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Abstract

Linear algebra plays an important role in computer science, especially in cryptography. Numerous cryptographic
protocols and scientific computations are based on linear algebra, which can be reduced to some core problems,
such as matrix multiplication, determinant and the characteristic polynomial of a matrix. However, it is difficult to carry
out these expensive computations independently for resource-limited cloud users. Outsourced computation, a
service provided by cloud computing, enables a resources-constrained client to outsource his mass computing tasks
to the cloud. In this paper, we use data hiding technique to design a secure and verifiable outsourcing protocol for
computing the characteristic polynomial and eigenvalues of a matrix. Our protocols achieve several desired features,
such as data privacy, verifiability and efficiency. Moreover, no cryptographic assumption is needed in our protocols.
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Introduction

Secure outsourced computation

Outsourced computation, an important service provided
by cloud computing, has become more and more pop-
ular. In the context of outsourced computation, compu-
tationally weak clients (or devices) can outsource their
computation and data to a server in the cloud. While
this approach has numerous advantages in cost and func-
tionality, it is crucial that the outsourcing mechanism
compromises the privacy of the outsourced data and the
integrity of the computation, since the server in the cloud
may not be fully-trusted. The ultimate goal in secure out-
sourced computation is to design protocols that minimize
the computational cost of the clients, and maintain the
confidentiality and integrity of its data.

Generally, an outsourcing protocol is correct if the final
outputs for client are valid. An outsourcing protocol is pri-
vate if it is done without revealing to the external server
either the actual data or the actual answer to the com-
putation. An outsourcing protocol is verifiable if the final
outputs received from cloud server can be verified by

*Correspondence: ctang@gzhu.edu.cn

2School of Mathematics and Information Science, Guangzhou University,
510006 Guangzhou, China

Full list of author information is available at the end of the article

@ Springer

client. An outsourcing protocol is efficient if the computa-
tional work invested by client is substantially smaller than
running the computation by itself, otherwise, the client
could carry out the computation itself without putting
confidentiality and integrity of its data at risk.

Outsourced computation model

Our outsourcing protocols involve two different entities:
a cloud client and an untrusted cloud server. The client
has many expensive matrix calculation tasks that exceed
his computational abilities. So, all the tasks are outsourced
to the cloud server, which has significant computation
resources to perform expensive matrix calculations.

To achieve input/output privacy, the key idea is that
some local preprocessing should be done on the original
problem and/or data before sending it to the cloud server,
and also the client needs to do some local post-processing
on the answer received from the cloud server to recover
the true answer. More specifically, in our model, instead
of directly sending original problem ¢ , we use some dis-
guising techniques to transform original problem ¢ into a
random problem ¢ , then outsource problem ¢ to a cloud
server. The server then conducts computation to get the
answer of ¢ and provides a proof that the evaluation has
been carried out correctly, but it cannot derive anything
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of the sensitive information contained in ¢ from the dis-
guised problem ¢ . After receiving the solution of ¢ from
the server, the client should be able to verify the validity of
the answer via the appended proof. If it’s valid, he recovers
the desired answer for the original problem ¢.

The security threats we faces are mainly from the dis-
honesty of the cloud server, which can be divided into
semi-honest and malicious. A semi-honest cloud server
corrupted by an adversary follows the protocol with the
exception that it keeps recodes of all its intermediate
results, he wishes to learn more sensitive information than
he should obtain from the running of the protocol. If the
cloud server is maliciously corrupted, then he can deviate
from the protocol’s description, he also can tamper with
the correct data to make the honest client calculate the
wrong output as well, even suspend (or abort) the execu-
tion in any desired point in time. In this paper, we assume
that the cloud server is malicious.

Outsourcing protocols for some linear algebra problems
with the following properties are to be designed:

e Correctness Any cloud server that faithfully follows
the mechanism must produce an valid output.

¢ Soundness No cloud server can generate an
incorrect output that can be verified successfully by
client with non-negligible probability.

¢ Input/output privacy No sensitive information from
client’s private data can be derived by cloud server
during performing the computation.

e Verifiability The protocol should allow client to
verify the correctness of results received from an
honest server with non-negligible probability, and
also to detect the wrong results received from a
dishonest server with non-negligible probability.

e Efficiency The computational work invested by the
client is substantially smaller than running the
computation by itself.

Our contributions

In this paper, we focus on the question of how to securely
outsource the characteristic polynomial and eigenvalues
of a matrix to an untrusted server in the cloud. More
specifically, we provide the first efficiently and verifiably
secure outsourcing protocol for the computation of the
characteristic polynomial and eigenvalues by using dis-
guising technology. In contrast to most earlier works, our
protocols achieve several desired features, such as pri-
vacy, verifiability and efficiency, and no cryptographic
assumption is needed in our protocols.

Related work

In 2009, Gentry [1] firstly constructed fully homomorphic
encryption scheme based on ideal lattice theory, which
is a significant work. Efficiently and verifiably secure
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outsourced computation can be constructed for any func-
tion if efficiently fully homomorphic encryption scheme
exists. However, it is impossible to construct efficiently
fully homomorphic encryption scheme in recent years.
Some improved fully homomorphic encryption schemes
were proposed [2-8], which are far away from practically
fully homomorphic encryption scheme. In 2010, Gentry
[2] provided a key generation algorithm for Gentry’s
scheme over ideal lattices in the worst-case. Van et al. [3]
described a very simple somewhat homomorphic encryp-
tion scheme and convert it into a fully homomorphic
scheme. Smart and Vercauteren [4] described a variant
of Gentry’s scheme which has smaller key size, and can
be described without resorting to lattices. Stehlé and
Steinfeld [5] described two improvements to Gentry’s fully
homomorphic scheme based on ideal lattices and its anal-
ysis. In 2011, Brakerski and Vaikuntanathan [6] presented
a somewhat homomorphic encryption scheme and trans-
form it into a fully homomorphic encryption scheme.
In 2013, Lyubashevsky et al. [7] resolved an open ques-
tion about LWE and its applications which have served
as the foundation for cryptographic applications. In 2014,
Brakerski and Vaikuntanathan [8] presented a leveled fully
homomorphic encryption scheme that is based solely on
the (standard) learning with errors (LWE) assumption.

In 2007, Kiltz et al. [9] presented secure two-party pro-
tocols for various core problems in linear algebra, such
as computing the determinant and minimal polynomial
of a matrix. Their protocols were based on an algorithm
by Wiedemann for “black-box linear algebra” [10] which
was efficient when applied to sparse matrices. Their tech-
niques exploited certain nice mathematical properties of
linearly recurrent sequences and their relation to the min-
imal and characteristic polynomial of the input matrix.
Nevertheless, their constructions were secure under the
assumption of the existence of a homomorphic public-key
encryption scheme and a secure instantiation of Yao’s gar-
bled circuit protocol. And their protocol for computing
determinant and the minimal polynomial of an encrypted
matrix needs O(#? log nlog |F|) communication complex-
ity and O(log n) rounds respectively.

In 2008, Benjamin and Atallah [11] proposed verifiably
outsourced computation protocol for expensive linear
algebraic computation by using a homomorphic semanti-
cally secure encryption system. However, their design is
built on the assumption of two non-colluding servers and
thus vulnerable to colluding attacks. In their protocols, the
computation cost for client is O(#%) , where 7 is the size of
the input matrix. Two years later, based on Shamir’s secret
sharing scheme, Atallah et al. [12] constructed a verifiably
outsourced computation protocol for matrix multiplica-
tion, which only needs one un-trusted cloud server. In
their protocols, the computation cost for client is O(t>n?),
where n is the size of matrix and ¢ is the threshold in
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Shamir’s secret sharing scheme. Based on Yao’s Garbled
Circuits and fully homomorphic encryption scheme, ver-
ifiably non-interactive outsourced computation for any
function was proposed in [13], however, client needs to
do an expensive preprocessing stage, and his computa-
tion complexity is related to the size of the Boolean circuit
representing function .

To construct outsourced computation protocol for solv-
ing linear equation Ax = b, C. Wang et al. [14] realized
it by using iteration from Jacobi method and additive
homomorphic encryption with semantic security. In their
protocols, the computation complexity for client is O(n) ,
however, their solutions are approximate and the input
matrix A is constrained. In 2011, Mohassel [15] designed
non-interactive and secure protocols for delegating matrix
multiplication, based on a number of encryption schemes
with limited homomorphic properties where the client
only needs to perform O(#?) work. But their verification
algorithm works correctly with an all but negligible prob-
ability in k , the probability is over the random coins of the
verification algorithm (see section4.2 in [15]).

In 2012, Fiore and Gennaro [16] presented a new pro-
tocol for publicly verifiable secure outsourcing of matrix
multiplication. Their scheme was in the amortized model
[13], in which the client invests a one-time expensive com-
putation phase when storing a large matrix with the server,
which was used to make the verification of matrix multi-
plication fast. However, their design was built upon some
cryptographic assumptions, such as the co-CDH assump-
tion and the Decision Linear assumption. And their result
also relied on the use of pseudo-random functions with
closed-form efficiency and bilinear maps.

In 2013, Jin et al. [17] proposed an efficient parallel algo-
rithm to compute the eigenvalue and feature vector of
matrix under cloud computing environment. When com-
puting eigenvectors, store the Laplacian matrix on the
distributed file system HDFS, use distributed Lanczos to
compute and get the eigenvectors by parallel computa-
tion. The time complexity of parallel computation front k
eigenvector(s) is O(KL?” + k*n), in which L% is the time
that Laplace matrix multiplies a vector.

In 2013, Huang et al. [18] suggested a framework for
integrating various trust mechanisms together to reveal
chains of trust in the cloud. However, in present prac-
tice, individual users may not fully regard a cloud service
provider or cloud server as trust assistant, the privacy and
verifiability are still critical aspects of cloud computing.

Another important way to construct secure outsourc-
ing protocols is to use mathematical disguise (or blind-
ing) methods. In 2002, Atallah et al. [19] investigated
the outsourcing of numerical and scientific computations.
Their schemes applied disguise techniques to science
computational problems, which guaranteed the data secu-
rity and privacy. But they did not handle the important
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case of verification of validity of final result. In 2005,
Hohenberger et al. [20] presented practical outsource-
secure scheme for modular exponentiation where the
honest party may use two exponentiation programs. The
exponentiation programs were un-trusted and cannot
communicate with each other, after deciding on an ini-
tial strategy. In 2013, several new methods of secure
outsourcing of numerical and scientific computations
were proposed by Seitkulov [21]. They presented differ-
ent methods of finding approximate solutions to some
equations solved by an external computer. Most of their
methods are verifiable.

In 2013, several verifiable and secure outsourcing pro-
tocols for matrix multiplication and matrix inversion were
proposed in [22]. These protocols used disguising matrix
to tackle privacy-preserving problem.

Preliminaries
In this section, we give a brief review of the secure out-
sourcing protocol MP introduced by Hu et al. [22].
Without loss of generality, we use the notation a;; to rep-
resent the element in the (i, ) position of a matrix A. The
notation F; denotes a finite field which has g elements,
and F;*" denotes the set of n x n matrices over F;. The
elementary matrix E(i, j(k)) is the identity matrix / but
with a randomly chose k € F; in the (i, /) position. In what
follows, we also use &y, to denote the Kronecker delta
function that equals 1 if x = y and 0 if x # y.

Review of the secure outsourcing protocol MP
The verifiable and secure outsourcing protocol MP for
matrix multiplication [22] is reviewed as below.

Let My, My € Fj™" be two matrices. Suppose a client
wants to obtain M;M>. The cloud server is not allowed to
learn any sensitive information such as the input matrices,
the actual output. This protocol proceeds as follows:

Step 1 The client generates a secret value for verification.
He randomly picks two vectors (a,,, . . .,a,,) and
(b1js . .., byj)T , which corresponding to the i-th
row of M; and the j-th column of M respectively,
to computes the secret value ¢ = ) 1 a,b,.

Step 2 The client proceeds with the following sub-steps:

(a) Generates six private random
permutations 7y, . . ., e,
where; € {1,...,n},i=1,2,...,6.
(b) Randomly picks 67 non-zero

numbers {ﬂl, s ﬁa}’l}r {bl, ) bn}r
{Cl! ... 7Cn}, {dl, e ,dn}, {61, ey e}’l};
{fi;....fu} from F.

(c) Generates six matrices Py, . . ., Pg

where P1(i,)) = @ibx, (i,
P;(i,j) = bi8n2(i):/’ P3(i,)) = Ciang(i)’j,
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Py(i,)) = dibny)js Ps(is]) = €ibrsiy jo
Pg(i, ) = fi0re(i),j- These matrices are
readily invertible, e.g. Py (i, /) = 61;18”1—1 O

Step 3 The client computes 4 matrices
X = P1M1P£1, Y = P2M2P_1,

Xy = P4M1P§1, Y, = P5M2Pgl.

and then sends to the server two
pairs (X1, Y1) and (X3, Y2).
Step 4 The sever computes Z; = X1Y1, Zy = XpYs and
return the computed output (Z1, Zy) to the client.
Step 5 The client recover the result by
computing T7 = PI1Z1P3 and Ty = P;IZQP(,.
Step 6 After recovering, the client needs to verify the
result T7 and T5. That is,
if T1 = T2 and Tk(i,j) =cC (k = 1,2) hold
simultaneously, which means the server is honest,
the client obtain the correct
output P;' Z; P3 which actually equals to M1 My,
otherwise, the client refuses the received outputs
and aborts.

Remark. The server gains no information about the
input/output matrix during the execution of the protocol.
Moreover, because the matrix Py(t = 1,...,6) is special,
which has only n elements rather than the matrix com-
puted by the server which has n® elements, the computation
time in the client side is less than the computing time in
the cloud side. Recall that in [22], the protocol MP has
been proved to be an efficient and verifiable outsource-
secure implementation of matrix multiplication in the
single cloud server model.

Our proposed protocol

For a n x n matrix A, the computation cost for a client
to compute the characteristic polynomial f4 (1) of A inde-
pendently is proportional to #*, and the cost for eigen-
values is at lease O(#%). If n is large (e.g. n > 4), it is
more difficult for the client to compute the solutions of
fa(X) = 0 independently.

We are now ready to describe our scheme. The verifiable
and secure outsourcing protocol we proposed to compute
the characteristic polynomial and eigenvalues of matrix
works as follows. Because the probability of the real ran-
dom matrix being nonsingular is 1(see Corollary 1.1 in
[23]), so we assume that all eigenvalues of a matrix are
nonzero.

Problem ME: let A € Fj*" be a private matrix. Suppose
a client needs to calculate the characteristic polynomial
of A and its eigenvalues with the help of an un-trusted
cloud server without revealing any private information,
such as the input matrix, the actual output.

Protocol ME: The outsourcing protocol ME proceeded
as follows:
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Step 1 The client randomly picks a secret
number r € F; and then computes A} =rA .
Step2 Foreachie {j,...,n}, the client picks a random
number 1 <j < n,j # i, and then computes a
matrix B(A) = L(A; — Al),
where L = [/, E(i,j(1)) . Obviously, L is readily
invertible.
Step 3 The client randomly picks a secret
number 1 < i < n, then divides each
element b;(1) in the i-th row (or the i-th column)
of B(A) tom (1 < m < n — 2) random pieces. So,
the client has |[B(A)| = [Bi(M)| + - - - + |Bu ()] .
Step 4 The client randomly picks two secret
numbers 1 < i,j < n,i # j, then involves the
protocol MP to obtain B;(%) - Bj(A) , which
denoted by By, +1(A) .
Step 5 The client hides matrices B(1) and B;(A)
(i =1,...m+ 1) by the following sub-steps:

(a) Generates 2m + 4 matrices Py, ..., Pyy14.
Prisanx nmatrixforallk =1,...2m+4,
and Py (i,)) = afa,,k<,-),,«, where
wx € {1,...,n} are random permutations,
and {4}, ..., ay,} are random numbers
over Fy. Let P = {P1,. .., Panya).

(b) Foreach 0 <s < m + 1, the client picks
two matrices Pj, P, € P from P,
sets Py = Pj, P, = P} and Bo() = B(}),
then computes
matrices Cg(1) = P;Bs(1)P;. Note that for
each Bg(}) , the disguising matrix
set {P}, P} is different from each other.

(c) The client sends Cy(R), ..., Cpt1(2) to the
server. Note that the sending order of
these matrices Cg()) is random.

Step 6 The server computes |Co(A)], ..., |Cpy1(X)] and
solves |Cs(A)] =0 foreachO <s<m+ 1.
Let A* = (A%,...,AS) be the root vector
of |Cs(A)| = 0. Then the server
return m + 2 two-tuples (|Cs(1)], A®) to the client.
Step 7 After receiving the result from the server, the
client checks the following three equalities:

ICo)| < 1G]

R~ m .
G0l _ GO IGHRIT o
LA A N S T4 A
[T(-=%) =1l 3)
j=1

If the above three equalities hold simultaneously,
the client gets |A; — AE| = |B(A)] from |Co(1)].
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Otherwise, the client refuses all answers and
aborts.

Step 8 Let gg(r) = |B(A)|, the client computes the
characteristic polynomial f4 (A) = %n gp(rA), and
the corresponding eigenvalues )\7 = %)»]Q

G=1,...,n).

Theorem 1. In the single server model, protocol ME is a
verifiable outsource-secure computation of the character-
istic polynomial of a matrix.

Proof. e Correctness: The correctness property is
straight-forward. Obviously, the server’s output can
be accepted successfully by the client if it is honest.

¢ Soundness: The server may act dishonestly in two
ways. He may return some randomly chosen values
instead of |Co(X)], . . ., |Cypr1(X)| or the real root
vector. In the above two cases, it is infeasible for the
server to satisfy the three verification equalities
simultaneously in step7. The server can pass the
verification with the probability at
most (ﬁ) (#ﬂ) (é) ({%,,) That is, any
incorrect output generated by the server can be
detected successfully by the client with
non-negligible probability.

¢ Input/output privacy: The outsourcing protocol
ME does not disclose the input matrix and the real
result. For one thing, the client conducts a
pre-disguising in stepl and step2, so the real
eigenvalues and all the elements of the input
matrix A (including the zero elements) are effectually
hidden. For another, the second-round disguising has
been done in step5. If an attacker wants to deriver
any Bs(A) from Cg()) , he has to guess two
permutations (from the (n!)? possible such choices)
and 2# random numbers before he can determine
a Bg(1) . That is, for each permutation, the probability
is % , and for each random number, the probability
is % , so the total probability for the attacker to obtain

n! q"

e Verifiability: Assume that the server is corrupted by
a PPT adversary, who wants to cheat the client
without being caught. He wants to use some wrong
data to make the three equalities hold simultaneously.
However, to make equality (1) and (2) hold
simultaneously, he has to find out the correct
[CoM)], IC(M, 1G] and | Cruy1 (M)] from m + 2
values [Co(A)], . . ., |Cmt1(X)| and properly picks m
numbers o (s = 1,...,m) from F;. Hence, the
chance of the server successfully pass equality (1) and

(2) is at most (%ﬁ) (m#_ﬂ) (é) (qi,,,) Moreover,
if the attacker returns to the client a randomly chosen

2
a correct By(2) is (2 )2 (i) , which is negligible.
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vector instead of the right one, it is infeasible for him
to make equality (3) hold for the reason that the
probability of |Co(A)| found
from |Co(M)|, ..., |Cpr1(M)] is %ﬂ . Therefore, the
server’s dishonest behavior can be caught by the
client with non-negligible probability.

O

Theorem 2. In the single server model, the protocol ME is
efficient.

Proof. The protocol ME achieves not only privacy but
also efficiency. In the presented protocol, a client requires
only O(n?) multiplications to compute the characteristic
polynomial and eigenvalues. Concretely, the disguise con-
ducted in stepl requires O(#%) local computation, while
in step2 incurs close-to-zero additional cost on the client
side. To hide matrices B(A) and B;(A) (i = 1,...,m +
1) in step5, the client needs O((m + 2)n2) local com-
putation, which could be small if we choose m (1 <
m < n — 2) properly. In the verification phase (i.e. step7),
the client also needs O(n?) local computation to verify

equality ]_[;’:1 (A - A?) = |Cp(A)]. In addition, the secure
outsourcing protocol MP is involved to obtain B,,1(})
which requires O(1?) local computation in [22]. O

Conclusion and future directions

In this paper, we presented an efficient protocol for
resource-limited cloud users to securely outsource the
computation of characteristic polynomial and eigenval-
ues of matrix under cloud computing environment. In
comparison, the issues studied in this paper focus on
the desired features of outsourcing protocols, including
privacy, verifiability and efficiency, which are critical to
the availability but yet to be thoroughly studied. We also
analyzed and proved the security and efficiency of our
protocol in our outsourced model.

Our work leaves an open interesting problem. In this
work, we design protocol for matrix whose elements are
over finite field F,;. In the case that the entries are over real
number field R, not every element in R is integer. So, it
would be interesting to develop a verifiable computation
protocol over real number field R.
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