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Abstract

that the Skip-Octree index is feasible and efficient.

Although several cloud storage systems have been proposed, most of them can provide highly efficient point
queries only because of the key-value pairs storing mechanism. For these systems, satisfying complex
multi-dimensional queries means scanning the whole dataset, which is inefficient. In this paper, we propose a
multidimensional index framework, based on the Skip-list and Octree, which we refer to as Skip-Octree. Using a
randomized skip list makes the hierarchical Octree structure easier to implement in a cloud storage system. To
support the Skip-Octree, we also propose a series of index operation algorithms including range query algorithm,
index maintenance algorithms, and dynamic index scaling algorithms. Through experimental evaluation, we show
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Introduction

Large-scale data management is a crucial aspect of most
Internet applications. Emerging cloud computing [1-3]
systems can provide users with cheap and powerful facil-
ities for storage. As an attractive paradigm, cloud appli-
cations are required to deliver scalable and reliable
management as well as process extensive data efficiently.
However, most existing cloud storage systems generally
adopt a distributed hash table (DHT) approach to index
data, in which the data are then organized in the form of
key-value pairs [4]. Thus, current cloud systems can only
support keyword searches and access data through
“point-query”.

However, using only point queries is insufficient. Many
multidimensional requirements exist for certain applica-
tions. For example, in location-based services, users
often need to find an object based on its longitude, lati-
tude, and time. In addition, they must query multiple at-
tributes to return results immediately. Single key-value
queries have clearly been unable to meet this demand.
As a current solution, we can run a batch program such
as a Hadoop task and scan all datasets to obtain results.
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Multidimensional data structures are of considerable
interest in many fields, including computational geom-
etry, computer graphics, and scientific data visualization.
Researchers have proposed multidimensional data struc-
tures such as R-tree [5], Quadtree [6, 7], and Octree [8],
all of which enable efficient performance in data storage
and searching systems. Quadtree is commonly used in
the two-dimensional space, whereas Octree is more
popular in the three-dimensional space common in
many application systems. However, these traditional
data indexes are normally used in a single machine or
the peer-to-peer (P2P) system. Currently, with the emer-
gence of the era of big data [9], the traditional data indi-
ces have several disadvantages such as lower storage
capacity and slower efficiency.

Based on the aforementioned analysis, we have deter-
mined that the current cloud storage system performs
poorly with respect to multidimensional and range quer-
ies. In addition, although traditional Octree conducts
multidimensional searches effectively, it is unable to sup-
port the needs of today's big data. This is our motivation
for integrating the multidimensional Octree into and de-
veloping an auxiliary dynamic index structure in a cloud
environment.

This study proposes a dynamic index framework for
multidimensional data in a cloud environment called
Skip-Octree. Skip-Octree uses the concept behind a skip
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list to improve the efficiency of the traditional Octree,
and adopts double-layer Skip-Octree to construct an ef-
ficient and flexible cloud index. The main contributions
of this study are listed as follows:

(1) A double-layer cloud index based on skip list and
Octree is proposed in this study. To the best of our
knowledge, ours is the first study to construct an
auxiliary cloud index using an Octree structure.
This combined index is decentralized and scalable.

(2) The skip lists are used to complete the hierarchical
query of underlying Octrees. They also realize the
linear indexing in a multidimensional indexing
mechanism and speed up the searching process.

(3) Index maintenance algorithms and dynamic index
scaling algorithms for load balancing are proposed
in this study. The experiment results show the
Skip-Octree index is feasible and efficient.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
skip list, Octree, and presents a new framework of Skip-
Octree on their basis. Section 4 illustrates the design of
the relevant algorithms regarding Skip-Octree. Section 5
conducts tests for the algorithms related to the architec-
ture and discusses the results of our experiments. Con-
cluding remarks are given in Section 6.

Related works
Some existing cloud storage systems include: Google’s
Bigtable [10], GFS [11], and its open source implementa-
tion Hadoop [12], Amazon’s Dynamo [13], and Face-
book’s Cassandra [14]. As a de facto standard for cloud
storage systems, Hadoop has been widely used in many
businesses including Yahoo, Linkedin, and Twitter. On a
large scale, Hadoop allows multiple petabytes of data
storage across hundreds or thousands of physical storage
servers or nodes. However, lower performance of com-
plex queries (such as range and multidimensional quer-
ies) in Hadoop presents an obstacle in its development.
Recent studies have shown that an index can dramatic-
ally improve the performance of cloud storage systems.
Several studies [15-23] focusing on efficient indexes in
cloud storage systems have been conducted. The study
in [15] proposed a Trojan index to improve runtime per-
formance. Its injects technology at the appropriate
places by means of user defined functions (UDFs) only
that affect Hadoop internally. In general, the embedded-
index model is a kind of tight coupling solution. It inte-
grates the index itself into a Hadoop framework closely
to achieve high performance block selection. To de-
couple an index and storage system, a generalized search
tree for MapReduce systems was designed in study [16].
In study [17], a global distributed B-tree index was built
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to organize large-scale cloud data. This method has high
scalability and fault tolerance. However, it consumes
considerable memory space to cache index information
in the client, and it is unsuitable for processing multidi-
mensional queries. The studies in [18, 19] proposed an
improved B+ tree index. This solution adopt a double-
layer index framework. The B+ tree index is built for
each local data node that indexes only data on that node.
By means of an adaptive algorithm, a proportion of the
local B + tree nodes are published to the global index.
They are efficient for single attribute queries. An R tree
and content-addressable-network (CAN)-based multidi-
mensional index schema called RT-CAN was proposed
in study [20]. In RT-CAN, a CAN [21] overlay is con-
structed on top of the local R-tree indexes. In addition, a
dynamic index node selection algorithm and cost model
were proposed for RT-CAN. This solution provides high
performance for multi-attribute queries. Similar to RT-
CAN, a VA-file and CAN-based index framework was
presented in study [22], which improves query perform-
ance by eliminating false positive queries in RT-CAN.
The study in [23] adopted a compressed bitmap index to
construct a cloud index, which can save considerable
storage cost compared to other index structures.

Although some multidimensional indexes exist in
cloud environments, an Octree-based multidimensional
indexing remains nonexistent.

Octree is a kind of extended Quadtree data structure,
which was proposed by Dr. Hunter in 1978 and is widely
used for three-dimensional space. It is most often used
to partition a three-dimensional space by recursively
subdividing it into eight octants. Its tree structure has an
advantage in terms of spatial decomposition, so it has
been widely applied in the past years. The study of
Octree has mainly focused on the analysis and improve-
ment of traditional Octree algorithms. Meanwhile,
Octree has also often been used in many 3D applications
[24, 25]. The use of Octrees for 3D computer graphics
was pioneered by Donald Meagher at Rensselaer Poly-
technic Institute, as described in the study in [26]. In the
study in [27], the author proposes a hybrid spatial index
structure called ORSI, which is based on Octree and R
tree. The experimental results show that the hybrid
structure has more advantages than previous use of R
tree on a 3D spatial index.

Current big data applications such as 3D spatical are a
burden on traditional data indexes, not only in terms of
space, but also high cost of storage. In addition, current
cloud storage systems usually adopt a key-value model
to organize data to retrieve data efficiently. This model
only supports exact matching and thus does not work
well with multidimensional data applications. Therefore,
building a dynamic cloud storage index framework for
multidimensional data is necessary.
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In this study, we propose a novel skip list and Octree-
based dynamic index. As far as we know, ours is the first
work to set up an auxiliary cloud index using a skip list
and Octree structure.

Framework of the Skip-Octree index

In cloud storage systems, a whole dataset is distributed
and stored on multiple data servers. Therefore, query
performance is mainly affected by two aspects. One is
the manner in which to locate the corresponding data
servers that stored user required data effectively. The
other is the manner in which to improve the efficiency
of data access on each local data server. In this study, a
new double-layer cloud indexing framework based on
Octree and skip list is proposed.

Background of Octree and skip list

Octree is a type of multidimensional data structure with
which a multidimensional data space is recursively divided
into eight equal subspaces (namely quadrants) until a quad-
rant contains only one data object. In addition, Octree is an
adopted tree-based storage structure. For an Octree, an ori-
ginal data space is represented as a root node. Then, eight
quadrants which act as eight children nodes of the root are
generated by space partition. However, under the condition
in which data is both sparsed and skewed, the query per-
formance of Octree is worse than sequence retrieve. Hence,
the compressed Octree was proposed in the study in [28].
In a compressed Octree, all empty paths are removed.
Compared with R tree [29], the space division method of
compressed Octree is simpler, and no space overlap occurs.
Therefore, compressed Octree is used to index local data in
this study. For simplicity, the compressed Octree is also
called Octree in our cloud index framework.

The skip list [30] is a randomized data structure that or-
ganizes elements with hierarchical ordered link lists. Thus,
it is an extension of the ordered list. Because query pro-
cessing on each layer can skip many elements, a skip list
can provide adequate query performance with a balanced
binary tree. In addition, because a randomized algorithm
is adopted to maintain balance rather than employing
strictly enforced balancing, the insertion and deletion op-
erations in a skip list are much simpler and considerably
faster than the balanced binary tree. Furthermore, skip list
is well suited to parallel computation applications. The in-
sertion can be performed in parallel using different posi-
tions of the ordered list without rebalancing the global
data structure. Skip list has been embedded in some popu-
lar key-value store databases such as Leveldb and Redis.

Strictly speaking, skip list is not a search tree, but
its expected time complexity is O(logon), which is
similar to a binary search tree. In our Skip-Octree,
the idea of skip list is utilized to accelerate the data
retrieval efficiency of Octree.

Page 3 of 11

Skip-Octree index specification

Octree is an efficient three-dimensional space partition
method. However, in a cloud environment, extensive
data can enlarge Octree to such an extent that it be-
comes inaccessible. In this section, our proposed index
structure called Skip-Octree is described. Skip-Octree
provides a hierarchical view of the compressed Octree to
allow for logarithmic expected-time querying.

Design of Skip-Octree

Based on the randomizing idea of a skip list, the original
dataset is randomly divided into subsets with a probabil-
ity of 1/2. In addition, an individual Octree is con-
structed for each dataset.

In Fig. 1, Qp, Q;, and Q are three datasets, where Q,
is the original dataset, Q; contains approximately half
the data of Q, and which is a subset of Qp, and Q. is a
subset of Q;. The query request is processed from right
to left, that is, from the smallest Octree to the largest.
For each non-empty subspace, a pointer links it between
different layers of the Octree. For example, if a user
wants to search a keyword k, the hierarchical Octree
index performs this query request at Q.. Then, because
k is not found on Q,, this query request is redirected to
Q;. Finally, Q, receives this query request and obtains k.
Because this query procedure has similar properties to
those of a skip list, the hierarchical Octree is essentially
a skip list reconstruction.

Definition of Skip-Octree The Skip-Octree is defined
by a sequence of subsets Li of the input points S with L,
=S and builds a compressed Octree Qi for each Li. For
i>0, Li is sampled from L, ; by maintaining each point
with a probability of 1/2. For each Li, a compressed
Octree Qi is built for the points in Li. Therefore, Qi can
be seen as forming a sequence of levels in the skip list
such that L, and Ltop are the bottom and top levels,
respectively.

As Fig. 2 illustrates, a skip list is a randomized data
structure in which level 0 is denoted as L, that records
all original data. In the same manner, L; records
approximately half of the data of L, and L, records ap-
proximately half those of L;. In Skip-Octree, Ly, L;, and
L, correspond to the three hierarchal Octree Q,, Q;, and
Q,. The multidimensional data space is partitioned by
Octree to obtain multiple level subspaces. The skip list
is used to organize these hierarchical data points and ac-
celerate query performance. In a skip list, the same
nodes between the upper and lower layers are associated
with the pointer. Thus, with the pointer pointed to the
root node in the topmost layer, we can find the specific
keyword by having the pointer move down. In addition,
with the locality sensitive hashing function [31], the
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Fig. 1 Overview of a hierarchical Octree

points that belong to the same quadrant in the Octree
map to the adjacent position of the skip list sequence.

Time complexity Given a point x, the searching time
for x in a randomized multidimensional Skip-Octree of
n points is O(logon).

Proof Assume 7 points exist in a multidimensional data
space with a probability of %. The original dataset is di-
vided into at most logon subsets. Thus, the layers of the
Skip-Octree are logon. The query proceeds in a top-
down fashion from the root consuming O(log.n) time.
Simultaneously, the query proceeds forward on each
layer only if the search key x is smaller than the current
keyword. Otherwise, it skips down to the next layer ac-
cording to the parent-child link. The forward move time
is O(1). Therefore, the search time for x in Skip-Octree
is O(log,n) overall.

Extend Skip-Octree to index cloud data

In a distributed storage system, a large-scale dataset is
usually divided into multiple small data units (known as
data shards) by means of horizontal partitioning. These
data shards are then stored in different computer nodes
in the cloud computing environment based on the
principle of load balancing. To improve query perform-
ance, a traditional global distributed index can be built
for the whole dataset. However, with respect to big data,
the global distributed index itself consumes much more
memory space, and maintaining the index becomes diffi-
cult. Therefore, a double-layer hierarchical structure is
adopted in our Skip-Octree-based cloud index. The
overall framework of our Skip-Octree-based cloud index
is shown in Fig. 3.

In the upper layer, the whole data space is partitioned
into multiple subspaces according to the Octree struc-
ture. Each local data server is then assigned some of
these subspaces. In the lower layer, a Skip-Octree is built

QO Q] (")2
5] 1 //. : 5 1 /5 1
= i 7 =
AEpZins LNER DR
f [\ J / L
2) 4 2) 4 2 4
i
KN 2 1
\
L, »
L, >
Lo 335_’0
Fig. 2 Structure of Skip-Octree )




He et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:10

Page 5 of 11

Upper Layer

Local Index Server

Network N

Fig. 3 Framework of Skip-Octree-based cloud index

Publishes the local index
nodes to global index

Lower Layer

R T
! i
A |
e oo
I O O
LAS N :
: N I
I N
! . Vo
I |Oeno ceon)/ |
| / |
! [ o I

. |
|

Each local server holds a
Skip-Octree index

to index data stored in each local data server. In
addition, every local Skip-Octree publishes some of its
own index nodes to construct a global Skip-Octree
index. By combining the aforementioned two layer in-
dexes, scanning data nodes that do not contain query re-
sults can be mostly avoided.

The query process is divided into three phases as
shown in Fig. 3: (1) A query request is first send to the
global index server, which performs index retrieval on
global Skip-Octree to find the local data servers that
may contain the query results; (2) the query request is
then redirected to the corresponding local data servers;
(3) finally, each selected local data server begins retriev-
ing the data on its own local indexes, and returns the
query results to the end user.

Index operating strategy

Range query processing

Range queries are widely used in cloud applications. For
example, when we want to know product sales within a
certain period, the search condition is a multidimen-
sional range. In this case, the keyword index is unable to
meet the user demand efficiently.

Skip-Octree can support multidimensional queries. Be-
cause we use Octree to store the data in the underlying
structure. The general steps of this algorithm are as
follows:

Algorithm 1 illustrates the global index process of a
range query in the Skip-Octree framework. First, the

function lookup is used to access the upper global
servers to locate the first index node whose keyword is
longer than Rmin. This index node is then mapped to
the specific node of the local server (Lines 1-4). Second,
the query message is forward to Ni’s neighbor, which in-
vokes a similar algorithm to determine whether it is a
node whose range satisfies the search range. This oper-
ation is conducted repeatedly until we find the range
that is beyond the search range (Lines 5-11). Finally,
local index retrieval is performed on the corresponding
local data server (Line 12).

Index maintenance

In practice, the performance of inserting and deleting
data also must be considered in the Skip-Octree archi-
tecture. In a cloud environment, the index maintenance
process mainly consists of two steps. First, the global
index server calculates the hash values of required key-
words (inserting or deleting) according to the evaluation
function, and then searches for the specific quadrants
that contain those keywords. Second, a local index main-
tenance process is performed on each located local data
server.

Because the skip list is a randomized data structure,
the number of levels of an inserted keyword x set as ran-
dom, which is generated by a random function
randomlLevel().

Algorithm 2 provides a detailed description of the data
inserting process on a cloud Skip-Octree. The locating
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phase (Lines 1-3) is similar to the query process previ-
ously discussed. By calculating the hash value of the in-
put keyword, we can find the quadrant that contains this
coordinate. Simultaneously, the central node of this
quadrant is mapped to the root node of the underlying
local server. It next determines whether the Octree is
empty; it starts the local index process if the Octree is
not empty (Lines 4-5). The local index retrieval starts
from the root node of the highest level Octree, and scans
the skip list from the top down (Lines 6-7). When the
value of the current pointer is less than the input key-
word, the pointer moves forward. Otherwise, the pointer
skips to the next level containing the parent and child
links until the position of the new keyword is found on
the lowest level of Skip-Octree (Lines 8-14). For each se-
lected level, the keyword is inserted and the whole cloud
Skip-Octree is refreshed (Lines 15-21).

For a given set which has n points in Skip-Octree,
each level requires O(1) time for a pointer move and
keyword comparison. Furthermore, the search time top-
down on the skip list is O(logyn) because the height of
the skip list is O(logyn) under the probability of 1/2.
Therefore, the efficiency of inserting data on Skip-
Octree is O(logyn).

The process of deleting data is similar to that of insert-
ing data in Skip-Octree. It must be noted that if only
one keyword is deleted on a certain level in the Skip-
Octree, the height of the skip list must be modified. The
specific algorithm is detailed as follows:

As Algorithm 3 illustrates, the input keyword is con-
verted to the form of a hash key by the global index in
Skip-Octree. The local data server that contains this key
word is then located (Lines 1-3). In the local index, be-
cause the same keyword may appear on different levels
of the skip list, Lines 4-14 are used to find the position
of the input keyword X. If this keyword is not found, the
deletion operation cannot be performed (Line 15).
Otherwise, this keyword is removed from the local
index. In addition, in the event a link list in the Skip-list
is empty, the height of this skip list is reduced (Lines 16-
21). Finally, the whole cloud Skip-Octree is refreshed
(Lines 22-24). Similar to the data insertion operation,
the efficiency of data deletion on Skip-Octree is
O(logyn).

Dynamic index scaling

In a distributed system, the greater the amount of data
that a machine processes, the bigger is its index. Simul-
taneously, load balancing is a major problem. To solve
this, our Skip-Octree framework is dynamically scaled.
This means a local data server can migrate some of its
data to other servers or merge together the data of a
local data server. In this manner, the parallel load balan-
cing processing of multiple servers is realized.
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Furthermore, a statistical approach is used in Skip-
Octree to monitor the load status of the cloud systems.
After a local data server periodically sends its load statis-
tics to the global index server, statistical information is
analyzed at the global server to determine the loading
factor for each local server. Based on these loading fac-
tors, the global index server decides whether certain mi-
grations must be invoked.

In Skip-Octree, an overloaded local data server can
split its local Octree, then migrate some of its Octree
nodes to a new or adjacent server. We offer the follow-
ing strategies to deal with such splits in Octree:

In this algorithm, §; is the server that must split its
local Octree and S, represents the server that accepts
the migration data. First, a temporary list newList is cre-
ated to store migrated data during the data transform-
ation process (Line 1). Then, all data within [ in S; is
found and exported to newList (Lines 2-6). The skip list
for S; is modified by means of data removal (Line 7).
After the data are imported to S,, the Octree on §; is
split into two parts (Lines 8-9). At last, because location
information is changed on the local index, the global
index is refreshed for each published local index node
(Lines 10-11). The function of refreshGlobal(newlist[i])
consists of two steps: locate the original published index
node, and update its meta-index information with new
local index data.

Figure 4a represents the original Octree on Server 3,
and Fig. 4b is the structure of the split operation when
completed. Given a three-dimensional data space, much
data are in the third and eighth quadrants. Initially, all
data are stored on the same server. However, big data
may lead to index memory overflow. Therefore, some
data on Server 3 must be transferred to another data
server. In Fig. 4b, the whole data space is divided into
two subspaces. The data within the eighth quadrant is
migrated to Server 4. Server 3 saves the remaining data.

In addition to the split operation, the Skip-Octree
framework offers a merging algorithm, which is used to
accumulate data from different local data servers. As
previously discussed, the splitting algorithm can transfer
some Octree data to a new or adjacent server. After mi-
grating, our merging algorithm can help combine mi-
grating with current data. Moreover, if a local server
crashes, we can use the merging algorithm to transfer
the data derived from it to another available local server
before removing it from the Skip-Octree framework.

Algorithm 5 describes the process of data merging in
Skip-Octree. Here, S; is the server that needs to transfer
its local Octree, whereas S, is the server that accepts the
migrated local Octree. First, all data in S; is located and
buffered in a temporary migrateList (Line 1). Second, the
function insertValue(), which finds the proper position
for inserted data, is called to insert each data set from
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migrateList to S, (Line 2-9). During the process of
inserting data, determining whether the migrating data
repeat with the data in S, is crucial. Each duplicated
value is removed (Lines 5-8). If the indexNode is a pub-
lished node, the relevant global index node must be
refreshed (Lines 9-11). Finally, the Octree in S, is
refreshed to ensure normal operation after merging, and
the storage space of S; is released because empty (Line
12-13).

Experimental evaluation

To evaluate the performance of Skip-Octree architec-
ture, we developed a simulator extended from Peersim
[32]. The testing computer had an Intel Core i5 4200 M,
2.4 GHz CPU, 8 GB RAM, and a 320 G disk space run-
ning CentOS6.0 (64 bit). It was used to simulate differ-
ent data nodes that extend from 10000 to 50000. In the
simulator, the number of server nodes is set to 16, the
type of keywords is a string, and the length of a keyword
is 24. At each query, the the number of nodes is 500.
For comparison, we also conducted an experiment using
a traditional Octree. To guarantee the accuracy of the
experimental data, we calculated the average of 10 runs
of each experiment.

Figure 5 shows the performance comparison of three-
dimensional range queries between Skip-Octree and
traditional Octree. In this experiment, given 16 local
data servers, the amount of data first increased from

1000, then grew in multiples of 1000. The search range
was a radius of 0.1 cubes. We can see that Skip-Octree
performs better than does the traditional Octree. The
reason is that skip list realizes a hierarchical Octree
structure with probability of 1/2. Through skip list, ex-
tensive data can be found rapidly without searching a
huge Octree. This experiment also confirmed the
feasibility of Skip-Octree’s multidimensional indexing
structure.

Index maintenance performance is a crucial indica-
tor used to evaluate the effectiveness of an index
structure. As shown in Fig. 6, eight data servers were
created to build the cloud storage environment. As
the amount of inserted data increased, the response
time of the deletion operation increased. However,
when the amount of data was the same, Skip-Octree
always consumed less time than did the traditional
Octree. Because Skip-Octree realized hierarchal
Octree, considerable useless data was ignored during
the deletion process.

The insertion operation in Skip-Octree is similar to that
of the deletion. As shown in Fig. 7, when the amount of
inserted data is small, Skip-Octree consumes nearly the
same amount of time as does the traditional Octree. When
the amount of inserted data increases, the Skip-Octree
shows its performance advantage. The reason is that the
skip list can more quickly determine inserted data positions
by ignoring lots of data.
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To achieve load balancing for the cloud storage envir-
onment, our Skip-Octree is dynamically adjusted by
means of splitting and merging. In this experiment, the
number of data servers was set to eight, and the amount
of data increased from 10000 to 40000. Figure 8 shows a
performance comparison of a given range query between
a static Skip-Octree and dynamic adjusting Skip-Octree.
Obviously, dynamic Skip-Octree was more efficient than
static Skip-Octree, as load balancing is critical for a dis-
tributed storage system. Moreover, with each increase in

the amount of data, the amount of time consumed for
dynamic Skip-Octree actually decreased. The reason is
that when executing a given query request in a deter-
mined cluster, if the amount of data is small, the number
of local data servers selected by a dynamic skip list is
greater. Otherwise, with an increasing scale of stored
data, the required data are just a small portion of the en-
tire dataset, with the resulting set stored in a few data
servers. The retrieval time for a small number is less
than for a large number of local indexes.
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The Skip-Octree is a double-layer cloud index that
has more complex structure than a traditional single-
layer index. In this experiment, the performance of a
double-layer Skip-Octree was evaluated. As a com-
parison, a Skip-Octree having only an upper layer, a
Skip-Octree having only a lower layer, and the trad-
itional Octree were tested under the same conditions.
Figure 9 shows 16 local data servers present in the
cloud storage system, and the amount of data in-
creases from 1000 to 50000. Our test queried 500

sets of data within the whole dataset. The double-
layer Skip-Octree is the most efficient among them.
The Skip-Octree having only an upper layer con-
sumes more time than the traditional distributed
Octree. This is because the upper layer index is built
only of a global Skip-Octree, and the index is too
deep when the amount of data is large. Although the
traditional Octree is stored in multiple servers, its
query speed is faster than that of Skip-Octree having
only an upper layer.

Fig. 8 Performance of the split and merge operations
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Fig. 9 Availability testing for a double-layer cloud index
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Conclusion

This study provided a new multidimensional data index
framework, called Skip-Octree, which combines the best
features of two well-known data structures: Octree and
skip lists. Some index operating algorithms that include
multidimensional range querying, data insertion and de-
letion, and index splitting and merging were also pro-
posed in this study. The experimental results show that
our Skip-Octree is efficient. However, because a cloud
storage system usually supports both transactional and
data analysis operations simultaneously, frequent up-
dates will conflict with data queries, thereby reducing
data query efficiency. Means to enhancing data
consistency in order to ensure query efficiency is a topic
of future research.
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