2n − μj

M∑
j=1

1
μj

(15)

Here, for a given number of n task arrivals with a Pois-
son distribution, the number of servers M is bounded by
the task deadlines Bj and service rate μj at each server.
The tightness of the bound is in function of the maximum
allowable time to service the task, Bj as (15) shows. For
example, when Bj = 1, the number of servers required to

complete n tasks in one time slot is 2n − μj
M∑
j=1

1
μj
.

Themost-efficient server first scheme
In a data center with heterogeneous servers, the servers
with the highest computing capacity, which is defined as
the maximum number of tasks a sever can process in par-
allel, are the most preferred servers in the assignment of
tasks. This server may provide a lower energy expenditure
per processed task (or bytes). In this case, the optimiza-
tion problem can be interpreted as a greedy-assignment
scheme. For this, it is considered that the central sched-
uler sorts the servers based on their energy efficiency, and
assigns tasks to the most energy-efficient servers first and
it then continues to allocate tasks to the second most effi-
cient servers on the list, and so on, until no task remains
or else, servers’ queues are full.
For a data center with a single server type, MESF assigns

a number of tasks to each active server, until the satura-
tion point (where the server performance decays signifi-
cantly, or the task queueing delay is approaching its delay
constraint) is reached. The greedy scheduling scheme is
described Algorithm 1.

Algorithm 1 The Most-Efficient-Server First Scheme
S ← list of servers
X ← current task
most efficient server (mes) ← NULL
for all s in S do

if s is available to process X then
if mes = NULL or s.Eincrement < mes.Eincrement
then

mes ← s
end if

end if
end for
if notmes = NULL then

X is allocated tomes
end if

The central scheduler maintains a sorted list of non-
saturated and active servers with their energy profiles. The
servers are sorted according to their energy profiles where
the most energy-efficient servers are placed on the top
of the list. Upon receiving task requests, the scheduler
assigns tasks to the servers from the sorted list from top
to bottom. The servers receive task assignments and their
energy profile is updated. Once the most energy-efficient
servers are saturated, they are removed from the list until
they become unsaturated.

Discussion on the complexity of the scheduling scheme
The complexity of the proposedMESF scheduling scheme
is mostly that of the complexity of sorting servers by
their energy efficiency. Without knowledge of the server
energy profile, the complexity of the algorithm is based
on the sorting complexity of the servers energy profiles,
which isO(m2) to sortm servers [31]. However, the power
profile for cloud-computing data center servers are avail-
able. The energy profile sorting can be done prior to the
server’s activation for function. Therefore, the complex-
ity of the MESF task scheduling scheme is reduced to
insertion of a sorted list, which has a time complexity of
O(m log(m)) [31].

Stability analysis of MESF
In this section, we study the stability of the proposed
scheduling scheme and present the conditions to ensure
system stability. We first study the condition that makes
the system unstable, and in this way, to prove a neces-
sary condition to ensure system stability. We use queueing
theory to study the queue length as t approaches infinity.
If the queue length diverges (increases indefinitely) and
approaches infinity as t approaches infinity, the system is,
therefore, unstable.
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We first define Q(t) as queue occupancy matrix for all
task queues at time slot t, where

Q(t) :=

⎧⎪⎨
⎪⎩

x1,1(t) · · · x1,M(t)
...

...
...

xN ,1(t) · · · xN ,M(t)

⎫⎪⎬
⎪⎭

Here, xi,j(t) is an independent and identically dis-
tributed (i.i.d.) random variable of task type i assigned to
server j at time slot t.
The queue occupancy at time slot, t in a given server, is

Q(t) = Q(t − 1) + R(t − 1) − L(t − 1) (16)

where R(t) is the matrix of packet arrivals at time slot t,
L(t) is the matrix of the tasks serviced at time slot t.
Given that,

Q(1) =Q(0) + R(0) − L(0)
Q(2) =Q(1) + R(1) − L(1)

=Q(0) + R(0) − L(0) + R(1) − L(1)
...

Q(t) =Q(0) +
t∑

k=0
[R(k) − L(k)]

(17)

where,

L(k) =min (Q(k) + R(k), q)

=1
2

[
Q(k) + R(k) + q

] −
1
2

∣∣Q(k) + R(k) − q
∣∣

Here, the task-service matrix, L(k), is defined by the
proposed task-scheduling scheme and the response dead-
line, q = �t

τi,j
. The scheduler allocates a task based on

the minimum of the task deadline and the server queue
length. If the task deadline is smaller than the waiting time
in the server queue, the task will be placed to a server that
meets the deadline constraint.
Substituting L(t − 1) in from (16) with (17), Q(t) can be

written as

Q(t) =Q(t − 1) + R(t − 1) − L(t − 1)

=Q(t − 1) + R(t − 1) − 1
2
[Q(t − 1)+

R(t − 1) + q
] + 1

2
∣∣Q(t − 1) + R(t − 1) − q

∣∣
=1
2

[
Q(t − 1) + R(t − 1) − q

]+
1
2

∣∣Q(t − 1) + R(t − 1) − q
∣∣

=1
2

(
ft−1 + | ft−1|

)
(18)

where

ft−1 = Q(t − 1) + R(t − 1) − q.

If ft > 0,Q(t) = ft−1 > 0,

Q(t) = Q(0) +
t∑

k=1
R(k) − tq > 0

⇒

t∑
k=1

R(k)

t
> q − Q(0)

t
.

When Q(t) → ∞, as n → ∞, the system is unstable, or
t∑

k=1
R(k) − tq → ∞

as t → ∞.
Therefore, the condition for the system to be unstable is

t∑
k=1

R(k)

t
> q.

The system is considered weakly stable when Q(t) = 0,
not necessarily consecutively but not exclusively repeti-
tive, as t goes to infinity, which is

lim
t→∞ infQ(t) = 0.

Equivalently, the condition for the system to be weakly
stable is

lim
t→∞

t∑
k=1

R(i)

t
≤ q.

Evaluation of stability of the proposed task scheduling
scheme
We performed an evaluation of a data center under i.i.d.
task arrivals following an exponential distribution, with a
mean of 10 tasks. We evaluated the mean response time
for different task egress rates. The egress rate is the rate at
which tasks leave the data center. The rate depends on the
number of servers providing the service, processing time,
and task load. Figure 3 shows the average queue length
of the proposed scheduler. The arrow in the figure points
to where the average delay decreases significantly (as the
slope starts approaching to zero, or critical minimum);
the slope between task egress rate 10 and 11. Note that
smaller task egress rates produce larger queue lengths.
This backlogging of tasks may lead to instability.
Figure 4 shows the probability of having a zero-queue

length, which ensures queue stability. If a queue is not
infinitely large (i.e. stable queue), it may not necessarily
remain at the queue length as that of the initial condi-
tion. In fact, it may be expected that the queue length
may decrease in some time intervals. In our experiment,
we show Pr{Q(t) = 0|Q(0) = 0} for different task egress
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Figure 3 Average queue length under task arrivals with exponential distribution.

rates. The figure shows that the probability increases for
this event if the task egress rate is equal to or larger than
10 (again, we refer to the slope formed by rates of 10 and
11, but now in Figure 4).

Simulation results
In this section, we present the performance evaluation of
the proposedMESF task-scheduling scheme.Wemodeled

a data center with a central scheduler and a number of
servers in Matlab to evaluate the energy consumption
through computing simulation. We simulated the pro-
posed greedy algorithm under homogenous (V = 1) and
exponentially-distributed task arrivals, with a mean of
n = 1000 tasks and random server profiles. We measured
the average task-response time and total energy consumed
with respect to the number of servers available to handle
the tasks.

Figure 4 Probability that a queue occupancy is empty (Q(t) = 0) for different task egress rates.
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Figure 5 Average response time vs. number of servers.

Figure 5 shows the average task response time for dif-
ferent queueing capacities. We set B = {30, 40, 50} in
our simulation, which is also the maximum response time
constraint of tasks. As the number of servers increases,
the average task response time decreases. However, the
response time stops decreasing when 34, 25, and 20
servers are available in a data center for a queue capacity of
50, 40, and 30 tasks, respectively. The reason for this is that
the tasks are serviced by the 34, 25, and 20 servers, respec-
tively, under these conditions and additional servers don’t
contribute to the service as task are fully allocated. In fact,
the larger the server capacity, the smaller the number of

servers required to reach the minimum response time.
This relationship remains as long as the servers comply
with the constrained task response time. Therefore, the
number of servers is bounded to M = {34, 25, 20} for
B = {30, 40, 50}, respectively.
We also evaluated the average task response time under

different input loads, the tasks arrivals with mean n =
{800, 1000, 1200} and a server queueing capacity of B =
40. Figure 6 shows the average response time for differ-
ent numbers of servers and different loads (i.e., different
number of tasks). As the number of tasks (n) increases, the
number of servers required to keep the average response

Figure 6 Average response time vs. number of servers.



Dong et al. Journal of Cloud Computing: Advances, Systems and Applications  (2015) 4:5 Page 10 of 14

Figure 7 Energy vs. number of servers.

time within the bound also increases. This shows the
trade-off between the number of servers and the obtained
response time.
We evaluated the energy consumption of our proposed

MESF scheduling scheme, in function of the number of
servers. Figure 7 shows the amount of energy consumed
versus the number of servers for n = 1000. As the figure
shows, the amount of energy reduces slightly as the num-
ber of servers increases until reaching a bound, M =
{20, 25, 33} for B = {30, 40, 50}, respectively. The simu-
lation results show the proposed MESF scheme achieves
minimum average task response time, which is bounded
by the capacities of the queues, and at the same time,

minimum energy consumption for a given number of
servers,M.
We also modeled and simulated a data center using a

random-based task-scheduling scheme [32] to compare
the performance of the random-based and the MESF
schemes. The random-based task-scheduling scheme
assigns tasks to servers on a random basis and without
constraints, except for available queue at each server, for
task allocation or server selection. We simulated both
schemes using 20 task types (V = 20) and exponen-
tially distributed task arrivals. Here, we consider that the
different types of tasks can be decomposed into a lin-
ear combination of a unit task type. Tasks of the same

Figure 8 Histogram of the total server energy consumption for the MESF and random task-scheduling schemes of a data center.
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Figure 9 Histogram of total task response time for the MESF and random scheduling schemes.

type have the same response time constraint, which is
equivalent to the queueing capacity for each type. To
simplify the comparison, we set the same response time
constraint for all task types in these experiments. We
evaluated 1000 experiments (one experiment is a task allo-
cation trial with a duration of sufficient events to allow the
distribution of the task to complete) for each scheduling
scheme.
Figure 8 presents the histogram of the energy consump-

tion of both schemes. We represent energy consumption
in general energy units (units of power can be converted to
Watts, for instance 1 unit =10W) in the following figures.
The energy savings achieved with the proposed schedul-
ing scheme are between 6 × 105 and 4.7 × 106 energy
units. This is the result of having heterogeneous servers;
servers with different power profile. This histogram shows

the impact on energy consumption by the different task-
scheduling schemes. Specifically, the energy distribution
shows that our proposed scheme consumes less energy
than the random-based scheme. In addition, the distribu-
tion of the random-based scheme presents a distribution
around the mean with large deviations while the MESF
scheme shows a very tight distribution; meaning that
most task and server assignments result in energy sav-
ings. This occurs as the proposed scheme assigns tasks to
the most efficient servers and no new servers are assigned
unless the number of servers may not be enough to serve
tasks on time or else, the server capacity is reached. In
the random-based scheme, servers may be assigned to
a small number of tasks and higher level of parallelism
may be achieved; however, at the cost of higher energy
expenditure.

Figure 10 Histogram of average task response time for the MESF and random scheduling schemes.
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Table 2 Performance comparison of MESF- and
random-scheduling schemes

Task scheduling Average task Total task Total energy
scheme response time response time consumption

(time units) (time units) (energy units)

MESF 472.6 4.83E+05 2.597E+04

Random 123.9 1.33E+05 1.989E+06

Figure 9 shows the histogram of the total (cumula-
tive) task response time for the MESF and random task-
scheduling schemes. We use a generic time unit, which
can be converted to μs, or any other specific unit. The
figure shows that the random-based scheme has a smaller
total task response time than the proposed scheme. This
is expected as the random-based scheme selects a larger
number of servers to process the tasks. The larger devi-
ation in the distribution of the response time for the
proposed scheme may be caused by the queueing dynam-
ics because more tasks are queued for process. The small
deviation for the random-based scheme indicates a small
fluctuation in queue length where the queue occupancy
of a server is small (or zero). The random-based scheme
keeps the response time small but at the expense of
using a large number of servers on active state and there-
fore, a large energy consumption. On the other hand, the
MESF scheduling algorithm uses longer processing time
as the algorithm attempts to use the smallest number of
servers, and in turn, minimizes the amount of energy con-
sumed. More importantly, although not obviously shown
in this figure, the task response time of the proposed
task-scheduling scheme is bounded.

Figure 10 shows the average task response time (total
task response time divided by the number of tasks) and
its histogram for the proposed task-scheduling scheme
and random-based task-scheduling scheme. The average
response times of the two schemes follow similar trends
as in the total response time; the average response time of
the proposed scheme is larger than that achieved by the
random-based scheme. This is because the same number
of tasks is processed by both schemes.
Table 2 summarizes the results of average task response

time, total task response time, and total energy con-
sumption (all in generic units) of the MESF and random
task-scheduling schemes. The total amount of energy con-
sumed by the MESF and random scheduling schemes are
2.597E+04 and 1.98E+06 energy units, respectively. The
energy savings achieved by the MESF scheduling scheme
is over 70 times that of the random task-scheduling
scheme. The cost of achieving these savings is the addi-
tional response time the MESF scheduling scheme takes
(472.6 time units on average) as compared to that of the
random scheduling scheme (123.9 time units on aver-
age). However, the response time of the MESF scheduling
scheme is within the response time constraints.
In addition, we evaluated the average response time,

in function of the number of servers in the data cen-
ter, achieved by both schemes. Again, task arrivals are
exponentially distributed, with a mean of 1000 tasks, and
server capacity is capped to, B = 40. Figure 11 shows
the average task response time of both schemes. As for
the random scheduling scheme, the average task response
time decreases as the number of servers increases, until
the ratio between servers and task becomes 1:1 (one
task per server), for which the number of servers, and

Figure 11 Average task response time vs. number of servers.



Dong et al. Journal of Cloud Computing: Advances, Systems and Applications  (2015) 4:5 Page 13 of 14

therefore, the energy consumption are too large. On
the other hand, the average response time of the MESF
scheduling scheme decreases as the number of servers
increases. Once the number of servers reaches the opti-
mum number, tasks are handled within the constrained
task response time. In this case, increasing the num-
ber of servers beyond the optimum number provides
no additional benefit. Therefore, turning off unnecessary
servers reduces energy consumption. On the other hand,
the larger number of servers used by the random-based
scheme results in larger energy consumption and resource
over-provisioning.

Conclusions
In this paper, we formulated the task assignment for
a data center as an integer programming optimization
problem and proved the average task response time is
bounded with an optimized number of active servers.
We proposed a greedy task-scheduling scheme, the most-
efficient-server-first scheduling, to reduce energy con-
sumption of data center servers. The proposed MESF
scheduling scheme schedules tasks to the most energy-
efficient servers of a data center. This scheme minimizes
the average task response time and, at the same time, min-
imizes the server-related energy expenditure. We showed
that the system using MESF is weakly stable under i.i.d.
task arrivals with an exponential distribution. We eval-
uated and compared the performance of the proposed
scheme with that of a random-based task-scheduling
scheme using Matlab simulation. Our simulation results
show that a data center using the proposed MESF task-
scheduling scheme saves on average over 70 times that
of a data center using a random-based task-scheduling
scheme. The proposed scheme saves energy at the cost
of longer task response times, albeit within the maximum
constraint.
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