Armstrong et al. Journal of Cloud Computing: Advances, Systems
and Applications (2017) 6:14
DOI 10.1186/513677-017-0083-2

RESEARCH Open Access
@ CrossMark

Journal of Cloud Computing:
Advances, Systems and Applications

Towards energy aware cloud computing
application construction

Django Armstrong, Karim Djemame” @ and Richard Kavanagh

Abstract

The energy consumption of cloud computing continues to be an area of significant concern as data center growth
continues to increase. This paper reports on an energy efficient interoperable cloud architecture realised as a cloud
toolbox that focuses on reducing the energy consumption of cloud applications holistically across all deployment
models. The architecture supports energy efficiency at service construction, deployment and operation. We discuss
our practical experience during implementation of an architectural component, the Virtual Machine Image
Constructor (VMIC), required to facilitate construction of energy aware cloud applications. We carry out a performance
evaluation of the component on a cloud testbed. The results show the performance of Virtual Machine construction,
primarily limited by available I/0, to be adequate for agile, energy aware software development. We conclude that the

performance.

interoperability, Performance evaluation

implementation of the VMIC is feasible, incurs minimal performance overhead comparatively to the time taken by
other aspects of the cloud application construction life-cycle, and make recommendations on enhancing its

Keywords: Cloud computing, Virtualization, Energy efficiency, Cloud engineering, Cloud architectures, Cloud

Introduction
Current trends in industry show continuous growth in the
adoption and market value of cloud computing with many
companies changing their business models and products
to adapt to a service oriented outlook. Cloud computing as
a leading ICT approach provides elastic and on-demand
ICT infrastructures makes up a large proportion of the
total ICT energy consumption. Predictions have been
made on an unsustainable quadrupling in the energy con-
sumption and carbon emissions of data centres used to
operate cloud services by 2020 [1] with comparable emis-
sions to the aeronautical industry. As energy efficiency is
at the heart of governments/institutions for smart, sus-
tainable and inclusive growth as part of a transition to
a resource efficient economy, considering and improving
the energy efficiency of cloud computing is therefore of
paramount importance.

Research on energy efficiency in clouds has attracted
considerable attention and has focused on many aspects
including ICT equipment (servers, networks) as well as

*Correspondence: K.Djemame@leeds.ac.uk
School of Computing, University of Leeds, Leeds, UK

@ Springer Open

software solutions running on top of ICT equipment
(e.g. cloud management system domain for managing the
cloud infrastructure), see [2] for a survey. This paper is
concerned with the topical issue of energy efficiency in
clouds and specifically focuses on the design and con-
struction of cloud services through the implementation
of tools within a reference energy-aware and self-adaptive
architecture. Such architecture provides novel methods
and tools to support software developers aiming at opti-
mising energy efficiency and minimising the carbon foot-
print resulting from designing, developing, deploying and
running software in clouds. Cloud services are made of
several shared software components, which are utilised
many times. These components can then be charac-
terised, which allows the Software developers to relate
service construction and energy use. This relationship will
further depend on the deployment conditions and the cor-
rect operation of the service, which can be achieved by
means of an adaptive environment.

Software developers need to construct and analyse their
applications using a programming model as part of a
Software as a Service (SaaS) cloud layer. Currently, they
usually optimise code to achieve high performance but

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-017-0083-2&domain=pdf
http://orcid.org/0000-0001-5811-5263
mailto: K.Djemame@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0/

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

guidelines for energy optimisation are also valuable. Con-
sider an application which is developed using a program-
ming model and the resultant program is analysed for
potential energy hotspots [3]. Methods from automatic
complexity analysis and worst-case execution time analy-
sis of the application can be extended and combined with
energy models of the hardware, giving the developers an
approximate energy profile for the program. This anal-
ysis provides feedback to the software developers thus
enabling an adaptive software development methodology
through monitoring (the code’s performance), analysing
(identifying energy hotspots), planning (potential changes
to the code to improve its performance) and executing
(recompiling the code enabling further monitoring).

Similarly for software developers evaluating different
deployment scenarios for the applications will need vari-
ous installation configurations. For example, a developer
models via UML the different deployment scenarios they
wish to evaluate for potential use in a production envi-
ronment. After which, these models are translated into
descriptions, e.g. XML that can be processed into deploy-
able virtual format artefacts.

In both cases image construction is required prior to
the application deployment scenario which is realised as
a collection of Virtual Machines (VMs) containing appli-
cation components. To the best of our knowledge, no
current software solution provides capabilities to both
generate base images that contain a functional operat-
ing system and install and configure a cloud application
automatically. This therefore provides the opportunity to
create multiple different configurations of an application,
where these different deployment configurations can be
exploited, by selecting the most appropriate configuration
to serve the required system load while saving energy. For
comparison, a tool such as Packer [4] can be used to create
golden images for multiple platforms from a single source
configuration but does not provide support for the auto-
mated installation of software into these images. Another
example tool such as Vagrant [5] enables software devel-
opment teams to create identical development environ-
ments but does not provide a mechanism to automate the
deployment of software into these environments.

A Virtual Machine Image Constructor (VMIC) is
therefore key to support adaptive software development
processes in an energy-aware SaaS architecture. Such
component implements the automation of image con-
struction that would otherwise make the burden and cost
too high of considering iteratively adapting an applica-
tion to use less energy in the software development stage
through incremental out-of-band (of normal application
operation) test based deployment scenarios. In addition to
this, the VMIC is considered as an important contribution
from the perspective of Software Engineering filling the
gap between generating base images in cloud computing

Page 2 0f 13

and automatic configuration of cloud applications. This
component supports the energy efficiency goal within
the cloud architecture by providing means of packaging
cloud applications in a way that enables provider agnostic
deployment, while maintaining energy awareness.

The paper’s main contributions are:

1. The detailed architecture of a SaaS$ layer component
that facilitates an energy aware and efficient cloud
development methodology.

2. The results of a performance evaluation and
feasibility study of the VMIC tool for the
construction of cloud application components.

3. Our practical experience during implementation and
recommendations on enhancing the performance of
the tool.

The remainder of the paper is structured as follows:
“Related work” section reviews the literature on energy-
aware cloud computing. “Energy efficient cloud archi-
tecture” section describes the proposed architecture to
support energy-awareness with emphasis on the impor-
tance of the SaaS layer for facilitating energy efficiency in
cloud applications. “Cloud engineering” section explains
our vision of a self-adaptive development life-cycle and
how this can enable energy aware cloud application con-
struction through our VMIC tool. “Experimental design”
section presents the experimental design where we eval-
uate the performance of the VMIC tool, and “Results and
recommendations” section discusses the results. Finally,
“Conclusion” section provides a conclusion on this paper
and discusses plans for future work.

Related work

Research effort has targeted energy efficiency support at
various stages of the cloud service lifecycle. In the ser-
vice development stage, requirements elicitation includes
techniques for capturing, modelling and reasoning with
energy requirements as well as product line oriented tech-
niques to model and reason about system configuration
[6, 7]. In terms of software design in relation to energy
consumption, some research efforts relate energy aware-
ness and optimization at the application and system level
[8], focus on profiling the application’s energy consump-
tion at runtime to iteratively narrow down on energy
hot spots [9], or considers cloud architecture patterns to
achieve greener business processes [10]. Energy efficiency
has also been the subject of investigation in Software
development, e.g. by studying the energy consumption of
the application prior to deployment [11]. In the service
deployment stage, research effort has focused on Service
Level Agreement (SLA) deployment strategies especially
with regard to SLAs that are energy-aware, e.g. by imple-
menting specific policies to save energy [12, 13], as well

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

as service deployment technologies which play a criti-
cal role in the management of the cloud infrastructure
and thus have an effect on its overall energy consumption
[14]. In the service operation stage, energy efficiency has
been extensively studied and has focused for example on
approaches towards energy management for distributed
management of VMs in cloud infrastructures, where the
goal is to improve the utilization of computing resources
and reduce energy consumption under workload indepen-
dent quality of service constraints [15].

Configuration management tools provide four core ben-
efits to managing the cloud. These are i) the reproducibil-
ity and industrialization of software configuration, ii) the
continuous vigilance over running systems with auto-
mated repairs and alert mechanisms, iii) enhanced control
over and rationalisation of large scale deployments and iv)
the ability to build up a knowledge base to document and
trace the history of a system as it evolves. The most well
know tools include CFEngine, Puppet and Chef.

CFEngine [16] provides automated configuration man-
agement for large networked systems and can be deployed
to manage various infrastructure such as servers, desk-
tops and mobile/embedded devices. It uses decentralised,
autonomous software agents to monitor, repair and
update individual machines. CFEngine central concept is
the idea of convergence [17], where the final desired state
of the system is described instead of the steps needed to
get there. This enables CFEngine to run whatever the ini-
tial state of the system is with predictable end results.
The downside of this approach is that only statistical
compliance or best effort can be achieved with a given
configuration policy, where by a system cannot be guar-
anteed to end up at a desired state but slowly converges
at a rate defined by the ratio of environmental change
to the rate at which CFEngine executes. Puppet [18] was
forked from CFEngine and provides graph and model
driven approaches to configuration management, through
a simplified declarative domain specific language that was
designed to be human readable.

Chef [19], a fork of Puppet, places emphasis on starting
up services from newly provisioned clean systems, where
the sequence and execution of configuration tasks is fixed
and known by the user. This makes Chef particularly well
suited to the paradigm of cloud computing where VM
instances are short lived and new instances are spawned
from a newly provisioned base image. Chef uses the anal-
ogy of cooking and creates “recipes” that are bundles of
installation steps or scripts to be executed.

The Open Virtualization Format (OVF) is an open stan-
dard for defining, packaging and distributing virtual appli-
ances that can run virtualized on a cloud [20]. Its use as
part of a service descriptor to define the requirements
of an applications is not new and has been implemented
within the OPTIMIS Toolkit [21], where an OVF fragment

Page30f13

resides in a non-standard XML based service manifest
schema. One issue with this approach is the impact on
interoperability with cloud providers that need to support
this schema to enable application deployment. This com-
pared to the solution that is presented in this paper where
a pure OVF document is used, extended and implemented
according to the capabilities of the OVF Specification ver-
sion 1.1.1, makes our solution 100% compliant with cloud
providers and technologies that already support OVE.

In this paper, the proposed software tool provides
capabilities to both generate base images that contain a
functional operating system and install and configure a
cloud application automatically. This sits alongside pre-
vious work [14, 22] that allows for the contextualisation
and recontextualisation of virtual machines, so that the
environment can be reconfigured dynamically at run-
time, leading to a dynamic reconfigurable environment.
This is key to support: 1) adaptive software development
processes in a cloud architecture, and 2) the energy effi-
ciency goal within the architecture by providing means
of packaging cloud applications in a way that enables
provider agnostic deployment, while maintaining energy
awareness.

Collectively the automated configuration and reconfig-
uration of cloud applications, along with enhanced energy
awareness of the different deployment solutions gives rise
to the possibility of performing energy saving techniques.
These techniques can be quite expansive such as: consol-
idation [23], horizontal and vertical scaling and the usage
of DVFS [24] and RAPL [25].

Energy efficient cloud architecture

To reduce the energy consumption of a cloud system,
a reference architecture is needed to first enable energy
awareness of all phases of an application’s life-cycle
and secondly provide actuators to reduce and optimizes
energy efficiency. To this end we have realised such a
reference architecture through the implementation of a
toolbox, details of which can be found in [26]. To facil-
itate the reader’s understanding of the research in this
paper, Figs. 1,2 and 3 provide an overview of the proposed
architecture which includes the high-level interactions of
all components, is separated into three distinct layers and
follows the standard cloud deployment model.

In the SaaS layer, illustrated by Fig. 1, a set of com-
ponents and tools interact to facilitate the modelling,
design and construction of a cloud application. The com-
ponents aid in evaluating energy consumption of a cloud
application during its construction. A number of plug-
ins are provided for a frontend Integrated Development
Environment (IDE) as a means for developers to inter-
act with components within this layer. The Requirements
and Design Modelling Plug-in provides developers with
tools to aid in is based on the energy aware modelling

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

Page 4 of 13

, el reau s
KPI Profiles (e.g. Experiment Analyser
Programming Model Papyrus)
Runtime

: %

Program Analyser /
Hotspot Identifier

Fig. 3 Architecture - laaS

S
KPI Generator (e.g. Measurement Runtime Energy a
Acceleo) Repository Profiler a
S
S
D
K
Saa$ <->PaaS y
To Application Manager
Fig. 1 Architecture - SaaS
From Application Uploader
ol Saa$S <-> PaaS y
P
ler a
Workload a
Injector S
T
o
o
Image 1
Convertor
s
it Paa$ <-> laa$ y 9 Provider Registry | ||
To VM Manager To laaS SLA Manager
Fig. 2 Architecture - PaaS
To Applit Manager To PaaS SLA Manager
Paa$ <->laaS
I
a
a
S
- T
Hypervisor (KVM) P
o
il
S

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

of an application, while the Code Optimiser Plug-in
provides offline functionality to profiler an application’s
energy consumption during development. The Program-
ming Model Plug-in is based on COMPSs [27] and pro-
vides an interface to the developer to create applications
that follow the energy aware programming model [28].
Finally the Deployment Experiment Manager Plug-in,
helps to associate the outputs of the SaaS Modelling tools
with the workloads and the energy-aware architecture.

A number of packaging components and tools are
also made available to enable cloud provider agnostic
deployment of the constructed cloud application, while
also maintaining energy awareness. The Virtual Machine
Image Constructor (VMIC) tool is responsible for fab-
ricating the images and included software needed to
deploy an application, which is in turn handled by the
Application Uploader Plug-in, which uploads a pack-
aged application created in the SaaS SDK layer to the
Application Manager at the PaaS layer. The VM Image
Constructor communicates with both the Programming
Model Plug-in and Application Packager Plug-in for
the installation of the programming model runtime and
for packaging more traditional cloud applications into
base images.

The PaaS$ layer, illustrated by Fig. 2, provides middle-
ware functionality for a cloud application and facilitates
the deployment and operation of the application as a
whole. Components within this layer are responsible for
selecting the most energy appropriate provider for a given
set of energy requirements, stored as OVF properties, and
tailoring the application to the selected provider’s hard-
ware environment. Application level monitoring is also
accommodated for here, in addition to support for Service
Level Agreement (SLA) negotiation.

In the IaaS$ layer, illustrated by Fig. 3, the admission, allo-
cation and management of virtual resource are performed
through the orchestration of a number of components.
The Virtual Machine Manager (VMM) is responsible for
managing the complete life cycle of the VMs that are
deployed in a specific infrastructure provider. Energy con-
sumption is monitored, estimated and optimized using
translated PaaS level metrics. These metrics are gathered
via a monitoring infrastructure and a number of software
probes. The Energy Awareness provision is an important
step in the architecture implementation plan as it con-
centrates on delivering energy awareness in all system
components. Monitoring and metrics information is mea-
sured at IaaS level and propagated through the various
layers of the cloud stack (PaaS, SaaS) via the use of a OVF
document.

The Cloud Stack Adaptation with regard to energy effi-
ciency focuses on the addition of capabilities required
to achieve dynamic energy management per each of the
cloud layers, in other words:

Page 50f 13

1. Intra layer adaptation: refers to local layer adaptation
in isolation. It considers the extensions of the
runtime environment in order to be able to
orchestrate the invocation of different application
components with advanced scheduling techniques
that take into account energy efficiency parameters.

2. Inter layer adaptation: the aim is to achieve steering
information among cloud layers for triggering other
layers to adapt their energy mode, the focus being
information sharing and decision making among
Saa$, Paa$ and IaaS layers.

The key research challenge is the ability to take adaptive
actions based upon energy consumption, performance
and cost factors within each layer of the architecture
and examine the effect that these have upon the running
applications. Self-adaptive cloud-based software applica-
tions can be realized via a MAPE (Monitor, Analyse,
Plan and Execute) feedback control loop architecture [29].
The cloud stack adaptation is then tailored for the Self-
Adaptation Manager that manages applications at run-
time and maintains performance and energy efficiency at
the PaaS (Fig. 2) and IaaS (Fig. 3) layers, respectively. This
is the subject of continued work [30].

Cloud engineering

Cloud engineering plays an important role in the con-
text of creating energy efficient application development.
Automation of cloud engineering tasks such as out of band
testing and automated deployment are also necessary to
gain full benefits from a cloud provider. In this section
we discuss the importance of a self-adaptive development
life-cycle that considers application energy consumption
while maintaining other more traditional quality aspects
of software such as performance at an acceptable level.

Towards a self-adaptive development life-cycle

To enable energy awareness in cloud applications, a self-
adaptive software development methodology that consid-
ers energy at each stage: requirements gathering, software
construction and testing is a necessity. Self-adaptation in
this context refers to the ability to provide feedback in the
form of energy metrics that guide a developer within an
iterative development process towards an optimal energy
efficient software solution. For any such methodology
to exist a number of tools must be available to reduce
the burden of energy consumption optimization. This
is where the SaaS layer components of the architecture
presented in ‘Energy efficient cloud architecture” section
can reduce time-to-market of cloud applications through
the automation of standard developer practices, enabling
quicker feedback on energy efficiency and more devel-
opment iterations. Some of the more time consuming
and challenging aspects of developing a cloud Application

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

are the construction of VM images and installation of
software dependencies. This is where the work on the
VMIC is positioned. This tool manages software depen-
dency installation and creates cloud provider agnostic
VM images in an automated fashion, reducing developer
effort.

Cloud application construction - VMIC

Figure 4 shows the automated interaction between the
VMIC and other components in the SaaS layer of the
energy efficient architecture. The VM image construction
process is coordinated by Eclipse Plug-ins which invokes
the VMIC with an application description. This descrip-
tion is provided in the form of an industry standard OVF
[20] document. The VMIC parses the application descrip-
tor for details on what packages should be installed in
each base image, where each image represents a packaged
software component to form a cloud application.

The VMIC can operate in two modes, offline and online.
The first phase of the VMIC automation process copies
an appropriate base image such as a variant of Linux or
Windows. After copying, depending on the nature of the
packages to be installed, it either mounts the image using

Page 6 of 13

gemu-nbd [31] (offline mode) or instantiates it remotely
(online mode) using 1ibvirt [32]. During offline mode
packages are placed into the Web root of a pre-installed
tomcat container and is primarily used by the Program-
ming Model Plug-in. In online mode, a locally running
Chef [19] configuration management server is used to
issue Chef recipes to the base VM that contains config-
uration information, package repositories and packages
to install. Finally after packages have been installed in
the VM, the image is saved either by unmounting the
image, as is the case with offline mode or by saving a
snapshot of the base VM image to the local file sys-
tem, as is the case in online mode. The image and its
content can then be tested on a local infrastructure or
passed to the PaaS layer for future deployment on an IaaS
provider.

These two modes of operation cover the necessary
features and functionality to enable support for both
COMPSs [27] enabled applications (packaged as Java
Tomcat Web Services) invoked via the Programming
Model Plug-in and more generic cloud applications (such
as a n-tier web application) invoked via the Application
Packager Plug-in, while minimising the time to create an

I

deployOvf()

deployApplication(ovf)

Fig. 4 SaaS Sequence Diagram

ret : success

ret : success J(...................... foenpmanin
[Q-mmmmmmmmm e : :

monitor(id)

Programming Code Optimizer VM Image Application i
, Model Plug-in Plug-in Constructor Uploader Plug-in FoN
Developer T - T T Application
loop []_Program Application Man;ager

[t : applicati :
T.(!‘?_ Happlcation . E
M Analyse Application = :
ret : optimisation U
T<"""""""""|’ """"""""""" H '
M Deploy Applicati(l)n
generatePackage:s()
constructOvf()
generateln"nages(ovf) R
| loop/ copy() a
install() :
save()
O L — i ;
com‘igureDepIo%ment()

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

image. The remainder of this paper concentrates on the
more flexible and challenging online mode.

Figure 5 illustrates the subcomponent that comprise to
make up the VMIC in addition to showing interactions
with external components and baseline technologies. The
VMIC is comprised of two main Java packages one for
each mode of operation and a Java library for parsing
OVE. The process of constructing an image involves a
number of different internal phases and coordination of
baseline technologies within the VMIC. These phases are
highlighted in order as follows:

1. Initialise - The OVF document passed to the VMIC
is parsed for VM components attributes and their
associated Chef cookbooks that contain recipes
(instructions for installing software written in a
domain specific language).

2. Copy Image - For every component and the given
image type parsed from the OVF, the VMIC selects
and copies an appropriate base image.

3. Boot Image - Using libvirt the baseline image
selected is instantiated via a hypervisor such as
KVM [33].

Page 7 of 13

4. Bootstrap Image - Once the instantiated VM’s
operating system has initialised, the VMIC
bootstraps a Chef Client either via Secure Shell
(Linux) or Windows Remote Management,
registering it with a local Chef server.

5. Upload Cookbooks - The VMIC downloads
cookbooks from URLs parsed from the OVF that
reside on a remote repository running on a Web
server. These cookbooks are then uploaded to the
local Chef Server.

6. Deploy Cookbooks - The VMIC associates the
uploaded Chef cookbooks with the instantiated VM
within the Chef Server and invokes the Chef Client
to download and install the cookbooks.

7. Clean Up - After installation is complete, the VMIC
shuts down the instantiated VM and deletes the
uploaded cookbooks.

Experimental design

To evaluate the feasibility of the VMIC architecture and
the construction phases as outlined previously, the fol-
lowing section discusses the experimental design to test
the performance of the VMIC tool. “Cloud testbed”

:Application £ |
Packager <<service>>
<<plug-in>>

:Web Server

ll
G

System Call

:Cook Book %:’

Repository
<<filesystem>>

Java API %? HTTP/1.2 (J?

{t {F

<<package>>

:OVF API $j

<<library>>

<<executable>>

Fig. 5 VMIC Component Diagram

VMIC 2] 5 1| Resrar 2 |
<<libra ry>> 4CC Chef Repository
<<filesystem>>
SSH
E [System Call]
:Online Image Generator L (C Chef Client
b <<executable>>

EF&S
O_

REST API

Chef Server
<<service>>

:Offline Image Generator E SSH E E
<<package>> [System Call] System Call
(: libvirtd gemu-system
i <<daemon>> ‘C: <<executable>>
SSH A A\ A\
[System Call] ? DFS /dev/kvm ?
gemu-nbd KVM

Repository

N <<kernel module>>
<<filesystem>>

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

subsection discusses the cloud testbed used for the exper-
imentation and the environment in which the VMIC
was deployed. “Cloud application & experimental set-up”
subsection describes the cloud application used to test
the VMIC and the experimental set-up that includes a
description of variables monitored.

Cloud testbed

The cloud testbed used in experimentation is located at
the Technische Universitdt Berlin (see Fig. 6). The com-
puting cluster consists of 200 commodity 1U nodes and 4
2U nodes used as a staging environment. Each of the 1U
nodes is equipped with a quad-core Intel E3-1230 proces-
sor at 3.3 GHz, 16 GB of RAM, 1 TB of local hard disk
capacity. The 2U nodes are equipped with 2 quad-core
Intel E5620 processors at 2.66 GHz, 32 GB of RAM, 750
GB of local hard disk capacity. An 8 node Ceph cluster
with a replica pool size of 2 and 16 TB of usable storage
provided a Distributed File System (DEFS). Additionally,

Page 8 0f 13

the cloud testbed deploys OpenStack [34] to manage vir-
tual infrastructure and Zabbix [35] to store monitored
data. The power measurements were taken with Gembird
EnerGenie Energy Meters [36]. All experiments presented
in this paper were performed on the 1U nodes.

Each node is connected to two different networks (See
Fig. 7) and is able to transfer in duplex at full speed
1 Gbit/s. The first network is dedicated for infrastruc-
ture management via OpenStack, as well as regular data
exchange between the nodes and VMs (both private and
public subnets). The second network is available for stor-
age area network usage only, with storage nodes accessible
via the Ceph DFS. Access to the testbed is provided by
VPN.

Figure 8 illustrates the deployment configuration of the
VMIC in the context of the energy efficient cloud architec-
ture (see “Energy efficient cloud architecture” section) as
implemented by the ASCETIiC project [37]. The ASCETIC
components/tools were deployed by layer into three VMs:

Switches [: gg: &] Switches
— 00008 000008 = N
I:ztit?egd [= W :] Gateway
(5 Nodes) - | R SN o LD_AP/
Buildhost
1 I —— - SR E;“CDI’
Staging 3 i = [— d
Testbed A g —— °Emi 4
(4 Nodes) i | — =
| — [; = E ;
=l —_— ,Ziéi-;.! .
; d | S— »o& Y
TR
M A ——— "N
. —— =
E — ,:%CDJ E table
IR e
 — *;% (33 Nodes)
S [T TTTRTTTTT =
DFS (8) . 8 H E— :‘f‘@ Colour Key:
N e
¢ 4 8 ———— N Controller /
TR
§ y 8 ——— = ASCETIC
e — = s
A d.——ua p
mmnamm ie— = e
-) - a Node

Fig. 6 Cloud Testbed

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14 Page 9 0of 13
VPN Network p (Public D :Eclipse
| \ -—— .
| S W & <1 <<ide>>
172.16.0.0/24 N Internet 5 {0S=ALL}
E S 1 ‘
Datacenter ‘ «I:g'r/:rcy . A"”'Z‘f;iﬁ; :,::rage, 2]
Core
Router
i <<SSH>>
ASCETICNet | U ternet
Suieh peme :AsceticSaaS
witc — Gateway, <<virtual machine>>
130.*.*.0/24 VPN, SSH i
’ {OS=Linux}
PUB: 130.*.*.199
I PRI: 192.168.3.199
OpenStack VPN:172.16.0.1 g | g | o f$:| 8 |
e
Controller / I SSH Server Chef-Server Repository Chef Client
Dashboard / <<service>> <<service>> i > >
Neutron - @ Switch
PUB: 130.% *.200 192.168.3.0/24
PRI: 192.168.3.200 E E E
Image
Repository Web Server Qemu-img libvirtd
Compute Nodes: <<filesystem>> <<service>> < <<d >
Floating IP Pool
192.168.3.201-254 <<kerr(|:eelpn:f)iule>> E <<kerm:,(lvrr':,(|)du|e>>
GW: 192.168.3.199
T T
VM Private Net <<RADOS>> <<RADOS>>
1
:AsceticDFS
— <<physical machine>>
PUBLIC: 130.*.*.1-198 10.0.0.0/16 {0S=Linux}
PRIVATE: 192.168.3.1-198
Ceph Monitor Ceph OSD E
<<daemon>> <<daemon>> Storage
Fig. 7 Cloud Testbed Network <<Disk>> -

Saa$, PaaS$ and IaaS. The VMIC and its associated base-
line technology dependencies were installed within the
SaaS VM along with an instance of Eclipse containing the
toolbox plug-ins. Nested KVM virtualization was used to
enable the VMIC to create VMS within the SaaS VM and
the nested VMs were backed by a mounted Ceph stor-
age pool accessed via the cephfs Linux kernel module.
The Ubuntu 12.04.5 LTS operating system was installed
in each VM and ran on the Linux Kernel version 4.5.2.
The SaaS VM was allocated 4 CPU cores and 8 Gbyte of
memory from a 1U node.

Cloud application & experimental set-up

The chosen application to fulfil the objectives of the exper-
iments is the NewsAsset [38] application that facilitates
digital journalism. This is an n-tier application that is
composed of a set of VM images as illustrated in Fig. 9.
The application has a (fat) client in the front-end, a
NewsAsset server implementing the business logic (in the

Fig. 8 VMIC Deployment Diagram

middle layer) and stores news items data in an Oracle
database in the back-end [39].

The load balancer image implemented via HAProxy
[40] distributes load between NewsAsset application
servers and was installed in a Linux Ubuntu 12.04.5 LTS
base image. These application servers running on Win-
dows operating system are comprised of a single binary
executable and associated software dependencies. The
NewsAsset application stores and retrieves data within a
single Oracle database image and single File Server image,
both running on Windows. Each VM is allocated 2 CPU
cores and 2 Gbytes of memory. Table 1 outlines the soft-
ware dependencies of each VM image as specified in the
OVF passed to the VMIC.

To ascertain the performance of the VMIC when con-
structing the images for the NewsAsset application four
experiments are performed:

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

HTTP Calls

HAProxy =l
Load Balancer

TCP/IP SMB

. Oracle% File Hl
DB Server

Fig. 9 Architecture of NewsAsset Application

1. The first evaluates the performance of each VMIC
phase through the construction of the single image
containing the application server component, the
independent variable. Dependent variables in this
experiment are the fine grained resource utilities of
the ASCETiC SaaS VM: CPU utility and network
bandwidth.

2. The second evaluates the runtime performance
(execution time) of the VMIC. Linux and Windows

Table 1 NewsAsset application software dependencies

Page 10 of 13

components are compared, in addition to the time to
generate all News Asset images over 10 consecutive
runs.

3. In the third, the runtime performance of the VMIC is
evaluated with a range (1 — 4) of concurrently
generated HAProxy Linux based images again over
10 consecutive runs.

4. Finally, the fourth demonstrates the VMIC’s
capabilities to aid in the deployment of NewsAsset
energy aware application thanks to monitoring its
power consumption.

Results and recommendations

The following section discusses the performance of the
VMIC by presenting an analysis of the experimental
results and illustrating adequate performance of its tool
implementation.

Figure 10 demonstrates the performance characteristics
of each VMIC phase. The graphs show the majority of
time within the VMIC is spent in three phases. Firstly, the
deployment of the cookbooks accounts for nearly 50% of
the execution time. Secondly, the copy of the base image
accounts for 20% of the execution time and is a factor
of the size of the base image. Finally, the bootstrap pro-
cess that sees the installation of the Chef client accounts
for 10% of the runtime and the other phases tally for the
remaining 30%. It is worth noting that a very slight delay at
the start of the trace before "Copy Image" shows the min-
imal overhead induced from processing OVFE, in the order
of 1% of the total runtime.

Reviewing the network bandwidth consumption of the
VMIC reveals that the copy of the base image is restricted
by the available disk bandwidth over the network (a limi-
tation of the testbed’s 1 Gbit network to the Ceph cluster),

Dependencies

Component 1 2 3
HAProxy cpu0.2.0 build-essential 6.0.0 haproxy 1.6.7
Description Chef cookbook to manage CPU Installs packages required for Installs haproxy and prepares the
related actions on linux. compiling C software from source. configuration location.
NewsAsset chef_handler 1.4.0 windows 1.44.1 newsasset-server
Description Distribute and enable Chef Provides a set of useful Custom cookbook to install a
Exception and Report handlers Windows-specific primitives. NewsAsset application server, its
Net dependencies and a
monitoring probe
Oracle DB chef_handler 1.4.0 windows 1.44.1 newsasset-oracle
Description Distribute and enable Chef Provides a set of useful Custom cookbook to install a Oracle
Exception and Report handlers Windows-specific primitives. DB server and NewsAsset
application server scheme
File Server newsasset-file
Description Custom cookbook to configure CIFS

based SMB share

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

Page 11 0f 13

-
o
o

Bootstrap

:ﬁ Copy Imagé

©
=)

HCPU %

Deploy Cookbooks

]
S

Boot Image

~
=)

Clean Up

@
o

|

Y
S

w
S
I

CPU Utilization (All Cores)
o
=]

S A

k|

%
E

—

|

30 360 540 60
[Receive M Transmit

®
=)
]

40 | ‘

N
o
!

o &
S S
I

Bandwidth (Mbyte/s)
g o
8
9
4
N

&
S

<

Boot Image
Upload

Clean Up

N
1)
=]

Copy Imag Bootstrap ©

N
N
5]

Time (Seconds)

Fig. 10 VMIC resource utility for the generation of a single Windows image

Deploy Cookbooks

while the deployment of the cookbooks phase is limited
by disk I/O. It is recommended that the use of 10 Gbit
Ethernet or better and SSD backed storage would dramati-
cally reduce the time to generate images (recommendation
1). Furthermore, due to mainly sequential installation
processes of the NewsAsset application server, CPU uti-
lization of the VMIC tool is mainly limited to 1 core.
Given that the dependency graphs of most software are
sequential in nature, we recommend that the VMIC tool
be deployed on a machine with the best single thread
performance, to reduce runtime further (recommendation
2). Finally, the installation of the Chef Client as part of
the bootstrapping process could be omitted, if the base
images used come with this pre-installed at the expense of
additional developer time (recommendation 3).

Figure 11 shows the execution time of a range of
different NewsAsset components (Windows, Linux, All

Components) generated and includes error bars indicat-
ing the standard deviation over 10 consecutive iterations
of this experiment. It can be seen that the construction
of Windows images takes substantially longer than Linux
images. This is due to two factors. Firstly, the Windows
base images are twice as larger in size (2.6 GByte Windows
vs 1.1 GByte Linux) and take three times longer to boot
(45 seconds Windows vs 15 Linux). Given that it is diffi-
cult to strip down the Windows Operating System to the
levels of a minimal Linux installation, it is recommended
that developers limit the use of Windows to legacy appli-
cations (recommendation 4). Finally, from the error bars it
can be seen that the distribution of VMIC invocations is
tightly packed suggesting consistent performance.

Figure 12 shows the scalability of a range of concur-
rent users accessing the VMIC to generating the HAProxy
Linux component of the NewsAsset Application. It can

8
—_

N
[

~N
(=)

=
«

Time (Minutes)

=
[5)

-
gl

e
o“,.

1 Win C

]

AllC

1 Linux Component

Fig. 11 VMIC Component Performance

N
«

© Time (Concurrent)

X Time (Staggered)

= ~N
« =)

Time (Minutes)
s
\z
\

No. of Concurrent Components

Fig. 12 VMIC Concurrent User Performance

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

Page 12 0f 13

o

Power (W)
PNt
o

Fig. 13 News Asset Application Server Power Consumption

A

i o

W HAProxy
W NewsAssetl

W NewsAsset2
[OracleDB

121 181 241

Measurement Interval (5s)

be seen that as the number of concurrent users increases,
the image generation time also increases in a non-
linear exponential manner at the same time as variance
increases. This is less than ideal if multiple developers
wish to share the deployment of a single instance of
the VMIC tool. After further investigation of this phe-
nomenon, a second experiment was performed to stag-
ger the arrival rate of concurrent users by 60 seconds.
This had the impact of reducing the effect of the Ceph
DES running on 1Gbit connectivity as previously dis-
cussed. By spreading its use more evenly, the result of
adding 3 minutes of waiting ended in the same run-
time for 4 concurrent components generated as without.
With this in mind, it is recommended that if the VMIC
is to be deployed in a multi-tenant environment, then
substantial disk bandwidth and I/O should be available
(recommendation 5).

In addition to the previous experiments evaluating the
performance of the VMIC, Fig. 13 illustrates the benefits
of NewsAsset construction with the VMIC and its deploy-
ment onto the ASCETIC enabled infrastructure capable
of using the embedded monitoring probe. In this exper-
iment the NewsAsset deployment consists of two load
balanced application servers driven by a sustained work-
load. The graph shows the attributed deployment, idle
and load power consumption of the NewsAsset VMs dur-
ing and for a period of a few minutes after deployment.
With the VMIC’s capabilities to aid in the construction of
energy aware cloud applications, the energy efficiency of
software can be easily analysed under a variation of loads
and deployment configurations (recommendation 6).

Conclusion

This paper has highlighted the importance of providing
novel methods and tools to support software developers
aiming to optimise energy efficiency and minimise the
carbon footprint resulting from designing and developing
software at the different layers of the cloud stack while
maintaining other quality aspects of software to adequate
and agreed levels.

We discussed our practical experience during imple-
mentation of architectural components relevant to cloud
application construction emphasising on automatic image
construction, and presented a performance evaluation.
The results show that the performance of VM construc-
tion is primarily limited by available network and disk I/O.
However, for the purpose of a self-adaptive development
life-cycle that considers energy awareness the time to
generate application components is more than adequate.

Overall, the VMIC is interoperable with cloud providers
and technologies that support OVE. It manages software
dependency installation and creates cloud provider agnos-
tic VM images in an automated fashion, reducing devel-
opment effort. Finally, it is shown to be effective through
the experimental evaluation of its implementation and is
already integrated in a cloud computing toolkit.

Future work on the VMIC will include exploring the
integration of third party baseline technologies for the
creation of base (master) images such as Vagrant. Inte-
gration work will consider the use of containers with the
image construction process used in the VMIC such as
Docker [41]. We will also consider optimising the energy
efficiency of the build process by using DVFS and RAPL
policies during the copy-image phase given that it is I/O-
bound and can be seen as a possible source of energy
saving. This is in addition to research into intra and inter
layer adaptation for the purpose of coordinating the lay-
ers of the architecture presented in this paper to further
increase cloud application energy efficiency.

Acknowledgments

This work is partly supported by the European Commission under
FP7-ICT-2013.1.2 contract 610874 - Adapting Service lifeCycle towards
EfficienT Clouds (ASCETIC) project.

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:14

Received: 15 February 2017 Accepted: 18 May 2017
Published online: 23 June 2017

References

1.

20.

21.
22.

23.

Pawlish M, Varde AS, Robila SA (2012) Cloud Computing for
Environment-friendly Data Centers. In: Proceedings of the Fourth
International Workshop on Cloud Data Management, CloudDB "12. ACM,
New York. pp 43-48

Mastelic T, Oleksiak A, Claussen H, Brandic |, Pierson J-M, Vasilakos AV
(2014) Cloud computing: Survey on energy efficiency. ACM Comput Surv
47(2):33:1-33:36

Grech N, Georgiou K, Pallister J, Kerrison S, Morse J, Eder K (2015) Static
analysis of energy consumption for llvm ir programs. In: Proceedings of
the 18th International Workshop on Software and Compilers for
Embedded Systems. SCOPES '15. ACM, USA. pp 12-21

(2016) Packer - Identical Machine Images for Multiple Platforms. https://
www.packer.io/

(2016) Vagrant - Development Environments Made Easy. https://www.
vagrantup.com/

Gotz S, Wilke C, Cech S, ABmann U (2011) Runtime variability
management for energy-efficient software by contract negotiation. In:
Proceedings of the 6th International Workshop on Models@run.time,
New Zealand

Hilty L, Lohmann W (2011) The Five Most Neglected Issues in “Green IT".
CEPIS UPGRADE 12(4):11-15

te Brinke S, Malakuti S, Bockisch C, Bergmans L, Aksit M (2013) A design
method for modular energy-aware software. In: Shin SY, Maldonado JC
(eds). Procedings of the 28th Annual ACM Symposium on Applied
Computing (SAC'2013. ACM, New York. pp 1180-1182

Grosskop K, Visser J (2013) Identification of Application-level Energy
Optimizations. In: Hilty LM (ed). Proceedings of the First International
Conference on Information and Communication Technologies for
Sustainability (ICT4S2013), Switzerland

Nowak A, Leymann F (2013) Green Business Process Patterns - Part Il
(Short Paper). In: 6th IEEE International Conference on Service-Oriented
Computing and Applications. IEEE, Hawaii. pp 168-173

Honig T, Eibel C, Preikschat WS, Cassens B, Kapitza R (2013) Proactive
energy-aware system software design with seep. In: Proceedings of the
2nd Workshop on Energy Aware Software-Engineering and
Development. Gl Softwaretechnik-Trends. pp 1-2

Klingert S, Berl A, Beck M, Serban R, Girolamo M, Giuliani G, Meer H,
Salden A (2012) Sustainable Energy Management in Data Centers
through Collaboration. In: Energy Efficient Data Centers. volume 7396 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg. pp 13-24
Mammela O, Majanen M, Basmadjian R, Meer H, Giesler A, Homberg W
(2012) Energy-aware job scheduler for high-performance computing.
Comput Sci Res Dev 27(4):265-275

Armstrong D, Espling D, Tordsson J, Djemame K, EiImroth E (2015)
Contextualization: dynamic configuration of virtual machines. J Cloud
Comput 4(1):1-15. doi:10.1186/513677-015-0042-8, http://dx.doi.org/10.
1186/513677-015-0042-8

Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation
heuristics for efficient management of data centers for Cloud computing.
Futur Gener Comput Syst 28(5):755-768

(2016) CFEngine 3 - Configuration Management Software for Agile
System Administrators. http://cfengine.com/

Burgess M (2004) Configurable immunity for evolving human computer
systems. Sci Comput Program 51(3):197-213

(2016) Puppet - IT Automation for System Administrators. http://
puppetlabs.com/

(2016) Chef - A Systems Integration Framework. http://wiki.opscode.com/
display/chef/Home

(2015) Open Virtualization Format (OVF) - A standard from the Distributed
Management Task Force. http://www.dmtf.org/standards/ovf

(2015) OPTIMIS Toolkit. http://optimistoolkit.com

Armstrong D, Espling D, Tordsson J, Djemame K, Eimroth E (2013)
Runtime Virtual Machine Recontextualization for Clouds. In: Euro-Par
2012: Parallel Processing Workshops. Springer Berlin Heidelberg, Rhodes
Islands. pp 567-576

Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for
cloud computing. In: Proceedings of the 2008 Conference on Power

24.

25.

26.

27.

28.

29.

30.

32.

33.

34

35.

36.

37.

38.
39.
40.

Page 13 0f 13

Aware Computing and Systems, HotPower'08. USENIX Association,
Berkeley. pp 10-10

Choi K, Soma R, Pedram M (2004) Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off based on
the ratio of off-chip access to on-chip computation times. In: Proceedings
Design, Automation and Test in Europe Conference and Exhibition.

|IEEE Computer Society, Washington Vol. 1. pp 4-9. doi:10.1109/
DATE.2004.1268819

Rotem E, Naveh A, Ananthakrishnan A, Weissmann E, Rajwan D (2012)
Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge. IEEE Micro 32(2):20-27

Djemame K, Armstrong D, Kavanagh RE, Ferrer AJ, Perez DG, Antona DR,
Deprez J-C, Ponsard C, Ortiz D, Macias M, Guitart J, Lordan F, Ejarque J,
Sirvent R, Badia RM, Kammer M, Kao O, Agiatzidou E, Dimakis A,
Courcoubetis C, Blasi L (2014) Energy Efficiency Embedded Service
Lifecycle: Towards an Energy Efficient Cloud Computing Architecture. In:
Proceedings of the Energy Efficient Systems (EES'2014) Workshop. CEUR
Workshop Proceedings, Stockholm Vol. 1203. pp 1-6. http://ceur-ws.org/
Vol-1203/EES-paper1.pdf

Badia RM, Conejero J, Diaz C, Ejarque J, Lezzi D, Lordan F, Ramon-Cortes C,
Sirvent R (2015) Comp superscalar, an interoperable programming
framework. SoftwareX 3:32-36

Lordan F, Ejarque J, Sirvent R, Badia RM (2016) Energy-aware
programming model for distributed infrastructures. In: Proceedings of the
24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP 2016). IEEE, Greece

Farokhi S, Jamshidi P, Brandic |, EiImroth E (2015) Self-adaptation
challenges for cloud-based applications: a control theoretic perspective.
In: Proceedings of the 10th International Workshop on Feedback
Computing. ACM, USA

Djemame K, Kavanagh R, Armstrong D, Lordan F, Ejarque J, Macias M,
Sirvent R, Guitart J, Badia RM (2016) Energy efficiency support through
intra-layer cloud stack adaptation. In: Proceedings of the 13th
International Conference on Economics of Grids, Clouds, Systems and
Services (GECON'2016). Springer, Greece

(2016) QEMU - Open Source Machine Emulation and Virtualizer. http://
WWW.qemu.org

Bolte M, Sievers M, Birkenheuer G, Niehorster O, Brinkmann A (2010)
Non-intrusive Virtualization Management using libvirt. In: 2010 Design,
Automation & Test in Europe Conference & Exhibition. Piscataway, USA.
pp 574-579

Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) KVM: The Linux Virtual
Machine Monitor. In: Proceedings of the Linux Symposium, Canada Vol. 1.
pp 225-230

(2015) OpenStack: Open source software for building private and public
clouds. http://www.openstack.org/

(2015) Zabbix - An Enterprise-class Monitoring Solution. http://www.
zabbix.com/

(2013) GEMBIRD Deutschland GmbH. EGM-PWM-LAN data sheet. http://
gmb.nl/Repository/6736/EGM-PWM-LAN_manual---7f3db9f9-65f1-
4508-2986-90915709e544.pdf

(2016) ASCETIC. Adapting Service lifeCycle towards EfficienT Clouds.
http://www.ascetic.eu/

(2016) Newsasset Agency. http://www.newsasset.com/

(2016) Oracle Database. https://www.oracle.com/database/index.html
(2015) HAProxy - A Reliable, High Performance TCP/HTTP Load Balancer.
http://www.haproxy.org/

Docker Inc (2017) Docker - Homepage. https://www.docker.com/

https://www.packer.io/
https://www.packer.io/
https://www.vagrantup.com/
https://www.vagrantup.com/
http://dx.doi.org/10.1186/s13677-015-0042-8
http://dx.doi.org/10.1186/s13677-015-0042-8
http://dx.doi.org/10.1186/s13677-015-0042-8
http://cfengine.com/
http://puppetlabs.com/
http://puppetlabs.com/
http://wiki.opscode.com/display/chef/Home
http://wiki.opscode.com/display/chef/Home
http://www.dmtf.org/standards/ovf
http://optimistoolkit.com
http://dx.doi.org/10.1109/DATE.2004.1268819
http://dx.doi.org/10.1109/DATE.2004.1268819
http://ceur-ws.org/Vol-1203/ EES-paper1.pdf
http://ceur-ws.org/Vol-1203/ EES-paper1.pdf
http://www.qemu.org
http://www.qemu.org
http://www.openstack.org/
http://www.zabbix.com/
http://www.zabbix.com/
http://gmb.nl/Repository/6736/EGM-PWM-LAN_manual---7f3db9f9-65f1-4508-a986- 90915709e544.pdf
http://gmb.nl/Repository/6736/EGM-PWM-LAN_manual---7f3db9f9-65f1-4508-a986- 90915709e544.pdf
http://gmb.nl/Repository/6736/EGM-PWM-LAN_manual---7f3db9f9-65f1-4508-a986- 90915709e544.pdf
http://www.ascetic.eu/
http://www.newsasset.com/
https://www.oracle.com/database/index.html
http://www.haproxy.org/
https://www.docker.com/

	Abstract
	Keywords

	Introduction
	Related work
	Energy efficient cloud architecture
	Cloud engineering
	Towards a self-adaptive development life-cycle
	Cloud application construction - VMIC

	Experimental design
	Cloud testbed
	Cloud application & experimental set-up

	Results and recommendations
	Conclusion
	Acknowledgments
	Authors' contributions
	Competing interests
	Publisher's Note
	References

