
Snyder et al. Journal of Cloud Computing: Advances, Systems and
Applications  (2015) 4:11 
DOI 10.1186/s13677-015-0036-6

RESEARCH Open Access

Evaluation and design of highly reliable and
highly utilized cloud computing systems
Brett Snyder1, Jordan Ringenberg3, Robert Green2*, Vijay Devabhaktuni1 and Mansoor Alam1

Abstract

Cloud computing paradigm has ushered in the need to provide resources to users in a scalable, flexible, and
transparent fashion much like any other utility. This has led to a need for developing evaluation techniques that can
provide quantitative measures of reliability of a cloud computing system (CCS) for efficient planning and expansion.
This paper presents a new, scalable algorithm based on non-sequential Monte Carlo Simulation (MCS) to evaluate
large scale cloud computing system (CCS) reliability, and it develops appropriate performance measures. Also, a new
iterative algorithm is proposed and developed that leverages the MCS method for the design of highly reliable and
highly utilized CCSs. The combination of these two algorithms allows CCSs to be evaluated by providers and users
alike, providing a new method for estimating the parameters of service level agreements (SLAs) and designing CCSs
to match those contractual requirements posed in SLAs. Results demonstrate that the proposed methods are
effective and applicable to systems at a large scale. Multiple insights are also provided into the nature of CCS reliability
and CCS design.
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Introduction
Cloud computing provides a cost-effectivemeans of trans-
parently providing scalable computing resources to match
the needs of individual and corporate consumers. Despite
the heavy reliance of society on this new technological
paradigm, failure and inaccessibility are quickly becom-
ing a major issue. Current reports state that up to $ 285
million yearly have been lost due to such failures with
an average of 7.74 hours of unavailability per service per
year (about 99.91 % availability) [1–3]. Despite these out-
ages, rapid adoption of cloud computing has continued for
the mission-critical aspects of the private and public sec-
tors, particularly due to the fact that industrial partners
are unaware of this issue [2, 3]. This is particularly discon-
certing considering President Obama’s $ 20 billion dollar
Federal Cloud Computing Strategy and the rapid migra-
tion of government organizations like NASA, the Army,
the Federal Treasury, Alcohol, Tobacco, and Firearms, the
Government Service agency, the Department of Defense,
and the Federal Risk and Authorization Management
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Program to cloud based IT services [4, 5]. Furthermore,
companies such as Netflix, IBM, Google, and Yahoo are
heavily investing in cloud computing research and infras-
tructure to enhance the reliability, availability, and security
of their own cloud based services [6–8].
Thus, from the user’s perspective, there is a great need

to build a highly available and highly reliable cloud. While
cloud providers feel the necessity to provide not only
high levels of availability and reliability to meet quality-of-
service (QoS) requirements and service level agreements
(SLAs), but also desire to build a highly utilized sys-
tem, with hopes of leading to higher profitability. Under
these considerations, the balance between maximal uti-
lization of a cloud computing system’s (CCS’s) resources
is in direct conflict with the cloud user’s interest of high
reliability and availability. In other words, the provider is
willing to allow a degradation in reliability as long as their
profitability continues as, in reality, it is the user, not the
provider, that pays the economic consequences of cloud
failures. Note that from a user-based, SLA driven perspec-
tive, reliability refers to the ability of the cloud to serve
the user’s need over some time period and does not refer
to simple failures within a CCS that do not hinder user
service.
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This need to provide a highly reliable, uninterrupted
cloud service while effectively utilizing all available
resources is highly desired by cloud providers/users and
clearly demonstrates a gap in current CCS research, call-
ing for the establishment of efficient methods which can
quantitatively evaluate and design CCSs based on the
competing needs of users (reliability) and providers (uti-
lization). As such, the goal of this study is the design
and evaluation of CCSs considering stochastic failures
in the CCS as well as stochastic virtual machine (VM)
requests.
In order to achieve this goal, this study makes mul-

tiple contributions including 1) Developing a compu-
tationally efficient method for evaluating the reliability
of CCSs using non-sequential Monte Carlo simulation
(MCS) considering stochastic hardware failures and VM
requests, 2) Extending this new model in order to design
highly reliable and utilized CCSs based on potential work-
loads, and 3) Discussing the practical implications of
the proposed technique. As opposed to most previous
work, the proposed method 1) Focuses on simulation-
based analysis, 2) Is highly scalable due to the use of
MCS, and 3) Uses a newly developed, intuitive system
representation.
The remainder of this paper is organized as fol-

lows: Section “Related works” reviews background lit-
erature that is pertinent to the proposed methodology;
Section “Proposed methodologies” presents the the newly
proposed application of non-sequential MCS, its formu-
lation for assessing the reliability of a CCS, and its use
in a new, iterative algorithm for designing highly reli-
able and highly utilized CCSs; Section “Experimental
results” details the experimental results achieved includ-
ing CCS test systems designed and evaluated using the
proposed methods; Section “Discussion” presents a dis-
cussion and comments on using non-sequential MCS
as a tool for CCS reliability assessment and the role of
this technology in SLAs. Insights gathered during CCS
reliability assessments and CCS design are also given
in Section “Practical implications”; and, finally, Section
“Conclusion” concludes the paper with a summary as well
as directions for future work.

Related works
Cloud computing reliability
Many works reference the terms reliability and avail-
ability when focused on CCSs. Though, in most cases,
the terms refer to increasing system stability through
active management [9] or redundancy [10, 11]. While
these works begin to lay a strong foundation in this
area, they also expose certain gaps in knowledge. Most
of these works tend to evaluate either some aspect of
QoS or the impact of hardware failures. Many of the ini-
tial works focus on the use of Markov chains [12–16],

as a CCS is effectively a complex network availabil-
ity problem. Other works focus on conceptual issues
[17–19], hierarchical graphs [20], the use of grid com-
puting for dynamic scalability in the cloud [21], and
priority graphs [22], or the development of performance
indices [23].
When considering QoS, one of the largest bodies of

work has been completed by Lin and Chang [24–29].
These works develop a sequential and systematic method-
ology based on capacitive flow networks for maintaining
the QoS of a CCS with an integrated maintenance budget.
The main focus of the model is maintaining acceptable
transmission times between clients and providers given
a certain budget. The work developed in [30] presents a
hierarchical method for evaluating availability of a CCS
that is focused on the response time of user requests
for resources. The majority of the work deals with VM
failure rates, bandwidth bottlenecks, response time, and
latency issues. The demonstrated solutions to these issues
are the use of their newly developed architecture along
with request redirection. A similar, though only concep-
tual approach, is developed in [31, 32] where a Fault
Tolerance Manager (FTM) is developed and inserted
between System and Application layers of the CCS.
Another approach to this issue is an optimal checkpoint-
ing strategy that is used to ensure the availability of a
given system [33, 34]. Other methods of approaching fault
tolerance from a middleware perspective can be found
in [20, 35].
While the previous works have dealt mainly with the

modeling of user requests and data transmission, another
important aspect of system failure in a CCS is the failure
of hardware. The state-of-the-art in this area is embod-
ied in five main works that focus on evaluating data
logs from multiple data centers and/or consumer PCs.
The evaluation of these logs begins in [36] where hard-
ware failures of multiple data centers are examined to
determine explicit rates of failure for different compo-
nents — namely disks, CPUs, memory, and RAID con-
trollers. The most important finding of this paper is
that the largest source of failure in such data centers is
disk failure. Intermittent hardware errors are evaluated
in [37].
This work continues in [38] where failures in CPU,

DRAM, and disks in consumer PCs are evaluated. Spe-
cial attention is paid to recurring faults as the work
suggests that once a PC component fails, it is much
more likely to fail again. The paper also examines fail-
ures that are not always noticeable to an end-user, such
as 1-bit failures in DRAM. A thorough evaluation of
failures and reliability at all levels of the CCS is found
in [39].
Instead of focusing on internal hardware failures, Gill

et al. focus on network failures in data centers [40, 41].
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These studies conclude that 1) Data center networks
are highly reliable, 2) Switches are highly reliable, 3)
Load balancers most often experience faults due to
software failures, 4) Network failures typically cause
small failures that lose a large number of smaller pack-
ets, and 5) Redundancy is useful, but not a perfect
solution.
An interesting companion to the study of hardware fail-

ures is the large scale performance study performed in
[42]. While this study does not explicitly focus on fail-
ures or reliability, it does provide a thorough analysis of
resource utilization and general workloads in data centers.
The work evaluates the utilization of various hardware
pieces including CPUs, memory, disks, and entire file
systems.

Monte Carlo simulation
MCS is a stochastic simulation tool which is often used to
evaluate complex systems as it remains tractable regard-
less of dimensionality. The MCS algorithm comes in two
varieties: non-sequential and sequential. Sequential MCS
is typically used to evaluate complex systems that require
some aspect of time dependence. Because of this, this
variant of the algorithm requires more computational
overhead and takes longer to converge. Non-sequential-
MCS (referred to as MCS for the remainder of this study)
exhibits a higher computational efficiency than sequential
MCS. The downside of the non-sequential MCS algo-
rithm is that the rate at which convergence time typically
increases with problem dimensionality or system size.
Also note that the rate of convergence for MCS is 1/

√
N

where N is the number of samples drawn. This means
that convergence does not depend upon dimensional-
ity, allowing MCS to handle problems with a large state
space. While this can become an issue, it is easily han-
dled as the MCS algorithm is highly parallel and, in the
case of long running simulation requirements, may be
easily parallelized in order to quickly simulate complex
systems.
The general non-sequential MCS algorithm used for

evaluating a CCS in this study is shown in Fig. 1. As the

general operation of the MCS requires the repeated sam-
pling of a state space and the evaluation of those states
sampled, all four steps of the MCS algorithm (sampling,
classification, calculation, and convergence) are depen-
dent on an efficient representation of individual states.
This representation as well as further details regarding the
implementation of MCS in this study are detailed in the
following section.

Proposedmethodologies
This section presents a review of the non-sequential MCS
algorithm in a formulation applicable to CCS reliability
evaluation. While this formulation is focused on evaluat-
ing the reliability of a CCS, this same algorithm can be
used to 1) Evaluate the reliability of an already existing
CCS under various loads (or, potentially in real-time) and
2) Design a CCS with a high level of reliability that is also
highly utilized. As such, this section also presents an itera-
tive algorithm for the design of a highly reliable and highly
utilized CCS.
Such a simulation-based technique is required because,

when hardware resources are considered, it is impor-
tant to look beyond a simple calculations that determine
whether or not enough resources are available. A more
complex issue is calculating the amount of resources
required in light of the stochastic failure rates of hard-
ware resources in the system as coupled with varying user
requests for VMs. In such a case, onemust look at the state
of the system across multiple “snapshots” of existence in
order to ensure that enough resources will be available to
handle the workload, even when some portion of hard-
ware fails or general usage increases. Non-sequentialMCS
allows for such an analysis.

System evaluation using MCS
As described in the previous section, the MCS algorithm
is highly dependent on an efficient method for state rep-
resentation in order to achieve convergence through the
iterative process of sampling a state, classifying a state,
performing any necessary calculations, and then checking

Fig. 1 General MCS algorithm. The generic algorithm used for evaluating system reliability. Note that the “Classify Sampled State” and “Perform
Calculations” steps are modified in any implementation
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convergence. Each of these algorithmic steps are dis-
cussed in the subsections below. As the study is focused
on evaluating and designing systems with a high level of
reliability (the probability of the system functioning dur-
ing some time period, t) from a user-based perspective,
throughout this work the assumption is maintained that
the system is measured and evaluated while in use. In
other words, unallocated resources and their failures are
not considered.
The following sections describe the state representa-

tion used in the MCS algorithms as well as each stage of
the MCS algorithm used in this study (sampling, classi-
fication, and determining convergence). According to the
process defined in Fig. 1, the MCS algorithm will use
the state representation to repeatedly sample the state
space, classify each sampled state, and then determine
convergence based on these details.

State representation
In this study, we consider the modeling of a single server
that exists inside of a CCS. Such a server can be repre-
sented as an Y -bit bit field, X, where Y is the number of
resource types being considered. Using a bit field repre-
sentation is not a new concept as it is commonly used
in a variety of disciplines and problem formulations, but
the authors are unaware of any use of this methodology
to represent CCSs. In the proposed representation, each
bit represents the state of a resource; a “1” denotes an
up/functioning state and a “0” a down/failed state. This
type of state is depicted in Fig. 2. Furthering this rep-
resentation, the state of a single server can be distilled
to a single bit according to (1) where S is a single state
with I resources each represented as Xi. This method-
ology results in an entire CCS may be represented as
a binary vector with each bit representing the state of
a single server, either failed — 0 — or functioning —
1. Since each server can take on 2 possible states, the
entire state space will consist of 2N states, where N is
the total number of servers. Again, this provides a highly
expandable framework for representing and evaluating

very large CCSs (i.e. adding a single bit to the binary
CCS vector for each additional server). This state repre-
sentation scheme is highly advantageous, allowing for a
high level of customization and extensibility, leading to
an array of variations that should be able to model all
available cloud computing service types (i.e. IaaS, SaaS,
PaaS, etc.). The only change for considering an addi-
tional resource type is appending an extra bit to each
server’s binary state string as represented by a binary
number. For example, if there was a need to extend this
model to include a network interface card (NIC) on each
server, the bit representation could simply be extended
by a single digit. This could be done for any variety of
resources.
One objection that may be raised to this methodol-

ogy is the lack of inclusion regarding partially failed,
de-rated, or grey states. Such states do play an impor-
tant role, particularly when considering specific resources.
For example, portions of a hard drive may be marked
as damaged or unusable and, thus, excluded from total
resources available. Though, as the state model is highly
malleable, de-rated states may be included through
the inclusion of a three-or-more state model where
the 0/1 model currently suggested is replaced by a
0/1/2 model where zero represents a completely failed
resource, one represents a derated resource, and two rep-
resents a fully functioning resource. For the purposes
of this research, such an extension is left for future
work.
For the simulations performed in this study, servers

are considered as consisting of CPU, memory, hard disk
drive (HDD), and bandwidth resources or P, M, H , and
B respectively. Thus, the state of a single server is rep-
resented as a 4-bit, bit field (e.g. a state of 1101 repre-
sents a server with CPU, memory, and bandwidth in up
states and the HDD in a failed state). This state clearly
represents the IaaS model of cloud computing (provid-
ing requested infrastructure resources) and is chosen as
IaaS is the foundation for other types of services (i.e.
SaaS is built upon PaaS which is, in turn, built upon
IaaS). Accordingly, this state space representation may be

Fig. 2MCS state representation. An example showing the states of two, individual servers. The server on the left has failed while the server on the
right has not failed
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expanded to encompass resources specific to each of these
models.

S =
I∏

i=1
Xi (1)

Sampling
In order to effectively sample a state from a given state
space, a uniform distribution, u, is used. Since the relia-
bility of a device is exponentially distributed according to
its annual failure rate (AFR), each uniformly distributed
number is transformed into an exponentially distributed
number. Thus, ui is transformed into an exponentially dis-
tributed random number, ri, using the well-known inver-
sion method, according to (2). An AFR represents the
estimated probability that a device will fail during a full
year of use. In this study, all AFR values are derived from
the work found in [36–42].
The binary state string, X, is constructed by generat-

ing a series of random values that are compared to each
resource’s AFR. Specifically, the value of any given loca-
tion in the state string will be determined by comparing ri
to the AFR of resource i according to (3).

ri = −ln(1 − ui)/AFRi (2)

Xi =
{
0 ri ≤ AFRi
1 otherwise (3)

Note that AFR is a simplistic measure of system avail-
ability in contrast to a more robust measure like forced
outage rate (FOR). This is because AFR does not take into
account the combination of failure and repair rates that a
measure like FOR encompasses. As this is an exploratory
study, the authors chose AFR rather than the FOR due
to the lack of accurate repair and failure rates for CPUs,
HDDs, memory, etc.

State classification
The state classification step of MCS relies on a straight-
forward comparison of the resources requested and
resources available as a measure of system adequacy.
Thus, a state will be sampled and the provided resources
are compared to those available. For the system to ade-
quately supply the needed resources the relation in (4)
must hold for each individual CCS resource as defined
below.

Yrequested ≤ Yavailable (4)

When a CCS supplies more resources than are
requested the system will be in a functioning state. In any

other case the system will have failed. The mathematics of
this method are shown in (5)–(8). Note that this method-
ology may easily be extended to any number or resources
including databases, software packages, etc.

Yrequested =
V∑
v=0

Yv (5)

Yavailable =
S∑

s=0
Ys (6)

Ycurtailed =
{
0 Yrequested ≤ Yavailable
1 otherwise (7)

Sx =
{
0

∑Y Ycurtailed > 0
1 otherwise (8)

It should be noted that this is an approximation of a
real-world scenario. In reality, the assignment and usage of
resources is more accurately calculated using a bin pack-
ing formulation — an extension that is currently slated for
future work.

Determining convergence
In order to evaluate system level performance using MCS,
some measure must be calculated in order to determine
convergence of the algorithm. As the goal of this study is
the evaluation of reliability and utilization, the metric for
convergence is defined as R. R is defined as the probabil-
ity that a CCS will be encountered in a functional state
and is defined in (9) and (10) as the ratio of failed states
sampled to total states sampled (K). While R is the metric
of interest in this study, convergence is determined by the
metric F , or the probability that the CCS will be found in
a failed state. In order to determine convergence, variance
(σ 2) and standard deviation (σ ) of the F value are calcu-
lated as defined in (11)–(12). Note that it is well known
that MCS converges at a rate of 1/

√
N and that a more

detailed derivation of (9)-(12) for MCS can be found in
[43].

F = 1
K

K∑
x=1

Sx (9)

R = 1 − F = 1 − 1
K

K∑
x=1

Sx (10)

σ 2(F) = 1
K

(F − F2) (11)

σ(F) =
√
V (F)

F
(12)

Convergence criteria
The main driver behind the convergence of theMCS algo-
rithm is the sampling of failure states. Accordingly, highly
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reliable CCS systems will exhibit few such states and will
take longer to converge than a system with a state space
containing an abundance of failure states. The sampling
of failed states drives σ(R) towards 0, to provide an accu-
rate estimate of R. In this study, there are two rules for
determining whether the non-sequential MCS algorithm
has converged:

(iterations > 10 and σ(R) < 0.080) (13)

or

(iterations > 20, 000 and R > 0.999999). (14)

The first convergence criterion provides early termina-
tion for simulations that have an extremely low R after the
first 10 samples (Generally, a highly unreliable system).
The second convergence criterion keeps highly reliable
(R > 0.999999) CCSs from running for long periods of
time due to the very sparse distribution of failed states in
the state space.

System design using MCS
While the proposed implementation ofMCS is focused on
evaluating the reliability of complex CCSs, the same algo-
rithm also has applications in designing highly reliable,
highly utilized CCSs. In this study an iterative algorithm
for designing such a system (and, potentially expand-
ing that system) is developed. Though this algorithm is
used in this study for the design of test systems (i.e.
model systems that are used for testing the proposed
MCS algorithm), the algorithm may also be used for
the planning and design of highly reliable, highly uti-
lized CCSs under predicted loads. The algorithm itself
relies on the prospect of increasing the amount of avail-
able resources that currently cause resource inadequacies.
The additional resources yield simultaneous increases in
CCS reliability as well as overall resource utilization. The
novel algorithmic process of enhancing CCS reliability
and resource utilization when the addition of resources
is possible is summarized in Algorithm 1 where Rdesired
and UTILdesired are the desired level of system reliabil-
ity and system utilization, Ractual and UTILactual are the
measured levels of system reliability and utilization, and
VMcount is the number of VMs currently allocated. While
this algorithm may appear to be deterministic, the MCS
algorithm embedded inside of the algorithm is stochastic
and considers the probabilistic failure of available system
resources. This means that the amount of resources avail-
able are not increased simply to accommodate the amount
of resources requested (which is a simple calculation).
Instead, the algorithm increases the amount of resources
available in order to handle resource requests while also
considering stochastic failures of system resources, thus
solving a much more difficult problem and leading to a
more robust system design.

Algorithm 1 Basic algorithm for iteratively developing a
highly reliable, highly utilized cloud computing system

Choose 0 ≤ Rdesired ≤ 1
Choose 0 ≤ UTILdesired ≤ 1
Choose VMcount ≥ 0

Ractual,UTILactual ← MCS Algorithm (Considers
stochastic resource failures)

while (Ractual < Rdesired) and (UTILactual <

UTILdesired) do

for Each Resource, Y ∈ {P,M,H ,B} do
if Resourcerequested > Resourceavailable then

Increase Resourceavailable
end if

end for

Ractual,UTILactual ← MCS Algorithm (Considers
stochastic resource failures)

//If necessary, change number of VMs to achieve
result
Choose VMcount ≥ 0 to achieve desired CCS load

end while

If the addition of resources to the CCS is infeasi-
ble, one way to control the reliability is to perturb the
number of VM allocations as opposed to adjusting the
amount of resources. The optimal number of maximum
VM allocations to satisfy a pre-specified reliability thresh-
old can be easily calculated by repeatedly applying the
non-sequential MCS algorithm. After eachMCS iteration,
the number of VMs allocated is adjusted up or down if
the reliability is higher or lower than the threshold respec-
tively. Conversely, if the reliability is at a desired level and
resources cannot be added to improve resource utilization
(and the number of maximum VM allocations is satis-
factory), excess, under-utilized resources can be removed
from the CCS and re-purposed.

Experimental results
This section will present the implementation details of the
simulation software as well as an overview of test system
design and the different VM allocation schemes that are
used. Actual results from CCS reliability simulations are
also introduced and analyzed.

Implementation notes
The simulation software is implemented in Java 7 (using
IntelliJ IDEA 12) and is run on a Dell Inspiron E6430 with
a 64-bit version ofWindows 7, an Intel Core i7 @ 2.4 GHz,
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and 8GB RAM. All of the results are stored in a MySQL
database for future analysis.
In each simulation, a CCS is abstracted to consist of a

finite pool of available and requested resources. The avail-
able resources correspond to the servers that compose a
cloud. The requested resources consist of the VMs allo-
cated on the cloud. The specific resources focused on
within this study include CPUs, memory, hard disk drives
(HDD), and bandwidth. Each simulation resource is tied
to a pre-specified AFR. The specific AFRs used in this
study are shown in Table 1. The AFRs used were gathered
and estimated from practical and theoretical research in
the current literature that analyzed hardware failures of
CCSs [12, 36, 38, 40–42].
In order to provide for composition of more complex

CCSs as well as reusable resource definitions, the soft-
ware is built around a hierarchy of components. The most
basic component is a single server consisting of a finite
pool of CPU, memory, HDD, and bandwidth resources.
From here, clusters are constructed as groups of servers
and clouds are built from a collection of clusters. Likewise,
the requested resources are constructed from a hierarchi-
cal abstraction. The most basic unit is a VM consisting
of a finite pool of CPU, memory, HDD, and bandwidth
resources. Individual VMs are combined into groups to
represent the total requested resources. In conjunction
with grouping individual VMs together, a probability dis-
tribution is assigned in accordance with how each type of
VM in that group is to be allocated.
The simulations are setup by specifying a particular set

of available resources in the form of a cloud, and a set of
requested resources in the form of a VM grouping. The
non-sequential Monte-Carlo algorithm is run to conver-
gence for each simulation. It is important to note that
individual component failures are not tracked by theMCS
algorithm. In reality, a specific component that fails once
has been shown to fail more often than its peers. This
simplification of the state space allows the non-sequential
MCS algorithm to converge more efficiently than one that
keeps track of this additional information. Thus, the AFRs
used in each simulation apply to all resources, and are
never modified based on past inadequacies.
There were two types of simulations performed over the

course of this study which differ in the way VMs are allo-
cated. The first scheme allocates VMs in a static manner,

Table 1 Annual Failure Rates (AFR) used in the simulations

Component AFR

CPU 2%

Memory 1%

Hard Disk Drives 8%

Bandwidth 1%

in which all trials of a single simulation have identical VM
allocations. This scheme results in a tight bound on the
variance of the reliability of repeated simulations due to
the only stochastic behavior arising within the MCS algo-
rithm. The process for performing a static allocation is
shown in Algorithm 2 where VMinstances refers to the cur-
rent set of VMs being allocated on the CCS, VMinstance is
a single VM instance, PROBi is the probability of a single
type of VMinstance occurring, and i refers to a singular VM
type.

Algorithm 2 Algorithm for static VM allocation
Choose SET(VMinstances)
for each VMinstance i do

Choose 0 ≤ PROBi ≤ 1
end for

Require:
∑

PROBi = 1

Choose VMcount ≥ 0
for each VMinstance i do

Allocate VMcount * PROBi instances of i
end for

The second allocation scheme adds a second source
of stochastic behavior to the reliability simulation. In
this scheme, the allocation of VMs is based on a user
specified probability distribution over a discrete set of
VM types. Multiple simulations set up identically under
this arrangement will have varying VM allocations. This
scheme provides a view of highly dynamic VM allocation
policies, and provides insight on how to better control the
overall reliability in these rapidly changing environments.
Algorithm 3 details the process of dynamic VM allocation.

Algorithm 3 Algorithm for dynamic VM allocation
Choose SET(VMinstances)
for each VMinstance i do

Choose 0 ≤ PROBi ≤ 1
end for

Require:
∑

PROBi = 1

Choose VMcount ≥ 0
for 1 to VMcount do

sum = 0
Generate random number 0 ≤ r ≤ 1
for probi in PROB do

sum = sum + probi
if r ≤ sum then

Allocate VM of type i
end if

end for
end for
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Test systems
Due to a lack of standardized test CCSs within literature,
the authors needed to develop test-bed systems for simu-
lation. In order to accomplish this goal, this study began
with the small CCS depicted in Table 2. The table depicts
the total available server resources as well as the resources
consumed by the allocation of one VM. This CCS for-
mulation provided insights into 1) What caused different
types of hardware failures, 2) The ways in which conver-
gence of theMCS is reached (from above or below), and 3)
The number of iterations required for convergence. Based
on this initial system, further and more complex systems
were designed in order to test the proposed methodology.

Static VM allocation
An overview of a test-bed simulation with an allocation
of 98 VMs is shown in Table 3 and the reliability aver-
aged over 20 trials is 0.98 ± 0.0025. The results from a
typical trial are shown in Figs. 3 and 4. It is evident that
the HDD resource is the cause of all 153 failures dur-
ing the simulation. This is due to the high utilization of
the HDD resource (98 %) and comparatively low utiliza-
tion of all other resources (49 % for CPU and memory
and 20% utilization for bandwidth). This shows that the
cloud provider could serve many more VMs if they were
to add more HDD to this particular cloud. The extra HDD
resource would allow for more VM’s to be allocated on
the cloud and in effect allow for a much larger utilization
percentage of the other resources.
As such, another simulation is performed with an

extra 10,000 GB of HDD resources to the test-bed CCS
(Table 4). The results of this simulation with an alloca-
tion of 194 VMs is shown in Figs. 5 and 6. The overview
table shows that the utilization of the CPU, memory,
and bandwidth resources have almost doubled while the
HDD utilization has been decreased slightly. The result-
ing reliability averaged over 20 trials is 0.9960 ± 0.0003.
The additional HDD resources have yielded a substan-
tial increase in total cloud utilization while simultaneously
increasing the reliability by around 2.22 %. Consequently,
the cloud provider was able to supply an additional 96
VMs to consumers with a much higher reliability than in
the previous example. Also noteworthy is that the main
resource inadequacy is still HDD. This behavior is due
to the significantly higher AFR of HDD versus the other
resources. The ability to quickly modify CCS resources

Table 2 Small test-bed CCS used in initial simulations

# of Cores Memory (GB) HDD Size (GB) Bandwidth
(Mbps)

Available 400 400 10,000 50,000

Each VM 2 2 100 100

Table 3 Test-Bed CCS - 98 VM’s

# of Cores Memory (GB) HDD Size (GB) Bandwidth
(Mbps)

Available 400 400 10,000 50,000

Requested 196 196 9,800 9,800

Difference 204 204 200 40,200

Utilization 0.49 0.49 0.98 0.20

in conjunction with the efficiency of the MCS algorithm’s
convergence allows for quick and easy design of highly
reliable and highly utilized CCSs.
The design of highly reliable and highly utilized clouds

strikes a balance between resource utilization that is high
enough to use a majority of cloud resources yet is safely
below the threshold in which many concurrent failures
are likely. Since the reliability of a resource is exponen-
tially distributed in accordance with its AFR, resources
with high AFRs must be carefully considered, especially
at high utilization percentages. In the previous examples
the HDD resource was highly utilized, yet it also has an
AFR much higher than any of the other resources con-
sidered. This over-utilization of a failure prone resource
provides an opportunity to greatly improve CCS relia-
bility. Using the iterative algorithm from section 4.3, the
test-bed CCS from Table 4 is optimized to obtain a much
higher reliability by allocating only 190 VM’s (rather than
the 194 that were previously requested). The resulting R
value averaged over 20 trials is 0.999970±0.000031, which
is around a 0.4 % improvement. All resource inadequacies
are due to HDD again, reinforcing the detrimental effects
of high AFRs on a CCS’s reliability. More iterations of
Algorithm 1 can be performed in order to further increase
CCS reliability, yet resource utilization will be reduced.
Subsequently, more complex CCSs are designed with

the insights gained from the test-bed system in mind.
After qualifying the impacts of various resource alloca-
tions, the authors simulate a real world virtual CCS run
by the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) partnership [44]. The XSEDE partner-
ship is composed of numerous United States universities.
XSEDE is an advanced, powerful, and robust collection
of integrated advanced digital resources and services that
supports a CCS composed of 16 supercomputers as well
as high-end data visualization and data analysis resources.
The hardware resources provided by the XSEDE CCS are
depicted in Table 5.
In order to provide many unique, and realistic VM

instances beyond the one in the initial test-bed system,
the authors chose to simulate a large subset of the avail-
able Amazon EC2 VMs [45]. A listing of the Amazon EC2
VM instances that were used in simulations is shown in
Table 6. Using VMs mirrored after the actual Amazon
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Fig. 3 Pattern of reliability convergence— initial simulation. Pattern of reliability convergence for the initial test-bed CCS simulation as defined in
Table 3

EC2 VMs allows for the exploration of complex CCSs with
much more complex allocation configurations, especially
when the distribution of VMs is assigned in accordance
with a probability distribution.

Simulation of the XSEDE CCS
The XSEDE cloud which has many more resources avail-
able than the original test-bed system, proves much more
difficult in balancing high reliability with high utiliza-
tion. Initially, allocation of each type of Amazon EC2
VM instance is varied based on the amount of resources
provided. Achieving high CCS reliability is quite straight-
forward in this manner. Yet, finding a balance of EC2
instances that also yielded a high utilization of each
resource is highly difficult. This makes sense as the
XSEDE cloud is primarily aimed at scientific computing
and data visualization which requires allocations that are
quite different than the normal EC2 instances. For exam-
ple, an M1 Small or M1 Medium instance would rarely
be allocated on the XSEDE CCS as it would be insuffi-
cient for performing large scale scientific calculations. A
more likely scenario would be the allocation of VMswhich
utilize much higher quantities of each resource, such as
the Cluster Compute Eight Extra Large EC2 instance. Yet,
even when allocation is performed using only the most
intensive EC2 VMs there is still an overreliance on CPU

and HDD. The EC2 VMs also have bandwidth requests
that are minimal compared to the jobs that are most likely
performed on the XSEDE supercomputers.
Many configurations can be achieved using all of the

EC2 instances which provide high reliability and high
resource utilization of 2 out of the 4 resources (almost
exclusively CPU and HDD). Bandwidth is always under-
utilized at around 7–10%. The main conclusion that can
be drawn is that in order to effectively serve VM alloca-
tions likened to the EC2 instances, the XSEDE CCS would
greatly benefit from additional CPU and HDD resources.
The addition of these resources would allow the XSEDE
CCS to serve many more VMs under the conditions of
this study at an even higher reliability level. Another
important observation is that VM instances that are light
on resources are very good at increasing utilization to a
desired level without sacrificing reliability. This behavior
is very similar to the way in which a bucket can be filled to
the brim with coarse rocks yet there is always room to add
in finer particles to fill in the empty voids.
Results of a simulation performed with the XSEDE CCS

are shown in Figs. 7 and 8 with the VM allocation per-
centages shown in Fig. 9. There are a total of 13,000
VM instances allocated yielding CPU, memory, HDD, and
bandwidth utilizations of 0.95, 0.25, 0.98, and 0.08 respec-
tively. Of note is the 5,015,055 sampled states that are

Fig. 4 Component failures by resource type— initial simulation. Component failures by resource type for the initial test-bed CCS simulation as
defined in Table 3
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Table 4 Test-bed CCS (with extra HDD) - 194 VM’s

# of Cores Memory (GB) HDD Size (GB) Bandwidth
(Mbps)

Available 400 400 20,000 50,000

Requested 388 388 19,400 19,400

Difference 12 12 600 30,600

Utilization 0.97 0.97 0.97 0.39

required for convergence compared with the simulation
displayed in Figs. 5 and 6 in which only 41,082 sam-
ples are needed. This increase in sampling illustrates the
importance of developing more sophisticated failure-state
sampling schemes to speed upMCS convergence for large
CCS systems.

Probability based VM allocation
Simulations are also performed in which multiple, dif-
ferent VM instances are allocated on the CCS in corre-
spondence with a specified probability distribution. This
enables the evaluation of a more realistic set of simula-
tions that showcase how allocation variability affects the
overall reliability of a CCS. The most important observa-
tion from these simulations is that the reliability of a CCS
can vary wildly when a fixed number of VMs are allocated
using a specified probability distribution. In the event
that a multitude of resource intensive VMs are allocated
on the cloud the CCS would be very likely to fail. Con-
versely, if a majority of the VM allocations are very light
on resource requirements the CCS would exhibit 100 %
reliability.
For example, a simulation is performed using three of

the Amazon EC2 VM instances: M1 Small, M1 Medium,
and M1 Large with respective allocation probabilities of
50 %, 30 %, and 20 %, sampled from a uniform distribu-
tion. The XSEDE cloud is used as the available resources
(Fig. 5) and 31,050 VMs are allocated using the specified
distribution. The CCS’s reliability varies from 0.0 to 1.0
over the course of 500 simulations. The average R value is

0.89±0.1912. Fig. 10 shows a histogram of the R values for
the 500 simulations with a bin size of 0.01. Although the
resulting distribution of CCS reliability is heavily skewed
to the highly reliable side, it is very important to note that
there are a total of 9 simulations that resulted in immedi-
ate, total failures (R value of 0.0). A specific allocation that
results in a R of 1.0 was characterized by allocation per-
centages of 50.8 %, 29.7 %, and 19.4 % for the M1 Small,
M1 Medium, and M1 Large VMs. Likewise, an allocation
that results in a R of 0.0 consisted of 49.4 %, 30.2 %, and
20.4 % of M1 Small, M1 Medium, and M1 Large VMs.
These numbers illustrate how a slight difference in VM
allocation can result in a large change in the reliability of a
CCS.
For comparison, 500 simulations are performed using

the exact setup described above except that the VM types
are statically allocated. Hence, M1 Small, M1 Medium,
and M1 Large occupy 50 %, 30 %, and 20 % of the 31,050
VM allocations respectively for all 500 simulations. This
simulation results in a R value of 0.9917±0.0006. Themin-
imum and maximum R values are 0.989304 and 0.993757,
respectively. These simulations illustrate that even a sim-
ple CCS under a dynamic allocation policy can exhibit
highly deceptive reliability characteristics when too few
simulations are performed.
This highly erratic reliability behavior is a direct result of

the combined use of probabilistic methods of VM alloca-
tion and the design of a test system that is highly utilized.
In any highly utilized system, a slight variance in workload
can easily move a system from highly utilized and stable to
over-utilized and unstable. This also showcases the value
of the novel application of non-sequentialMCS in order to
efficiently simulate a CCS numerous times. This behavior
becomes even more variable when more than three VM
types are used in the probability distribution. The abil-
ity to assess the distribution of reliability across a broad
range of allocation schemes greatly aids in designing a
CCS thatmaintains high reliability.Without an abundance
of simulations, the design of highly reliable CCSs is a futile
exercise within such a dynamic environment.

Fig. 5 Pattern of reliability convergence— initial simulation plus 10,000 GB HDD. Pattern of reliability convergence for the initial test-bed CCS
simulation with 10,000 GB extra HDD resource as defined in Table 4
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Fig. 6 Component failures — initial simulation plus 10,000 GB HDD. Component failures by resource type for initial test-bed CCS simulation with
10,000 GB extra HDD resource as defined in Table 4

Discussion
A recurring observation throughout the empirical sim-
ulations is the importance of matching VM allocations
to hardware that is specifically suited to the type of job
at hand. For instance, naively allocating 116,000 small
test-bed VM’s on the XSEDE cloud results in a reliabil-
ity of 98.7 % due to shortage of hard disk resources. In
addition, this setup does not efficiently utilize the avail-
able CPU (68 %), memory (34 %), or bandwidth (5 %)
resources.
Yet, when a hand crafted group of VM’s that are much

more CPU and memory intensive are allocated on the
XSEDE cloud the total pool of resources are much more
efficiently utilized; all while retaining a very high degree
of reliability (≥ 99.9999%). It is quickly evident that
groups of VMs can be engineered to cause any particu-
lar type of resource inadequacy. Furthermore, it is very
likely that users requesting resources that do not require

Table 5 XSEDE Cloud Resources (Est. Bandwidth)

Cluster # of Cores Memory HDD Size Bandwidth
(GB) (GB) (Mbps)

Ranger 62,976 125,952 1,810,560 3,936,000

Wispy 128 512 8,000 32,000

GordonION 768 3,072 256,000 640,000

KrakenXT75 112,896 150,528 2,455,488 9,408,000

Lonestar 4 22,656 45,312 275,648 18,880,000

Steele 7,144 28,576 446,500 893,000

Gordon Compute
Cluster

16,384 65,536 4,096,000 102,400,000

Trestles 10,368 20,736 143,208 3,240,000

Quarry 896 3,584 2,128 112,000

Stampede 102,400 204,800 320,000 87,296,000

Blacklight 1,024 32,768 150,000 15,000

Keeneland 4,224 8,448 1,761,144 3,600,960

Totals 341,864 689,824 11,724,676 236,212,960

a large amount of storage space would typically see fail-
ures in other components — CPUs, RAM, etc. Yet, this
same functionality can be leveraged to craft probability
distributions over VM instances that allow for highly reli-
able clouds with each individual resource being highly
utilized. By intelligently allocating the proper types of
VM instances, overall cloud reliability can be controlled
with a fine degree of precision while efficiently using
the available resource pool. In fact, if the probability
distribution over VM instances and AFRs are known,
limits on CCS reliability can be readily established via
simulation.
For instance, Fig. 11 depicts repeated simulations of

the XSEDE CCS with varying numbers of VMs allocated.

Table 6 Amazon EC2 VM instances (Est. Bandwidth)

VM Name # of Cores Memory HDD Size Bandwidth
(GB) (GB) (Mbps)

M1 Small 2 2 160 100

M1 Medium 4 4 410 500

M1 Large 8 8 850 1000

M1 Extra Large 16 16 1,690 1,000

M3 Extra Large 26 16 1,690 1,000

M3 Double
Extra Large

52 32 3,380 2,000

High Memory
Extra Large

13 18 420 500

High Memory
Double Extra
Large

26 35 850 1,000

High Memory
Quad Extra
Large

52 70 1,690 1,000

High CPU
Medium

10 2 350 500

High CPU Extra
Large

40 8 1,690 1,000

Cluster Compute
Eight Extra Large

176 64 3,370 10,000
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Fig. 7 Pattern of reliability convergence— XSEDE CCS. Pattern of reliability convergence for the XSEDE CCS (Table 5) simulation using the VM
allocation shown in Fig. 9

The VM instances used in this simulation were the EC2
instances: M1 Small, M1 Medium, and M1 Large, at
distribution percentages of 20 %, 40 %, and 40 %, respec-
tively. The figure shows that the XSEDE CCS can ade-
quately supply resources for 21,567 VMs, while retaining
a reliabilty greater than 99.9104%. If the number of VM
allocations is decreased to 21,447, the minimum relia-
bility over 10 trials increases to 99.9992%. Of course,
these results are highly dependent on the accuracy of the
AFRs specified at simulation time, as well as the num-
ber of trials performed. This method can be extended
to establish accurate CCS reliability curves that illustrate
CCS reliability characteristics across a wide range of VM
allocations.

Limitations
It is important to note that this methodology consid-
ers a worst case scenario in which all VM allocations
consume full resources at all times. In reality, a server
hypervisor manages the resources requested by each VM,
allowing more VM guests to be allocated without detri-
mental impacts on overall cloud reliability. For instance,
one physical CPU core may be mapped to four virtual
CPU cores and each guest VM will wait for its share of
virtual cores to be available from the hypervisor to run
their compute tasks. Similarly, a storage hypervisor can be

used to manage virtualized storage resources to increase
utilization rates of disk while maintaining high reliability.
Further, this study only considers the availability of the

servers hosting the VMs and does not consider other sub-
systems like external storage, storage area network (SAN),
or failures in other systems such as software bugs or
human error. There are also other features of the cloud
that cannot be modeled by this approach which affect the
overall reliability such as live migration of VMs, or spe-
cific CCS network topologies such as DCell which have
nodes with varying importance to overall CCS reliabil-
ity. Live migration of VMs can increase the reliability of
the cloud by allowing VMs to be seamlessly transferred
between servers for load balancing or server repair. The
CCS network topology can have large consequences on
overall reliability as server centric architectures like DCell
have relay nodes that are more important than individ-
ual compute nodes for CCS reliability. Further, oversub-
scription has further implications that may also impact
reliability.

Practical implications
The importance of cloud availability and reliability extend
beyond academic interest as they also have monetary
consequences when considering cloud SLAs. For exam-
ple, the Amazon EC2 SLA states that Amazon will use

Fig. 8 Component failures by resource type— XSEDE CCS. Component failures by resource type for the XSEDE CCS (Table 5) simulation using the
VM allocation shown in Fig. 9



Snyder et al. Journal of Cloud Computing: Advances, Systems and Applications  (2015) 4:11 Page 13 of 16

Fig. 9 Distribution of EC2 VM instances (Table 6) used in the XSEDE CCS simulation

commercially reasonable efforts to make Amazon EC2
and Amazon ABS each available with a MUP of at least
99.95 % [46]. Amazon calculates MUP by subtracting the
percentage of minutes during the month in which the
Amazon service is in a state of “Region Unavailable.” This
leaves a mere 21.6 minutes of downtime that Amazon is
allotted to meet a MUP of 99.95 % in a 30 day month.
In the event that Amazon cannot meet the terms of this
SLA, a credit is issued to the consumer in accordance with
Table 7. Rackspace, on the other hand, guarantees that
their infrastructure will be available 100 % of the time and
will issue account credits up to the full monthly fee for
affected servers based on the number of hours the server
is down [47].
The cloud resource providers are not the only parties

that experience detrimental economic effects from CCS

downtime. CCS resource consumers lose money each
minute that their website or IT infrastructure is down.
According to InformationWeek, IT downtime costs $ 26.5
billion in lost revenue per year [48]. Thus, there is a
mutual interest in making CCS availability and resilience
approach 100%. This is in addition to other cloud com-
puting consequences that could arise including data loss
and data security. In order to retain its customer base,
CCS providers must be highly aware of the consequences
of downtime as well as pro-actively pursuing increased
reliability by continually re-evaluating their infrastructure
to provide highly available and reliable service. This is
especially important in light of the sheer number of CCS
failures and issues showcased on the IWGCR website [1].
In order to uphold such stringent uptime requirements

efficient, effective ways of evaluating and improving cloud

Fig. 10 Distribution of R values from 500 probability based VM allocation simulations
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Fig. 11Minimum CCS reliability based on number of VM Allocations (10 trials)

reliability and availability are extremely important. In fact,
when dealing with such high MUPs, availability, and lost
revenue requirements, every minute of uptime is cru-
cial. The methods developed in this study for the design
and evaluation of CCSs provides one set of tools for effi-
ciently pursuing this goal. CCS providers can leverage the
proposed algorithms to assess their infrastructure from
a vantage point of both reliability and utilization. Non-
sequential MCS and its derivatives may also be used to
validate and assess their SLAs in order to ensure that
they are effortlessly meeting the required MUPs. The
resource expansion and planning algorithms can be iter-
atively applied to maximize revenue and minimize costs
associated with providing CCS resources to consumers.
The decision to add resources to a CCS no longer would
be necessitated by a failure, but could be justified by
quantitative metrics provided via the proposed methods.
These methods can also save time by simulating new
CCS designs prior to actually building physical systems
to ensure that the resources will be sufficient for the
expected VM allocation load.

Conclusion
This study has presented and analyzed a novel approach
to assessing the reliability of CCSs using non-sequential

Table 7 SLA service commitments and credits

Terms Service credit percentage

99.0% ≤ MUP < 99.95% 10.0%

MUP < 99.0% 30.0%

MCS. It was shown that non-sequential MCS provides
an efficient and flexible way to determine the reliability
of a CCS based on a set of discrete resources. A novel
algorithm for CCS expansion planning was also intro-
duced which facilitates the design of highly reliable and
highly utilized CCSs. Finally, new test-bed CCS systems
were developed that can be used for future CCS reliability
and availability analyses. Based on the insights garnered
during this study, future work may include the following:

• An extension of the CCS expansion planning
algorithm developed in this study to incorporate
economic factors to simultaneously maximize CCS
reliability and the cloud providers return on
investment (ROI);

• As this study considered a CCS to have only CPU,
memory, HDD, and bandwidth resources, a future
extension may include graphics processing units
(GPUs), databases, software packages, etc. This
extension would provide for highly realistic
simulations that take into account many more
variables than were considered in this preliminary
study.

• An extension of the proposed algorithm to consider
partially failed or derated states. For instance, a
multiple core CPU may still function at a reduced
level if only a subset of the available cores fail;

• Evaluating implications of server and storage
hypervisors on the reliability of a CCS instead of using
a simple resources requested vs. available scheme; and

• This study has made an important approximation —
calculating resource assignment and usage in an
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additive manner. In the future, this will be improved
to formulate the resource assignments via a bin
packing problem formulation for more realistic
results.
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