Zhang et al. Journal of Cloud Computing: Advances, Systems
and Applications (2015) 4:23
DOI 10.1186/513677-015-0048-2

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

Service workload patterns for Qos-driven

@ CrossMark

cloud resource management

Li Zhang', Yichuan Zhang', Pooyan Jamshidi?, Lei Xu? and Claus Pahl*"

Abstract

challenges.

Workload pattern mining, Uncertainty

Cloud service providers negotiate SLAs for customer services they offer based on the reliability of performance and
availability of their lower-level platform infrastructure. While availability management is more mature, performance
management is less reliable. In order to support a continuous approach that supports the initial static infrastructure
configuration as well as dynamic reconfiguration and auto-scaling, an accurate and efficient solution is required. We
propose a prediction technique that combines a workload pattern mining approach with a traditional collaborative
filtering solution to meet the accuracy and efficiency requirements. Service workload patterns abstract common
infrastructure workloads from monitoring logs and act as a part of a first-stage high-performant configuration
mechanism before more complex traditional methods are considered. This enhances current reactive rule-based
scalability approaches and basic prediction techniques by a hybrid prediction solution. Uncertainty and noise are
additional challenges that emerge in multi-layered, often federated cloud architectures. We specifically add log
smoothing combined with a fuzzy logic approach to make the prediction solution more robust in the context of these

Keywords: Quality of service, Resource management, Cloud scalability, Web and cloud services, QoS prediction,

Introduction

Quality of Service (QoS) is the basis of cloud service and
resource configuration management [1, 2]. Cloud service
providers — whether at infrastructure, platform or soft-
ware level — provide quality guarantees usually in terms
of availability and performance to their customers in the
form of service-level agreements (SLAs) [3]. Internally,
the respective service configuration in terms of avail-
able resources then needs to make sure that the SLA
obligations are met [4]. To facilitate SLA conformance,
virtual machines (VMs) can be configured and scaled
up/down in terms of CPU cores and memory, deployed
with storage and network capabilities. Some current cloud
infrastructure solutions allow users to define rules man-
ually to scale up or down to maintain performance
levels.

*Correspondence: cpahl@computing.dcu.ie
2\c4/School of Computing, Dublin City University, Dublin, Ireland
Full list of author information is available at the end of the article

@ Springer

QoS factors like service performance in terms of
response time or availability may vary depending on net-
work, service execution environment and user require-
ments, making it hard for providers to choose an initial
configuration and scale this up/down to maintain the SLA
guarantees, but also optimising resource utilisation at the
same time. We utilise QoS prediction techniques here,
but rather than bottom-up predicting QoS from moni-
tored infrastructure metrics [5-7], we reverse the idea,
resulting in a novel technique for pattern-based resource
configuration.

A pattern technique is at the core of the solu-
tion. Various types of cloud computing patterns exist
[8], covering workload, but also offer types and appli-
cation and management architectures. These patterns
link infrastructure workloads such as CPU utilisation
with service-level performance. Recurring workloads
have already been captured as patterns in the liter-
ature [8], but we additionally link these to service
quality.

© 2015 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0048-2-x&domain=pdf
mailto: cpahl@computing.dcu.ie
http://creativecommons.org/licenses/by/4.0/

Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

We determine service workload patterns through
pattern mining from resource utilisation logs. These
service workload patterns (SWPs) correspond to typi-
cal workloads of the infrastructure and map these to
QoS values at the service level. A pattern consists
of a relatively narrow range of metrics measured for
each infrastructure concern such as compute, mem-
ory/storage and network under which the QoS con-
cern is stable. This can be best illustrated through
utilisation rates. Should resources be utilised in a
certain range, e.g., low utilisation of a CPU around
20 %, then the response-time performance can be
expected to be high and not impacted negatively by the
infrastructure.

These patterns can then be used in the follow-
ing way. In a top-down approach, we take a QoS
requirement and determine suitable workload-oriented
configurations that maintain required values. Further-
more, we enhance this with a cost-based selection
function, applicable if many candidate configurations
emerge.

We specifically look at performance as the QoS concern
here since dealing with availability in cloud environments
is considered as easier to achieve, but performance is cur-
rently neglected in practice due to less mature resource
management techniques [4]. We introduce pattern min-
ing mechanisms and, based on a QoS-SWP matrix, we
define SWP workload configurations for required QoS.
The accuracy of the solution to guarantee that the chosen
(initially predicted) resource configurations meet the QoS
requirements is of utmost importance. An appropriate
scaling approach is required in order to allow this to be
utilised in dynamic environments. In this paper, we show
that the pattern-based approach improves the efficiency
of the solution in comparison with traditional predic-
tion approaches, e.g., based on collaborative filtering. This
enhances existing solutions by automating current manual
rule-based reactive scalability mechanisms and also
advances prediction approaches for QoS, making them
applicable in the cloud with its accuracy and performance
requirements.

Cloud systems are typically multi-layer architectures
with services being provided at infrastructure, platform
or software application level. Uncertainty and noise
are additional challenges that emerge in these multi-
layered, often federated clouds architectures. We extend
earlier work [9] to address these challenges. We pro-
pose to use log smoothing and a fuzzy logic-based
approach to make the prediction solution more robust
in the context of these challenges. Smoothing will
deal with log data variability and will allow detect-
ing trends (but adds more noise). Uncertainty often
occurs as to the completeness and reliability of mon-
itored data, which will here be addressed through

Page 2 of 21

a fuzzy logic enhanced prediction. We will demon-
strate the robustness of the solution against noise and
uncertainty.

Section ‘Quality-driven configuration and scaling’
outlines the solution and justifies its practical rel-
evance. Section ‘Workload patterns’ introduces
SWPs and how they can be derived. Section ‘Quality
pattern-driven configuration determination’ discusses
the selection of patterns as workload specifications
for resource configuration. The application of the
solution for SLA-compliant cloud resource configura-
tion is described in Section ‘Pattern-driven resource
configuration’. Section ‘Managing uncertainty’ deals
with uncertainty through a fuzzification of the pat-
terns. Section ‘Evaluation’ contains an evaluation in
terms of accuracy, performance and robustness of the
solution and Section ‘Related work’ discusses related
work.

Quality-driven configuration and scaling

Cloud resource configuration is the key problem we
address. We start with a brief discussion of the state-of-
the-art and relevant background.

An SLA is typically defined based on availability.
Customers expect that the services they acquire will
be always available. Thus, providers usually make clear
and reliable claims here. The consensus in the indus-
try is that cloud computing providers generally have
solutions to manage availability. Response time guaran-
tees, on the other hand, are harder to guarantee [4].
These types of obligations are more carefully phrased
or fully ignored. A quote to illustrate this is “We are
putting a lot of thought into how we can offer pre-
dictable, reliable and specific performance metrics to
a customer that we can then [build an] SLA around,
[C. Drumgoole, vice president global operations, Verizon
Terremark, 2013]. Thus, we specifically focus on perfor-
mance, although our solution is in principle applicable
to availability as well. From a providers perspective, the
question is how to initially configure and later scale VMs
and other resources for a service such that the QoS
(specifically response time) is guaranteed and, if addition-
ally possible, cost is optimised. From an infrastructure
perspective, memory, storage, network conditions and
CPU utilisation impact on QoS such as performance and
availability significantly. We consider data storage size,
network throughput and CPU utilization as representa-
tives of data, network and computation characteristics.
Common definitions, e.g., throughput as the rate of suc-
cessful message delivery over a communication channel
or bandwidth, shall be assumed. Figure 1 illustrates in
a simple example that values of the three resource con-
figuration factors can be linked to the respective mea-
sured performance. It shows how the performance differs



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 3 of 21

Service 1st 2nd 3rd 4th Sth
name invocation invocation invocation invocation Invocation
s, [2,10,0.2] [1.5,20,0.5] [2.5,10,0.1] [2,30,0.3] [2,8,0.2]
->0.5 ->2.0 ->0.2 ->0.8 =12
s, [1.2,11,0.1] [2,20,0.4]
->0.3 ->1.8
S3 [2,20,0.3] [1,20,0.2] [1.5,20,0.3] [2,15,0.2]
->3.0 -> 6.0 ->4.0 -> 2.4
Fig. 1 Measured QoS mappings: Infrastructure to Servic ([CPU, network, storage] — Performance)

depending on the infrastructure parameters, but not nec-
essarily in a way that would be easy to determine and
predict.

The first step is to monitor and record these input met-
rics in system-level resource utilisation logs. The second
step is pattern extraction. From repeated service invo-
cations records (the logs), an association to service QoS
values based on prediction techniques can be made. An
observation based on experiments that we made is that
most services have relatively fixed service workload pat-
terns (SWP):

e The patterns are defined here as ranges of storage,
network and CPU processing characteristics that
reflect stable, small acceptable variations of a QoS
value.

e Generally, service QoS keeps steady under a SWP,
allowing this stable mapping between infrastructure
input and QoS to be used further.

If we can extract SWPs from service logs or the
respective resource usage logs (based on pattern min-
ing), the associated service quality can be based on
usage information using pattern matching and predic-
tion techniques. Even if there is no or insufficient
usage information for a given service, quality values
can be calculated using log information of other sim-
ilar services, e.g., through collaborative filtering. These
two steps can be carried out offline. The next, first
online step is pattern matching, where dynamically
a pattern is matched in the matrix against perfor-
mance requirements. The final step is the (if neces-
sary dynamic) configuration of the infrastructure in the
cloud.

The hypothesis behind our workload pattern-driven
resource configuration based on required service-level
quality is the stability of variations of quality under
SWPs. We assume SLA definitions to establish QoS
requirements and the charged costs for a service to
be decided between provider and consumer. Service-
specific workload pattern are mined and constructed
which considers environmental characteristics of a service
(in a VM) deployment. We experimentally demonstrate

that the hybrid technique for QoS-to-SWP mappings
(based on pattern matching and collaborative filtering
for missing information) enhances accuracy and com-
putational performance and makes it applicable in the
cloud. In contrast, traditional prediction techniques can
be computationally expensive and unsuitable for the
cloud.

We limit this investigation to services and infras-
tructure with some reasonably deterministic behaviour,
e.g., classical business or technology management
applications. However, we deal with larger substantial
uncertainties arising from the infrastructure and plat-
form environment in which the services are executed.
We also focus on the variability of log data, noise that
occurs and uncertainties arising from multi-cloud
environments.

Workload patterns

The core concept of our solution is a Service Workload
Pattern (SWP). A SWP is a group of service invocation
characteristics reflected by the utilised resources. In a
SWP, the value of workload characteristics is a range. The
QoS is meant to be steady under a SWP. We describe a
SWP M as a triple of ranges low to high (as low ~ high
ranges):

M= [CPulow ~ CPUhigh:
Storagey,,, ~ Storagep;gn, (1)

Networkigy, ~ Networkyg, ]

CPU, Storage and Network are common server
computation, memory and network characteristics
that we have chosen for this investigation [7]. The
CPU time used and utilisation rates are typically the
most influential factor. The RAM (memory) utilisa-
tion rate and storage access are equally important. In
distributed applications, network parameters such as
bandwidth, latency and throughput have an influence
of service QoS (we consider here the latter). Note
that in principle, the specific characteristics could be
varied.




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

We initially work with monitored absolute figures for
CPU time used, stored data size and network throughput.
Later on, we also convert this into normalised utilisation
rates with respect to the allocated resources.

SWP pattern mining and construction

We assume service-level execution quality logs in the
format < ¢1,...,4, > and infrastructure-level resource
monitoring logs < ri,.. > with i = 1,...,j
for j different quality aspects (e.g., storage, network,
server CPU utilisation) of the past invocations of the
services under consideration, as illustrated in Fig. 1.
For each service, the resource metrics and the associ-
ated measured performance are recorded. The challenge
is now to determine or mine combinations of value
ranges for input parameters r that result in stable, i.e.,
only slightly varying performances. The solution is a
SWP extraction process that constructs the workload
patterns.

i
T,

e A SWP is composed of storage, network and
computation characteristics. For these, we take
throughput, data size and CPU utilization as
representatives, respectively.

e We consider the execution (response) time as the
representative of QoS here.

An execution log records the input data size and exe-
cution QoS; a monitoring log records the network status
and Web server status. We reorganize these two logs to
find the SWP under which QoS keeps steady. Our SWP
mining algorithm is based on a generic algorithm type,
DBSCAN (density-based spatial clustering of applications
with noise). DBSCAN [10] analyses the density of data
and allocates the data into a cluster if the spatial density is
greater than a threshold. The DBSCAN algorithm has two
parameters: the threshold ¢ and the minimum number
of points MinPts. Two points can be in the same clus-
ter if their distance is less than ¢. The minimum number
of points is also given. We also need a parameter Max-
TimeRange, the max time range of a cluster. We expect
the range of time is a cluster that can be steady and that
has a size limit. When the cluster is too large, e.g., if the
range exceeds a threshold, the cluster construction should
be stopped. The main steps are given in the following
Algorithm 1:

e Select any object p from the object set S and find the
objects set D in which the object is density-reachable
from object p with respect to ¢ and MinPts.

e Choose another object without cluster and repeat the
first step

The pattern extraction algorithm is presented in
Algorithm 1.

Page 4 of 21

Algorithm 1 SWP Extraction Algorithm based on
DBSCAN.
Input: Service Usage InforSet (execution + monitoring
log), &, MinPts, MaxTimeRange.
Output: SWP PatternBase, Pattern-QoS information,
PatternQoS.

1: for (Infor; < CPU, DataSize, ThroughPut, Performance >

€ InforSet do

2. if Infor; does not belong to any exist cluster then

3: Pj=newPattern(Infor;) {create a new pattern with
Infor; as seed}

4:

5: Add( Pj, PatternBase )

6: InforSet = InforSet — Infor;

7: SimlInfor = SimilarInfor(InforSet, Infor;, ) {SimInfor
is the information set which includes all the similar
usage information of Infor;. Differences between the
information in Simlinfor and Infor; on the character-
istics value except execution time are less than €. n is
the number of information items in Siminfor.}

8: InforSet = InforSet — SimlInfor

9:

10: if n > MinPts then

11: {MinPts is min number of exec info in cluster}

12: (51,82 ..., Sm) = Divide( SimlInfor) {Divide

SimInfor into different groups.}

13:

14: Group S; includes all information of service s;

15: for (k = LK < m;k + +) do

16: for nj € S do

17: if MaxTime — MinTime < MaxTimeRange

then

18:

19: SimlInfor = Similarinfor(InforSet, Infor;,
time, MinPts, ¢) {Search similar info of Sy
in execution information set. If the num-
ber of similar information item is less than
MinPts, then the density will turn low and
top the loop.}

20: Sk = Sk + SimlInfor

21: InforSet = InforSet — Simlinfor

22: end if

23: end for

24: PatternCharacteristics(Sx)  {Organizes the

information in the cluster and statistics for the
ranges of characteristics completes matrix}
25: end for

26: end if
27:  end if
28: end for




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

We give higher precedence to more recent log entries.
Exponential smoothing can be applied to any discrete set
of sequential observations x;. Let the sequence of obser-
vations begin at time ¢ = 0, then simple exponential
smoothing is defined as follows:

Yo = X0 )
yr=oax+ 1 —a)y;—1,t>00<a <1

The choice of « is important. Close to 1 has no smooth-
ing effect and gives higher weight to recent changes and
as a result the estimate may fluctuate dramatically. Val-
ues of « closer to 0 have a better smoothing effect and
the estimate is less responsive to recent changes. We can
choose a value like 0.8 as the default, which is relatively
high, but reflects the most recent multi-tenancy situation
(which can undergo short-term changes). We will discuss
this separately later in more detail in Section “Variability
and smoothing’.

Pattern-quality matrix

The input value ranges form a pattern that is linked to the
stable performance ranges in a Quality Matrix MS(M,S)
based on patterns M and services S. MS associates a
service quality QoSP(S;, M;) (with P standing for per-
formance) of service S; in S under a pattern A in M.

S1 S ... Sy
M (q11 q12 q1,m

MS — My | q21 G22 .- dom 3)
M \q1 q2 qim

Figure 1 at the beginning illustrated monitoring and exe-
cution logs that capture low-level metrics (CPU, storage,
network) and the related service response time perfor-
mance. SWPs M; then result from the log mining process
using clustering.

The following is a set of patterns M; to M3 for the given
example in Fig. 1:

CcPU Strg Netw
M;=1[21~25,10~11,0.1~0.2]
My=120~22, 8~30, 02~04]
M3 =[12~20,10~20, 0.1 ~0.5]

(4)

For those patterns, we can construct the following qual-
ity matrix MS:

S1 Sa S3
M; (0.2 ~0.5s 1.5~ 18s
My | 14~18s 1.1~ 1b5s (5)

Ms \ 1.5~ 2.1s

The matrix MS above shows the QoS in this example for
performance information of all services s; for all patterns
M;. The quality g;(1 < j < [,1 < i < m) is the quality

Page 5 of 21

of service s; under pattern M; with the quality value g;
defined as follows:

® as ¢ if the service s; has no invocation history under
pattern m; and

® as low;; ~ high;; if the service s; has an invocation
history under m; with range ~.

For a pattern M; =[0.5 ~ 0.6,0.2 ~ 04,30 ~ 40]
the CPU utilization rate is 0.5-0.6, storage utilization is
0.2-0.4 and network throughput is 30-40 MB. The sample
matrix illustrates the workload pattern to QoS association
for services. Empty spaces (undetermined null values) for
a service indicate lacking data. In that case, a prediction
based on similar services is necessary, for which we use
collaborative filtering.

Pattern matching

For monitored resource metrics (CPU, storage, network),
we need to determine which of these influences perfor-
mance the most. This determines the matched pattern.
Let the usage information of service s be a sequence
xy of data storage D, network throughput N and CPU
utilisation C values mapped to response time R for
k=1,...,n

[< by ksl =5%]
[< xﬁ,xﬁ,,xé >,x§] (6)

[< apy gy, e >, 4]

We use response time performance in the log as the
reference sequence xg(k),k = 1,...,n, and other con-
figuration metrics as comparative sequences. Then, we
calculate the association degree of other characteristics
with response time and use characteristics of an invo-
cation as standard and carry out a normalization of the
other metrics. Thus, the normalized usage information y
is (schematically) for any invocation k:

) n)oc() =] o

Response time is the reference sequence xo(k),k =
1,...,n and the other infrastructure characteristics are
the comparative sequences. We calculate the associate
degree of the other three characteristics with response
time. We take one invocation as standard and then nor-
malise the others. The reference (i = 0) and comparison
sequences (i = 1,...,3) are handled dimensionless. We
obtain standardised sequences y;(k),i = 0,1,...,3;k =
1,...,n,seeFig. 2.

Next, we calculate absolute differences for the table
above using

Aoi = 1Yo (k) — y: (k)| (8)



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 6 of 21

service 1st 2nd 3rd 4th Sth
name invocation invocation invocation invocation Invocation
S [1,11]  [va(2), ¥2(2), va(2)]  [va(3), ¥2(3), yaB)]  [ya(4), va(4), ya(4)]  [ya(5), y2(5), ya(5)]
>1 ->Yo(2) ->Yo(3) ->Yo(4) ->Yo(5)

Fig. 2 Normalised QoS mappings: Infrastructure to Service ([CPU, network, storage] — Performance)

With O; here ranging over the quality aspects, we get
01 = D, Oy = N and O3 = C. The resulting absolute dif-
ference sequence is for our 3 quality aspects the following:

Aor = (0,501 (1), ..., y01(m)),
Aoz = (0,901(2), .. ., y02(n)), )
Aoz = (0,901(3), . .., y03(1)),

In the next step, we determine a correlation coefficient
between reference and comparative sequence (using here
the correlation coefficient of the Gray relevance):

Coi(k) = Asin + 0 Dmax
Aoi(K) + pAax

Here Ai(k) = |yo(k) — yik| is the absolute difference,
Amin = min; mingAg;(k) is the minimum difference
between two poles, A, = max; maxiAg;(k) is the
maximum difference, p € (0, 1) is a distinguishing factor.
Afterwards, we use the formula

1
Toi = ; Zgol(k)
i=1

to calculate the correlation degree between the metrics.
Then, we sort the metrics based on the correlation degree.
If ry is the largest, it has the greatest impact on response
time and will be matched prior to others in the pattern
matching process.

Clouds are shared multi-user environments where users
and applications require different quality settings. A
multi-valued utility function I:Z can be added representing
the user weighting of a vector Q of quality attributes g € Q
for a matrix m; € M as a weighting. This utility function
allows a user to customise the matching with user-specific
weightings:

Z[p,m,q : ’"ng(ém,q) —[0,1]

The overall utility can be defined, taking into account
the importance or severity of the quality attributes w; for
eachg € Q:

Un= ). wiam,qi (ém,qi(MS))
- Vqi€Q
Ungqg = > Up,mq
Vpep
wi=1,w;>0
i

(10)

(11)

(12)

(13)

Finally, the pattern that optimizes the overall configu-
ration utility is determined through the maximum utility
calculated as:

maxmem, Um (14)

Note, that the utility is based on the three quality con-
cerns, but could potentially be extended to take other
factors into account. Furthermore, costs for the infras-
tructure can also be taken into account to determine the
best configuration. We will define an additional cost func-
tion in the cloud configuration Section ‘Pattern-driven
resource configuration” below.

Quality pattern-driven configuration
determination

The QoS-SWP matrix is the tool to determine SLA
requirements-compliant SWPs as workload specifications
for the resource configuration and re-configuration and
re-scaling. For quality-driven configuration, the question
is: for a given service S; and a given performance require-
ment QoSp, what are suitable SWPs to configure the execu-
tion environment? The execution environment is assumed
to be a VM image configuration with storage and network
services samples are discussed in Section ‘Pattern-driven
resource configuration’. We first determine a few config-
uration determination use cases to get a comprehensive
picture where the pattern technique can be used and then
discuss the core solutions in turn.

Use cases

In general, there is a possibly empty set of patterns MS(s;)
for each service s;, i.e., some services have usage informa-
tion, others have no usage information in the matrix itself.
Consider the sample matrix from the previous section.
Three use cases emerge that indicate how the matrix can
be used:

e Conlfiguration Determination — Existing Patterns:
For a service s with monitoring history: Since s1 has
an invocation history for various patterns for a
requested response time of 0.45s, we can return this
set of patterns including M; and Ms3.

e Conlfiguration Determination — Non-existing
Patterns: For a given service s without history: Since
s2 has no invocation history for a required response
time of 2s, we can utilise collaborative filtering for the
prediction of settings, i.e., use similar services to
determine patterns for the given service [11, 12].

e Conlfiguration Test — For a given triple of SWP
values and a service s: If a given s; has an invocation



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

history for a required response time of 2s and we
have a given workload configuration, we can test the
compliance of the configuration with a pattern using
the matrix.

Pattern-based configuration determination

If patterns exist that satisfy the performance require-
ments, then these are returned as candidate configura-
tions. In the next step, a cost-oriented ranking of these can
be done. We use quality level to cost mappings that will
be explained in Section ‘Pattern-driven resource configu-
ration” below. If no patterns exist for a particular service
(which reflects the second use case above), then these
can be determined by prediction through collaborative
filtering, see [7].

QoS prediction process For any service s, if there is
information of s, under pattern mi, then calculate the
similarity between other services s; and s,. We can get
the k neighbouring services of service s; through a sim-
ilarity calculation. The set of these k services is § =
81,85, ..., 8. We fill the null (empty) QoS values for the
target invocation using the information in this set. Using
the information in S, we then calculate the similarity of
m; with other patterns that have the information for tar-
get service s;. We choose the most similar k" patterns of
m;, and use the information across the k" patterns and S to
predict the quality of service s;.

Service similarity computation If there is no informa-
tion of s; in a pattern M;, we need to predict the response
time g;; for s;. Firstly, we calculate the similarity of sj
and services which have information within pattern M;
ranges. For a service s, in [; where I; is the set of ser-
vices that have usage information within pattern M; we
calculate the similarity of s; and s,. We need to consider
the impact of configuration environment differences, i.e.,
redefine common similarity definitions. M,; is the set of
workload patterns which have the usage information of
services s, and s;.

nS (SV,SI') =
Y ome € My (dev—4v) (4¢—7)
JcheMvj(qC,V7%)2 \/cheMvj(q‘?viiqilv)2

Here, g, is the average quality value for service s, and
gj is the respective value for s;. From this, we can obtain
all similarities between s; and others services which have
usage information within pattern m;. The more similar the
service is to s;, the more valuable its data is.

(15)

Predicting missing data Missing or unreliable data can
have a negative impact on prediction accuracy. In [13], we
considered noise up to 10 % to be acceptable. In order to

Page 7 of 21

deal with uncertainty beyond this, we calculate the sim-
ilarity between two services and get the k neighbouring
services. Then, we establish the k-neighbour matrix Ny,
see Eq. (16), and complete the missing data. Ng;,, shows
the usage information of the k neighbour services of s;
under all patterns, reducing the data space to k columns.

. / /
S, Sl e Sk
My (s s11 S1,m
Ngmw = M; | sij Si1 .- Sim (16)
My \'sij Si1 -+ Sim

Empty spaces are filled, if required. Then, we add s;, as
the data of service s, under pattern m;:

. ’ -
ZMES’ Stmp,p X (qi,n_q:q)
ans/ (\Simrz,pn

Si,p = @ + (17)

Again, % is the average quality value of s,, and sim,, , is
the similarity between s, and s,. Now every service s € S
has usage information within all pattern ranges in m;.

Calculating pattern similarity and prediction There
is QoS information of k neighbouring services of s; in
matrix Nj;,,. Some of them are prediction values. We can
calculate the similarity of pattern m; and other patterns
using the correction cosine similarity method:

simpg (mj, mj) =
2 spes (tz{,k_tz{) (t;,k_tf)
—\2 —\ 2
e (62) s (67)
After determining the pattern similarity, the data of pat-
terns with low similarity are removed from Nj;,,,, the set of
the first k patterns. The data of these patterns are retained

for prediction. If p;; is the data to be predicted as the usage
data of service s; within pattern m;, it can be calculated.

(18)

. ’ -
=, Lonew Simnix (qn,,'*q;)

R 19
pij=4;+ > wenr (mmdl) (19)

The average QoS of data related to pattern m; is q7 and
simy,j is the similarity between patterns 2, and n1p,.

Pattern-based configuration testing

We can use the pattern-QoS matrix to test a standard or
any known resource configuration in SWP format (i.e.,
three concrete values rather than value ranges for the
infrastructure aspects) for instance in the situation out-
lined above for a service s; for which its performance is
uncertain. This can also be done instead of collaborative
filtering, as indicated above, if the returned set of patterns
is empty and a candidate configuration is available. Then,
the matrix can be used to determine the respective QoS



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

values, i.e., to predict quality such as performance in our
case through testing as well.

This situation shall be supported by an algorithm that
matches candidate configurations with stored workload
patterns based on their expected service quality. The algo-
rithm takes into account whether or not possibly matching
workload patterns exist.

Algorithm 2 Matching Candidate Configurations
Input: Service Usage Information of a Service.
Output: Metrics Sorted by Correlation Degree.

1: Match [candidate configuration Config =< y1,2,
y3 > of target service s;] with [characteristics (ranges)
< lowy ~ highy, lowy ~ highy, lows ~ n3 >] of stored
patterns M.

. if there is a pattern that can be matched then

return it
else

use Gray relevance analysis (Formula (3.7)) to
match a pattern

6: end if

7. Let the matched pattern be m;

8: Search information about matched pattern m; in

matrix M

9: if there is QoS information of service s; in m; then

10:  return it as expected QoS for candidate

configuration

11: else

12:  if no related QoS information exists then

13: predict QoS by collaborative filtering (4.1)(4.4)

14:  end if

15: end if

16: Return

A N

If no patterns exist, existing candidate configurations
can be tested — to enable always a solution, at least one
default configuration should be provided. Alternatively,
similar services can be considered; these can be deter-
mined through collaborative filtering and then we would
start again.

Variability and smoothing

While the solution above extracts patterns for a given log,
some practical considerations shall be taken into account.
In log data corresponding to resource workload mea-
surements, we can usually observe high variations over
time, which makes predictions over particularly small
time-scales unreliable. The workload contains often many
short-duration spikes. In order to alleviate the disturbance
caused by these, we can use smoothing techniques before
actually applying the pattern mining based on DBSCAN.

Page 8 of 21

We use a time-series forecasting technique [14] to better
estimate the workload at some future point in time.

e We use double exponential smoothing for the
workload aspect because it can be used to smoothen
the inputs and predict trends in log data. This model
takes the number of requests for application services
at runtime into account before predicting the future
workload. This is suitable for the three workload
types CPU, storage and network.

® On the other hand, for estimating response-time, we
use single exponential smoothing because for the
oscillatory response-time, we do not need to predict
the trend but a smoothed value.

Both the exponential smoothing techniques weight the
history of the workload data by a series of exponentially
decreasing factors. An exponential factor close to one
gives a large weight to the first samples and rapidly makes
old samples negligible.

The specific formula for single exponential smoothing
is:

s¢=0x;+ (1 —0)sg—1,£ > 0550 = %0 (20)

Similarly, the formula for double exponential smoothing
is:

s¢ = PBxs+ (1 — B)(sg—1 + br1) (21)
by =yt —s—1)+ 1A —y)bi—1;0 < 6,8,y <1

where x; the raw data sequence and s; is the output of the
techniques and 6, 8,y are the smoothing factors. Note,
the number of data points here depends on the con-
trol loop intervals and the frequency of the performance
counter retrievals in each loop.

Smoothing helps with significant, but irregular varia-
tions of workload. It also help adding more weight to more
recent events. In both, cases the benefit is more reliable
prediction of quality at the service level. Single expo-
nential smoothing is specifically used for these irregular
short-term variations of workload resulting in oscillatory
response-time. These spikes can often not be dealt with
properly in the cloud due to non-instantaneous provision-
ing times (this context is sometimes referred to as the
throttling pattern) [13]. Smoothing can build in an ade-
quate response (or non-response) of the system allowing
to ignore a certain situation.

However, smoothing is a kind of noise added to the
system and we need to address the robustness of the
prediction against noise later on in the evaluation.



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Pattern-driven resource configuration

This section shall illustrate how the approach can be
used in a cloud setting for resource (VM) configu-
ration, costing and auto-scaling. Predefined configura-
tions for VMs and other resources offered by providers
as part of standard SLAs could be the following that
relate to the CPU, storage and network utilisation
criteria < CPU, Storage, Network > we used in Sections
“Workload patterns’ and ‘Quality pattern-driven configu-
ration determination’ for the SWPs.

Gold, Silver and Bronze in Fig. 3 are names for the dif-
ferent service tiers based on different configurations that
are commonly used in industry. We can add pricing for
Pay-as-you-Go (PAYG) and monthly subscription fees to
the above scheme to take cost-based selection of configu-
rations into account, see Fig. 4.

We define below a cost function C : Config — Cost
to formalise such a table. The categories based on the
resource workload configurations can now be aligned by
the provider with QoS values that are promised in the
SLA — here with response time and availability guarantees
filled in the Configuration — Quality matrix CQ:

Gold 0.75 99.99
Silver 1.0 99.9
Bronze \ 1.5 929

(22)

In general, the Configuration-Quality matrix is defined
by

CQ =[cy] with i: configuration category

and j: quality attribute (23)

A selection function o determines suitable workload
patterns M; for a given quality target g as defined in the
Configuration-Quality matrix and a service s;:

o(q,s) = {M; € M|MS(q,s)) € qij} (24)

From this set of workload patterns Mj,...,M,, we
determine the most optimal one in terms of resource utili-
sation. For minimum and maximum utilisation thresholds
miny and maxy that are derived as interval bound-
aries from the pattern mining process, the best pattern is
selected based on a minimum deviation of pattern ranges
M;(g) across all quality factors (based on the overall mean

Page 9 of 21

value) from the threshold average value, defined as the
mean average deviation (where x indicates the mean value
for any expression x):

mm,»\/ > (maxy — min; — Mi(q))? (25)

The thresholds can be set at 60 % and 80 % of the pattern
range averages to achieve a good utilisation with some
remaining capacity for spikes [15].

Based on the best selected SWP M; with the given
key metrics, a VM image can be configured accordingly
in terms of CPU, storage and network parameters and
deployed with the service in question. If several SWPs
apply to meet performance requirements, then costs can
be considered to select the cheapest offer (if the cost in
the table reflects in some way the real cost of provisioned
resources and not only charged costs)

)Cost

o(q,s = min;C(o(q,s)) (26)

for a cost function C that maps a pattern in o(g,s) to
its cost value. The cost function can create a ranking of
otherwise equally suitable patterns or configurations.

The service-based framework presented in Sections
“Workload patterns’ and ‘Quality pattern-driven configu-
ration determination’ was here applied to the cloud con-
text by linking it to standard configuration and payment
models. Specific challenges arose from the cloud context
that we have addressed are:

e Standard cloud payment models allow an explicit
costing, which we took into account here through the
cost function. Essentially, the cost function can be
used to generate a ranked list of candidate patterns
for a required QoS value in terms of the operational
cost. In [16], we have demonstrated that different
performance result, but also costs vary for a given
configuration pattern.

¢ Cloud solutions are subject to (dynamic)
configurations, generally both at IaaS and Paa$ level.
While our configuration here is geared towards
typical [aaS attributes, our implementation work with
Microsoft Azure (see Section ‘Evaluation’) also
demonstrates the possibility and benefit of PaaS-level
configuration. In [16], we have discussed different

32-bit VM

Virtual CPU @ 1.25 GHz
Virtual Memory (GB)
Virtual Storage (GB)
Network Bandwidth (GB)

Fig. 3 VM configuration

Bronze Silver Gold
1 2 4
2 4 4
60 120 240
350 700 1400




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 10 of 21

32-bit VM Pay-as-you-Go Bronze Silver Gold
CPU Hours 1/hr 100 150 200
Virtual Memory 0.05/hr 200 300 450
Virtual Storage 0.1/hr 60 120 240
Network Bandwidth 10/TB 35 50 75

Fig. 4 VM charging scheme

PaaS-level storage configurations and their cost and
performance implications.

e User-driven scalability mechanisms such as
CloudScale or CloudWatch or the AWS Autoscaling
typically work on scaling rules defined on the
granularity of VMs added/removed. Our solution is
based on similar metrics, e.g., GB for storage or
network bandwidth, i.e., further automates these
solutions.

We have briefly mentioned uncertainties that arise
from cloud environments in Section ‘Quality-driven con-
figuration and scaling’. While we have neglected this
aspect here so far, [13] presents an approach that
adds uncertainty handling on top of prediction for VM
(re-)configuration, which we will adapt for our prob-
lem setting in the next section. Uncertainties arise for
instance from incomplete or potentially untrusted moni-
toring data or from varying needs and interpretations of
stakeholders regarding quality aspects. The approach in
[13] adds a fuzzy logic processing on top of a prediction
approach.

Managing uncertainty

The QoS-SWP matrix captures predictions in the form
of mappings or prediction rules M x S — Q where for
SWPs in M and services in S as antecedents, we associate
quality values Q as consequents of those rules. Due to the
possibly varying number of recorded mappings and con-
sequently different patterns for different services, there is
some uncertainty regarding the reliability of predictions
across the service base caused by possibly insufficient
and unrepresentative log data. Sources of uncertainty
include:

e at early stages, the amount of log data available is
insufficient,

e different monitoring tools provide different log data
quality,

e temporary variations in workload might render
prediction unreliable.

In order to address these uncertainties, we pro-
pose a fuzzy logic-based approach to capture uncertain
information, fuzzify this and infer here quality predictions
based on the fuzzified recorded log data.

Fuzzification of rule mappings

The hypothesis that motivates our framework is the obser-
vation that utilisation rates for the resources in question
(CPU, storage, network) are often suboptimal. We can
look at the Q values in the matrix and find patterns M’
that run at 60—-80 % rate for a given g € Q. As we might
find a number of possible patterns, a degree of uncertainty
emerges as either a number of candidate patterns for a
single service or even for a set of similar services might
exist.

Our proposal if to fuzzify all pattern mapings M; x S and
calculate an optimum quality in a fuzzified space before
defuzzifying the result as a concrete pattern with a pre-
dicted quality value. Note that this patterns might not
be in the pattern-quality matrix, i.e., does not necessar-
ily reflect actual observations. More concretely, we fuzzify
M x M? x M® — Q mappings for one quality range 7 € Q
with § = Gmin ~ qGmax and a given service s € S. Here,
each M’ refers to one of the three aspects CPU, storage
and network, resulting in a set of m patterns with ranges
for the three aspects that all map to the same quality range
q. The patterns are the different patterns for a service
(or a class of similar services) that predict a quality range

9 = Gmin ™ Gmax-

M%.B —q

2 ~
Mi3—q (27)

My — g

This set will be fuzzified, resulting in joint, fuzzy repre-
sentation of the merged patterns.

This technique is based on a fuzzy logic approach
to uncertainty that we developed for cloud auto-scaling
[13], but adopted here to service quality prediction. The
approach is differently applied here in that instead of dif-
ferent linguistic concept definitions used in use-defined
auto-scaling rules, we have different (imprecise) workload
ranges. Furthermore, instead of different scaling actions as
rule antecedents, we look at differing performance values
(moderately varying). While in [13], we addressed uncer-
tainty regarding human-specified scalability rules, this is
uncertainty regarding the monitoring systems and their
data.



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Here, we obtain data from different, but similar ser-
vices via the collaborative filtering technique. Different
associated performances (unpredictable variations caused
my factors not considered in the calculation) are deter-
mined. Through the variable Y, we will later on capture
predictions such that M!.. }Q’ — g € Q This can
take into account a targeted 60-80 % utilisation rate
optimum.

In order to simplify the presentation, we only develop
the fuzzy logic approach for the CPU processor load as
core compute resource, linked to performance at the ser-
vice level. However, specific characteristics that would
distinguish CPU, storage and network do not play any role
and, therefore, selecting just one here for simplification
does not restrict the solution.

Fuzzy logic definitions for uncertainty

Fuzzy logic is a suitable tool to reflect the uncertainty that
is incorporated in the different patterns for a service, par-
ticularly since these rely on collaborative filtering based
on similarity with related services.

Fuzzy logic distinguishes different ways to represent
uncertainty. A type-1 (T1) fuzzy set associates as a func-
tion a possibility value of some attribute, resulting in a
single value depending on the input. A type-2 (T2) fuzzy
set is an extension of a type-1 (T1) fuzzy set [17]. At a spe-
cific value & (cf. Fig. 5), there is an interval instead of a
crisp value for each input.

This leads to the definition of a three dimensional mem-
bership function (MF), a T2 MF, which characterizes a
T2 fuzzy set (FS). Note that the core fuzzy logic defini-
tions here are standard definitions in fuzzy theory from

Page 11 of 21

the literature such as [18, 19]. Figure 5 visualises the
definitions.

A T2 FS, denoted by R, is characterized by a T2 MF
wg(x, u) with

R = {((x,u), up(x, w)|¥x € X,Yu € Jo, pp(x, u) < 1}
(28)

When these values have the same weight, it leads to
definition of an interval type-2 fuzzy set (IT2 ES):

If upx,u) =1, R is an interval T2 FS, also abbreviated
asan IT2 FS.

Therefore, the membership function MF of a IT2 FS can
be fully specified by the two boundary T1 MFs. The area
between the two MFs (the grey area in Fig. 5) characterizes
the uncertainty.

The uncertainty in the membership function of an IT2-
FS, R, is called footprint of uncertainty (FOU) of R. Thus,
we define:

FOU®R) = s = (wwlvx e X,Yuel)  (29)

xeX

The upper membership function (UMF) and the lower
membership function (LMF) of R are two T1-MFs Hp(x)
and p;(x), respectively, that define the boundary of the
FOU.

An embedded fuzzy set R, is a T1 ES that is located
inside the FOU of R.

Qualification of infrastructure inputs
We need to apply the definitions above to construct IT2
membership functions for our mappings, but first the add

1
0.9+ i
N i O |
N Hg(X) -/ // Fou (R) \ Uncertainty
/' /_ \A aoou
D 0.7r = U[JL(X) 15+ (x)\]\ \ / satisfaction |
2 06 UMF / A \/ degree
2 / 4\
g 0.5 \A/ / R\/¢ \ ) \
2 AT | G
;;{ 04 Sy / = \ \\ b R, -
= / \
3 03 s R \ Unk;ertamty
A / / \ \ about end
0.2 y / A LMF v \poinF
/[ / /,/' \\ ’/,/’ \
o1 f L l< Wy
/ // / Primary variable x € X 1 ‘\ A\
0 / Il Il Il
1 2 3 4 5 6 x'7 8 9
Fig. 5 A type-2 fuzzy set based possibility distribution




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

labels to ranges in order to work with qualified rather
than quantified ranges. This is common in cloud resource
configuration.

Assume the following pattern-to-quality mapping with
normalised input values in [0..100] for CPU, storage and
network parameters, respectively:

Mj 5 = [40 — 54],[20 — 26],[30 — 37] — g =[1.1 — 1.4]
M? 5 = [20 — 33],[26 — 32],[80 — 86] — § =[0.9 — 1.3]
M3 5 = [16 —23],[65 — 72],[50 — 55] — G =[1.2 — 1.6]
M} 5 = [48 —56],[71 — 78],[82 — 89] — g =[1.5 — 1.9]

’

’

The ranges above reflect observed CPU utilisation
ranges under which the performance is relatively stable.
Ranges with similar performance are clustered. We now
use a qualified representation of the individual range clus-
ters. For the CPU processor load, we use five individual
labels Very Low, Low, Medium, High and Very High.
Thus, for the above mapping, we can map the CPU ranges
[16-23] to the Very Low label, [20-33] to Low and [40-
54] and [48-56] to Medium. The labels themselves are
suggested by experts and are commonly used in the con-
figuration of cloud infrastructure solutions. While this
qualification into concept labels is technically not neces-
sary, these labels help to visualise and communicate the
pattern-based prediction to the cloud users.

Figure 6 shows the qualified patterns. For each label, the
black bar denotes the variation of the means of each of
the pattern value ranges as given by the experts, e.g., the
means of [40—54] and [48-56] for the Medium label. The
light grey bars denote the overall variation of ranges for
each label.

The qualified categorisation will in the next step be used
to define fuzzy membership functions that fuzzify the
infrastructure input captured in the patterns.

Page 12 of 21

Defining membership functions
Infrastructure monitoring tools measure the input val-
ues for the prediction solution (CPU, storage, network)
as infrastructure parameters and performance as service-
level data). Their conversion to fuzzy values is realized by
MFs. In this section, we show how to derive appropriate
IT2 MFs based on the data extracted from the infrastruc-
ture and service monitoring logs. We follow the guidelines
in [20] in order to construct the functions. To simplify
the investigation, we focus on CPU load and performance
only.

As illustrated in Fig. 5, we used triangular or trapezoidal
MFs to represent different CPU load ranges:

e For each normalized CPU range
[CPUin ~ CPUyay], we define one type-2 MF as in
Fig. 7 for five ranges.

e We order these and label them accordingly, e.g., with
VL to VH labels representing Very Low to Low,
Medium, High and Very High CPU loads.

Let a and b be the mean values of the interval end-points
CPU,in and CPU 4, of the labelled ranges with standard
deviations o, and oy, respectively (see Fig. 6). For instance,
for the Low, Medium and High label, the corresponding
triangular T1 MF is then constructed by connecting left /,
middle m and right r as follows:

l=(a—040),m=((a+b)/2,1),r=(b+0,0) (30)

Accordingly, for Very Low and Very High processor
load ranges that border 0 or 100 % on the normalized
scale, the associated trapezoidal MFs can be constructed

by connecting points as follows:
(a—04,0), (a,1)(n, 1), (b + 0p,0) (31)

The labels above refer to utilisation rates of resources,
with a maximum value being 100. So, irrespective of the

Low
 ——

Very low
_y

0 10 20 30 40

Fig. 6 Qualification of pattern ranges before fuzzification

Very high

High
 —

Medium
]

60 70 80 90 100




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 13 of 21

09

08

u

i

Fig. 7 IT2 membership functions for CPU load

100

concrete system, the labels are assigned to normalised
utilisation ranges.

As indicated by the standard deviations in Fig. 6, there
are uncertainties associated with the ends and the loca-
tions of the MFs. As an example, a triangular T1 MF might
be defined follows:

I'=(a—0.3 x o5,0)

m= ((a+b)/2,1)
¥ = b+ 04 x 03,0)

(32)

These uncertainties cannot be captured by T1 fuzzy
MFs. In IT2 MFs on the other hand, the footprint of uncer-
tainty (FOU) can be captured by the upper and lower MFs
(UMF and LMEF) for each range, see Fig. 8. A blurring
parameter 0 < o < 1 can determine the FOU (see Fig. 6).

Here, we use @ = 0.5. Parameter @ = 0 reduces IT2 MFs
to a T1 MFs, while parameter « = 1 results in fuzzy sets
with the widest possible FOUs.

The fuzzy prediction process

After constructing the IT2 fuzzy sets with the MFs and
the set of rules for the infrastructure load patterns, the
prediction can then start to determine service quality esti-
mations. The fuzzy prediction technique proceeds in a
number of steps as follows (which we will explain in more
detail afterwards):

1. The inputs comprising the workload are first
fuzzified.

2. Then, the fuzzified input activates an inference
mechanism to produce output IT2 FSs.

3. Decisions made through the inference mechanism
are represented in the form of fuzzy values, which
cannot be directly used as prediction results. The
outputs are then processed by a type-reducer, which
combines the output sets and subsequently calculates
the center-of-set.

Triangular

Trapezoidal

lyyr = (@a— (1 + a) xa,,0)
myyr = ((@+b)/2,1)
ryur = (b + (1 + a) * g, 0)
yr = (@— (1 —a)*a,,0)
myyr = ((@a+b)/2,1)
e = (b + (1 —a) * g;,0)

Uyyr = (@a— A+ a) *a,,0)
ulyyr = (a — ao,, 1)
uryyr = (b + agy, 1)
lryyr = (b + (1 + @) *g3,0)
Uyr =(@—(1—-a)*a,,0)
ulyyr = (a+ aog,, 1)
uryyr = (b — aoy, 1)
lrpyr = (b+ (1 —a) *a,,0)

Fig. 8 Locations of the main points of IT2 MFs




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

4. The type-reduced FSs are T1 fuzzy sets that need to
be defuzzified in the last step to determine the
predicted quality value q.

5. This value q is then passed back to the user as the
predicted quality.

In the first step, we must specify how the numeric inputs
u; € U for the CPU utilisation rates are converted to fuzzy
sets (a process that called “fuzzification” [18]) so that they
can be used by the FLS. Here, we use singletons:

1 x=u;
1

. (33)
0 otherwise

For the defuzzification step, we use the construct of a
centroid [21]. The centroid of a IT2 FS R is the union of
the centroids of all its embedded T1 fuzzy sets R,:

Cr=Je®o) =[a (R), e (R)]

VR,

(34)

For the type-reducing step we use the center-of-sets
construct [36]. The center-of-set (cos) type reduction is
calculated as follows:

U le\i}flxyl

Ycos = N
VA

= [yuyr] (35)

fleFlyleCy

where f! e F' is the firing degree of mapping rule [
and yl € Cg is the centroid of the IT2 FS G'. The cen-
troids ¢;(R), ¢+(R) and y1,yr are calculated using the KM
algorithm from [21].

Fuzzy reasoning for quality prediction

Our quality mappings that encode the SWPs are in a
multi-input single-output format. Because the log records
of different services may not be similar, many patterns may
be conflicting, i.e., we might have rule mappings with the
same antecedent, but different consequent values. In this
step, mappings with the same if-part are combined into
a single rule. For each mapping in the patterns retrieved
from the logs, we get the following for a sample rule R':

IF (x1 is F{) and ... and (xp is Fé), 36)
36

THEN (y is y“i))
where ¢/ is the index for the result. In order to combine
these conflicting mappings, we used the average of all the
responses for each mapping and use this as the centroid
of the mapping consequent. Note, that the mapping con-
sequents are IT2 FSs. However, when the type reduction
is used, these IT2 FSs are replaced by their centroids. This
means that we represent them as intervals [Z”, ¥y ] or crisp
values when y” = y". This leads to rules with the following

form for an arbitrary rule R’:

Page 14 of 21

IF the CPU workload (x7) is El,
AND the network load (x5) is Giz,
AND the storage utilisation (x3) is I:I,'3,
THEN g is the predicted value.

where C is the value of associated consequent, i.e., here a
quality value for performance in ms, and wlu is the weight
associated with the u-th consequent of the /th mapping.
Therefore, each ¢g; can be computed.

In a concrete example, we now illustrate the details of
the prediction process. Assume that the normalized val-
ues regarding the three input parameters are x; = 40,
xp = 50 and x3 = 55, respectively — see the solid lines
for the workload in Fig. 9 as a sample factor. For x; =
40, two IT2 FSs for the processor workload ranges Fy =
Low and F» = Medium with the degrees [0.3797,0.5954]
and [0.3844,0.5434] are fired!. Similarly, for x, = 50,
three IT2 FSs for the performance ranges Gz = Medium,
Gy = Slow, and G5 = Very Slow with the firing degrees
[0,0.1749], [0.9377,0.9568] and [0,0.2212] are fired. For
x3 = 55 similar values would emerge. Intuitively, the
lower and upper values of the intervals can be computed
by finding the y-intercept of the solid lines in the figure,
respectively, with the LMF and the UMF of the crossed
FSs. As a result, six pattern mappings might result that are
fired (here a sample is given):

Mg : (F2, G3, Hy), My : (F2, Gy, Hy),

My : (F2, Gs, Ha), M3 : (F3, G3, H>),
My : (F3, Gy, Hy), M5 : (F3,Gs, H2)

(37)

The firing intervals are computed using the meet opera-
tion [17]. For instance, the firing interval associated to the
pattern Mg for the CPU attribute is:

my = e @peu & (%)) = 0.3797 x 0.9377 = 0.3560

(38)
The output can be obtained using the center-of-set:
Y;(40, 50, 55) =
[:(40, 50, 55), y»(40,50,55) ] = (39)
[0.9296,1.1809]
The defuzzified output can be calculated as follows:
0.9296 + 1.1809
Y(40,50,55) = w2220 11809 hoeg (40)

2

Thus, we can finally calculate the predicted quality
Y (x1,x9,x3) for all the possible normalized values of the
input infrastructure parameters (i.e., x; €[0,100], x, €
[0,100], x3 €[0, 100] for CPU, storage and network).

Evaluation

Our proposed solution builds on a core pattern-based
quality prediction solution that can be used for cloud con-
figuration in an environment where there is uncertainty



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23 Page 15 of 21

T T T v T T T T
1

0ol VH |

os | i H | .
[ : - ;
= oTh M Il X 4
£ M%
B
SD oet 2 M O[3 1
= i i\
= s 3 Y
7 sk 1 : !' A
() AL
e 04k ‘l‘. .l 1‘ by
= 4 HEEIRY
D o3h 1 } 1 % g
2 ] V 1 [

Y ! i '
02 f $ 5 ! % ]
1 1 1 [y
5 H ] %
ol 3 i 1 [ T
4 j‘ I' I‘
0 1 21 A 1 2
0 30 60 0 s0 S0 100
Fig. 9 IT2 MFs of for CPU workload ranges

about concerns such as correctness or completeness. We  [5, 6]. We have implemented a simulation environ-
have implemented an experimental test environment to  ment with a workload generator to evaluate accuracy
evaluate the accuracy, efficiency and robustness of the of the prediction approach and the performance of the
solution in the context of uncertainty and dynamic pro-  prediction-based configuration. Test data is derived from
cessing needs. sources such as [22] where quality metrics (response

time, throughput) are collected for 5825 Web services
Implementation architecture and evaluation settings with 339 users. We selected 100 application services from

The implementation of the prediction and configuration three different categories, each category either sensitive
technique covers different parts — off-line and on-line to data size, network throughput or CPU utilization.
components: Figure 10 describes the testbed with the monitoring and
SWP extraction solution for Web services. The primary

e The pattern determination and the construction of concern is the accuracy of the pattern extraction and

the patterns-quality matrix is done off-line based on pattern-based prediction of performance for deployed
monitoring logs. The matrix is needed for dynamic services. Furthermore, as dynamic reconfiguration, i.e.,
configuration and can be updated as required in the auto-scaling, is an aim, also performance needs to be
cloud system. For the prediction, the accuracy is looked at.

central. As the construction is off-line, performance We have tested our scalability management in Microsoft

overhead for the cloud environment is, as we will

Azure. We have implemented a range of standard applica-
demonstrate, negligible.

tions, including an online shopping application, a services
e The actual prediction through accessing the matrixis ~ management solution and a video processing feature to

done in a dynamic cloud setting as part of a scaling determine the quality metrics for different service and
engine that combines prediction and configuration. infrastructure configuration types. For the first two, we
Here the acceptable performance overhead for the used the Azure Diagnostics CSF to collect monitoring
prediction needs to be demonstrated. data (Fig. 10). We also created an additional simula-
e Uncertainties and noise are additional problems that ~ tion environment to gather a reliable dataset without
arise in heterogeneous, cross-organisational cloud interference from uncontrollable cloud factors such as the

architectures. Robustness in the presence of these

network. Concrete applications systems we investigated
challenges needs to be demonstrated.

are the following: a single-cloud storage solutions for
online shopping applications [16] and a multi-cloud

For both the accuracy and performance concern, we  HADR solution (high-availability disaster recovery system
use a standard prediction solution, collaborative filter-  [23]. This work has resulted in a record of configura-
ing (CF) as the benchmark, which is widely used and tion/workload data combined with performance data — as
analysed in terms of these properties, cf. [11, 12] or for instance shown in [16] where Figs. 3, 4, 5 and 6 capture



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 16 of 21

pRY

vy
00

Load Profiles

Workload § N
Generator

Synthetic Load
Generator

Fig. 10 Evaluation architecture

o
e 0’60 del'e @
Elasticity Strategies

Monitoring @ @ Execution

1 I
: (online) :
= : 1
R [ — ——
- ] T offiine | Adaptation . -
ol * ‘ i SWP i _Action | Scaling
= - [ s — i Engine
ol = [ Pattern Minin 1 '
£ “JW P ’ i i
© v = i I
a 1 ! Pattern 1 1
K “_m i i Repository i :
Of i = ™ 1 1 : : i
- 1 : 1 1 [ —
i ' '
[ -
I
I
I T
I
I
! o\

Load
Balancing

System Under Test
(ElasticQueue Connector)

o
‘e e

,'*"’

Pattern Matching

Auto-Scaling
Engine

response time for different service types and Figs. 7 and
8 show infrastructure concerns such as CPU and stor-
age aspects. In that particular case, 4,100 test runs were
conducted, using a 3-service application with between 25
and 200 clients requesting services. Azure CSF telemetry
was used to obtain monitoring data. This data was then
looked at to identify our workload patterns (CPL, Storage,
Network) — Performance.

Cloud application workload patterns

A number of different application workload patterns are
described in the literature [8, 13]. These include static,
periodic, one-in-a-lifetime, unpredictable, continuously
changing as in [8], or slowly varying, quickly varying,
dual phase, steep tri-phase, large variation and big spike
[13]. We need to make sure that this experimental evalu-
ation does indeed cover the application workload pattern
in order to guarantee general applicability. We followed
[13] and induced these six patterns in our experiments.
Based on the successful pattern coverage, we can conclude
that the technique is applicable for a range of the most
common situations.

We have implemented our prediction mechanism in dif-
ferent platforms. Work we described in [13] deals with
how to implement this in an auto-scaling solution such as
Amazon AWS where Amazon-monitored workload and
performance auto-scaling metrics are considered together
with a prediction of anticipated behaviour to configure the
compute capabilities.

Accuracy

Reliable performance guarantees based on configuration
parameters is the key aim — real performance needs to
match the expected or promised one for the provider
to fulfill the SLA obligations. Accuracy in virtualisation
environments is specifically challenging [24] due to
resource contentions because of the layered architecture,
shared resources and distribution.

Accuracy of prediction is measured in terms of devi-
ation from the real behaviour. The metric we use here
is based on the mean absolute error (MAE) between
prediction (SLA imposed) and real response time, which
is the normal choice to measure prediction accuracy.
Different characteristics of QoS have different ranges.



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Consequently, we use NMAE (the Normalized Mean
Absolute Error) instead of the MAE. The smaller the
NMAE, the more accurate is the prediction. We compare
our solution with similar methods based on traditional
prediction methods in terms of matrix density. This covers
different situations from situations where little is known
about the services (density is low) and situations where
there is a reliable base of historic data for pattern extrac-
tion and prediction (high density).

In earlier work, we included average-based predications
and classical collaborative filtering (CF) in a comparison
with our own hybrid method (MCF) of matrix-based
matching and collaborative filtering [7]. The NMAE of
k = 15 and k = 18 (higher or lower k; are not interest-
ing as lower values are statistically not significant and
higher ones only show a stabilisation of the trend) shows
an accuracy improvement for our solution compared
to standard prediction techniques, even without utility
function and exponential smoothing, see Fig. 11. For
this evaluation here, we also include time series (TS)
into the comparison. For the evaluation, we considered
some noisy data which cannot be in any pattern. We
also removed invocation data and then predicted it
using the CF, MCF and also the TS time series method
from [25].

We can observe that an increase of the dataset size
improves the accuracy significantly. In all cases, our MCF
approach outperforms the other ones by resulting in less
prediction errors.

Efficiency overhead (runtime)
For automated service management in the context of
cloud auto-configuration and auto-scaling we need suf-
ficient performance of the extraction and matching
approach itself. To be tested in this context are the perfor-
mance of three components:

1. SWP Extraction from Logs (Matrix Determination)
2. Configuration-Pattern Matching (Existing Patterns)

Page 17 of 21

For cases 1 and 2, we determined 150 workload patterns
from 2400 usage recordings. We tested the algorithm on
a range of different datasets extracted from a number of
documented benchmarks and test cases. Com-pared to
other work based on the TS and CF solutions, the matrix
for collaborative computation is reduced from 2400*100
to 150100, which reduces execution time significantly
by the factor 16. For case 3, only when a matched pat-
tern provides no information for a target service, the
calculation for collaboration prediction is required, see
Fig. 12, where we compare prediction performance with
(MCF) as described in Sections “Workload patterns’ and
‘Quality pattern-driven configuration determination’
(using Algorithms 1 and 2) and without (CF) the
pattern-based matrix utilisation.

Robustness against noise and uncertainty

Exponential smoothing causes noise and results in some
unavoidable errors. We need to demonstrate that our pre-
diction solution is resilient against input noises, one of
which is the estimation error through smoothing.

We experimentally evaluated the robustness against
noise. We observed that the worst estimation error
happens for large variation and quickly varying patterns
and is less than 10 % of the actual workload. Based on
this, we injected a white noise to the input measurement
data (i.e., x1) with an amplitude of 10 %. We ran RMSE
(root-mean-square error — measure of the differences
between values predicted by a model or an estimator
and the values actually observed) measurements for each
levels of blurring, and for each measurement, we used
10,000 data items as input. We used different blurring
values. Two observations emerged:

e Firstly, the error of control output produced by the
prediction technique is less than 0.1 for the blurring
levels.

e Secondly, the error of control output is decreasing
when we configured the technique with a higher

3. Collaborative Filtering (Non-Existing Patterns) blurring.
0.8 e
06 —8— MCF
w TS
S 048
r4 '?f‘._‘_f—o-‘_ X
0.2 g
0 : : :
01 03 05 07 09 1
Matrix Density
Fig. 11 Accuracy evaluation




Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

Page 18 of 21

8000

8000

7000

6000 -

<y
8

Time (ms)
&
8

3000

2000

Fig. 12 Performance evaluation

=#=CF method

«fi=MCF method

mOOA.__.___.___.__.__.——I——-I——"“"
O.
1 2 3 4 5 6

Datasize (in thousands)

7 8 9 10

A higher blurring as part of the smoothing leads to a
bigger FOU in the uncertainty management, where FOU
is a representative for the supporting levels of uncertainty.
Therefore, the designer should make a choice in terms
of the level of uncertainty that is acceptable. Note that
in some circumstances an overly wide FOU results in
a performance degradation. However, we can state that
these observations provide enough evidence that robust-
ness against input noise is maintained. Using IT2 FLS in
the uncertainty management actually alleviates here the
impact of noise.

Threats to validity

Some threats to the validity of the observations here exist.
The usefulness of the approach relies on the quality of
the workload patterns. While the existence of the pat-
terns can be guaranteed by simply defining the individual
ranges in the broadest possible way, thus resulting in some
over-arching default patterns, their usefulness will only
emerge if they denote sufficiently narrow ranges to allow
the resources to be utilised in an equally narrow band.
For instance, a band of 60—80 % is aimed at for processor
loads.

While this has emerged to be possible for traditional
software services that are computationally intensive or are
typical text and static content-driven applications, multi-
media type applications for instance with different net-
work consumption patterns require more investigation.

Summary of evaluation

Thus, to conclude the evaluation, the computational effort
for the dynamic prediction is decreased to a large extent
due to the already partially filled matrix. As already
explained, the performance of the pattern extraction and

matrix construction (DBSCAN based clustering and col-
laborative filtering) can be computationally expensive, but
can be done offline and only the matrix-based access (as
demonstrated in the performance figure above) impacts
on the runtime overhead for the configuration. How-
ever, as the results show, our methods overhead increases
only slowly even if the data size increases substantially.
Consequently, the solution in this setting is no more intru-
sive than a reactive rule-based scalability solution such as
Amazon AWS Auto Scaling that would also follow our
proposed architecture.

We specifically looked at the accuracy and robustness
of the solution. The accuracy of the core solution based
on the matrix is better than a traditional collaborative fil-
tering approach. However, in cloud environments, other
concerns needed to be addressed in addition. In order to
address uncertainty due to different and possible incom-
plete and unreliable log data, we added smoothing and
fuzzification. We have demonstrated that these features
improve the robustness against external influence factors.

Related work

QoS-based service selection in general has been widely
covered. There are three main categories of prediction-
based approaches for selection.

e The first one covers statistical and other
mathematical methods, which are often adopted for
simplicity [1-3, 26, 27]. Others, e.g., in the context of
performance modeling use mathematical models
such as queues.

e The second category selects services based on user
feedback and reputation [28, 29]. It can avoid
malicious feedback, but does not consider the impact



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

of SLA requirements and the environment and
cannot customise prediction for users.

e The third category is based on collaborative filtering
[11, 12, 30], which is a widely adopted
recommendation method [31-33], e.g., [32]
summarizes the application of collaborative filtering
in different types of media recommendation. Here,
we combine collaborative filtering with service
workload patterns, user requirements and SLA
obligations and preferences. This considers different
user preferences and makes prediction personalized,
while maintaining good performance results.

To demonstrate that our solution is an advancement
compared to existing work on prediction accuracy, we had
singled out two approaches for categories 1 and 3 for the
evaluation above.

General prediction approaches

Some works integrate user preferences and user charac-
teristics into QoS prediction [5, 11, 12, 30], e.g. [11, 12]
propose prediction algorithms based on collaborative fil-
tering. They calculate the similarity between users by their
usage data and predict QoS based on user similarity. This
method avoids the influence of the environment factor
on prediction. However, even the same user will have
different QoS experiences over time depending on the
configuration of the execution environment or will work
with different input data. Current work generally does not
consider user requirements. Another current limitation of
current solutions is low efficiency as we demonstrated.
Our work in [13] is a direction based on fuzzy logic to
take user scalability preferences into account for a cloud
setting.

In [7, 34], pattern approaches are proposed. Srinivas
[34] suggests pattern-based management for cloud con-
figuration management, but without a detailed solution.
Zhang et al. [7] is about bottom-up QoS prediction for
standard service-based architectures, while in this paper
QoS requirements are used to predict suitable workload-
oriented configurations taking specifically cloud concerns
into consideration. We added additionally exponential
smoothing and utility functions and the cost analysis here,
but draw on some evaluation results from [7] in compari-
son to standard statistical methods.

Cloud quality prediction and scalability

Various model-based predictive approaches are in use
for cloud quality and resource management, including
machine learning techniques for clustering, fuzzy cluster-
ing, Kalman filters, or low band filters, used for model
updates which are then used for optimization and inte-
grate with controllers Supporting cloud service manage-
ment can automatically scale the infrastructure to meet

Page 19 of 21

the user/SLA-specified performance requirements, even
when multiple user applications are running concurrently.
Jamshidi et al. [13] deal with multi-user requirements as
part of an uncertainty management approach, which is
based on prediction as only exponent smoothing. Ghandi
et al. [35] also leverage application level metrics and
resource usage metrics to accurately scale infrastructure.
They use Kalman filtering to automatically learn changing
system parameters and to proactively scale the infrastruc-
ture, but have less of a performance gain than through
patterns in our solution. Another work in this direc-
tion is [36], where the solution aims to automatically
adapt to unpredicted conditions by dynamically updating
a Kriging behaviour model. These deal with uncertainty
concerns that we have excluded. However, an integra-
tion of both directions would be beneficial in the cloud.
These approaches can add the uncertainty management
solutions required.

Uncertainty management in clouds

Uncertainty is a common problem, particularly in open
multi-layered and distributed environments such as the
cloud applications. In [13], fuzzy logic is used to deal with
auto-scaling in cloud infrastructures. We have adopted
some of the principles here, but applied them to qual-
ity prediction here rather than resource allocation there.
A similar fuzzy controller for resource management has
been suggested in [37] based on adaptive output amplifi-
cation and flexible rule selection. However, this solution is
based on T1 FLS and does not address uncertainty.

The proposed method in this paper takes full account
of user requirements (reflected in SLA obligations for
the provider), the network and computational factors. It
abstracts the service workload pattern to keep the service
QoS steady. When user/SLA requirements are known,
prediction-base configuration can be done based on
matched patterns. This approach is efficient and reduces
the computational overhead.

Conclusions

Web or cloud services [38] usually differ with respect
to QoS characteristics. Relevant service-level qualities
are response time, execution cost, reliability, or availabil-
ity. There are many factors that impact on QoS [39].
They depend not only on the service itself, but also how
it is deployed. Some factors are static, some are run-
time static, the others are dynamic. Run-time static and
dynamic factors like client load, server load, network
channel bandwidth or network channel delay are generally
uncertain, but can be influenced by suitable configuration
in virtualised environments such as the cloud. Most fac-
tors can be monitored, and their impact on service-level
quality can be calculated as part of a service management
solution. Service management in cloud environments



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

requires SLAs for individual users to be managed con-
tinuously through dynamic platform and infrastructure
configuration, based on monitored QoS data.

We provided a solution that links defined SLA
obligations for the provider in terms of service perfor-
mance with lower-level metrics from the infrastructure
that facilitates the provisioning of the service. Our solu-
tion enables cloud workload patterns to be associated to
performance requirements in order to allow the require-
ments to be met through appropriate configuration. Note,
that the investigation was based on the three quality con-
cerns, but could potentially be extended to take other
factors into account.

Performance management is still a problem in the cloud
[4, 40]. While availability is generally managed and, cor-
respondingly, SLA guarantees are made, reliably guaran-
teeing performance is not yet solved. Through a mining
approach we can extract resource workload patterns from
past behaviour that match the performance requirement
and allow a reliable prediction of a respective configura-
tion for the future.

What our approach signifies is the increased level of
noise and uncertainty in cloud environments. Uncertainty
emerges as different user roles are involved in configur-
ing and running cloud applications, both on the consumer
and provider side, and furthermore, data extracted from
the cloud is uncertainty regarding its completeness and
reliability as it might originate from different tools at dif-
ferent layers, possibly controlled by different providers or
users. Noise occurs naturally in this setting, but is wors-
ened by a need to apply for instance smoothing to address
variability and detect trends.

There are wider implications that would still need more
work for any solution to be practically viable. We started
with three resource concerns, choosing one for each cate-
gory. For the fuzzification, we focused on one concern to
reduce complexity. Our experiments with concrete cloud
platforms (Openstack and Azure) also show the need
considerable integration work with platform services for
monitoring and resource management.

In order to further fine-tune the approach in the
future, we could take more infrastructure metrics into
account. More specific cloud infrastructure solutions and
more different use cases shall be used on the exper-
imental side to investigate whether different patterns
emerge either for different resource provisioning environ-
ments or for different application domains and consumer
customisations [41].

Endnote

'The term ‘fired’ is commonly used for rules, generally
assuming the consequents of the rules being actions that
are fired. We have kept the term, but it applies here only
to mappings to quality values.

Page 20 of 21

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

LX and YZ have worked on the collaborative filtering solution presented in
Sections Workload patterns and Quality pattern-driven configuration
determination. LX (supervised by CP) has mapped this to the cloud computing
context (Sections Quality-driven configuration and scaling and Pattern-driven
resource configuration). PJ is the central contributor of Section Managing
uncertainty (work that has been supervised by CP). CP is responsible for
Introduction and Conclusions. All authors have contributed to the evaluation.
All authors read and approved the final manuscript.

Acknowledgements

This research has been supported by the Fundamental Research Funds for the
Central Universities of China (grant N130317005), by the National Natural
Science Foundation of China (grant 61402090), and the Irish Centre for Cloud
Computing and Commerce IC4, an Irish national Technology Centre funded
by Enterprise Ireland, the Irish Industrial Development Authority, and by
Science Foundation Ireland (International Strategic Cooperation Award Grant
Number SFI/13/ISCA/2845).

Author details
'Software College, Northeastern University, Shenyang, China. 21C4/School of
Computing, Dublin City University, Dublin, Ireland.

Received: 17 April 2015 Accepted: 21 November 2015
Published online: 15 December 2015

References

1. Cardoso J, Miller J, Sheth A, Arnold J (2004) Quality of service for
workflows and web service processes. J Web Semant 1:281-308

2. Kritikos K, Plexousakis D (2009) Requirements for Qos-based web service
description and discovery. [EEE Trans Serv Comput 2(4):320-337

3. YeZ Bouguettaya A, Zhou X (2012) Qos-aware cloud service composition
based on economic models. In: Proceedings of the 10th International
Conference on Service-Oriented Computing. ICSOC'12. Springer, Berlin,
Heidelberg. pp 111-126

4. Chaudhuri S (2012) What next?: a half-dozen data management research
goals for big data and the cloud. In: Proceedings of the 31st Symposium
on Principles of Database Systems. PODS "12. ACM, New York, NY, USA.
pp 1-4

5. Zhang L, Zhang B, Liu Y, Gao Y, Zhu ZL (2010) A web service Qos
prediction approach based on collaborative filtering. In: Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, Piscataway,
NJ, USA. pp 725-731

6. Zhang L, Zhang B, Na J, Huang L, Zhang M (2010) An approach for web
service Qos prediction based on service using information. In: Service
Sciences (ICSS), 2010 International Conference On. IEEE, Piscataway, NJ,
USA. pp 324-328

7. Zhang L, Zhang B, Pahl C, Xu L, Zhu Z (2013) Personalized quality
prediction for dynamic service management based on invocation
patterns. 11th International Conference on Service Oriented Computing
ICSOC 2013. Springer-Verlag, Berlin, Germany

8. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud
Computing Patterns - Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, Vienna, Austria

9. Zhang L, Zhang Y, Jamshidi P, Xu L, Pahl C (2014) Workload patterns for
quality-driven dynamic cloud service configuration and auto-scaling. In:
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference On. IEEE, Piscataway, NJ, USA. pp 156-165

10. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proc. of 2nd
International Conference on Knowledge Discovery and Data Mining.
AAAI, Palo Alto, California, USA. pp 226-231

11. Shaol, Zhang J, Wei Y, Zhao J, Xie B, Mei H (2007) Personalized Qos
prediction forweb services via collaborative filtering. In: Web Services,
2007. ICWS 2007. IEEE International Conference On. IEEE, Piscataway, NJ,
USA. pp 439-446

12. Zheng Z, Ma H, Lyu MR, King I (2011) Qos-aware web service
recommendation by collaborative filtering. IEEE Trans Serv Comput
4(2):140-152



Zhang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:23

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

Jamshidi P, Ahmad A, Pahl C (2014) Autonomic resource provisioning for
cloud-based software. In: Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS 2014. ACM, New York, NY, USA. pp 95-104

Kalekar PS (2004) Time series forecasting using holt-winters exponential
smoothing. Technical report, Kanwal Rekhi School of Information
Technology. IIT Bombay, Bombay, India

Zhao H, Li X (2013) Resource Management in Utility and Cloud
Computing. Springer, New York, USA. Springer Briefs in Computer Science
Xiong H, Fowley F, Pahl C, Moran N (2014) Scalable architectures for
platform-as-a-service clouds: Performance and cost analysis. 8th
European Conference on Software Architecture, ECSA 2014.
Springer-Verlag, Berlin, Germany

Mendel JM (2007) Type-2 fuzzy sets and systems: An overview [corrected
reprint]. [EEE Comput Intell Mag 2(2):20-29

Mendel JM, John Rl Liu F (2006) Interval type-2 fuzzy logic systems made
simple. IEEE Trans Fuzzy Syst 14(6):808-821

Wu D (2012) On the fundamental differences between interval type-2
and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832-848
Liang Q, Karnik NN, Mendel JM (2000) Connection admission control in
atm networks using survey-based type-2 fuzzy logic systems. IEEE Trans
Syst Man Cybern Part C Appl Rev 30(3):329-339

Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci
132(1-4):195-220

Zheng Z, Zhang Y, Lyu MR (2010) Distributed Qos evaluation for
real-world web services. In: Web Services (ICWS), 2010 IEEE International
Conference On. IEEE, Piscataway, NJ, USA. pp 83-90

Xiong H, Fowley F, Pahl C (2015) An architecture pattern for multi-cloud
high availability and disaster recovery. In: Workshop on Federated Cloud
Networking FedCloudNet'2015. Springer-Verlag, Berlin, Germany

Gmach D, Rolia J, Cherkasova L, Kemper A (2007) Workload analysis and
demand prediction of enterprise data center applications. In: Proceedings
of the 10th International Symposium on Workload Characterization.
IISWC '07. IEEE Computer Society, Washington, DC, USA. pp 171-180
Cavallo B, Di P, Canfora G (2010) An empirical comparison of methods to
support Qos-aware service selection. In: The 2nd International Workshop
on Principles of Engineering Service-Oriented Systems. ACM, New York,
NY, USA

Alrifai M, Skoutas D, Risse T (2010) Selecting skyline services for Qos-based
web service composition. In: Proceedings of the 19th International
Conference on World Wide Web. WWW '10. ACM, New York, NY, USA.

pp 11-20

Zeng L, Benatallah B, HH Ngu A, Dumas M, Kalagnanam J, Chang H (2004)
Qos-aware middleware for web services composition. IEEE Trans Softw
Eng 30(5):311-327

Vu LH, Hauswirth M, Aberer K (2005) Qos-based service selection and
ranking with trust and reputation management. In: Proceedings of the
2005 Confederated International Conference on On the Move to
Meaningful Internet Systems. OTM'05. Springer, Berlin, Heidelberg.

pp 466-483

LiY, Zhou MH, Li RC, Cao DG, Mei H (2008) Service selection approach
considering the trustworthiness of Qos data. J Softw 19(10): 2620-2627
Wu G, Wei J, Qiao X, Li L (2007) A bayesian network based Qos assessment
model for web services. In: Services Computing, 2007. SCC 2007. IEEE
International Conference On. IEEE, Piscataway, NJ, USA. pp 498-505
Sarwar B, Karypis G, Konstan J, Riedl J (2001) ltem-based collaborative
filtering recommendation algorithms. In: Proceedings of the 10th
International Conference on World Wide Web. WWW ‘01. ACM, New York,
NY, USA. pp 285-295

Zeng C, Xing C-x, Zhou L-z (2002) A survey of personalization technology.
J Softw 13(10):1952-1961

Xu HL, Wu X (2009) Comparison study of internet recommendation
system. J Softw 20(2): 350-362

Srinivas D (2013) A patterns/workload-based approach to the cloud. DIMS
Lightning Talk, IBM. Online: http://www.slideshare.net/davanum/dims-
lightningtalk

Gandhi A, Harchol-Balter M, Raghunathan R, Kozuch MA (2012) Autoscale:
dynamic, robust capacity management for multi-tier data centers. Trans
Comput Syst 30(4):14-11426

Gambi A, Toffetti Carughi G, Pautasso C, Pezze M (2013) Kriging
controllers for cloud applications. [EEE Internet Comput 17(4):40-47

37.

38.

40.

Page 21 of 21

Rao J, Wei Y, Gong J, Xu CZ (2011) Dynaqos: Model-free self-tuning fuzzy
control of virtualized resources for Qos provisioning. In: Quality of Service
(IWQoS), 2011 IEEE 19th International Workshop On. IEEE, Piscataway, NJ,
USA. pp 1-9

Pahl C, Xiong H (2013) Migration to paas clouds ¢ migration process and
architectural concerns. 7th International Symposium on Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA
2013). IEEE, Piscataway, NJ, USA

Lelli F, Maron G, Orlando S (2007) Client side estimation of a remote
service execution. In: Proceedings of the 2007 15th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. MASCOTS '07. I[EEE Computer Society,
Washington, DC, USA. pp 295-302

Jamshidi P, Ahmad A, Pahl C (2013) Cloud migration research: a
systematic review. [EEE Trans Cloud Comput 1(2):142-157

. Wang M, Bandara KY, Pahl C (2010) Process as a service distributed

multi-tenant policy-based process runtime governance. In: Proceedings
of the 2010 IEEE International Conference on Services Computing. SCC
"10. [EEE Computer Society, Washington, DC, USA. pp 578-585

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.slideshare.net/davanum/dims-lightningtalk
http://www.slideshare.net/davanum/dims-lightningtalk

	Abstract
	Keywords

	Introduction
	Quality-driven configuration and scaling
	Workload patterns
	SWP pattern mining and construction
	Pattern-quality matrix
	Pattern matching

	Quality pattern-driven configuration determination
	Use cases
	Pattern-based configuration determination
	QoS prediction process
	Service similarity computation
	Predicting missing data
	Calculating pattern similarity and prediction


	Pattern-based configuration testing
	Variability and smoothing

	Pattern-driven resource configuration
	Managing uncertainty
	Fuzzification of rule mappings
	Fuzzy logic definitions for uncertainty
	Qualification of infrastructure inputs
	Defining membership functions
	The fuzzy prediction process
	Fuzzy reasoning for quality prediction

	Evaluation
	Implementation architecture and evaluation settings
	Cloud application workload patterns
	Accuracy
	Efficiency overhead (runtime)
	Robustness against noise and uncertainty
	Threats to validity
	Summary of evaluation

	Related work
	General prediction approaches
	Cloud quality prediction and scalability
	Uncertainty management in clouds

	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References



