
Journal of Cloud Computing:
Advances, Systems and Applications

Ashraf et al. Journal of Cloud Computing: Advances, Systems
and Applications (2016) 5:15
DOI 10.1186/s13677-016-0065-9

RESEARCH Open Access

Prediction-based VM provisioning and
admission control for multi-tier web
applications
Adnan Ashraf*, Benjamin Byholm and Ivan Porres

Abstract

We present a prediction-based, cost-efficient Virtual Machine (VM) provisioning and admission control approach for
multi-tier web applications. The proposed approach provides automatic deployment and scaling of multiple web
applications on a given Infrastructure as a Service (IaaS) cloud. It monitors and uses collected resource utilization
metrics itself and does not require a performance model of the applications or the infrastructure dynamics. The
approach uses the OSGi component model to share VM resources among deployed applications, reducing the total
number of required VMs. The proposed approach comprises three sub-approaches: a reactive VM provisioning
approach called ARVUE, a hybrid reactive-proactive VM provisioning approach called Cost-efficient Resource
Allocation for Multiple web applications with Proactive scaling (CRAMP), and a session-based adaptive admission
control approach called adaptive Admission Control for Virtualized Application Servers (ACVAS). Performance under
varying load conditions is guaranteed by automatic adjustment and tuning of the CRAMP and ACVAS parameters. The
proposed approach is demonstrated in discrete-event simulations and is evaluated in a series of experiments
involving synthetic as well as realistic load patterns.

Keywords: Cloud computing, Virtual machine provisioning, Admission control, Web application, Cost-efficiency,
Performance

Introduction
The resource needs of web applications vary over time,
depending on the number of concurrent users and the
type of work performed. As the demand for an application
grows, so does its demand for resources, until the demand
for a key resource outgrows the supply and the perfor-
mance of the application deteriorates. Users of an applica-
tion starved for resources tend to notice this as increased
latency and lower throughput for requests, or they might
receive no service at all if the problem progresses further.
To handle multiple simultaneous users, web applica-

tions are traditionally deployed in a three-tiered architec-
ture, where a computer cluster of fixed size represents
the application server tier. This cluster provides dedicated
application hosting to a fixed amount of users. There are
two problems with this approach: firstly, if the amount of

*Correspondence: aashraf@abo.fi
Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku,
Finland

users grows beyond the predetermined limit, the appli-
cation will become starved for resources. Secondly, while
the amount of users is lower than this limit, the unused
resources constitute waste.
A study by Vogels [36] showed that the under uti-

lization of servers in enterprises is a matter of concern.
This inefficiency is mostly due to application isolation: a
consequence of dedicated hosting. Sharing of resources
between applications leads to higher total resource utiliza-
tion and thereby to less waste. Thus, the level of utiliza-
tion can be improved by implementing what is known as
shared hosting [35]. Shared hosting is already commonly
used by web hosts to serve static content belonging to
different customers from the same set of servers, as no
sessions need to be maintained.
Cloud computing already allows us to alleviate the uti-

lization problem by dynamically adding or removing avail-
able Virtual Machine (VM) instances at the infrastructure
level. However, the problem remains to some extent, as
Infrastructure as a Service (IaaS) providers operate at

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-016-0065-9-x&domain=pdf
mailto: aashraf@abo.fi
http://creativecommons.org/licenses/by/4.0/

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 2 of 21

the level of VMs, which does not provide high granu-
larity. This can be solved by operating at the Platform
as a Service (PaaS) level instead. However, one problem
still remains: resources cannot be immediately allocated
or deallocated. In many cases, there exists a significant
provisioning delay on the order of minutes.
Shared hosting of dynamic content also presents new

challenges: capacity planning is complicated, as differ-
ent types of requests might require varying amounts of a
given resource. Application-specific knowledge is neces-
sary for a PaaS provider to efficiently host complex appli-
cations with highly varying resource needs. When hosting
third-party dynamic content in a shared environment that
application-specific knowledge might be unavailable. It is
also unfeasible for a PaaS provider to learn enough about
all of the applications belonging to their customers.
Traditional performance models based on queuing the-

ory try to capture the behavior of purely open or closed
systems [25]. However, web applications often have work-
loads with sessions, exhibiting a partially-open behavior,
which includes components from both the open and the
closed model. Given a better performance model of an
application, it might be possible to plan the necessary
capacity, but the problem of obtaining saidmodel remains.
If the hosted applications are seldom modified it might

be feasible to automatically derive the necessary per-
formance models by benchmarking each application in
isolation [35]. This might apply to hosting first- or second-
party applications. However, when hosting third-party
applications under continuous development, they may
well change frequently enough for this to be unfeasible.
Another problem is determining the amount of VMs to

have at a givenmoment. As one cannot provision fractions
of a VM, the actual capacity demand will need to be quan-
tized in one way or another. Figure 1 shows a demand and

Fig. 1 The actual capacity demand has to be quantized at a resolution
determined by the capacity of the smallest VM available for
provisioning. Overallocation means an opportunity cost,
underallocation means lost revenue

a possible quantization thereof. Overallocation implies an
opportunity cost — underallocation implies lost revenue.
Finally, there is also the issue of admission control. This

is the problem of determining howmany users to admit to
a server at a givenmoment in time, so that said server does
not become overloaded. Preventive measures are a good
way of keeping server overload from occurring at all. This
is traditionally achieved by only relying on two possible
decisions: rejection or acceptance.
Once more, the elastic nature of the cloud means that

we have more resources available at our discretion and
can scale up to accommodate the increase in traffic. How-
ever, resource allocation still takes a considerable amount
of time, due to the provisioning delay, and admitting
too much traffic is an unattractive option, even if new
resources will arrive in a while.
This article presents a prediction-based, cost-efficient

VM provisioning and admission control approach for
multi-tier web applications. The proposed approach
provides automatic deployment and scaling of multiple
simultaneous third-party web applications on a given IaaS
cloud in a shared hosting environment. It monitors and
uses resource utilization metrics and does not require a
performance model of the applications or the infrastruc-
ture dynamics. The research applies to PaaS providers and
large Software as a Service (SaaS) providers with mul-
tiple applications. We deal with stateful Rich Internet
Applications (RIAs) over the Hypertext Transfer Protocol
(HTTP).
The proposed approach integrates three different

mechanisms. It provides a reactive VM provisioning
approach called ARVUE [7], a hybrid reactive-proactive
VM provisioning approach called Cost-efficient Resource
Allocation for Multiple web applications with Proactive
scaling (CRAMP) [8], and a session-based adaptive admis-
sion control approach called adaptive Admission Control
for Virtualized Application Servers (ACVAS) [9]. Both
ARVUE and CRAMP provide autonomous shared host-
ing of third-party Java Servlet applications on an IaaS
cloud. However, CRAMP provides better responsiveness
and results than the purely reactive scaling of ARVUE.
We concluded that admission control might be able to
reduce the risk of servers becoming overloaded. There-
fore, the proposed approach augments VM provisioning
with a session-based adaptive admission control approach
called ACVAS. ACVAS implements per-session admis-
sion, which reduces the risk of over-admission. Further-
more, instead of relying only on rejection of new sessions,
it implements a simple session deferment mechanism that
reduces the number of rejected sessions while increasing
session throughput. Thus, the admission controller can
decide to admit, defer, or reject an incoming new session.
Performance under varying load conditions is guaranteed
by automatic adjustment and tuning of the CRAMP and

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 3 of 21

ACVAS parameters. The proposed approach is demon-
strated in discrete-event simulations and is evaluated in
a series of experiments involving synthetic as well as
realistic load patterns.
We proceed as follows. Related work section dis-

cusses important related works. Architecture section
presents the system architecture. The proposed VM
provisioning and admission control algorithms are
described in Algorithms section. Implementation section
presents some important implementation details. In
Experimental evaluation section, we present experimental
results before concluding in Conclusions section.

Related work
Due to the problems mentioned in Introduction section,
existing works on PaaS solutions tend to use dedicated
hosting on a VM-level for web applications. This gives
the level of isolation needed to reliably host different
applications without them interfering with each other, as
resource management will be handled by the underly-
ing operating system. However, this comes at the cost of
disallowing resource sharing among instances.
There are many metrics available for measuring Quality

of Service (QoS). A common metric is Round Trip Time
(RTT), which is a measure of the time required for send-
ing a request and receiving a response. This approach has
a drawback in that different programs might have vari-
ous expected processing times for requests of different
types. This means that application-specific knowledge is
required when using RTT as a QoS metric. This infor-
mation might not be easy to obtain if an application is
under constant development. Furthermore, when a server
nears saturation, its response time grows exponentially.
This makes it difficult to obtain good measurements in a
high-load situation. For this reason, we use server Central
Processing Unit (CPU) load average and memory utiliza-
tion as the primary QoS metrics. An overloaded server
will fail to meet RTT requirements.
Reactive scaling works by monitoring user load in

the system and reacting to observed variations therein
by making decisions for allocation or deallocation. In
our previous work [1, 7], we built a prototype of an
autonomous PaaS called ARVUE. It implements reactive
scaling. However, in many cases, the reactive approach
suffers in practice, due to delays of several minutes inher-
ent in the provisioning of VMs [31]. This shortcoming is
avoidable with proactive scaling.
Proactive scaling attempts to overcome the limitations

of reactive scaling by forecasting future load trends and
acting upon them, instead of directly acting on observed
load. Forecasting usually has the drawback of added
uncertainty, as it introduces errors into the system. The
error can be mitigated by a hybrid approach, where fore-
cast values are supplemented with error estimates, which

affect a blend weight for observed and forecast values. We
have developed a hybrid reactive-proactive VMprovision-
ing algorithm called CRAMP [8].
Admission control is a strategy for keeping servers from

becoming overloaded. This is achieved by limiting the
amount of traffic each server receives by means of an
intermediate entity known as an admission controller.
The admission controller may deny entry to fully utilized
servers, thereby avoiding server overload. If a server were
to become overloaded, all users of that server, whether
existing or arriving, would suffer from deteriorated per-
formance and possible Service-Level Agreement (SLA)
violations.
Traditional admission control strategies have mostly

been request-based, where admission control decisions
would be made for each individual request. This approach
is not appropriate for stateful web applications from a
user experience point of view. If a request were to be
denied in the middle of an active session, when everything
was working well previously, the user would have a bad
experience. Session-Based Admission Control (SBAC) is
an alternative strategy, where the admission decision is
made once for each new session and then enforced for
all requests inside of a session [27]. This approach is bet-
ter from the perspective of the user, as it should not
lead to service being denied in the middle of a ses-
sion. This approach has usually been implemented using
interval-based on-off control, where the admission con-
troller either admits or rejects all sessions arriving within
a predefined time interval. This approach has a flaw in
that servers may become overloaded if they accept too
many requests in an admission interval, as the decisions
are made only at interval boundaries. Per-session admis-
sion control avoids this problem by making a decision for
each new session, regardless of when it arrives. We have
developed ACVAS [9], a session-based admission con-
trol approach with per-session admission control. ACVAS
uses SBAC with a novel deferment mechanism for ses-
sions, which would have been rejected with the traditional
binary choice of acceptance or rejection.

VM provisioning approaches
Most of the existing works on VM provisioning for web-
based systems can be classified into two main categories:
plan-based approaches and control theoretic approaches
[16, 29, 30, 33]. Plan-based approaches can be further clas-
sified into workload prediction approaches [6, 17, 31, 39]
and performance dynamicsmodel approaches [12, 15, 20–
22, 24, 38, 40]. One common difference between all exist-
ing works discussed here and the proposed approach is
that the proposed approach uses shared hosting. Another
distinguishing characteristic of the proposed approach is
that in addition to VM provisioning for the application
server tier, it also provides dynamic scaling of multiple

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 4 of 21

web applications. In ARVUE [1, 7], we used shared hosting
with reactive resource allocation. In contrast, our proac-
tive VM provisioning approach CRAMP [8] provides
improved QoS with prediction-based VM provisioning.
Ardagna et al. [6] proposed a distributed algorithm

for managing SaaS cloud systems that addresses capacity
allocation for multiple heterogeneous applications. Raivio
et al. [31] used proactive resource allocation for short
message services in hybrid clouds. The main drawback of
their approach is that it assumes server processing capac-
ity in terms of messages per second, which is not a real-
istic assumption for HTTP traffic where different types
of requests may require different amounts of processing
time.
Zhang et al. [39] introduced a statistical-based resource

allocation approach that performs load balancing on
Physical Machines (PMs) by predicting VM resource
demands. It uses statistical prediction and available
resource evaluation mechanisms to make online resource
allocation decisions. Gong et al. [17] presented a pre-
dictive resource scaling system, which leverages light-
weight signal processing and statistical learning methods
to predict resource demands of applications and adjusts
resource allocations accordingly. Nevertheless, the main
challenge in the prediction-based approaches is in making
good prediction models that could ensure high predic-
tion accuracy with low computational cost. In our pro-
posed approach, CRAMP is a hybrid reactive-proactive
approach. It uses a two-step prediction method [4, 5] with
Exponential Moving Average (EMA) and a simple linear
regression model [9, 26], which provides high predic-
tion accuracy under soft real-time constraints. Moreover,
it gives more or less weight to the predicted utiliza-
tions based on the Normalized Root Mean Square Error
(NRMSE).
TwoSpot [38] supports hosting of multiple web appli-

cations, which are automatically scaled up and down
in a dedicated hosting environment. The scaling down
is decentralized, which may lead to severe random
drops in performance. Hu et al. [22] presented an algo-
rithm for determining the minimum number of required
servers, based on the expected arrival rate, service rate,
and SLA. In contrast, the proposed approach does not
require knowledge about the infrastructure or perfor-
mance dynamics.
Chieu et al. [15] presented an approach that scales

servers for a particular web application based on the num-
ber of active user sessions. However, the main challenge
is in determining suitable threshold values on the number
of user sessions. Carrera et al. [12] presented a utility-
based web application placement approach to maximize
application performance on clusters of PMs. Iqbal et al.
[24] proposed an approach formulti-tier web applications,
which uses response time and CPU utilization metrics

to determine the bottleneck tier and then scales it by
provisioning a new VM. Calinescu et al. [11] presented
a tool-supported framework for QoS management and
optimization of self-adaptive service-based systems. Zhao
et al. [40] addressed the problem of minimizing resource
rental cost for running elastic applications in the cloud
while satisfying application-level QoS requirements. They
proposed a deterministic resource rental planning model,
which uses a mixed integer linear program to generate
optimal rental decisions based on fixed cost parameters.
They also presented a stochastic resource rental planning
model that explicitly considers the price uncertainty of
the Amazon Elastic Compute Cloud (EC2) spot instances
in the rental decision making. However, they did not
investigate cloud resource provisioning solutions for time-
varying workloads.
Han et al. [21] proposed a reactive resource allocation

approach to integrate VM-level scaling with a more fine-
grained resource-level scaling. Similarly, Han et al. [20]
presented a cost-aware, workload-adaptive reactive scal-
ing approach for multi-tier cloud applications. In contrast,
CRAMP supports hybrid reactive-proactive resource allo-
cation with proportional and derivative factors to deter-
mine the number of VMs to provision.
Dutreilh et al. [16] and Pan et al. [29] used control the-

oretic models to design resource allocation solutions for
cloud computing. Dutreilh et al. presented a compari-
son of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI)-
controllers to provide QoS guarantees. Patikirikorala et al.
[30] proposed a multi-model framework for implement-
ing self-managing control systems for QoS management.
The work is based on a control theoretic approach called
the Multi-Model Switching and Tuning (MMST) adaptive
control. Roy et al. [33] presented a look-ahead resource
allocation algorithm based on the model predictive con-
trol. In comparison to the control theoretic approaches,
our proposed approach also uses proportional and deriva-
tive factors, but it does not require knowledge about the
performance models or infrastructure dynamics.

Admission control approaches
Admission control refers to the mechanism of restricting
the incoming user load on a server in order to prevent
it from becoming overloaded. Server overload preven-
tion is important because an overloaded server fails to
maintain its performance, which translates into a subpar
service (higher response time and lower throughput) [19].
Thus, if an overloaded server keeps on accepting new user
requests, then not only the new users, but also the existing
users may experience a deteriorated performance.
The existing works on admission control for web-based

systems can be classified according to the scheme pre-
sented in Almeida et al. [3]. For instance, Robertsson

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 5 of 21

et al. [32] and Voigt and Gunningberg [37] are control the-
oretic approaches, while Huang et al. [23] and Muppala
and Zhou [27] use machine learning techniques. Simi-
larly, Cherkasova and Phaal [14], Almeida et al. [3], Chen
et al. [13], and Shaaban and Hillston [34] are utility-based
approaches.
Almeida et al. [3] proposed a joint resource allocation

and admission control approach for a virtualized platform
hosting a number of web applications, where each VM
runs a dedicated web service application. The admission
control mechanism uses request-based admission control.
The optimization objective is to maximize the provider’s
revenue, while satisfying the customers’ QoS require-
ments and minimizing the cost of resource utilization.
The approach dynamically adjusts the fraction of capac-
ity assigned to each VM and limits the incoming workload
by serving only the subset of requests that maximize prof-
its. It combines a performance model and an optimization
model. The performance model determines future SLA
violations for each web service class based on a prediction
of future workloads. The optimization model uses these
estimates to make the resource allocation and admission
control decisions.
Cherkasova and Phaal [14] proposed an SBAC approach

that uses the traditional on-off control. It supports four
admission control strategies: responsive, stable, hybrid,
and predictive. The hybrid strategy tunes itself to be
more stable or more responsive based on the observed
QoS. The proposed approach measures server utilizations
during predefined time intervals. Using these measured
utilizations, it computes predicted utilizations for the
next interval. If the predicted utilizations exceed speci-
fied thresholds, the admission controller rejects all new
sessions in the next time interval and only serves the
requests from already admitted sessions. Once the pre-
dicted utilizations drop below the given thresholds, the
server changes its policy for the next time interval and
begins to admit new sessions again.
Chen et al. [13] proposed Admission Control based on

Estimation of Service times (ACES). That is, to differenti-
ate and admit requests based on the amount of processing
time required by a request. In ACES, admission of a
request is decided by comparing the available computa-
tion capacity to the predetermined delay bound of the
request. The service time estimation is based on an empir-
ical expression, which is derived from an experimental
study on a real web server. Shaaban and Hillston [34]
proposed Cost-Based Admission Control (CBAC), which
uses a congestion control technique. Rather than rejecting
user requests at high load, CBAC uses a discount-charge
model to encourage users to postpone their requests to
less loaded time periods. However, if a user chooses to
go ahead with the request in a high load period, then an
extra charge is imposed on the user request. The model is

effective for e-commerce web sites when more users place
orders that involvemonetary transactions. A disadvantage
of CBAC is that it requires CBAC-specific web pages to be
included in the web application.
Muppala and Zhou [27] proposed the Coordinated

Session-based Admission Control (CoSAC) approach,
which provides SBAC for multi-tier web applications with
per-session admission control. CoSAC also provides coor-
dination among the states of tiers with a machine learning
technique using a Bayesian network. The admission con-
trol mechanism differentiates and admits user sessions
based on their type. For example, browsing mix session,
ordering mix session, and shopping mix session. How-
ever, it remains unclear how it determines the type of a
particular session in the first place.
The on-off control in the SBAC approach of Cherkasova

and Phaal [14] turns on or off the acceptance of the new
sessions for an entire admission control interval. There-
fore, the admission control decisions are made only at the
interval boundaries and can not be changed within an
interval. Thus, a drawback of the on-off control is that
it is highly vulnerable to over-admission, especially when
handling a bursty load, which may result in the overload-
ing of the servers. To overcome this vulnerability of the
on-off control, CoSAC [27] used per-session admission
control. Our proposed admission control approach also
implements SBAC with per-session admission control [9].
Thus, it makes an admission control decision for each new
session.
Huang et al. [23] proposed admission control schemes

for proportional differentiated services. It applies to ser-
vices with different priority classes. The paper proposes
two admission control schemes to enable Proportional
Delay Differentiated Service (PDDS) at the application
level. Each scheme is augmented with a prediction mech-
anism, which predicts the total maximum arrival rate and
themaximumwaiting time for each priority class based on
the arrival rate in the current and last three measurement
intervals. When a user request belonging to a specific pri-
ority class arrives, the admission control algorithm uses
the time series predictor to forecast the average arrival
rate of the class for the next interval, computes the aver-
age waiting time for the class for the next interval, and
determines if the incoming user request is admitted to the
server. If admitted, the client is placed at the end of the
class queue.
Voigt and Gunningberg [37] proposed admission con-

trol based on the expected resource consumption of the
requests, including a mechanism for service differentia-
tion that guarantees low response time and high through-
put for premium clients. The approach avoids overutiliza-
tion of individual server resources, which are protected
by dynamically setting the acceptance rate of resource-
intensive requests. The adaptation of the acceptance

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 6 of 21

rates (average number of requests per second) is done
by using Proportional-Derivative (PD) feedback control
loops. Robertsson et al. [32] proposed an admission con-
trol mechanism for a web server system with control
theoretic methods. It uses a control theoretic model of a
G/G/1 system with an admission control mechanism for
nonlinear analysis and design of controller parameters for
a discrete-time PI-controller. The controller calculates the
desired admittance rate based on the reference value of
average server utilization and the estimated or measured
load situation (in terms of average server utilization). It
then rejects those requests that could not be admitted.
All existing admission control approaches discussed

above, except CBAC [34], have a common shortcoming
in that they rely only on request rejection to avoid server
overloading. However, CBAC has its own disadvantages.
The discount-charge model of CBAC requires additional
web pages to be included in the web application and it
is only effective for e-commerce web sites that involve
monetary transactions. In contrast, we introduce a simple
mechanism to defer user sessions that would otherwise
be rejected. In ACVAS, such sessions are deferred on an
entertainment server, which sends a wait message to the
user and then redirects the user session to an application
server as soon as a new server is provisioned or an existing
server becomes less loaded [9]. However, if the enter-
tainment server also approaches its capacity limits, the
new session is rejected. Therefore, for each new session
request, the admission controller makes one of the three
possible decisions: admit the session, defer the session, or
reject the session.

Cherkasova and Phaal [14] defined a simple method
for computing the predicted resource utilization, yield-
ing predicted resource utilizations by assigning certain
weights to the current and the past utilizations. Mup-
pala and Zhou [27] used the EMA method to make
utilization predictions. Huang et al. [23] used machine
learning techniques called Support Vector Regression and
Particle Swarm Optimization for time-series prediction.
Shaaban and Hillston [34] assumed a repeating pattern
of workload over a suitable time period. Therefore, in
their approach, load in a future period is predicted from
the cumulative load of the corresponding previous period.
These related works clearly indicate that admission con-
trol augmented with prediction models tends to produce
better results. Therefore, ACVAS also uses a prediction
model. However, for efficient runtime decision making,
it is essential to avoid prediction models which might
require intensive computation, frequent updates to their
parameters, or (off-line) training. Thus, ACVAS uses a
two-step approach [4, 5], which has been designed to pre-
dict future resource loads under soft real-time constraints.
The two-step approach consists of a load tracker and a
load predictor. We use the EMA method for the load
tracker and a simple linear regression model [26] for the
load predictor [9].

Architecture
The system architecture of the proposed VM provision-
ing and admission control approach is depicted in Fig. 2.
It consists of the following components: a load bal-
ancer with an accompanying configuration file, the global

Fig. 2 System architecture of the proposed VM provisioning and admission control approach

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 7 of 21

controller, the admission controller, the cloud provisioner,
the application servers containing local controllers, the
load predictors, an busy service server, and an application
repository.
The purpose of the external load balancer is to dis-

tribute the workload evenly throughout the system,
while the admission controller is responsible for admit-
ting users, when deemed possible. The cloud provi-
sioner is also an external component, which represents
the control service of the underlying IaaS provider.
Application servers are dynamically provisioned VMs
belonging to the underlying IaaS cloud, capable of run-
ning multiple concurrent applications contained in an
application repository.
The purpose of the load balancer is to distribute the

workload among the available application servers. When
an application request arrives at the load balancer, it gets
redirected to a suitable server according to the current
configuration. A request for an application not deployed
at the moment is briefly sent to a server tasked with
entertaining the user and showing that the request is
being processed until the application has been success-
fully deployed, after which it is delivered to the correct
server. This initial deployment of an application will take a
much longer time than subsequent requests, currently on
the order of several seconds.
The global controller is responsible for managing the

cluster by monitoring its constituents and reacting to
changes in the observed parameters, as reported by the
local controllers. It can be viewed as a control loop that
implements the VM provisioning algorithms described in
Algorithms section.
The admission controller is responsible for admitting

users to application servers. It supplements the load
balancer in ensuring that the servers do not become over-
loaded by deciding whether to admit, defer, or reject traf-
fic. It makes admission control decisions per session, not
per request. This allows for a smoother user experience in
a stateful environment, as a user of an application would
not enjoy suddenly having requests to the application
denied, when everything was working fine a moment ago.
The admission controller implements per-session admis-
sion control. Unlike the traditional on-off approach, which
makes admission control decisions on an interval basis,
the per-session admission approach is not as vulnerable to
sudden traffic fluctuations. The on-off approach can lead
to servers becoming overloaded if they are set to admit
traffic and a sudden traffic spike occurs [9]. The admis-
sion control decisions are based on prediction of future
load trends combined with server health monitoring, as
explained in Admission control section.
The cloud provisioner is an external component, which

represents the control service of the underlying IaaS
provider. The busy service acts as a default service,

which is used whenever the actual service is unavailable.
The application servers are dynamically provisioned VMs
belonging to the underlying IaaS cloud, capable of con-
currently running multiple applications inside an Open
Services Gateway initiative (OSGi) environment [28].
Application bundles are contained in an application

repository. When an application is deployed to a server,
the server fetches the bundle from the repository. This
implies that the repository is shared among applica-
tion servers. A newly provisioned application server is
assigned an application repository by the global controller.

Algorithms
The VM provisioning algorithms used by the global
controller constitute a hybrid reactive-proactive PD-
controller [8]. They implement proportional scaling aug-
mented with derivative control in order to react to
changes in the health of the system [7]. The server tier
can be scaled independently of the application tier in a
shared hosting environment. The VM provisioning algo-
rithms are supplemented by a set of allocation policies.
The prototype currently supports the following policies:
lowest memory utilization, lowest CPU load, least concur-
rent sessions, and newest server first. In addition to this, we
have also developed an admission control algorithm [9]. A
summary of the concepts and notations used to describe
the VM provisioning algorithms is available in Table 1.
The additional concepts and notations for the admission
control algorithm are provided in Table 2.
The input variables are average CPU load and memory

usage. Average CPU load is the average Unix-like sys-
tem load, which is based on the queue length of runnable
processes, divided by the number of CPU cores present.
The VM provisioning algorithms have been designed to

prevent oscillations in the size of the application server
pool. There are several motivating factors behind this
choice. Firstly, provisioning VMs takes substantial time.
Combined with frequent scaling operations, this may lead
to bad performance [38]. Secondly, usage based billing
requires the time to be quantized at some resolution. For
example, Amazon EC2 bases billing on full used hours.
Therefore, it might not make sense to terminate a VM
until it is close to a full billing hour, as it is impossible to
pay for less than an entire hour. Thus, no scaling actions
are taken until previous operations have been completed.
This is why an underutilized server is terminated only
after being consistently underutilized for at least UCT
consecutive iterations.
The memory usage metric M(s, k) for a server s at dis-

crete time k is given in (1). It is based on the amount of
free memorymemfree, the size of the disk cachememcache,
the buffers membuf , and the total memory size memtotal.
The disk cache memcache is excluded from the amount of
used memory, as the underlying operating system is at

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 8 of 21

Table 1 Summary of VM provisioning concepts and their
notation

A(k) set of web applications at time k

Ai(k) set of inactive applications at time k

Ali(k) set of long-term inactive applications at time k

Aover(k) set of overloaded applications at time k

S(k) set of servers at time k

Slu(k) set of long-term underutilized servers at time k

Sn(k) set of new servers at time k

Sover(k) set of overloaded servers at time k

S¬over(k) set of non-overloaded servers at time k

St(k) set of servers selected for termination at time k

Su(k) set of underutilized servers at time k

C(a, k) measured CPU utilization of application a at time k

C(s, k) measured load average of server s at time k

Ĉ(s, k) predicted load average of server s at time k

Cw(s, k) weighted load average of server s at time k

dep_apps(s, k) applications deployed on server s at time k

inactive_c(a) inactivity count of application a

M(a, k) measured memory utilization of application a at time k

M(s, k) measured memory utilization of server s at time k

M̂(s, k) predicted memory utilization of server s at time k

Mw(s, k) weighted memory utilization of server s at time k

under_u_c(s) underutilization count of server s

W(s, k) weight of server s at time k for load balancing

AA aggressiveness factor for additional capacity

AP aggressiveness factor for VM provisioning

AT aggressiveness factor for VM termination

PP(k) proportional factor for VM provisioning

DP(k) derivative factor for VM provisioning

PT (k) proportional factor for VM termination

DT (k) derivative factor for VM termination

wc weighting coefficient for CPU load average

wm weighting coefficient for memory usage

wp weighting coefficient for VM provisioning

wt weighting coefficient for VM termination

CLA application CPU utilization lower threshold

CLS server load average lower threshold

CUA application CPU utilization upper threshold

CUS server load average upper threshold

ICT A inactivity count threshold for an application

ICT S inactivity count threshold for a server

MLA application memory utilization lower threshold

MLS server memory utilization lower threshold

MUA application memory utilization upper threshold

Table 1 Summary of VM provisioning concepts and their
notation Continued

MUS server memory utilization upper threshold

WMAX maximum value of a server weight for load balancing

NA(k) number of additional servers at time k

NB number of servers to use as base capacity

NP(k) number of servers to provision at time k

NT (k) number of servers to terminate at time k

liberty to use free memory for such purposes as it sees fit.
It will automatically be reduced as the demand for mem-
ory increases. The goal is to keepM(s, k) below the server
memory utilization upper threshold MUS. Likewise, the
memory usage metric for an application a at discrete time
k is defined as M(a, k), which is the amount of the mem-
ory used by the application deployment plus the memory
used by the user sessions divided by the total memory size
memtotal.

M(s, k) = memtotal − (memfree + membuf + memcache)

memtotal
(1)

The proposed approach maintains a fixed minimum
number of application servers, known as the base capacity
NB. In addition, it also maintains a dynamically adjusted
number of additional application servers NA(k), which is
computed as in (2), where the aggressiveness factor AA ∈
[0, 1] restricts the additional capacity to a fraction of the
total capacity, S(k) is the set of servers at time k, and
Sover(k) is the set of overloaded servers at time k. This
extra capacity is needed to account for various delays and
errors, such as VM provisioning time and sampling fre-
quency. For example, AA = 0.2 restricts the maximum
number of additional application servers to 20% of the
total |S(k)|.

NA(k)=
{ �|S(k)| · AA� , if |S(k)| − |Sover(k)| = 0⌈ |S(k)|

|S(k)|−|Sover(k)| · AA
⌉
, otherwise

(2)

Table 2 Additional concepts and notation for admission control

sea(k) set of aborted sessions at time k

sed(k) set of deferred sessions at time k

sen(k) set of new session requests at time k

ser(k) set of rejected sessions at time k

Sopen(k) set of open application servers at time k

C(ent, k) load average of the busy service server at time k

M(ent, k) memory utilization of the busy server server at time k

w weighting coefficient for admission control

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 9 of 21

The number of VMs to provision NP(k) is deter-
mined by (3), where wp ∈[0, 1] is a real number called
the weighting coefficient for VM provisioning. It balances
the influence of the proportional factor PP(k) relative to
the derivative factor DP(k). The proportional factor PP(k)
given by (4) uses a constant aggressiveness factor for VM
provisioning AP ∈[0, 1], which determines how many
VMs to provision. The derivative factor DP(k) is defined
by (5). It observes the change in the total number of
overloaded servers between the previous and the current
iteration.

NP(k) = �wp · PP(k) + (1 − wp) · DP(k)� (3)
PP(k) = |Sover(k)| · AP (4)
DP(k) = |Sover(k)| − |Sover(k − 1)| (5)

The number of servers to terminate NT (k) is computed
as in 6. It uses a weighting coefficient for VM termina-
tionwt ∈[0, 1], similar towp in (3). The currently required
base capacity NB and additional capacity NA(k) have to
be taken into account. The proportional factor for termi-
nation PT (k) is calculated as in (7). Here AT ∈[0, 1], the
aggressiveness factor for VM termination, works like AP
in (4). Finally, the derivative factor for termination DT (k)
is given by (8), which observes the change in the number
of long-time underutilized servers between the previous
and the current iteration.

NT (k)=�wt · PT (k)+(1−wt) · DT (k)� − NB − NA(k)
(6)

PT (k) = |Slu(k)| · AT (7)
DT (k) = |Slu(k)| − |Slu(k − 1)| (8)

Load Prediction
Prediction is performed with a two-step method [4, 5]
based on EMA, which filters the monitored resource
trends, producing a smoother curve. EMA is the weighted

mean of the n samples in the past window, where the
weights decrease exponentially. Figure 3 illustrates an
EMA over a past window of size n = 20, where less weight
is given to old samples when computing the mean in each
measure.
As we use a hybrid reactive-proactive VM provision-

ing algorithm, there is a need to blend the measured and
predicted values. This is done through linear interpola-
tion [9] with the weights wc and wm [8], the former for
CPU load average and the latter for memory usage. In the
current implementation, each of these weights is set to
the NRMSE of the predictions so that lower prediction
error will favor predicted values over observed values. The
NRMSE calculation is given by (9), where yi is the latest
measured utilization, ŷi is the latest predicted utilization,
n is the number of observations, andmax is the maximum
value of both measured and observed utilizations formed
over the current interval, while min is analogous to max.
More details of our load prediction approach are provided
in [8, 9].

NRMSE =
√

1
n

∑n
i=1(yi − ŷi)2

max − min
(9)

The server tier
The server tier consists of the application servers, which
can be dynamically added to or removed from the
cluster. The VM provisioning algorithm for the appli-
cation server tier is presented in Algorithm 1. At
each sampling interval k, the global controller retrieves
the performance metrics from each of the local con-
trollers, evaluates them and decides whether or not to
take an action. The set of application servers is par-
titioned into disjoint subsets according to the current
state of each server. The possible server states are:
overloaded, non-overloaded, underutilized, and long-term
underutilized.

Fig. 3 Example of EMA over a past window of size n = 20, where less weight is given to old samples when computing the mean in each measure

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 10 of 21

Algorithm1 ProactiveVMprovisioning for the application
server tier
1: while true do
2: ∀s ∈ S(k)|Cw(s, k) := wc · C(s, k) + (1 − wc) · Ĉ(s, k)
3: ∀s ∈ S(k)|Mw(s, k) := wm ·M(s, k) + (1−wm) · M̂(s, k)
4: Sover(k) := {∀s ∈ S(k)|Cw(s, k) ≥ CUS} ∪ {∀s ∈

S(k)|Mw(s, k) ≥ MUS}
5: Aover(k) := ⋃

s∈Sover(k) d_a(s, k)
6: S¬over(k) := S(k) \ Sover(k)
7: if |Sover(k)| ≥ 1 ∧ |S¬over(k)| ≥ 1 then
8: for a ∈ Aover(k) do
9: deploy application a as per application-to-

server allocation policy
10: end for
11: end if
12: if |Sover(k)| ≥ (|S(k)| − NA(k)) ∧ NP(k) ≥ 1 then
13: provision NP(k) VMs as a set of new servers Sn(k)
14: S(k) := S(k) ∪ Sn(k)
15: Wait until servers Sn(k) become operational
16: for a ∈ Aover(k) do
17: deploy application a on servers Sn(k)
18: end for
19: end if
20: Su(k) := {∀s ∈ S(k)|Cw(s, k) ≤ CLS} ∩ {∀s ∈

S(k)|Mw(s, k) ≤ MLS}
21: Slu(k) := {∀s ∈ Su(k)|under_u_c(s) ≥ ICTS}
22: if (|Slu(k)| − NB − NA(k)) ≥ 1 ∧ NT (k) ≥ 1 then
23: sort servers Slu(k) with respect to server utilization

metrics
24: select NT (k) servers from Slu(k) as servers selected

for termination St(k)
25: migrate all applications and user sessions from

servers St(k)
26: S(k) := S(k) \ St(k)
27: terminate VMs for servers St(k)
28: end if
29: end while

The algorithm starts by partitioning the set of application
servers into a set of overloaded servers Sover(k) and a set of
non-overloaded servers S¬over(k) according to the supplied
threshold levels (CUS and MUS) of the observed input vari-
ables: memory utilization and CPU load (lines 2–4). A server
is overloaded if the utilization of any resource exceeds its
upper threshold value. All other servers are considered to be
non-overloaded (line 6). The applications running on over-
loaded servers are added to a set of overloaded applications
Aover(k) to be deployed on any available non-overloaded appli-
cation servers as per the allocation policy for applications
to servers (line 5). If the number of overloaded application
servers exceeds the threshold level, a proportional amount of
virtualized application servers is provisioned (line 13) and the
overloaded applications are deployed to the new servers as they
become available (lines 16–18).
The server tier is scaled down by constructing a set of

underutilized servers Su(k) (line 20) and a set of long-term

underutilized servers Slu(k) (line 21), where servers are deemed
idle if their utilization levels lie below the given lower thresh-
olds (CLS and MLS). Long-term underutilized servers are
servers that have been consistently underutilized for more than
a given number of iterations ICTS . When the number of long-
term underutilized servers exceeds the base capacity NB plus
the additional capacity NA(k) (line 22), the remainder are ter-
minated after their active sessions have been migrated to other
servers (lines 23–27).

The application tier
Applications can be scaled to run on many servers according
to their individual demand. Due to memory constraints, the
naïve approach of always running all applications on all servers
is unfeasible. Algorithm 2 shows how individual applications
are scaled up and down according to their resource utiliza-
tion. The set of applications is partitioned into disjoint subsets
according to the current state of each application. The possible
application states are: overloaded, non-overloaded, inactive and
long-term inactive.

Algorithm 2 Reactive scaling of applications
1: while true do
2: Aover(k) := {s ∈ S(k), a ∈ dep_apps(s, k) |

C(a, k) > CUA/|dep_apps(s, k)| ∨ M(a, k) > MUA}
3: if |Aover(k)| ≥ 1 then
4: for all a ∈ Aover(k) do
5: deploy application a as per application-to-

server allocation policy
6: end for
7: end if
8: Ai(k) := {s ∈ S(k), a ∈ dep_apps(s, k) |C(a, k) < CLA ∧

M(a, k) < MLA}
9: Ali(k) := {a ∈ Ai(k) | inactive_c(a) ≥ ICTA}

10: if |Ali(k)| ≥ 1 then
11: migrate all applications and user sessions for appli-

cations Ali(k)
12: A(k) := A(k) \ Ali(k)
13: for all a ∈ Ali(k) do
14: unload application a
15: end for
16: end if
17: end while

An application is overloaded when it uses more resources
than allotted (line 2). Each overloaded application a ∈ Aover(k)
is deployed to another server according to the allocation pol-
icy for applications to servers (lines 4–6). When an application
has been running on a server without exceeding the lower uti-
lization thresholds (CLA andMLA), possible active sessions are
migrated to another deployment of the application and then
said application is undeployed (lines 8–15). This makes the
memory available to other applications that might need it.

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 11 of 21

Admission control
The admission control algorithm is given as Algorithm 3. It
continuously checks for new sen(k) or deferred sessions sed(k)
(line 1). If any are found (line 2), it updates the weighting coeffi-
cient w ∈[0, 1], representing the weight given to predicted and
observed utilizations (line 3). If w = 1.0, no predictions are
calculated (lines 5–6). The prediction process uses a two-step
approach, providing filtered input data to the predictor [5]. We
currently perform automatic adjustment and tuning in a simi-
lar fashion to Cherkasova and Phaal [14], where the weighting
coefficient w is defined according to (10). It is based on the fol-
lowing metrics: number of aborted sessions |sea(k)|, number of
deferred sessions |sed(k)|, number of rejected sessions |ser(k)|,
and number of overloaded servers |Sover(k)|.

w =

⎧⎪⎨
⎪⎩

1, if |sea(k)| > 0 ∨ |sed(k)| > 0 ∨ |ser(k)| > 0
1, if |Sover(k)| > 0
max(0.1,w − 0.01), otherwise

(10)

Algorithm 3 Admission control
1: while true do
2: if |sen(k)| ≥ 1 ∨ |sed(k)| ≥ 1 then
3: update the weighting coefficientw according to (10)
4: if w = 1 then
5: ∀s ∈ S(k)|Cw(s, k) := C(s, k)
6: ∀s ∈ S(k)|Mw(s, k) := M(s, k)
7: else
8: ∀s ∈ S(k)|Cw(s, k) := w·C(s, k)+(1−w)·Ĉ(s, k)
9: ∀s ∈ S(k)|Mw(s, k) := w · M(s, k) + (1 − w) ·

M̂(s, k)
10: end if
11: Sopen(k) := {∀s ∈ S(k)|Cw(s, k) < LAUT ∧

Mw(s, k) < MUUT }
12: if |Sopen(k)| ≥ 1 then
13: if |sed(k)| ≥ 1 then
14: pop first session in sed(k) and admit it on a

server in Sopen(k)
15: else
16: pop first session in sen(k) and admit it on a

server in Sopen(k)
17: end if
18: else if |sen(k)| ≥ 1 then
19: if C(ent, k) < LAUT ∧M(ent, k) < MUUT then
20: pop first session in sen(k) and defer it
21: else
22: pop first session in sen(k) and reject it
23: end if
24: end if
25: end if
26: end while

For each iteration, a bit more preference is given to the pre-
dicted values, up to the limit of 90%. However, as soon as a
problem is detected, full preference is given to the observed
values, as the old predictions cannot be trusted. This should

help in reducing lag when there are sudden changes in the load
trends after long periods of good predictions.
If the algorithm finds servers in good condition (line 12), the

session is admitted (lines 13–17), else the session is deferred to
the busy service server (line 20). Only if also the busy service
server is overloaded, will the session be rejected (line 22).

Implementation
In this section, we present some important implementation
details.

Load balancer
The prototype implementations of ARVUE [1, 7] and CRAMP
[8] use the free, lightweight load balancer HAProxy1, which can
act as a reverse proxy in either of two modes: Transmission
Control Protocol (TCP) or HTTP, which correspond to layers
4 and 7 in the Open Systems Interconnection (OSI) model. We
use the HTTP mode, as ARVUE and CRAMP are designed for
stateful web applications over HTTP.
HAProxy includes powerful logging capabilities using the

Syslog standard. It also supports session affinity, the ability to
direct requests belonging to a single session to the same server,
and Access Control Lists (ACLs), even in combination with
Secure Socket Layer (SSL) since version 1.5.
Session affinity is supported by cookie rewriting or inser-

tion. As the prototype implementations of ARVUE and
CRAMP are designed for Vaadin applications [18], which
use the Java Servlet technology, applications already use the
JSESSIONID cookie, which uniquely identifies the session the
request belongs to. Thus, HAProxy only has to intercept the
JSESSIONID cookie sent from the application to the client
and prefix it with the identifier of the backend in question.
Incoming JSESSIONID cookies are similarly intercepted and
the inserted prefix is removed before they are sent to the
applications.
HAProxy also comes with a built-in server health monitor-

ing system, based onmaking requests to servers andmeasuring
their response times. However, this system is currently not in
use, as the proposed approach does its own health monitoring
by observing different metrics.
The load balancer is dynamically reconfigured by the global

controller as the properties of the cluster change. When an
application is deployed, the load balancer is reconfigured with
a mapping between a Uniform Resource Identifier (URI) that
uniquely identifies the application and a set of application
servers hosting the application, by means of an ACL, a usage
declaration and a backend list. Weights for servers are period-
ically recomputed according to the health of each server, with
higher weights assigned to less loaded servers.
The weights are integers in the range [0,WMAX], where

higher values mean higher priority. In the case of HAProxy,
WMAX = 255. The value 0 is special in that it effectively
prevents the server from receiving any new requests. This is
explained by the weighting algorithm in Algorithm 4, which
distributes the load among the servers so that each server
receives a number of requests proportional to its weight
divided by the sum of all the weights. This is a simple map-
ping of the current load to the weight interval. Here, S(k) is the

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 12 of 21

set of servers at discrete time k, Cw(s, k) is the weighted load
average of server s at time k, C(s, k) is the measured load aver-
age of server s at time k, and similarly Ĉ(s, k) is the predicted
load average of server s at time k. wc ∈[0, 1] is the weighting
coefficient for CPU load average, CUS is the server load aver-
age upper threshold, and W (s, k) is the weight of server s at
time k for load balancing. Thus, the algorithm obtains C(s, k)
and Ĉ(s, k) of each server s ∈ S(k) and uses them along with
wc to compute Cw(s, k) of each server (line 1). Afterwards, it
uses Cw(s, k) to compute W (s, k) of each server s (lines 2–10).
The notation used in the algorithm is also defined in Table 1 in
Algorithms section.

Algorithm 4Weighting algorithm
1: ∀s ∈ S(k)|Cw(s, k) := wc · C(s, k) + (1 − wc) · Ĉ(s, k)
2: for s ∈ S(k) do
3: if Cw(s, k) ≥ CUS then
4: W (s, k) := 0
5: else if Cw(s, k) > 0 then
6: W (s, k) :=

⌈
WMAX − Cw(s,k)

CUS
· WMAX

⌉
7: else
8: W (s, k) := WMAX
9: end if

10: end for

Cloud provisioner
The global controller communicates with the cloud provi-
sioner through its custom Application Programming Interface
(API) in order to realize the decisions on how to manage the
server tier. Proper application of the façade pattern decou-
ples the proposed approach from the underlying IaaS provider.
The prototypes [1, 7, 8, 10] currently support Amazon EC2
in homogeneous configurations. For now, we only provision
m1.small instances, as our workloads are quite small, but the
instance type can be changed easily. Provisioning VMs of dif-
ferent capacity could eventually lead to better granularity and
lower operating costs. Support for more providers and hetero-
geneous configurations is planned for the future.

Busy service server
The busy service amounts to a polling session, notifying the
user when the requested service is available and showing a
waiting message or other distraction until then. Using server
push technology or websockets, the busy service server could
be moved to the client instead.

Application server
The prototype implementations of ARVUE [1, 7, 10] and
CRAMP [8] use Apache Felix2, which is a free implemen-
tation of the OSGi R4 Service Platform and other related
technologies.
The OSGi specifications were originally intended for embed-

ded devices, but have since outgrown their original purpose.
They provide a dynamic component model, addressing a major
shortcoming of Java.

Each application server has a local controller, responsible
for monitoring the state of said server. Metrics such as CPU
load and memory usage of both the VM and of the individual
deployed applications are collected and fed to the global con-
troller for further processing. The global controller delegates
application-tier tasks such as deployment and undeployment
of bundles to the local controllers, which are responsible for
notifying the OSGi environment of any actions to take.
The predictor from CRAMP [8] is also connected to each

application server, making predictions based on the values
obtained through the two-step prediction process. The proto-
type implementation computes an error estimate based on the
NRMSE of predictions in the past window and uses that as a
weighting parameter when determining how to blend the pre-
dicted and observed utilization of the monitored resources, as
explained in Load Prediction section.

Application repository
The applications are self-contained OSGi bundles, which
allows for dynamic loading and unloading of bundles at the dis-
cretion of the local controller. The service-oriented nature of
the OSGi platform suits this approach well. A bundle is a col-
lection of Java classes and resources together with a manifest
file MANIFEST.MF augmented with OSGi headers.

Experimental evaluation
To validate and evaluate the proposed VM provisioning and
admission control approaches, we developed discrete-event
simulations for ARVUE, CRAMP, and ACVAS and performed
a series of experiments involving synthetic as well as realistic
load patterns. The synthetic load pattern consists of two arti-
ficial load peaks, while the realistic load pattern is based on
real world data. In this section, we present experimental results
based on the discrete-event simulations.

VM provisioning experiments
This section presents some of the simulations and experiments
that have been conducted to validate and evaluate ARVUE and
CRAMP VM provisioning algorithms. The goal of these exper-
iments was to test the two approaches and to compare their
results.
In order to generate workload, a set of application users

was needed. In our discrete-event simulations, we developed
a load generator to emulate a given number of user sessions
making HTTP requests on the web applications. We also con-
structed a set of 100 simulated web applications of varying
resource needs, designed to require a given amount of work
on the hosting server(s). When a new HTTP request arrived
at an application, the application would execute a loop for a
number of iterations, corresponding to the empirically derived
time required to run the loop on an unburdened server. As the
objective of the VM provisioning experiments was to compare
the results of ARVUE and CRAMP, admission control was not
used in these experiments.

Design and setup
We performed two experiments with the proposed VM
provisioning approaches: ARVUE and CRAMP. The first

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 13 of 21

experiment used a synthetic load pattern, which was designed
to scale up to 1000 concurrent sessions in two peaks with a
period of no activity between them. In the second peak, the
arrival rate was twice as high as in the first peak.
The second experiment was designed to simulate a load

representing a workload trace from a real web-based system.
The traces were derived from Squid proxy server access logs
obtained from the IRCache project 3. As the access logs did not
include session information, we defined a session as a series
of requests from the same originating Internet Protocol (IP)-
address, where the time between individual requests was less
than 15minutes.We then produced a histogram of sessions per
second and used linear interpolation and scaling by a factor of
30 to obtain the load traces used in the experiment.
In a real-world application, there would be different kinds of

requests available, requiring different amounts of CPU time.
Take the simple case of a web shop: there might be one class
of requests for adding items to the shopping basket, requiring
little CPU time, and another class of requests requiring more
CPU time, like computing the sum total of the items in the
shopping basket. Users of an application would make a number
of varying requests through their interactions with the applica-
tion. After each request, there would be a delay while the user
was processing the newly retrieved information, like when pre-
sented with a new resource. In both experiments, each user
was initially assigned a random application and a session dura-
tion of 15 minutes. Application 1 to 10 were assigned to 50 %
of all users, application 11 to 20 were used by 25 %, applica-
tion 21 to 30 received 20 % of all users, while the remaining
5 % was shared among the other 70 applications. Each user
made requests to its assigned application, none of which was
to require more than 10 ms of CPU time on an idle server. In
order to emulate the time needed for a human to process the
information obtained in response to a request, the simulated
users waited up to 20 s between requests. All random vari-
ables were uniformly distributed. This means they do not fit
the Markovian model.
The sampling period was k = 10 s. The upper threshold

for server load average CUS and the upper threshold for server
memory utilizationMUS were both set to 0.8. These values are
considered reasonable for efficient server utilization [2, 25].
The application-server allocation policy used was lowest load

average. The session-server allocation policy was also set to
lowest load average, realized through the weighted round-robin
policy of HAProxy, where the weights were assigned by the
global controller according to the load averages of the servers,
as described in Load balancer section.
The weighting coefficient for VM provisioning wp was set

to its default value 0.5, which gives equal weight to PP(k) and
DP(k). A more suitable value for this coefficient can be deter-
mined experimentally. We have used wp = 0.5 in all our
experiments so far. Similarly, the default value for the weight-
ing coefficient for VM termination wt is 0.75, which gives more
weight to the proportional factor for termination PT (k).

Results and analysis
The results from the VM provisioning experiment with the
synthetic load pattern are shown in Fig. 4a and b. The depicted

observed parameters are: number of servers, average response
time, average server CPU load, average memory utilization,
and applications per server. The upper half of Table 3 contains
a summary of the results.
The results from the two approaches are compared based

on the following criteria: number of servers used, average CPU
load average, maximum CPU load average, average memory
utilization, maximum memory utilization, average RTT, and
maximum RTT. The resource utilizations are ranked accord-
ing to the utilization error, where over-utilization is considered
infinitely bad.
In Fig. 4a and b, the number of servers plots show that

the number of application servers varied in accordance with
the number of simultaneous user sessions. In this experiment,
ARVUE used a maximum of 16 servers, whereas CRAMP
used no more than 14 servers. The RTT remained quite stable
around 20 ms, as expected. The server CPU load average and
the memory utilization never exceeded 1.0.
The results from the experiment with the synthetic load pat-

tern indicate that the system is working as intended. The use
of additional capacity seems to alleviate the problem of servers
becoming overloaded due to long reaction times. The con-
servative VM termination policy of the proposed approach
explains why the decrease in the number of servers occurs later
than the decrease in the number of sessions. As mentioned in
Algorithms section, one of the objectives of the proposed VM
provisioning algorithms is to prevent oscillations in the num-
ber of application servers used. The results indicate that this
was achieved.
Figure 5a and b present the results of the VM provisioning

experiment with the realistic load pattern. The results are also
presented in the lower half of Table 3.
In this experiment, ARVUE used a maximum of 16 servers,

whereas CRAMP used no more than 8 servers. In the case
of ARVUE, the maximum response time was 21.3 ms and the
average response time was 12.63 ms. In contrast, CRAMP had
amaximum response time of 27.43 ms and an average response
time of 14.7 ms. For both ARVUE and CRAMP, the server CPU
load average and the memory utilization never exceeded 1.0.
The results from the experiment with the realistic load pat-

tern show significantly better performance of CRAMP com-
pared to ARVUE in terms of number of servers. CRAMP
used half as many servers as ARVUE, but it still provided
similar results in terms of average response time, CPU load
average, and memory utilization. The ability to make pre-
dictions of future trends is a significant advantage, even if
the predictions may not be fully accurate. Still, there were
significant problems with servers becoming overloaded due
to the provisioning delay. Increasing the safety margins fur-
ther by lowering the upper resource utilization threshold
values or increasing the extra capacity buffer further might
not be economically viable. We suspect that an appropri-
ate admission control strategy will be able to prevent the
servers from becoming overloaded in an economically viable
fashion.
Figure 6a shows the utilization error in the first experiment

that uses the synthetic load pattern. For brevity, we only depict
the CPU load in the error analysis. Therefore, error is defined

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 14 of 21

Fig. 4 Results of VM provisioning experiment with the synthetic load pattern. In this experiment, both ARVUE and CRAMP had similar results, except
that CRAMP used fewer servers

Table 3 Results from VM provisioning experiments

Approach Servers Loadavg. Loadmax Memavg. Memmax RTTavg. RTTmax

ARVUEsynth 16 0.21 0.9 0.21 0.71 12.23ms 32.88ms

CRAMPsynth 14 0.17 0.58 0.25 0.84 12.97 ms 34.72 ms

ARVUEreal 16 0.25 0.9 0.27 0.71 12.63ms 21.3ms

CRAMPreal 8 0.28 0.58 0.4 0.82 14.7 ms 27.43 ms

The upper half of the table contains results from the first experiment with the synthetic load pattern, while the lower half contains results from the second experiment with
the realistic load pattern. Entries in bold are better according to the evaluation criteria

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 15 of 21

Fig. 5 Results of VM provisioning experiment with the realistic load pattern. In this experiment, CRAMP used half as many servers as ARVUE, but it
still provided similar performance

as the absolute difference between the target CPU load aver-
age level CUS and the measured value of the CPU load average
C(s, k) averaged over all servers in the system. Initially, the
servers are naturally underloaded due to the lack of work.
Thereafter, as soon as the first peak of load arrives, the error
shrinks significantly and becomes as low as 0.1 for ARVUE
and 0.3 for CRAMP. The higher CPU load error for CRAMP
at this point was due to the fact that CRAMP results in this
experiment were mostly memory-driven, as can be seen in
Fig. 4b. In other words, CRAMP had higher error with respect
to the CPU load, but it had lower error with respect to the
memory utilization. The error grows again as the period of
no activity starts after the first peak of load. In the second

peak, both ARVUE and CRAMP showed similar results, where
the error becomes as low as 0.25. Finally, as the request rate
sinks after the second peak of load, the error grows further
due to underutilization. This can be attributed to the inten-
tionally cautious policy for scaling down, which is explained in
Algorithms section and ultimately to the lack of work. A more
aggressive policy for scaling down might work without intro-
ducing oscillating behavior, but when using a third-party IaaS it
would still not make sense to terminate a VM until the current
billing interval is coming to an end, as that resource constitutes
a sunk cost.
Error analysis of the second experiment that uses the realistic

load pattern can be seen in Fig. 6b. CRAMP appears to have

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 16 of 21

Fig. 6 CPU load average error analysis in the VM provisioning experiments. In the first experiment, CRAMP appears to have higher error because its
results were mostly memorydriven. In the second experiment, CRAMP had lower error than ARVUE, with the only exceptions being due to
underutilization

lower error than ARVUE throughout most of the experiment,
with the only exceptions being due to underutilization.

Admission experiments
This section presents experiments with admission control. The
goal of these experiments was to test our proposed admission
control approachACVAS [9] and to compare it against an exist-
ing SBAC implementation [14], here referred to as the alter-
native approach. As in the VM provisioning experiments, the
experiments in this section also used 100 simulated web appli-
cations of various resource requirements. The experiments
were conducted through discrete-event simulations.

Design and setup
We performed two experiments with ACVAS and the alter-
native approach. The first admission experiment used the
synthetic load pattern, which was also used in the first VM
provisioning experiment described in VM provisioning experi-
ments section. This workload was designed to scale up to 1000
concurrent sessions in two peaks with a period of no activity
between them. Similarly, the second admission experiment was
designed to use the realistic load pattern, which was also used
in the second VM provisioning experiment in VM provisioning
experiments section. The sampling period k, the upper thresh-
old for server load average CUS , the upper threshold for server

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 17 of 21

memory utilizationMUS , the application-server allocation pol-
icy, and the session-server allocation policy were all same
as in the VM provisioning experiments in VM provisioning
experiments section.

Results and analysis
In our previous work [9], we proposed a way of measuring the
quality of an admission control mechanism based on the trade-
off between the number of servers used and six important

QoS metrics: number of overloaded servers, session through-
put, number of aborted sessions, number of deferred sessions,
number of rejected sessions and average response time for all
admitted sessions. The goal is to minimize the values of these
metrics, except for session throughput, that should be maxi-
mized. The results from the two approaches will be compared
based on these criteria.
Figure 7a and b present the results from the experiment with

the synthetic load pattern. A summary of the results is also

Fig. 7 Results of admission experiment with the synthetic load pattern. ACVAS performed better than the alternative approach in all aspects but
session deferment and throughput

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 18 of 21

Table 4 Results from admission experiments

Approach Servers Overl. Abort. Def. Rej. Compl. RTTavg.

ACVASsynth 19 0 0 30 0 8620 59ms

alternativesynth 19 0.56 0 N/A 488 9296 112 ms

ACVASreal 16 0 0 20 0 8559 59ms

alternativereal 17 0.0046 0 N/A 55 8577 72 ms

The upper half of the table contains results from the first experiment with the synthetic load pattern, while the lower half contains results from the second experiment with
the realistic load pattern. Entries in bold are better according to the evaluation criteria

Fig. 8 Results of admission experiment with the realistic load pattern. ACVAS performed better than the alternative approach in all aspects but
session deferment and throughput

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 19 of 21

available in the upper half of Table 4. The prediction accu-
racy was high, the Root Mean Square Error (RMSE) of the
predicted CPU and memory utilization was 0.0163 and 0.0128
respectively. ACVAS used a maximum of 19 servers with 0
overloaded servers, 0 aborted sessions, 30 deferred sessions,
and 0 rejected sessions. There were a total of 8620 completed
sessions with an average RTT of 59ms. Thus, ACVAS provided
a good trade-off between the number of servers and the QoS
requirements. The alternative approach also used a maximum
of 19 servers, but with several occurrences of server overload-
ing. On average, there were 0.56 overloaded servers at all time
with 0 aborted sessions and 488 rejected sessions. A total of

9296 sessions were completed with an average RTT of 112 ms.
Thus, in the first experiment, the alternative approach com-
pleted 9296 sessions compared to 8620 sessions by ACVAS, but
with 488 rejected sessions and several occurrences of server
overloading.
Figure 8a and b show the results of the experiment with the

realistic load trace derived from access logs. The lower half
of Table 4 shows that ACVAS used a maximum of 16 servers
with 0 overloaded servers, 0 aborted sessions, 20 deferred ses-
sions, and 0 rejected sessions. There were a total of 8559
completed sessions with an average RTT of 59 ms. In con-
trast, the alternative approach used a maximum of 17 servers

Fig. 9 CPU load average error analysis in the admission experiments. In the first experiment, both approaches had a similar error plot. However, in
the second experiment, ACVAS appears to have lower error than the alternative approach throughout most of the experiment, with the only
exceptions being due to underutilization

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 20 of 21

with 3 occurrences of server overloading. On average, there
were 0.0046 overloaded servers at all time with 0 aborted ses-
sions and 55 rejected sessions. There were a total of 8577
completed sessions with an average RTT of 72 ms. Thus, the
alternative approach used an almost equal number of servers,
but it did not prevent them from becoming overloaded. More-
over, it completed 8577 sessions compared to 8559 sessions by
ACVAS, but with 55 rejected sessions and 3 occurrences of
server overloading.
The results from these two experiments indicate that the

ACVAS approach provides significantly better results in terms
of the previously mentioned QoS metrics. In the first experi-
ment, ACVAS had the best results in three areas: overloaded
servers, rejected sessions, and average RTT. The alternative
approach performed better in two areas: there were no deferred
sessions, as it did not support session deferment, and it had
more completed sessions. In the second experiment, ACVAS
performed better in four aspects: number of servers used, over-
loaded servers, rejected sessions, and average RTT. The alterna-
tive approach again showed better performance in the number
of completed sessions and in the number of deferred sessions.
We can therefore conclude that ACVAS performed better than
the alternative approach in both experiments.
The EMA-based predictor appears to be doing a good job

on predicting these types of loads. It remains unclear how
the system reacts to sudden drops in a previously increasing
load trend. Such a scenario could temporarily lead to high
preference for predicted results, which are no longer valid.
A plot of the utilization error with the synthetic load pat-

tern can be seen in Fig. 9a. Likewise, a plot of the utilization
error with the realistic load can be seen in Fig. 9b. Again, we
only depict the CPU load, as it played the most significant part.
The periods where ACVAS appears to have higher error than
the alternative approach are due to underutilization amplified
by ACVAS being more effective at keeping the average utiliza-
tion down, as no servers became overloaded during this time.
Overall, the results are quite similar, as they should be, the only
difference being the admission controller.

Conclusions
We have presented a prediction-based, cost-efficient Virtual
Machine (VM) provisioning and admission control approach
for multi-tier web applications. It provides automatic deploy-
ment and scaling of multiple simultaneous web applica-
tions on a given Infrastructure as a Service (IaaS) cloud
in a shared hosting environment. The proposed approach
comprises three sub-approaches: a reactive VM provision-
ing approach called ARVUE, a hybrid reactive-proactive VM
provisioning approach called Cost-efficient Resource Allo-
cation for Multiple web applications with Proactive scaling
(CRAMP), and a session-based adaptive admission control
approach called adaptive Admission Control for Virtualized
Application Servers (ACVAS). Both ARVUE and CRAMP pro-
vide autonomous shared hosting of third-party Java Servlet
applications on an IaaS cloud. However, CRAMP provides bet-
ter responsiveness and results than the purely reactive scaling
of ARVUE. ACVAS implements per-session admission, which
reduces the risk of over-admission. Moreover, it implements

a simple session deferment mechanism that reduces the num-
ber of rejected sessions while increasing session throughput.
The proposed approach is demonstrated in discrete-event sim-
ulations and is evaluated in a series of experiments involving
synthetic as well as realistic load patterns.
The results of the VM provisioning experiments showed that

both ARVUE and CRAMP provide good performance in terms
of average response time, Central Processing Unit (CPU) load
average, and memory utilization. Moreover, CRAMP provides
significantly better performance in terms of number of servers.
It also had lower utilization error than ARVUE in most of the
cases.
The evaluation and analysis concerning our proposed admis-

sion control approach compared ACVAS against an exist-
ing admission control approach available in the literature.
The results indicated that ACVAS provides a good trade-off
between the number of servers used and the Quality of Service
(QoS) metrics. In comparison with the alternative admission
control approach, ACVAS provided significant improvements
in terms of server overload prevention, reduction of rejected
sessions, and average response time.

Endnotes
1 http://www.haproxy.org/
2 http://felix.apache.org/
3 http://www.ircache.net/
4http://www.apache.org/licenses/.
5http://zenodo.org/.
6https://aws.amazon.com/ec2/.

Availability of data andmaterials
The source code for the platform described in this article, as well as the
discrete event simulator used for its design and evaluation are available under
the open source Apache License version 24. The materials haven been placed
in the GitHub repository https://github.com/SELAB-AA/arvue-platform and
they have been archived in Zenodo5 with DOI:10.5281/zenodo.47293. The
platform is implemented in Java and uses Amazon Elastic Compute Cloud
(EC2)6 as its underlying infrastructure service. However, it can easily be used
with other services as long as they support Java and the EC2 API.

Authors’ contributions
AA carried out the literature review, designed the algorithms, and developed
the simulations. BB developed the prototype implementation. AA and BB
jointly drafted the manuscript. IP provided useful insights and guidance and
critically reviewed the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 April 2016 Accepted: 12 September 2016

References
1. Aho T, Ashraf A, Englund M, Katajamäki J, Koskinen J, Lautamäki J,

Nieminen A, Porres I, Turunen I (2011) Designing IDE as a service.
Commun Cloud Softw 1:1–10

2. Allspaw J (2008) The Art of Capacity Planning: Scaling Web Resources.
O’Reilly Media, Inc

3. Almeida J, Almeida V, Ardagna D, Cunha I, Francalanci C, Trubian M (2010)
Joint admission control and resource allocation in virtualized servers. J
Parallel Distrib Comput 70(4):344–362. doi:10.1016/j.jpdc.2009.08.009

4. Andreolini M, Casolari S (2006) Load prediction models in web-based
systems. In: Proceedings of the 1st international conference on

http://www.haproxy.org/
http://felix.apache.org/
http://www.ircache.net/
http://www.apache.org/licenses/
http://zenodo.org/
https://aws.amazon.com/ec2/
https://github.com/SELAB-AA/arvue-platform
DOI:10.5281/zenodo.47293
http://dx.doi.org/10.1016/j.jpdc.2009.08.009

Ashraf et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:15 Page 21 of 21

Performance evaluation methodolgies and tools, valuetools ’06. ACM,
New York. doi:10.1145/1190095.1190129

5. Andreolini M, Casolari S, Colajanni M (2008) Models and framework for
supporting runtime decisions in web-based systems. ACM Trans Web
2(3):1–43. doi:10.1145/1377488.1377491

6. Ardagna D, Ghezzi C, Panicucci B, Trubian M (2010) Service provisioning
on the cloud: Distributed algorithms for joint capacity allocation and
admission control. In: Di Nitto E, Yahyapour R (eds). Towards a
Service-Based Internet, Lecture Notes in Computer Science. Springer
Berlin, Heidelberg Vol. 6481. pp 1–12

7. Ashraf A, Byholm B, Lehtinen J, Porres I (2012) Feedback control
algorithms to deploy and scale multiple web applications per virtual
machine. In: Cortellessa V, Muccini H, Demirors O (eds). 38th Euromicro
Conference on Software Engineering and Advanced Applications. IEEE
Computer Society. pp 431–438

8. Ashraf A, Byholm B, Porres I (2012) CRAMP: Cost-efficient resource
allocation for multiple web applications with proactive scaling. In:
Włodarczyk TW, Hsu CH, Feng WC (eds). 4th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE
Computer Society. pp 581–586

9. Ashraf A, Byholm B, Porres I (2012) A session-based adaptive admission
control approach for virtualized application servers. In: Varela C, Parashar
M (eds). The 5th IEEE/ACM International Conference on Utility and Cloud
Computing. IEEE Computer Society. pp 65–72

10. Byholm B (2013) An autonomous platform as a service for stateful web
applications. Master’s thesis, Åbo Akademi University

11. Calinescu R, Grunske L, Kwiatkowska M, Mirandola R, Tamburrelli G (2011)
Dynamic QoS management and optimization in service-based systems.
Softw Eng IEEE Trans 37(3):387–409. doi:10.1109/TSE.2010.92

12. Carrera D, Steinder M, Whalley I, Torres J, Ayguade E (2008) Utility-based
placement of dynamic web applications with fairness goals. In: Network
Operations and Management Symposium (NOMS). IEEE. pp 9–16.
doi:10.1109/NOMS.2008.4575111

13. Chen X, Chen H, Mohapatra P (2003) ACES: An efficient admission control
scheme for QoS-aware web servers. Comput Commun 26(14):1581–1593.
doi:10.1016/S0140-3664(02)00259-1

14. Cherkasova L, Phaal P (2002) Session-based admission control: A
mechanism for peak load management of commercial web sites.
Comput IEEE Trans 51(6):669–685. doi:10.1109/TC.2002.1009151

15. Chieu TC, Mohindra A, Karve AA, Segal A (2009) Dynamic scaling of web
applications in a virtualized cloud computing environment. In: e-Business
Engineering, 2009. ICEBE ’09. IEEE International Conference on.
pp 281–286. doi:10.1109/ICEBE.2009.45

16. Dutreilh X, Rivierre N, Moreau A, Malenfant J, Truck I (2010) From data
center resource allocation to control theory and back. In: Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on.
pp 410–417. doi:10.1109/CLOUD.2010.55

17. Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic ReSource Scaling
for cloud systems. In: Network and Service Management (CNSM), 2010
International Conference on. pp 9–16. doi:10.1109/CNSM.2010.5691343

18. Grönroos M (2011) Book of Vaadin, fourth edn. Vaadin Ltd
19. Guitart J, Beltran V, Carrera D, Torres J, Ayguade E (2005) Characterizing

secure dynamic web applications scalability. In: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS).
doi:10.1109/IPDPS.2005.137

20. Han R, Ghanem MM, Guo L, Guo Y, Osmond M (2014) Enabling
cost-aware and adaptive elasticity of multi-tier cloud applications. Future
Generation Comput Syst 32(0):82–98. doi:10.1016/j.future.2012.05.018

21. Han R, Guo L, Ghanem MM, Guo Y (2012) Lightweight resource scaling for
cloud applications. Cluster Computing and the Grid, IEEE International
Symposium on

22. Hu Y, Wong J, Iszlai G, Litoiu M (2009) Resource provisioning for cloud
computing. In: Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’09. ACM, New
York. pp 101–111

23. Huang CJ, Cheng CL, Chuang YT, Jang JSR (2006) Admission control
schemes for proportional differentiated services enabled internet servers
using machine learning techniques. Expert Syst Appl 31(3):458–471.
doi:10.1016/j.eswa.2005.09.071

24. Iqbal W, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Futur
Gener Comput Syst 27(6):871–879

25. Liu HH (2009) Software Performance and Scalability: A Quantitative
Approach. Wiley Publishing

26. Montgomery DC, Peck EA, Vining GG (2012) Introduction to Linear
Regression Analysis. Wiley Series in Probability and Statistics. John Wiley &
Sons

27. Muppala S, Zhou X (2011) Coordinated session-based admission control
with statistical learning for multi-tier internet applications. J Netw
Comput Appl 34(1):20–29. doi:10.1016/j.jnca.2010.10.007

28. OSGi Alliance (2010) OSGi Service Platform Core Specification, Release 4,
Version 4.2. AQute Publishing

29. Pan W, Mu D, Wu H, Yao L (2008) Feedback control-based QoS
guarantees in web application servers. In: High Performance Computing
and Communications, 2008. HPCC ’08. 10th IEEE International Conference
on. pp 328–334. doi:10.1109/HPCC.2008.106

30. Patikirikorala T, Colman A, Han J, Wang L (2011) A multi-model framework
to implement self-managing control systems for QoS management. In:
Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’11. ACM,
New York. pp 218–227

31. Raivio Y, Mazhelis O, Annapureddy K, Mallavarapu R, Tyrväinen P (2012)
Hybrid cloud architecture for short message services. In: Leymann F,
Ivanov I, van Sinderen M, Shan T (eds). Proceedings of the 2nd
International Conference on Cloud Computing and Services Science.
SciTePress. pp 489–500

32. Robertsson A, Wittenmark B, Kihl M, Andersson M (2004) Admission
control for web server systems - design and experimental evaluation. In:
Decision and Control, 2004. CDC. 43rd IEEE Conference on Vol. 1.
pp 531–536. doi:10.1109/CDC.2004.1428685

33. Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using
predictive models for workload forecasting. In: Cloud Computing
(CLOUD), 2011 IEEE International Conference on. pp 500–507.
doi:10.1109/CLOUD.2011.42

34. Shaaban YA, Hillston J (2009) Cost-based admission control for internet
commerce QoS enhancement. Electron Commer Res Appl 8(3):142–159.
doi:10.1016/j.elerap.2008.11.007

35. Urgaonkar B, Shenoy P, Roscoe T (2009) Resource overbooking and
application profiling in a shared internet hosting platform. ACM Trans
Internet Technol 9(1):1–45. doi:10.1145/1462159.1462160

36. Vogels W (2008) Beyond server consolidation. Queue 6(1):20–26.
doi:10.1145/1348583.1348590

37. Voigt T, Gunningberg P (2002) Adaptive resource-based web server
admission control. In: Computers and Communications, 2002.
Proceedings. ISCC 2002. Seventh International Symposium on.
doi:10.1109/ISCC.2002.1021682

38. Wolke A, Meixner G (2010) TwoSpot: A cloud platform for scaling out web
applications dynamically. In: di Nitto E, Yahyapour R (eds). Towards a
Service-Based Internet, Lecture Notes in Computer Science. Springer
Berlin, Heidelberg Vol. 6481. pp 13–24

39. Zhang Z, Wang H, Xiao L, Ruan L (2011) A statistical based resource
allocation scheme in cloud. In: Cloud and Service Computing (CSC), 2011
International Conference on. pp 266–273. doi:10.1109/CSC.2011.6138531

40. Zhao H, Pan M, Liu X, Li X, Fang Y (2012) Optimal resource rental planning
for elastic applications in cloud market. In: Parallel and Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International. pp 808–819.
doi:10.1109/IPDPS.2012.77

http://dx.doi.org/10.1145/1190095.1190129
http://dx.doi.org/10.1145/1377488.1377491
http://dx.doi.org/10.1109/TSE.2010.92
http://dx.doi.org/10.1109/NOMS.2008.4575111
http://dx.doi.org/10.1016/S0140-3664(02)00259-1
http://dx.doi.org/10.1109/TC.2002.1009151
http://dx.doi.org/10.1109/ICEBE.2009.45
http://dx.doi.org/10.1109/CLOUD.2010.55
http://dx.doi.org/10.1109/CNSM.2010.5691343
http://dx.doi.org/10.1109/IPDPS.2005.137
http://dx.doi.org/10.1016/j.future.2012.05.018
http://dx.doi.org/10.1016/j.eswa.2005.09.071
http://dx.doi.org/10.1016/j.jnca.2010.10.007
http://dx.doi.org/10.1109/HPCC.2008.106
http://dx.doi.org/10.1109/CDC.2004.1428685
http://dx.doi.org/10.1109/CLOUD.2011.42
http://dx.doi.org/10.1016/j.elerap.2008.11.007
http://dx.doi.org/10.1145/1462159.1462160
http://dx.doi.org/10.1145/1348583.1348590
http://dx.doi.org/10.1109/ISCC.2002.1021682
http://dx.doi.org/10.1109/CSC.2011.6138531
http://dx.doi.org/10.1109/IPDPS.2012.77

	Abstract
	Keywords

	Introduction
	Related work
	VM provisioning approaches
	Admission control approaches

	Architecture
	Algorithms
	Load Prediction
	The server tier
	The application tier
	Admission control

	Implementation
	Load balancer
	Cloud provisioner
	Busy service server
	Application server
	Application repository

	Experimental evaluation
	VM provisioning experiments
	Design and setup
	Results and analysis

	Admission experiments
	Design and setup
	Results and analysis

	Conclusions
	Availability of data and materials
	Authors' contributions
	Competing interests
	References

