
Journal of Cloud Computing:
Advances, Systems and Applications

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems
and Applications (2016) 5:20
DOI 10.1186/s13677-016-0070-z

RESEARCH Open Access

DEF - a programming language agnostic
framework and execution environment for the
parallel execution of library routines
Thomas Feilhauer* and Martin Sobotka

Abstract

There is high demand for library routines that can be included into arbitrary programs and executed in parallel in the
Cloud. So our approach is to provide a framework that supports the parallelized execution of library routines, written
in different programming languages, from any platform. Our Distributed Execution Framework (DEF) allows to (1)
deploy arbitrary routines into a central library and (2) integrate these library routines at runtime into user programs in
a way that allows the routines to be executed in parallel in the Cloud. The programming and runtime environment of
the library routine is completely transparent to the user and the chosen programming and runtime environment. DEF
provides client and library APIs with primitives like search_lib(), create_task(), submit_job() which are integrated into
the user’s program to access the DEF runtime. DEF allows the user to configure clusters in a public/private Cloud and
automatically distributes the tasks for executing the library routines on the workers of the cluster.

Keywords: Parallel execution of library Routines, Cloud computing, Programming language independence

Introduction
Parallel execution and pushing large and time consum-
ing compute-tasks into the Cloud becomes more and
more important. Several research projects and providers
of execution environments work on tools and frameworks
to extend a specific programming language or Prob-
lem Solving Environment (PSE) with features to enable
their product for parallel execution, e.g. parallel fortran
[1], Unified-Parallel C (UPC) [2], MATLAB [3]. Cloud
providers offer program language specific APIs for their
Cloud environment to enable developers to integrate
applications into the Cloud, e.g. Amazon Web Services
(AWS)1.
In our EnFiLo2 project we were confronted with the

situation that several analysts were working on different
problems in the domains of energy, finance, and logistics,
applying algorithms developed by themselves to complex
optimization and simulation problems, each of them using
their preferred programming and runtime environment.
The analysts found out that a large number of algorithms

*Correspondence: thomas.feilhauer@fhv.at
Josef Ressel Center for Applied Scientific Computing in Energy, Finance and
Logistics, Fachhochschule Vorarlberg, University of Applied Sciences,
Hochschulstr. 1, 6850 Dornbirn, Austria

developed by their colleagues could well be used for the
problems they were working on, probably in just a slightly
adapted, more abstract form, so that they could be applied
to a different domain. And the analysts now wanted to
find a way to reuse at least parts of the algorithms of
their colleagues to make their lives easier and not always
have to re-implement already existing code. So it is a cen-
tral objective of the EnFiLo project to define and extract
reusable parts of computationally complex algorithms in
the form of library routines which can be executed in
parallel and which can be used across domains. Though
the resulting library routines were reusable and domain
independent, the next problem was that the analysts were
using different programming and runtime environments,
which means that the reusable library routines could not
directly be invoked from the runtime environments of
the colleagues. Therefore a solution must be found to
enable the parallel execution of library routines which
can be written in an arbitrary programming language and
which can be invoked from applications also written in an
another programming language, without the application
programmer needing to know the implementation details
or programming language of the library routine used in his

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-016-0070-z&domain=pdf
http://orcid.org/0000-0001-8486-3476
mailto: thomas.feilhauer@fhv.at
http://creativecommons.org/licenses/by/4.0/

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 2 of 17

application. This was the idea to develop the Distributed
Execution Framework (DEF).
Therefore the central goal of the DEF is to develop a

system that allows for parallelized execution of library
routines, independent of programming languages or plat-
forms. We found that, before the DEF, there were no envi-
ronments that support the parallelized invocation of tasks
across arbitrary execution environments. In this paper
we describe the design of a flexible, easy-to-use frame-
work and execution environment that allows the paral-
lel execution of library routines across different runtime
environments invoked from some arbitrary client.
The DEF allows to (1) deploy arbitrary routines into a

central algorithm library and (2) integrate these library
routines at runtime into user programs in a way that
enables the routines to be executed in parallel in the
Cloud. Figure 1 illustrates that users can integrate imple-
mentations of their algorithms into an algorithm library.
These library routines typically represent reusable mod-
ules which are invoked several times to operate indepen-
dently on different data sets within larger programs. The
developer can choose an arbitrary programming language
or PSE to implement the routine. In this sense, the library
routines follow the Single ProgramMultiple Data (SPMD)
model [4, 5]. Every library routine needs to have a signa-
ture description document in which the interface of the
library routine is defined.
Based on the signature description document, any

user can call the routine from any client program by
applying it to the correct parameters and data. Typ-
ically, these library routines are called multiple times
within a loop which is referred to as “loop paralleliza-
tion” ([6], p. 122). Therefore these routines represent
the computationally intensive and time consuming parts

of the program, which predestines them to be exe-
cuted in parallel on the worker nodes of a compute
cluster.
An a priori analysis of the problem sets in the EnFiLo

project revealed that the applications to be developed
for our project can be reduced to calls of embarrassingly
parallel computations, which means that the same rou-
tine is invoked in parallel on different independent input
parameter sets, i.e. there is no communication required
between the parallel computations ([6], p. 60) ([7], p.
121). The parameters (esp. large collections) for the library
routines can be uploaded as shared resources before the
library routines are invoked (call by reference) or they
(esp. small base type parameters) can be directly attached
to the routine call (call by value). The DEF then distributes
the library calls among the worker nodes of a compute
cluster. The results of the calls can synchronously or asyn-
chronously be retrieved from the DEF and can be used for
further computations.
To be able to provide flexible cluster structures we have

set up the DEF on Cloud technologies. In this sense, the
DEF could be viewed as a PaaS (Platform as a Service)3
that enables the deployment and concurrent execution of
library routines. To be installable on multiple platforms,
the DEF runtime environment is implemented in Java.
With the DEF we want to achieve the following benefits:

• High performance through parallelization
• High efficiency by utilizing potentially all available

(local) resources
• High scalability by using elastic Cloud technology
• High user acceptance by providing a simple API for

integrating the parallel invocations of library routines
into user applications

Fig. 1 DEF - General Overview

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 3 of 17

• High flexibility by offering a programming language
independent library of efficient algorithm
implementations that can be integrated into user
applications

• Openness to different data formats regarding input
and output parameters by using JSON as data
exchange format

• The DEF components are deployable on all common
desktop-server hardware/OS platforms

• Support users on searching for appropriate
algorithms in the library

• Security by supporting private and public Cloud
infrastructures on demand

The novelty in this approach lies in enabling paral-
lelized invocations of library routines, completely inde-
pendent of programming languages or platforms. This
is achieved by decoupling the client program from the
implementation of the library routine and by dynamically
distributing the library routine invocations to available
worker instances in the cloud. This provides for pro-
gramming language and platform independence as well as
elasticity for large scale computations. To give an exam-
ple: With the presented approach, analysts will able to
execute MATLAB code in parallel without using MAT-
LAB Parallel Computing Toolbox, invoked from a client
implemented in Python. In this example the DEF shows
an approximately linear speedup by adding more worker
nodes.

State of the art
A central issue of this project is to bring together
techniques for (A) Parallel Execution of Procedures,
(B) Platform and Programming Language Independent
Invocation of Remote Procedures, and (C) Distributed
Execution Environments. A superordinate topic for all
remote/distributed execution techniques is securitywhich
is crucial for running real world applications in distributed
environments, especially in the Cloud.

Parallel execution of procedures
The most common techniques applied for parallel exe-
cution of procedures are shared memory and message
passing ([6], pp. 10) ([8], pp. 27).

Message passing
The message passing model focuses on exchanging mes-
sages between interacting parallel processes, while each
participating process has its own address space ([6], pp.
10). Its most important representatives are the Message
Passing Interface (MPI) [9] and Parallel Virtual Machine
(PVM) ([8], pp. 29) of which MPI turned out to be
more successful. MPI is based on a bidirectional interpro-
cess communication (IPC). There are implementations

of MPI for a large number of programming languages.
MPI is still widely used for parallelizing programs which
makes it something like a de facto standard for message
passing applications. On the other side, all parts of the
parallel application must be implemented in a specific
programming language for which MPI is available and the
MPI constructs with their dependencies tend to compli-
cate the code which makes MPI a complex framework,
especially for users with a non-programming background,
like many data analysts.

Sharedmemory
The shared memory model is based on a Parallel RAM
(PRAM) [10]. The processes in a shared memory system
share a single address space. They communicate by read-
ing and writing shared variables ([6], pp. 10). The most
widely used implementation for shared memory systems
are threads (POSIX, NT) and directives like OpenMP
[11] ([8], pp. 29).
For a shared-address-space, the memory must be acces-

sible to all processors. In a distributed system we have
autonomous hosts each having its own local mem-
ory. But a shared memory system can be emulated on
a distributed system using distributed shared memory
(DSM) [12].

Summary
According to Mattson ([6], pp. 13) neither MPI nor
OpenMP provides an optimal solution for hybrid archi-
tectures that aggregate multiprocessor worker instances,
each with multiple processors/cores and shared memory,
to larger systems with separate address spaces for each
worker. He also states that programs that make use of MPI
instructions can be difficult to implement, because the
programmer must take care for distributing the data and
is responsible for configuring the messages required for
IPC ([6], p. 13).
An important issue for our project is that the appli-

cation developers implementing the programs that make
use of the DEF and the offered library routines do not
want to get involved with complicating IPC and the corre-
sponding message configuration. For our problem sets of
embarrassingly parallel computations with different inde-
pendent input parameter sets, we have routines that do
not communicate with concurrently running processes
and they write the results to separate result entries that
do not conflict with the result entries of the other con-
current processes. Therefore, for this scenario, we can
expect a minimum of conflicts between the concurrent
processes, which means that we do not need to consider
any process communication during the execution of a
library routine. For the same reason, we did not build
our DEF on models like Partitioned Global Address Space
(PGAS) [13].

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 4 of 17

Platform and programming language independent
invocation of remote procedures
If we want our compute cluster to be independent of
a specific underlying platform, it is the simplest way to
make use of virtualization for being able to run a spe-
cific platform on top of all available worker hosts, inde-
pendent of their underlying hardware configurations and
installed operating systems. A common technology that
combines virtualization with distributed systems is Cloud
computing.

Cloud computing
Cloud computing allows flexible access to a seemingly
unlimited number of compute resources which can be
flexibly configured with little effort and which can bemea-
sured so that the usage could be charged “pay-per-use”
[14]. Because of these features, the Cloud is a good source
for compute resources to be used for HPC [15, 16].
There are different approaches of how to apply High

Performance Computing (HPC) on the Cloud, depend-
ing on the parallel computation model [17, 18]. This
means that there are examples for Cloud based MPI
implementations, e.g. [19, 20]. And there are also few
publications that deal with distributed shared memory
solutions in a Cloud environment. One is restricted to an
implementation for UPC [21] and as an alternative there
is an implementation for Cloud task parallelization in
.NET [22]. We have discarded the process communication
approaches, hence these examples will not be taken into
further consideration for our solution. Still Cloud comput-
ing in general is a strong technology that enables an elastic
acquisition of compute resources which can be flexi-
bly configured, e.g. with different platforms and runtime
environments.

Programming language independent remote invocation
There had been a few approaches for programming
language independent execution environments of which
Common Object Request Broker Architecture (CORBA)
andWeb services are the most popular ones which are still
in use.
CORBA [23] enables the invocation of remote methods

in an object oriented fashion across platforms and pro-
gramming languages [24, 25]. CORBA proofed to be very
stable [26], but there are also a number of drawbacks that
limit the applicability for our purpose [27]. One issue is
security; CORBAmessages are sent unencrypted between
the participating hosts and to grant remote access to
CORBA objects, the firewall must open up TCP-ports for
each service. This cannot be tolerated for public Cloud
environments. Another issue is that CORBA does not
support MATLAB and Octave, which is essential for our
project. Because of these shortcomings, CORBA can-
not be an adequate environment for our purposes, even

though there are extensions of CORBA that would allow
the parallel execution of tasks [28, 29].
Web services is an underlying technology of Cloud

computing that enables the programming language inde-
pendent call of procedures on compute nodes in the
Cloud. They provide synchronous and asynchronous calls
of remote procedures. There are two types of Web ser-
vices: RESTful [30] and SOAP Web services [31]. In
Pautasso et al. [32] give a deep insight into the differ-
ences of both technologies. While SOAP Web services
with their mandatory WSDL4 interface definition sup-
port both static calls and dynamic invocation, RESTful
Web services only allow dynamic invocation without the
possibility for generating client side stubs. Web services
are not object oriented, but if the service is implemented
stateless and side effect free, then it would have no
negative effect on calling independent routines from a
library.
Both CORBA and Web services allow static calls

using client stubs and dynamic invocations. In our case,
dynamic invocations provide more flexibility when call-
ing routines that can be added to the library on the fly.
Additionally, no stubs have to be generated and compiled
before the client can invoke a library routine. Therefore
Web services provide a good foundation for invoking rou-
tines in a distributed Cloud environment, but both Web
services and CORBA offer no support for the parallel exe-
cution of routines. With the strong integration of Web
services into Cloud technologies, we decided to setup the
communication our DEF environment on RESTful Web
service techniques.

Distributed execution environments
Distributed execution environments ease the develop-
ment of distributed applications that can be executed on
typically heterogeneous computing resources connected
via network. A central characteristic of a distributed exe-
cution environment is distribution transparency [33].
There are distributed execution environments that

allow to implement distributed applications for specific
programming languages, e.g. DJO [34]. Others concen-
trate on the distribution of workflows, for which specific
workflow modeling languages are defined, e.g. [35, 36].
These solutions are programming language specific and
provide no solution for the parallel execution of tasks.
Apache Hadoop5 is a framework for the parallel dis-

tributed processing of data. With its MapReduce imple-
mentation it is focusing on “Big Data” applications and
supports different programming languages only through
its streaming API. Apache Spark6 is only available for Java,
Scala, Python, and R. The Big Data frameworks typically
execute the analysis routines where the data is, because
of the huge amount of data that is too expensive to move.
This is not an issue for the type of problems that we

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 5 of 17

are dealing with in our project. Established cluster frame-
works, like Globus7 and SGE8, require knowledge about
the runtime environment and specially prepared pro-
grams along with the data for execution. Our framework
should be able to utilize any available cluster resources by
simply using the framework’s client APIs from an arbitrary
programming language.
Another interesting approach is Berkeley Open Infras-

tructure for Network Computing (BOINC)9. BOINC is
an open source framework for distributed applications.
Originally implemented for the SETI@home project, it
is designed for volunteer computing (scientists), creating
a Virtual Campus Supercomputing Center (universities),
and desktop Grid computing (companies). It supports a
large number of operating systems and is running on
several hundred-thousand hosts. BOINC provides a C++
API, but there are also wrappers for Fortran, Java, and
Python, while PSEs like MATLAB and Octave are not
supported. Parallel invocations of procedures are possible
using MPI, but only on a single host. So a synchronization
of concurrent tasks is not possible across multiple hosts.
Ludescher et al. [37] provide a code execution frame-

work that allows to upload code for a set of programming
languages and PSEs into the Cloud and invoke this code
from within some client program written in some other
programming language. Their framework uses Web ser-
vices for invoking remote procedures in the Cloud and the
underlying concept is independent of programming lan-
guages or PSEs. This approach does not support library
routines in our sense and it lacks the potential to execute
code in parallel, but the idea behind it could be a base on
which we can build up our DEF system.

Security
Some of the research performed in the EnFiLo project is
highly sensitive: banks, insurance companies and utilities
who handle highly confidential customer data are partners
in this project. Clearly none of the partners will accept
an insecure environment, which is especially relevant for
computations in the Public Cloud. Hence, security is an
eminent factor. We therefore need to provide solutions for
securely transferring confidential data across public net-
works and trustworthy executing calculations based on
these data in off-premise environments.
First of all, data privacy has to be ensured, i.e., only

authorized personnel is granted access to the data. The
communication channels can be encrypted by proven
techniques like Transport Layer Security (TLS) using
HTTPS. But the data also has to be secured while being
stored in the DEF and in the cluster. We therefore need
an authentication mechanism for accessing this data.
Authentication is also required to invoke library routines
on the cluster. It is a central functionality of the DEF to
distribute the tasks of a user’s program across the available

worker nodes. All these tasks must be executed on behalf
of the authenticated user that started the client-side pro-
gram. Therefore a single sign-on (SSO) system with ticket
delegation can be used to manage authentication and
authorization in the DEF. Kerberos10 provides a promising
solution for these issues. Kerberos can be adapted to work
within a Cloud infrastructure11 and it is able to work in
mixed environments, support dynamically generatedDNS
names, and work with tasks running for several days12.
To secure the infrastructure it is necessary to implement
a two-way authentication mechanism, which means that
both client and server must be able to verify the coun-
terpart’s identity. We can handle this issue by injecting
the security credentials into the dynamically created vir-
tual machine instances during its boot sequence. The
whole security concept is described in detail in Ludescher
et al. [38].
There is a range of security risks that apply especially

to Cloud solutions [39–43]13. A central issue with regard
to processing sensitive data in the Cloud is trust with
respect to the Cloud provider: The data and the soft-
ware owned by the customer must be transferred to a
Cloud resource in a Cloud environment, which is com-
pletely under the control of the Cloud provider and its
administrators, as described in Wan et al. [44]. There-
fore inspection or modification of data or software by the
Cloud provider cannot be ruled out. In Descher et al.
[45] a Secure Virtual Machine (SVM) for the Cloud is
described that defines a complete chain of trust for a
virtual machine image that can be installed on a Cloud
resource. The SVM consists of an encrypted partition and
a special boot system and is based on the Trusted Platform
Module (TPM), ensuring a trusted boot sequence and sys-
tem startup, and includes a Xen aware implementation
of SELinux14 by Barham et al. [46]. This guarantees that
only authorized virtual machines with verified images can
be used as workers. Using this SVM, the Cloud provider
could still inhibit the execution of the Cloud image, but
it can no longer view, inspect, or manipulate data and
software without being detected by the customer who
owns the data and software. Another solution for a trusted
IaaS Cloud environment is introduced by J. Seol et al.
in [47].

Architecture
The DEF features a modular architecture. All functionali-
ties are encapsulated and provided via a facade. This guar-
antees a high level of abstraction and allows the exchange
of tools, frameworks and techniques used in the proto-
type. Figure 2 gives a schematic overview on the top-level
architectural components of the DEF.

DEFModule: Central module that manages all clusters,
the library routines, handles the client requests, and

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 6 of 17

Fig. 2 DEF - Top-Level Architectural Components

redirects the job-related client requests to the corre-
sponding cluster modules; it provides its own DEF
Storage for holding persistent job results; it offers a
(RESTful)Web service interface for all DEF function-
alities; the DEF module is typically installed within
the private Cloud.

Client: Runs on basically any platform that allowsHTTP-
calls; communicates via Client-API with the DEF
Module through RESTful Web services.

DEF Algo-Lib: Network storage that provides executa-
bles, dependencies, and signature documents of the
library routines; all worker instances of a cluster have
read-only access.

DEF Storage: Network data store, provides storage space
for library routine calls, including shared resources
for parameters, results, and logs.

Worker: Worker instances are used to execute the sin-
gle tasks, representing a library routine call, invoked
by the client; every worker is assigned to exactly
one cluster; a worker is based on a virtual machine
image providing the different runtime environments
for executing the library routines; the worker func-
tionality is implemented in a Worker Module which
allows the invocation of the library routines and, via
a Worker-API, allows the library routine to interact
with the DEF.

Cluster: A Cluster comprises a Cluster Module and a set
of worker instances that operate on a coherent prob-
lem (program) and therefore share the same DEF
Storage. All workers of a cluster are located in the
same region of a (public) Cloud; a cluster is managed
by a Cluster Module and has its own instance of a
DEF Algo-Lib.

Cluster Module: Central DEF component of the cluster;
it manages the worker instances and the jobs that are

to be executed within the cluster; the Cluster Mod-
ule provides a scheduler and load balancing facilities
to distribute the tasks among the cluster’s worker
instances; it is started as a separate process within
the cluster.

For the first prototype we decided to use NFS as a dis-
tributed storage technique for DEF Algo-Lib and DEF
Storage, because it is integrated into the Linux operating
systems (used by the worker instances) and well sup-
ported by all programming languages and PSEs used for
the algorithm library.
To allow an easy and elastic configuration of the clus-

ter, our workers run within a Cloud environment [48]. The
following Cloud infrastructure environments are used for
the first prototype:

• Eucalyptus for private Cloud 15

• Amazon Web Services (AWS) for public Cloud 16

StarCluster17 helps to configure and maintain the clus-
ter in our Cloud environment.

Overview of the DEF components
DEF Module and Cluster Module encapsulate smaller
components, which have their corresponding counter-
parts on the DEF Module and Cluster Module side,
respectively, see Fig. 3. The DEF Module components
have a superordinate function and usually delegate to the
corresponding Cluster Module components:

DEFWS: Web service interface, single point of access for
all clients using the DEF; distributes the incoming
requests to the corresponding components.

Computation Manager/Computation Controller:
Initialize the DEF Storage and its internal structure;

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 7 of 17

Fig. 3 DEF - Components

manage the compute jobs, their shared resources,
results, and status changes.

Dispatcher: Manages a scheduling queue for distribut-
ing the tasks among the available worker instances;
in the current prototype implemented by JPPF18.

Data Manager / Data Controller: Manage access to
(shared) resources and results from DEF Storage
and control access to it; synchronize data between
the DEF Storage of the DEF Module and the DEF
Storage of the Cluster Module.

Library Manager: Manages the DEF Algo-Lib; provides
a unique reference ID for each library routine;
enables the deployment of new routines; allows a
search for library routines; provides a version of the
DEF Algo-Lib to each cluster.

Cluster Manager: Manages clusters; creates clusters
according to the preferences of the user; configures
the cluster with a DEF Algo-Lib and DEF Storage;
aggregates resource consumption of the managed
clusters; enables the deletion of clusters.

Cluster Controller: Creates and manages worker
instances; monitors running worker instances;
aggregates resource consumption of the managed
workers; enables the deletion of workers.

The workers run as separate (virtual) machines in the
Cloud. To provide a maximum of flexibility and to allow
all available library routines to be executable within the
cluster, all workers are homogeneous with regard to the
installed software. This means that the runtime environ-
ments for all library routines need to be installed at all
workers. The workers also provide a Worker Module with
an API that allows the DEF to invoke the library rou-
tines, which is currently performed by a sys-call. One
requirement in the project was to keep the usage of
the workers simple and cheap, even for a large number
of workers. This means that the workers must be free
of license costs. We therefore chose Linux as operating

system and all installed runtime environments are also
free of charge. Even the MATLAB runtime19 can be
installed free of license costs on each worker, which
allows to also execute (compiled) library routines writ-
ten in MATLAB to be executed in parallel on the DEF
workers.

API description and invocation of library functions
After a first analysis of the problem sets to be solved by the
different project partners, we found out that they typically
follow a common pattern. The problem is formalized by
some programmer in an arbitrary programming language/
PSE within a program. The program usually consists of
segments with dependencies amongst each other, which
means that these segments have to be executed in a cer-
tain sequence. These segments are denominated as jobs
and it must be ensured that a predecessor job has to be
completed before the successor job can be started. Within
the jobs, we often find sections, embraced by loops, that
repeat a sequence of operations independently of the
other loop iterations, following the “loop parallelism pat-
tern” ([6], p. 122). These loop iterations can be executed
in parallel and are called tasks. The client application
developer has to identify the tasks following the “task par-
allelism pattern” ([6], p. 64) ([8], p. 86). A job in our client
applications may consist of a set of independent tasks
that can potentially be executed in parallel on the worker
instances of the DEF. The tasks are represented by library
routine calls from DEF Algo-Lib. After all tasks have fin-
ished, the results of the tasks can either be completely
downloaded to the client or a reduce step can be appended
at the cluster, in which a simple cross-task operation can
be applied to the tasks’ results for consolidation. Figure 4
depicts the relationships between the central operational
entities of the DEF described above.
This outline of program, job, task determines the

structure of the client application and strongly influences

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 8 of 17

Fig. 4 Relationships between the central operational entities

the internal structures provided by the DEF Storage. Each
program, job, and task has a unique ID which is imple-
mented as a UUID. The DEF Storage builds a hierarchy
on these UUIDs in which the program-UUID contains all
resources of the program, including its jobs, the job-UUID
contains all resources of the corresponding job, includ-
ing its tasks, and the task-UUID contains all resources of
the corresponding task, including its results and log data.
The DEF Storage is currently implemented as a file sys-
tem and therefore results in a directory structure like the
following:
./ (DEF Storage Root)

|

+- <PUUID1>/ (Program)

| |

| +- log.json (Program Log)

| |

| +- <UUID>.json (Shared Resource)

| |

| +- <UUID>.json (Shared Resource)

| ...

| +- <JUUID1>/ (Job)

| | |

| | +- log.json (Job Log)

| | |

| | +- result.json (Job Result)

| | |

| | +- <TUUID1>/ (Task)

| | | |

| | | +- log.json (Task Log)

| | | |

| | | ‘- result.json (Task Result)

| | |

| | +- <TUUID2>/ (Task)

| | | |

| | | +- log.json (Task Log)

| | | |

| | | ‘- result.json (Task Result)

| ...

The DEF enables a client to execute a program consist-
ing of a sequence of jobs that are executed sequentially
within a compute cluster, while the jobs may consist of
tasks being executed in parallel at the workers of the
cluster. The functionality offered by the DEF is provided
through Web services and can be invoked through a
Client-API with the following (pseudo code) calls:

init_client(): Initialize client with a reference to the DEF

in: URL reference to the DEF Module
out: Reference to the DEF

init_cluster(): Initialize cluster

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 9 of 17

in: Cluster configuration parameters, e.g. number
of workers, Cloud specification

out: Cluster-ID

search_lib(): Search for specific library routine

in: Name of the library routine to be searched for
out: List of library routine-IDs for which the cor-

responding routines match the input name
together with their signatures

create_shared_resource(): Create a reference to a
(empty) shared resource parameter in the cluster

in: Program-ID
out: Reference to a shared resource in the cluster

upload_data(): Upload shared resource parameter

in: Reference to a shared resource, data to be
uploaded into the shared resource

out: Boolean

create_program(): Setup program

in: Cluster-ID on which the tasks of the client’s
program are to be executed

out: Program-ID

create_job(): Setup job

in: Program-ID
out: Job-ID

create_task(): Setup task - prepares the dynamic invoca-
tion of the specified routine

in: Job-ID, library routine-ID, its corresponding
parameters (references to shared resources or
explicit values)

out: task-ID

submit_job(): Submit job (asynchronous)

in: Job-ID
out: Job state

sync_submit_job(): Submit job (synchronous)

in: Job-ID
out: Job state

get_job_state(): Request job state

in: Job-ID
out: Job state

get_job_results(): Download result

in: Job-ID

out: JSON data structure (collection of all task
results)

cleanup_program(): Cleanup resources

in: Program-ID
out: Boolean

delete_cluster(): Terminate cluster resources

in: Cluster-ID
out: Boolean

The structure of the client application could exemplar-
ily look like the following Java-like pseudo code in which
choose_best_result() represents an arbitrary client side
procedure that reduces the set of results returned by the
tasks to a single result (the real client can be implemented
in any programming language/PSE that allows RESTful
Web service calls):

1: DEFclient dc = init_client();
2: Cluster c = dc.init_cluster();
3: Program p = dc.create_program(c);
4: Routine[] routines = dc.search_lib(“mylib”);
5: ...
6: Resource r1 = p.create_shared_resource();
7: Boolean b1 = r1.upload_data(input1);
8: Resource result = p.create_shared_resource();
9: ...

10: while (there are any sequential jobs) do
11: ...
12: Job j = p.create_job();
13: for any task to be executed in parallel do
14: Task t = j.create_task(routines[0], ..., r1, result);
15: end for
16: j.submit_job();
17: ...
18: String js = j.get_job_state();
19: if (js == “success”) then
20: result = choose_best_result(j.get_job_results());
21: end if
22: ...
23: end while
24: ...
25: Boolean b2 = p.cleanup_program();
26: ...
27: Boolean b3 = dc.delete_cluster(c);
28: ...
While the DEF Module is typically running within the

private network of an institute or a company, the Clus-
ter Module and the workers are arranged in a compute
cluster that is set up in either a private or a public Cloud.
The first prototype of the DEF does not provide a fully
implemented Cluster Module and Cluster Manager. It
assumes that the cluster is already configured - we are

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 10 of 17

using StarCluster for that which supports the setup of
clusters in AWS and Eucalyptus environments. JPPF then
automatically distributes the tasks among the workers of
the cluster. Currently every DEF Module only supports a
single cluster which means that only a single program can
be executed at any point in time.
The next version of the DEF will allow to flexibly define

and manage clusters meeting the demands of the pro-
gram that is executed on the cluster. This means that the
init_cluster() function has to instruct the Cluster Man-
ager to configure a cluster of a specific size in one of the
available Cloud environments on demand. The client side
programmer can specify in which Cloud environment its
program will be executed. The different Cloud environ-
ments may have specific, proprietary APIs and VM image
formats. Hence, for setting up the cluster, the DEF will
need to support the Cloud APIs and VM image formats
for the Cloud environments used by the project partners.
This means that the VM images for the Cloud Controller
and for the worker must be adapted for the different
Cloud infrastructure environments (e.g. AWS, Azure20,
OpenStack21, Eucalyptus). The initialization of the clus-
ter, implemented in init_cluster(), will be based on the
following scenario:

1. The Cluster Manager starts a virtual machine (based
on a specific VM image) for the Cluster Module
(with DEF Storage and DEF Algo-Lib), using the
specific Cloud API.

2. The Cluster Manager takes control over the Cluster
Module and registers the new cluster (establish a
contract).

3. The Cluster Controller starts virtual machines (based
on specific VM images) for the workers and

determines their IP addresses, using the specific
Cloud API.

4. The Cluster Module takes control of the workers,
using the DEF Worker-API which allows the
Dispatcher to invoke library routines and control
their execution. This enables a trusted
communication between the DEF and the workers,
while the parameter exchange at the workers is
handled by the Library Routine-API.

5. The construction of the cluster is completed, the
contracts between the participants are established.

This extension allows the DEF to manage several pro-
grams executed in different clusters at any point in time
and in different Cloud environments. The Cloud APIs of
the Cloud infrastructure environments allow to dynam-
ically adapt the number of machine instances. There-
fore the DEF could be extended by additional Client-
API functions to dynamically increase or decrease the
number of worker nodes in the cluster at runtime.
The user can then accelerate or slow down the execu-
tion of a job within a program if that makes sense for
him.
Figure 5 shows the processing of a job (initiated by a

client) which consists of the following steps:

1. Client submits a job
2. Tasks of the job get scheduled: Job status set to

“scheduled”
3. Tasks of the job are executed on the workers: job

status set to “run”
4. Execution of the tasks is completed: Job status set to

“success”, results & logs are available
5. Client requests the results

Fig. 5 DEF - Workflow for submitting a job

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 11 of 17

6. The job result (collection of task results) is
downloaded to the client

The job results can afterwards be evaluated by the client
and used for further processing in succeeding jobs.
The workermodulemaps a dynamic DEF library routine

invocation to a call of a specific library routine deployed in
one of the supported runtime environments. The library
routine needs to interact with the DEF to access the
resources managed by the DEF which the library rou-
tine needs to execute. These resources could be shared
resources, results, logs, or nested calls of other library rou-
tines. The access to these DEF functionalities is handled
by a Library Routine-API which is available in differ-
ent programming languages/PSEs and offers the following
procedures:

get_in_parameter(): Access a specific input parameter
from the DEF Storage, allows call-by-reference (call-
by-value parameters are accessed directly)

in: Index (according to signature document) that
refers to one of the input parameters

out: Data

set_result(): Saves the result of the routine call to the task
result section of the DEF Storage

in: Result data
out: Boolean

log(): write a message to the log resource of the task at a
specific log level

in: Log level, message test
out: Boolean

The procedures get_library() and exec_library_routine()
support additional functionalities for library routines to
invoke library routines.
Figure 6 gives a complete overview of the central func-

tionalities for executing a client program on the DEF
and it documents which actions are initiated at the DEF
Module/DEF Cluster Module and the DEF Workers by
which Client-API call.
To deploy a library routine to the DEF, the library

routine must be converted to a package which includes
the specific routine (in an executable or parseable
format, according to the programming language or
PSE), its dependencies and a signature document. The
signature document provides information about the
execution environment, the input and output parameters,
a unique name of the library routine, a version
number, and a natural language description of the
routine.

Results
The current prototype supports the complete workflows
for both library routine developers and library routine
users: New library routines can be deployed into the
DEF Algo-Lib using a tool that generates the signature
document and uploads the routine; the DEF Algo-Lib
can be searched for library routines (see Client-API:
search_lib()), the library routine’s signature description
can be downloaded via Web service API and the library
routines can be invoked.
In the currently implemented first prototype, the DEF

system only spans a single cluster. This means, a Cluster
Manager is not required and the tasks of the Computation
Manager and the Data Manager are taken by the Com-
putation Controller and the Data Controller, respectively.
This does not restrict the significance of the prototype
in terms of proof of concept, as the current DEF pro-
totype can serve several clients and multiple jobs at the
same time. In a next step, we will implement the miss-
ing components and provide a fully functional DEF, which
supports the management of multiple clusters.
The Client-API and the Library Routine-API currently

support the following programming languages/PSEs:

• Java 8,
• Python 3,
• C# (Mono),
• Octave,
• MATLAB.

The client can invoke library routines in a synchronous
and asynchronous version if this is supported by the pro-
gramming language / PSE in which it is implemented. DEF
Library routines can call other DEF library routines or can
invoke themselves recursively; due to limitations of the
JPPF scheduling, this repetitive call of library routines is
restricted to only one level. The library routines currently
included in the DEF Algo-Lib are mainly optimization
and simulation algorithms for problems from the energy,
finance, and logistics domains, as they are required for the
project.
First tests for stability and load distribution were

performed with multiple worker instances on a local
blade center and on Amazon AWS. The DEF and its
worker instances are running stably and the communica-
tion between the components is reliable.
We found out that the load balancing based on JPPF is

static and therefore does not always work as desired [49].
The available cluster resources represented by the work-
ers are not always completely used by the scheduler and it
turns out that sometimes free workers are not served with
tasks that still need to be executed. This is an important
performance issue and another reason for us to replace
JPPF and its scheduler in future versions of the DEF.

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 12 of 17

Fig. 6 Complete program workflow documenting the steps for submitting a job, together with the corresponding functionalities of the modules

To measure the performance and scalability of the DEF
System, a simple library routine to calculate π according
to the following function ([6], p. 129)

π =
∫ 1

0

4
1 + x2

dx

was implemented. This integral can be solved in a numer-
ical way. The advantage of using the above function within
a test routine for the DEF is that the computation can eas-
ily be expanded for a higher accuracy of π and it can also
be split up into independent portions of nearly any desired
size. The portions can then be easily distributed among
any number of nodes for which the DEF should be tested.
Another advantage is that the execution time doesn’t get
too long, even for a large number of tasks.
The serial calculation with 1011 iterations and a step

size of 1/1011 serves as reference value. To calculate π

in parallel, the geometric decomposition pattern is used
to split the iterations up to 100 identical parts ([6], p.
78) ([7], p. 100). Figure 7 shows how DEF scales with
1, 2, 4, 6, and 8 workers. Every worker uses a single

1 2 4 6 8

800

400

200

100

Worker nodes

E
xe
cu
tio

n
tim

e
[s
]

Scaling / Worker

Fig. 7 Scaling of DEF tasks

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 13 of 17

CPU and one working thread. As a reference, the com-
putation is also carried out sequentially on a local host
(without DEF) resulting in a mean execution time of
813 s.
The gap between sequential execution on a local host

and parallel execution with one worker instance on the
DEF is about 40 seconds. This gap is caused by

• the communication between client and DEF,
• internal communication and distribution within the

DEF,
• initiating a new process for each task, and
• the reduce step (calculating the arithmetic mean) on

the client side

and it is not really relevant for long running tasks. Figure 7
also illustrates that the DEF system scales well with
an increasing number of workers: 2 workers solves the
problem 1.9 faster than 1 worker, 4 workers act 1.8 times
faster than 2 workers and 8 worker act 1.7 times faster
than 4 workers.
The parameters for the test routine are small scalar

values and therefore provided on a “call by value” base.
Large parameters that are provided on a “call by refer-
ence” base are loaded from / stored to the DEF Storage,
which takes significantly longer to access than “call by
value”. On the other hand, each parameter is accessed only
once during task execution and therefore this overhead
can be neglected for taskswith a long execution time. This
means, the results gained from the execution of the test
routine can be transferred to long running tasks executing
routines from our algorithm library.
We finally want to optimize the overall execution time

of the problem on a given number of workers. Every task
causes some fixed overhead for initialization and invoca-
tion. So if the execution time for a task is reduced, the
ratio between the overall execution time and the number
of tasks deteriorates. This means that we would have an
optimal ratio of execution time and number of tasks if we
could provide every worker with a single (equivalent or
uniform) task. On the other hand, the client application
developer cannot always split up the problem into a fixed
number of tasks so that the number of tasks is identical to
the number of workers or a small multiple of it. In many
other cases a DEF user may not know how many worker
instances are available when his job will be executed.
Another issue is that the worker instances are not neces-
sarily homogeneous and therefore require different execu-
tion times for identical tasks. In these cases, the number
of tasks cannot be evenly distributed among the workers
and this means that some workers still need to work on
a task while other workers have already completed their
task and run idle. We analyzed the π-calculation prob-
lem on an 8-worker cluster to be split up into 10, 50, 100,

500, and 1000 uniform tasks respectively. For our example
scenario it turned out that the setup with 100 tasks per-
formed best, as shown in Fig. 8. This relationship of course
varies with the number of worker instances and we found
that the scheduling algorithms at JPPF are optimized for
large numbers of tasks. But this result confirms Ian Fos-
ter’s statement that there should be at least an order of
magnitude more tasks than worker instances [50] and it
also shows that the overhead for using the DEF is not
very high compared to the performance gain that can be
achieved through the parallelization enabled by it.
For the sake of completeness we have compared the

DEF prototype with an implementation of MPI on the
π-calculation problem above. In both cases the calcula-
tion is running 1011 iterations on 4 physical nodes with
each 8 CPU cores. While we can see from Fig. 7 that
the DEF’s performance shows a significant deviation from
the ideal inversely proportional behavior for an increasing
number of worker nodes, even with 8 worker nodes. In
comparison, Fig. 9 shows that MPI accomplishes a nearly
perfect linear behavior with an increasing number of pro-
cesses, even for 32 processes. It is obvious that MPI scales
better than the DEF, because it is optimized on communi-
cation and reduced overhead for starting processes. This
gets explicit by comparing the overhead for executing a
computation on a single host without parallelization com-
pared to starting it within the MPI runtime environment
on a remote host. Based on our π-calculation scenario
we found that while MPI takes 200ms to start an execu-
tion directly on the cluster nodes, DEF needs about 40s
to start a remote execution of some task from a remote
client over the network. The reason for the delay at the

10 100 1,000

140

160

180

200

220

240

#

E
xe
cu
tio

n
tim

e
[s
]

Scaling /

Fig. 8 Optimizing the execution time with the number of tasks for a
given number of workers. # Worker nodes: 8

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 14 of 17

1 2 4 8 16 32

800

400

200

100

50

25

Worker processes

E
xe
cu
tio

n
tim

e
[s
]

Scaling / CPUs

Fig. 9 Scaling of MPI tasks

DEF lies first of all in communicating the Client-API com-
mands between client and DEF via the network, but also
in initializing the dynamic directory structures in the DEF
Storage and in an inefficient communication between the
scheduler (JPPF) and the worker. In the upcoming version
of the DEF we will reduce the overhead caused by creat-
ing the DEF Storage structures and by the scheduler which
will also improve the scaling behavior of the DEF. On
the other hand, there will always be some delay between
the execution of a DEF program and an MPI program
which has to be paid for the conveniences provided by the
DEF: The MPI offers no programming language indepen-
dence for the different parts of the implementation and
the number of worker processes must be defined before
the execution is started and should match the number of
available CPU cores for optimal performance.

Conclusion
TheDEF follows a completely new approachwhich decou-
ples the client side implementation of some program from
the implementation of the server side which consists of
a set of library routines. At runtime, the DEF distributes
the library routine calls within a Cloud cluster. An arbi-
trary client program can use the DEF to coordinate the
parallel execution of the library routines to be invoked. It
is especially the programming language independence of
the client side code from the invoked routines that distin-
guishes the DEF from other parallelization frameworks for
clusters.
The first prototype of the DEF has proofed that our

concept is feasible. All intended features mentioned in
Section Introduction could be achieved. We can now eas-
ily initiate parallel invocations of library routines in a

Cloud cluster, set up by a client program written in a
programming language different from the programming
language in which the library routine was developed in.
This means, for example, that a library routine imple-
mented in MATLAB can be invoked as often as necessary
on the worker nodes of a cluster, started by a program
implemented in C#. The execution of the MATLAB rou-
tine does not even require the installation of theMATLAB
Parallel Toolbox - the installation of the freely available
MATLAB runtime on every worker is enough to execute
the MATLAB routine in parallel on the cluster. The user
can therefore save the costs of the licenses for the MAT-
LAB Parallel Toolbox which otherwise would be required
for every single worker node.
The overhead for starting a larger number of long

running tasks in parallel is acceptable and the system
has been tested with several different library routines
in different Cloud environments. The current version
of the DEF was implemented as a proof of concept,
based on simple technologies, which means that there is
also some potential for improvements in the details of
its implementation. However, these upcoming enhance-
ments are restricted to security and optimizing the run-
time behavior of the complete system by adding addi-
tional features like a worker-side reduce step to the DEF
or coming up with a solution for fast data provision-
ing for which there are established techniques around.
So the innovative part of the DEF development has been
done in providing the architectural prototype, while the
next steps in making it a production ready system are
more or less restricted to applying well-known technical
solutions.

Future work
For reasons of simplicity, the tasks on the workers are
currently invoked by sys-calls. The corresponding ini-
tialization of the new process and the following process
communication with the different runtime environments
is relatively inefficient. It is planned to provide a runtime-
pool of initialized PSE and programming language run-
time environments that are instantiated on the workers
at startup and wait for incoming task requests. The tasks
can then be executed as threads. This will bring a high
gain of efficiency, especially for short running tasks, as
the overhead for starting the tasks will be significantly
reduced.
In the first version of the DEF prototype the resources

(parameters, results, logs) used by the library algorithms
are stored on a file system mounted to the workers via
NFS. For the next version of the DEF we are looking
for solutions that allow faster access to the resources.
Promising candidates are distributed (in-memory) key-
value stores which are currently evolving in multiple
implementations.

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 15 of 17

We also plan to optimize the up-/down-load of large
parameters from the clients to the DEF which is currently
handled by Web service. For the productive operation of
the DEF we needmore reliable and faster solutions similar
to GridFTP [51].
Another objective for optimization is the scheduling of

the tasks. The first prototype of the DEF is using the JPPF
which provides its own scheduler that can be configured
to some certain extend. Nevertheless we soon found out
that the JPPF scheduler does not satisfy all our needs; it
especially does not support dynamic load balancing. We
plan to evaluate flexible scheduling methods that allow
a dynamic allocation of tasks to workers driven by their
current load. This could be done by learning from pre-
vious executions of the algorithm or by simulation. The
new scheduler must be extendable for load balancing
capabilities.
In discussions with our project partners we found that

the relevant result of a job often is not the complete set
of the results of its tasks, but probably only the “best”
task result or a simple transformation over a set of task
results. Often the result the user is interested in can
be determined by a simple operation on the set of task
outputs resulting from a job. Such an operation can be
viewed as a reduction step ([7], p. 90). Currently this
reduce step needs to be executed as a separate job to be
executed on some worker or at the client after the last
task of the current job has finished. Therefore we plan
to extend the execution of a job by a sequence of flex-
ible reduce-steps after its tasks have finished. In these
reduce-steps the results of the tasks can be consolidated
by a cross-task operation right at the worker locations
without having to start a separate “reduce” job after the
preceding job.
Another performance improvement for specific pro-

grams would be the support of a master/worker
paradigm ([6], p. 122) in which an arbitrary program can
be deployed and executed within a DEF cluster as a “mas-
ter” which can directly invoke tasks on the workers of
its cluster and therefore circumvents the DEF Module for
executing tasks.
To be able to easily monitor performance measure-

ments, we plan to implement an automatic monitoring
of execution time, CPU, and memory usage for tasks and
jobs with the upcoming release of the DEF. The next ver-
sion of the DEF should also fully implement the planned
architecture by splitting up the components to a DEF
Module and a Cluster Module and developing the Clus-
ter Controller. This will allow the dynamic creation of
clusters and the dedicated addressing of specific clus-
ters (in a private or public Cloud) by programs executed
by the users. Finally we plan to introduce checkpoint-
ing to the DEF to make it fault tolerant for long running
tasks.

According to the requirements of our partners in the
EnFiLo project, existing Cloud security solutions will
be evaluated and those most suited for our problem
setting will be applied to the DEF. As pointed out in
section1 Security, the following security techniques will
be applied:

• TLS for an encrypted communication between client
↔ DEF Module & DEF Module ↔ Cluster Module,
ensuring privacy.

• Ticketing for authentication and authorization with
single sign-on.

• a Secure Virtual Machine based on the TPM for
Trust.

• only workers instantiated and controlled by the
Cluster Controller will be used for computations so
that the tasks will not be compromised.

• the data will be removed from the cluster
immediately after the program has terminated.

The details will be worked out in the course of the
project.

Endnotes
1 http://aws.amazon.com/tools/
2 http://www.enfilo.at/
3 http://dx.doi.org/10.6028/NIST.SP.800-145
4 https://www.w3.org/TR/wsdl
5 http://hadoop.apache.org/
6 https://spark.apache.org/
7 https://www.globus.org/
8 https://arc.liv.ac.uk/trac/SGE
9 http://boinc.berkeley.edu/
10 http://web.mit.edu/kerberos/
11 http://www.oasis-open.org/committees/download.

php/38245/Kerberos-Cloud-use-cases-11june2010.pdf
12 http://www.kerberos.org/software/mixenvkerberos.

pdf
13 https://www.enisa.europa.eu/publications/cloud-

computing-risk-assessment/at_download/fullReport
14 http://selinuxproject.org/
15 http://open.eucalyptus.com
16 http://aws.amazon.com
17 http://star.mit.edu/cluster/
18 http://www.jppf.org/
19 http://www.mathworks.com/products/compiler/

mcr/
20 https://azure.microsoft.com
21 https://www.openstack.org/

http://aws.amazon.com/tools/
http://www.enfilo.at/
http://dx.doi.org/10.6028/NIST.SP.800-145
https://www.w3.org/TR/wsdl
http://hadoop.apache.org/
https://spark.apache.org/
https://www.globus.org/
https://arc.liv.ac.uk/trac/SGE
http://boinc.berkeley.edu/
http://web.mit.edu/kerberos/
http://www.oasis-open.org/committees/download.php/38245/Kerberos-Cloud- use-cases-11june2010.pdf
http://www.oasis-open.org/committees/download.php/38245/Kerberos-Cloud- use-cases-11june2010.pdf
http://www.kerberos.org/software/mixenvkerberos.pdf
http://www.kerberos.org/software/mixenvkerberos.pdf
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
http://selinuxproject.org/
http://open.eucalyptus.com
http://aws.amazon.com
http://star.mit.edu/cluster/
http://www.jppf.org/
http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/
https://azure.microsoft.com
https://www.openstack.org/

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 16 of 17

Acknowledgements
This work is partially sponsored by the Christian Doppler Gesellschaft under
the “Josef Ressel-Zentrum für angewandtes wissenschaftliches Rechnen in
Energie, Finanzwirtschaft und Logistik”. The entire research team contributed
to the discussions that led to this paper and provided the environment in
which the ideas could be implemented and evaluated. We thank all reviewers,
whose comments and suggestions helped to improve this paper.

Authors’ contributions
Thomas Feilhauer (TF) and Martin Sobotka (MS) have all contributed to the DEF
concept. They designed the paper structure and gave their feedbacks to all its
versions. TF has designed the architecture of the described system and MS was
responsible for implementation and testing. TF is responsible for the DEF work
package in the EnFiLo project, in the context of which the solution presented
in the paper was developed. Both authors approved the final manuscript.

Competing interests
The work that led to this publication has partly been funded by the
governmental organization Christian Doppler Gesellschaft. The authors
declare that they have no competing interests.

Received: 14 July 2016 Accepted: 24 November 2016

References
1. Karp AH, Babb RG, et al (1988) A comparison of 12 parallel fortran dialects.

Softw IEEE 5(5):52–67
2. El-Ghazawi T, Carlson W, Sterling T, Yelick K (2005) UPC: Distributed

Shared Memory Programming, Vol. 40. John Wiley & Sons, Hoboken
3. Sharma G, Martin J (2009) Matlab: a language for parallel computing. Int J

Parallel Prog 37(1):3–36
4. Darema F, George DA, Norton VA, Pfister GF (1988) A

single-program-multiple-data computational model for epex/fortran.
Parallel Comput 7(1):11–24. doi:10.1016/0167-8191(88)90094-4

5. Darema F (2001) The SPMD Model: Past, Present and Future. In: Cotronis
Y, Dongarra J (eds). Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 8th European PVM/MPI Users’ Group Meeting
Santorini/Thera, Greece, September 23–26, 2001 Proceedings. Springer,
Berlin. pp 1–1. doi:10.1007/3-540-45417-9_1

6. Mattson TG, Sanders BA, Massingill BL (2004) Patterns for Parallel
Programming. Pearson Education, Boston

7. McCool MD, Robison AD, Reinders J (2012) Structured Parallel
Programming: Patterns for Efficient Computation. Elsevier, Waltham

8. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to Parallel
Computing. Pearson Education, Boston

9. Dongarra J, Walker D, Lusk E, Knighten B, Snir M, Geist A, Otto S, Hempel R,
Lusk E, Gropp W, et al (1994) Special issue-mpi-a message-passing
interface standard. Int J Supercomputer Appl High Perform Comput
8(3-4):165

10. Fortune S, Wyllie J (1978) Parallelism in random access machines. In:
Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing. ACM. pp 114–118

11. Dagum L, Enon R (1998) Openmp: an industry standard api for
shared-memory programming. Comput Sci Eng IEEE 5(1):46–55

12. Nitzberg B, Lo V (1991) Distributed shared memory: A survey of issues and
algorithms. Distributed Shared Memory-Concepts and Systems. IEEE, New
York. pp 42–50

13. Yelick K, Bonachea D, Chen WY, Colella P, Datta K, Duell J, Graham SL,
Hargrove P, Hilfinger P, Husbands P, et al (2007) Productivity and
performance using partitioned global address space languages. In:
Proceedings of the 2007 International Workshop on Parallel Symbolic
Computation. ACM. pp 24–32

14. Badger L, Grance T, Patt-Corner R, Voas J (2012) Cloud Computing
Synopsis and Recommendations. National Institute of Standards and
Technology (NIST) Special Publication 800–146. US Department of
Commerce. Available online at: doi:10.6028/NIST.SP.800-146

15. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, et al (2010) A view of cloud computing.
Commun ACM 53(4):50–58

16. Pellerin D, Ballantyne D, Boeglin A (2015) An introduction to high
performance computing on aws. Amazon Whitepaper

17. Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud
computing: A view of scientific applications. In: Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Symposium
On. IEEE, New York. pp 4–16

18. Ekanayake J, Fox G (2009) High performance parallel computing with
clouds and cloud technologies. In: Cloud Computing. Springer, Berlin,
Heidelberg. pp 20–38

19. Raveendran A, Bicer T, Agrawal G (2011) A framework for elastic execution
of existing mpi programs. In: Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium
On. IEEE, New York. pp 940–947

20. Agarwal D, Karamati S, Puri S, Prasad SK (2014) Towards an mpi-like
framework for the azure cloud platform. In: Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium On.
IEEE, New York. pp 176–185

21. Anbar A, Narayana VK, El-Ghazawi T (2012) Distributed shared memory
programming in the cloud. In: Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (Ccgrid
2012). CCGRID ’12. IEEE Computer Society, Washington. pp 707–708.
doi:10.1109/CCGrid.2012.48

22. Bläser L (2015) Task parallelization as a service, HSR University of Applied
Sciences Rapperswil, Switzerland

23. Group OM (2012) Common object request broker architecture (corba)
specification, version 3.3, part 1: Corba interfaces. OMG Formal Document
Number: formal/2012-11-12. Needham

24. Yang Z, Duddy K (1996) Corba: a platform for distributed object
computing. SIGOPS Oper Syst Rev 30(2):4–31

25. Vinoski S (1993) Distributed object computing with corba. C++ Report
5(6):32–38

26. Maffeis S, Schmidt DC (1997) Constructing reliable distributed
communication systems with corba. IEEE Commun Mag 35(2):56–60.
doi:10.1109/35.565656

27. Henning M (2006) The rise and fall of corba. Queue 4(5):28–34.
doi:10.1145/1142031.1142044

28. René C, Priol T Mpi code encapsulating using parallel corba object.
Cluster Comput 3(4):255–263. doi: 10.1023/A:1019096607706

29. Wang L (2008) Implementation and performance evaluation of the
parallel corba application on computational grids. Adv Eng Softw
39(3):211–218. doi: 10.1016/j.advengsoft.2007.02.001

30. Fielding RT (2000) Architectural styles and the design of network-based
software architectures. PhD thesis. University of California, Irvine

31. Seely S (2001) SOAP: Cross Platform Web Service Development Using
XML. Prentice Hall PTR, Upper Saddle River

32. Pautasso C, Zimmermann O, Leymann F (2008) Restful web services vs.
“big” web services: Making the right architectural decision. In:
Proceedings of the 17th International Conference on World Wide Web.
WWW ’08. ACM, New York. pp 805–814. doi:10.1145/1367497.1367606,
http://doi.acm.org/10.1145/1367497.1367606

33. Coulouris GF, Dollimore J, Kindberg T (2005) Distributed systems:
concepts and design. Pearson Education, Boston

34. Erdogan N, Selcuk YE, Sahingoz O (2004) A distributed execution
environment for shared java objects. Inf Softw Technol 46(7):445–455.
doi:10.1016/j.infsof.2003.09.017

35. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I (2011) Swift:
A language for distributed parallel scripting. Parallel Comput
37(9):633–652. doi:10.1016/j.parco.2011.05.005

36. Wang J, Altintas I, Berkley C, Gilbert L, Jones MB (2008) A high-level
distributed execution framework for scientific workflows. In: eScience,
2008. eScience’08. IEEE Fourth International Conference On. IEEE, New
York. pp 634–639

37. Ludescher T, Feilhauer T, Brezany P (2013) Cloud-Based Code Execution
Framework for scientific problem solving environments. J Cloud Comput
Adv Syst Appl 2(1):11

38. Ludescher T, Feilhauer T, Brezany P (2012) Security concept and
implementation for a cloud based e-Science infrastructure. In: Availability,
Reliability and Security (ARES), 2012 Seventh International Conference on.
IEEE, New York. pp 280–285

39. Arjun U, Vinay S (2016) A short review on data security and privacy issues
in cloud computing. In: Current Trends in Advanced Computing
(ICCTAC), IEEE International Conference on. IEEE, New York. pp 1–5

http://dx.doi.org/10.1016/0167-8191(88)90094-4
http://dx.doi.org/10.1007/3-540-45417-9_1
http://dx.doi.org/10.6028/NIST.SP.800-146
http://dx.doi.org/10.1109/CCGrid.2012.48
http://dx.doi.org/10.1109/35.565656
http://dx.doi.org/10.1145/1142031.1142044
http://dx.doi.org/10.1023/A:1019096607706
http://dx.doi.org/10.1016/j.advengsoft.2007.02.001
http://dx.doi.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://dx.doi.org/10.1016/j.infsof.2003.09.017
http://dx.doi.org/10.1016/j.parco.2011.05.005

Feilhauer and Sobotka Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:20 Page 17 of 17

40. Kazim M, Zhu SY (2015) A survey on top security threats in cloud
computing. Int J Adv Comput Sci Appl (IJACSA) 6(3):109–113

41. Sen J (2014) Security and privacy issues in cloud computing. In: Martinez
AR, Lopez RM, Garcia FP (eds). Architectures and Protocols for Secure
Information Technology Infrastructures. pp 1–45. Hershey, PA: IGI Global.
doi:10.4018/978-1-4666-4514-1.ch001

42. Saravanakumar C, Arun C (2014) Survey on interoperability, security, trust,
privacy standardization of cloud computing. In: Contemporary
Computing and Informatics (IC3I), 2014 International Conference on. IEEE,
New York. pp 977–982

43. Puthal D, Sahoo BPS, Mishra S, Swain S (2015) Cloud computing features,
issues, and challenges: a big picture. In: Computational Intelligence and
Networks (CINE), 2015 International Conference on. IEEE, New York.
pp 116–123

44. Wan X, Xiao Z, Ren Y (2012) Building Trust into Cloud Computing Using
Virtualization of TPM, 2012 Fourth International Conference on
Multimedia Information Networking and Security, Nanjing. IEEE, New
York. pp 59–63. doi:10.1109/MINES.2012.82

45. Descher M, Masser P, Feilhauer T, Tjoa AM, Huemer D (2009) Retaining
data control to the client in infrastructure clouds. In: In Proceedings of the
Fourth International Conference on Availability, Reliability and Security
(ARES 2009). IEEE, New York. pp 9–16

46. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebar R, Pratt I,
Warfield A (2003) Xen and the art of virtualization. In: ACM SIGOPS
Operating Systems Review. ACM, New York Vol. 37. pp 164–177

47. Seol J, Jin S, Lee D, Huh J, Maeng S (2016) A trusted iaas environment with
hardware security module. IEEE Trans Serv Comput 9(3):343–356.
doi:10.1109/TSC.2015.2392099

48. Von Laszewski G, Diaz J, Wang F, Fox GC (2012) Comparison of multiple
cloud frameworks. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference On. IEEE, New York. pp 734–741

49. Patel DK, Tripathy D, Tripathy CR (2016) Survey of load balancing
techniques for grid. J Netw Comput Appl 65:103–119.
doi:10.1016/j.jnca.2016.02.012

50. Foster I (1995) Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston

51. Allcock W, Bresnahan J, Kettimuthu R, Link M, Dumitrescu C, Raicu I, Foster
I (2005) The globus striped gridftp framework and server. In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing. SC ’05. IEEE
Computer Society, Washington. p 54. doi:10.1109/SC.2005.72

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.4018/978-1-4666-4514-1.ch001
http://dx.doi.org/10.1109/MINES.2012.82
http://dx.doi.org/10.1109/TSC.2015.2392099
http://dx.doi.org/10.1016/j.jnca.2016.02.012
http://dx.doi.org/10.1109/SC.2005.72

	Abstract
	Keywords

	Introduction
	State of the art
	Parallel execution of procedures
	Message passing
	Shared memory
	Summary

	Platform and programming language independent invocation of remote procedures
	Cloud computing
	Programming language independent remote invocation

	Distributed execution environments
	Security

	Architecture
	Overview of the DEF components
	API description and invocation of library functions
	Results
	Conclusion
	Future work
	Acknowledgements
	Authors' contributions
	Competing interests
	References

