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Abstract

The widespread use of digital images has led to a new challenge in digital image forensics. These images can be
used in court as evidence of criminal cases. However, digital images are easily manipulated which brings up the
need of a method to verify the authenticity of the image. One of the methods is by identifying the source camera.
In spite of that, it takes a large amount of time to be completed by using traditional desktop computers. To tackle
the problem, we aim to increase the performance of the process by implementing it in a distributed computing
environment. We evaluate the camera identification process using conditional probability features and Apache
Hadoop. The evaluation process used 6000 images from six different mobile phones of the different models and
classified them using Apache Mahout, a scalable machine learning tool which runs on Hadoop. We ran the source
camera identification process in a cluster of up to 19 computing nodes. The experimental results demonstrate
exponential decrease in processing times and slight decrease in accuracies as the processes are distributed across
the cluster. Our prediction accuracies are recorded between 85 to 95% across varying number of mappers.
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Introduction
As we live in an era of high technology, digital images
are commonly used due to the availability of various
models of digital cameras. Each day, more and more
digital cameras are invented by technology companies.
Consequently, digital cameras have become more afford-
able for the consumers to own. Mobile phones are now
equipped with digital cameras. This has further in-
creased the number of individuals owning image captur-
ing devices. As a consequence, thousands of images are
being created each day with some of them capturing a
critical moment in time such as a crime. These images
can be used in court as evidence to demonstrate the re-
lationship between the suspects and criminals [18].
However, a major issue in using digital images as
evidence in court is that digital images are easily created
and manipulated without leaving any obvious traces of
modifications. Evidence manipulation causes the credibility

and authenticity of the digital image to be questioned
[12]. Therefore, we need more tools and applications
to address the problem of verifying the authenticity
of an image [12, 18].
Image authenticity is able to be verified through vari-

ous methods ranging from a simpler method like com-
paring the EXIF metadata method to a complex method
like tracing the digital fingerprints of the image. The lat-
ter seems to be more reliable and has attracted a grow-
ing interest among researchers in image forensics [16].
The digital fingerprints of an image provide distinguish-
ing characteristics of the image. Therefore, the forensic
analyzer is able to track the possible source camera of
the image under investigation whether it is acquired by
the device that it is claimed to be sensed with. Source
camera identification has been the focus of recent re-
search with various techniques being investigated [14].
There are a number of approaches in source camera

identification which are divided into two main categor-
ies: hardware and software-related [3, 9–11]. The
hardware-related approach is caused by defects in the
lens of the camera or any flaws in the device’s sensors.
In addition, hardware-related is further divided into two
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sub-categories which are the optics and sensors. The
software-related approach comprises image-related
statistics and camera processing. Statistical category con-
siders factors such as higher order statistics and condi-
tional probability, while the processing category consists
of image processing tasks like the CFA configuration
and colour interpolation. For example, McKay et al. [10]
used CFA interpolation coefficients and noise features in
identifying the source camera of the image which ob-
tained an average accuracy of 93.75%. Kharrazi et al. [9]
achieved 98.73% accuracy by using statistical features
(average pixel values, wavelet domain statistics). Bayram
et al. [3] successfully used CFA interpolation coefficient
but implemented it on different sizes of interpolation
kernel. Hu et al. [8] compared the most common fea-
tures used in source camera identification and obtained
92% accuracy when combining all compared features.
However, the aforementioned works extracted a high
number of features on large data sets which affected the
total processing time. Wahab and Bateman [17] used
conditional probability features and obtained an accuracy
of 92.5% by using only 27 features. In spite of that, process-
ing time remains an issue and a few works [13, 19, 21]
addressed the problem by implementing image processing
in a distributed computing environment.
A distributed computing environment enables multiple

remote computers connected through a network to
perform a specific task concurrently. As a result, the
processing capacity of the computers is combined and
hence significantly reduces the processing time com-
pared to running the task on a single computer. The
processing time is reduced because complex tasks and
operations can be broken into smaller tasks that can be
executed on different computers in parallel. Han et al.
[7] implemented a prototype in the field of life sciences
to demonstrate the linear-speedups achieved with the in-
creasing number of distributed computing nodes. They
highlighted two ways to fully utilize distributed comput-
ing in image processing which are task and data parallel-
ism. Zhang et al. [20] achieved 91% time saving by
implementing image processing in distributed comput-
ing using Hadoop.
Hadoop is a popular open source distributed comput-

ing platform under the Apache Software Foundation. It
is a framework that allows for the distributed processing
of large data sets across clusters of computers using a
simple programming model (2014a). MapReduce is the
programming model that enables massive scalability
across Hadoop clusters. It is a Java based framework
which breaks a job into two separate parts: map and
reduce. The map function breaks down individual ele-
ments into key-value pairs which are then reduced into
a single value through the reduce function. MapReduce
easily parallelizes the image processing across multiple

computing nodes with the help of another Hadoop mod-
ule, Hadoop YARN. It schedules all the jobs and man-
ages the Hadoop cluster.
This paper investigates the effect of executing source

camera identification in a distributed computing envir-
onment by using Hadoop. We aim to evaluate the per-
formance of the source camera identification on Hadoop
in terms of execution time. This includes image feature
extraction and classification using Apache Mahout. We
also evaluate the accuracy of Random Forest classifier
across different number of mappers in the Hadoop clus-
ter. Finally, we analyze the trade-off between the per-
formance of the image classification and the distributed
computing environment.
The contributions of this paper are summarized as

follows:

1. We proposed and developed a source camera
identification tool that runs the entire identification
process on Hadoop. It is a significant contribution
because it addressed the limitation in the study by
[4] which did not implement the machine learning
phase as a distributed process.

2. The results achieved through the study showed
that implementing source camera identification in
a distributed computing managed to reduce the
overall execution time. It took just 28 min to
complete the process involving 6000 images that
hold a total size of 20GB on a 19-node Hadoop
cluster. As a comparison, a traditional single node
computing took 2 h and 42 min to complete the
same process.

3. This study scored high classification accuracies even
as the number of mappers are varied. We recorded
95% prediction accuracy on a single mapper. On the
lower end, we obtained 85% accuracy when the
number of mappers are increased to 10. Besides
that, our Hadoop cluster reached full utilization
during the identification process.

4. We presented a comprehensive evaluation of the
conditional probability features for source camera
identification.

The rest of the paper is organized as follows: Sec-
tion 2 contains the related works in the field. It is
further divided into two sub-sections which presented
the distributed machine learning tools used in the
study. The methodology of the study is discussed in
Section 3. It is divided into several sub-sections: (i)
Apache Hadoop Experimental Setup (ii) Data Collec-
tion and Image Processing in Hadoop (iii) Image
Classification. Section4 contains a discussion on the
results of the experiment. The execution times and
accuracies of the classification are discussed here.
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Finally, Section 5 presents the concluding remarks of
the paper.

Related work
Image authenticity is important when images are to be
used as evidence in legal cases. Law enforcers are re-
quired to prove to the court that the presented images
have not being altered in any way. One of the simplest
methods to verify image authenticity is through the use
of metadata [1]. A metadata is a piece of information
that describes other data. For instance, a metadata for a
text file may contain the date and time the document
was created. Digital images may also contain metadata
through the Extended File Information header (EXIF).
An EXIF header holds the information about the device
that captured the image. It is useful to law enforcers when
proving the authenticity of an image in court as they can
determine whether the image is modified. However, EXIF
headers are less reliable because it can be missing if the
image’s file format is changed. The information in the
EXIF header is easily editable through software like Exif-
Tool [16]. The emergence of image manipulating software
like ExifTool forces researchers to find more reliable ap-
proaches in verifying image authenticity. One approach is
through source camera identification.
Source camera identification is the process to trace the

original device which had produced a particular image.
Kharazzi et al. [9] highlighted the fact that each image
capturing device has its own unique characteristics.
These unique features are extracted to classify the recov-
ered image according to its source camera. However, a
large number of features and collections of image are re-
quired to build the classifier. For example, Kharazzi et
al. used 34 features which included average pixel value,
RGB pairs correlation and wavelet domain statistics.
Their image data set had 300 images with 40% of the
data set serving as the training set. Similar features were
used in [14] but only 150 images were included in their
data set, half of the number used in [9]. They achieved
98.94% accuracy, improving 0.21% compared to [9]. A
combination of features also presented reasonable result
of 92% accuracy in Hu et al. [8] that proposed a combin-
ation of five of the most common features used in
source camera identification: wavelet features, colour
features, image quality matrix (IQM), statistical features
of different images and statistical features of prediction
errors. The total number of features used was 102 with
300 images in their data set. A new method in source
camera identification is proposed in [17] where condi-
tional probability features are used to detect the source
of an image. An improvement in the size of features is
achieved with only 27 features extracted from 400 im-
ages. The study managed to achieve 92.5% accuracy. It is
clearly observed that the large number of features and

size of data set presents an issue where the processing
time taken is high [21]. To address this problem, distrib-
uted computing is used to perform the image
processing.
Distributed computing is an alternative to improve the

performance and processing time of an application. By
distributing the workload among multiple connected
computers, a process is executed in parallel thus redu-
cing the completion time. Han et al. [7] demonstrated
that implementing image processing in distributed
computing environment reduced the execution time and
achieved linear-speedups with increasing number of
computing nodes. They focused on two ways to make
use of distributed computing: data parallel and task par-
allel pipeline streaming. Data parallel pipelining stream-
ing applies when the input of a process is not dependent
on any other factors, the particular process is able to be
distributed into multiple computing resources and
executed in parallel. For example, in source camera
identification, the feature extraction process is spread to
different computing nodes and run in parallel. As a re-
sult, it reduces the execution time taken for extracting
the features from the images. On the other hand, task
parallel pipeline streaming applies when different pairs
of nodes are running on a different line in a workflow.
As the output of one pair of nodes never reaches the
other pairs, these nodes can be implemented in distrib-
uted computing. A very easy approach to apply distrib-
uted computing is by using Hadoop [4, 13].
Hadoop is an open source distributed computing

platform developed by Apache Software Foundation. It
is built to handle large data sets (or big data) on distrib-
uted systems (DS). DS is a group of connected comput-
ing nodes (computers) which may be geographically
dispersed. By using Hadoop, the workload of a process is
spread across the nodes of a DS. Hence, the completion
time is reduced [20]. Sarade et al. [13] proposed the
implementation of image processing in distributed com-
puting by using Hadoop. They defined the workflow of
the system to consist of the following steps: (i) images
being uploaded into the Hadoop Distributed File System
(HDFS) (ii) image processing through MapReduce (iii)
presentation of results. The paper focused on the pro-
cessing of satellite images particularly on image scaling,
feature extraction and image recognition. Similar experi-
mental setup was used in [20] where multiple sets of
Hadoop cluster were formed to observe the execution
time as the number of computing nodes changed. The
results showed that a traditional single node computer
took 1967 s to process 800 images while a Hadoop
cluster containing 10 nodes took only 253 s. Besides re-
ducing execution times through distributed computing,
Hadoop also supports distributed machine learning
through Apache Mahout [5].
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Few works have been published on large scale source
camera identification particularly on distributed computing
such as [4, 6]. Miroslav et al. [6] introduced a fast searching
algorithm based on ‘fingerprint digests’ to quickly search
through a database for a specific fingerprint of a camera
which might correspond to the source camera of a given
image. They experimented on a database containing over
2000 iPhones with the help of MATLAB software. Al-
though the study showed the feasibility of the algorithm, it
did not highlight the use of distributed computing to man-
age the large dataset. Cattaneo et al. [4] presented a scal-
able approach to source camera identification over
Hadoop. They used 33 commodity PCs as their Hadoop
cluster with 32 of them serving as the slave nodes. They
experimented with 20 Nikon D90 digital cameras with 258
JPEG images captured from each camera. Their results re-
corded an impressive accuracy of ≈ 99.7% and close to 6 h
of execution time.
However, the aforementioned works have similar limita-

tion which is that distributed computing is not applied to
all the process involved in the identification of the source
camera. For instance, in [4], the machine learning phase
was not implemented as a distributed process. Instead, they
ran their classifier training and testing phase using sequen-
tial SVM-based classifier. Therefore, we aim to provide a
combination of approaches from the distributed computing
perspective, particularly by using Hadoop together with the
distributed machine learning algorithms by using WEKA
and Mahout to identify the source camera of an image.
This study enables source camera identification which is an
important branch of image forensics to be done in a more
efficient manner and reduce the overall execution time.

Apache mahout
Mahout is an open source machine learning tool developed
by Apache. Among the algorithms implemented in Mahout
include collaborative filtering, clustering and classification.

Mahout is scalable and it can support massive datasets that
are too large to be processed on a single machine. It does
not provide any user interface as it is basically a JAVA li-
brary. It provides a framework of tools that is to be used or
customized by developers. Mahout is an advantage in our
work as it is readily developed to run on Hadoop. The clas-
sification algorithms are mostly compatible to run on
Hadoop’s MapReduce programming framework which en-
ables them to be executed as a distributed process.
The advantage of Mahout in classifying large datasets starts

to show when the size of the training samples gets extremely
large [11]. Mahout’s may even perform slower than trad-
itional non-Mahout approaches on small datasets because it
must overcome overheads for being a distributed approach.
Figure 1 is a conceptual graph which illustrates the ad-

vantages that Mahout holds when dealing with large
datasets. Based on the graph, when the size of dataset is
relatively small, it is sufficient to use traditional or stan-
dalone machine learning tool. However, as the size of
samples increases, Mahout’s scalable algorithms perform
better in terms of execution times [11].
Ericson and Pallickara [5] implemented Mahout’s classifica-

tion algorithm in their work to compare the difference in pro-
cessing time when executing on Hadoop and Granules. They
have used two classifier algorithms in their comparison: Naïve
Bayes and Complementary Bayes. Their study showed the re-
liability and scalability of Mahout in handling large datasets.

Methodology
To evaluate the performance of the source camera identifi-
cation process in distributed environments, Apache Hadoop
was used as the distributed computing platform. Hadoop
cluster was set up using Amazon Elastic Map Reduce
(EMR). EMR is chosen in this study due to resource con-
strain. By using EMR, we can easily build a cluster of up to
19 nodes in a few minutes. In order to explain the experi-
mental setup in greater detail, the section is divided into

Fig. 1 Advantages of Mahout for classification of large datasets
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three subsections: Apache Hadoop cluster setup, data collec-
tion and image processing and finally the classification. The
first subsection discusses the experimental setup of Apache
Hadoop cluster in detail. The data collection phase and the
implementation of image feature extraction in Hadoop are
presented in the second subsection while the final subsec-
tion presents the classification process using Apache Ma-
hout. The workflow of the study is depicted in Fig. 2.

Apache Hadoop experimental setup
The HDFS has two main elements which are the
NameNode and DataNode. A NameNode is usually
assigned to a single machine with the highest capacity
resources. It acts as the central point of Hadoop distrib-
uted system. It manages the file system and records on
which node the file data is stored. The DataNode is re-
sponsible for data storage. A Hadoop cluster consists of
multiple DataNodes spread among the cluster and data
are replicated across them.In this study, Amazon EMR is
used to build the Hadoop cluster. It allows us to easily
scale the cluster to fit our needs. We started the experi-
ment by building a 5-node Hadoop cluster before grad-
ually increasing the nodes until we obtained a 19-node

cluster. The Hadoop cluster configurations are shown in
the following table: (Tables 1 and 2).
The EMR Hadoop cluster maintained the default mem-

ory configurations because the instances used were suffi-
ciently large in terms of resources. Table 3 shows the
default configuration of the cluster. However, our experi-
ments altered the default number of maps and reduces
through the following properties: mapreduce.job.maps
and mapreduce.job.reduces.
Table 4 shows a more detailed specification of re-

sources on different clusters used in this study. It is
worth noting that although each node had 15GB of
memory, the total memory in a cluster reserved 3.75GB
from each node for the operating system.

Data collection and feature extraction in Hadoop
In the data collection phase, a total of 6000 images were
collected from six different mobile phone cameras. All
of the mobile phones were from different brands and
models: iPhone 4S, iPhone 5S, Sony Xperia C, Sony
Xperia Z, Samsung Galaxy Note 3 and Samsung Galaxy
Note 4.A total of 1000 images are captured from each
mobile phone captured. These images are uploaded into
Amazon S3 cloud storage. The total size of the images

Fig. 2 Workflow of the experiment

Table 1 Cluster hardware configurations

Server No. of
nodes

Type of
Hadoop Node

Resources per
node

Amazon m3.xlarge instance
(Master node)

1 a) NameNode a) 15GB RAM
b) 80GB SSD

storage
c) 8 vCoresAmazon m3.xlarge instance

(Core nodes)
5–19 a) DataNode

Table 2 Cluster software configurations

Name Version

Amazon Linux AMI 2017.03.0

Java 1.7.0_55

Apache Hadoop 2.6.0

Apache Mahout 0.10.0
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reached 20 GB where the average size of each image was
3.4 MB. A Python script is written to extract the
conditional probability features using the MapReduce
framework. Although Hadoop is known to accept Java
MapReduce codes, it also provides a streaming API that
accepts other programming languages such as Python.
We carried out multiple rounds of feature extraction
each being in a cluster of different number of nodes. We
strictly enforced that each image would be assigned a
single map process and no reduce process was involved
by configuring two Hadoop’s properties as follows:
mapreduce.job.maps and mapreduce.jobs.reduces.
Besides that, Python’s Pillow library is used to carry

out image processing such as pixel manipulation in this
study. Pillow is an actively maintained fork of Python
Imaging Library (PIL). It provides various functions to
read and manipulate images. All 6000 images are read
into their respective 3D RGB pixel array.Then, they are
converted into 2D grayscale pixel array to allow 2D
DCT to be applied. We discuss conditional probability
features in more details in the following subsection.

Conditional probability features
The conditional probability feature set was initially pro-
posed in [15] based on JPEG coefficient values for image
steganalysis. Wahab and Bateman [17] used CP features to
identify the source camera of an image among four
different iPhone cameras. They managed to achieve 92.5%
accuracy with 27 extracted features. The CP features
capture software-related artifacts generated from the
absolute values of the three selected block wise DCT
coefficients during JPEG compression. Manufacturers

normally configure their devices differently to balance
compression and quality to their own tastes and needs.
This variation in the JPEG quantization table can be used
to identify the source of the image. In spite of that, al-
though it is expected that cameras of the same make and
model utilize similar quantization table during JPEG
compression, in previous studies CP features achieved
substantial performance for individual camera device
identification. This means the proposed feature extraction
method allows to develop intrinsic camera device finger-
print with relatively small size as well as small intra-model
similarity that is ideal to differentiate among camera de-
vices of even the same model. The feasibility of CP fea-
tures on individual camera device identification could be
explained based on the related study in [2]. The method
proposed statistical process control (SPC) as a tool for
identifying anomalies in the image acquisition process of
the digital camera. In this study, X-Moving Range and Ex-
ponentially Weighted Moving Average (EWMA) control
charts are used to highlight the variation for a subset of
the devices, in order to determine a suitable fingerprint
for matching a device to its source. Hence, it is possible to
assume that the CP features capture anomalies in the
JPEG compression process corresponding to individual
camera devices.
The CP features are computed as follows: (i) using the

DCT transform, the three DCT coefficients were se-
lected from the 4 × 4 left upper sub-block, in view of
the fact that the most non-zero coefficients are located
in that region; (ii) the method illustrated three possible
arrangements (horizontal, vertical and diagonal) of the
three selected DCT coefficients in 4 × 4 sub-block.
Figure 3 shows the different orientations of the three
DCT coefficients; (iii) based on the concept of condi-
tional probability, the image features were extracted by
evaluating the absolute values of three selected block-
wise DCT coefficients p, q and r in horizontal, vertical
and diagonal directions; (iv) for every selected p, q and r,
three preconditions with respect to event A and three
probabilities corresponding to event B were considered
as follows,

Table 3 Hadoop cluster memory configurations

Configuration name Default value (MB) Details

yarn.scheduler.minimum-allocation-mb 32 Minimum resource allocation for every container.

yarn.scheduler.maximum-allocation-mb 11,520 Maximum resource allocation for every container

yarn.nodemanager.resource.memory-mb 11,520 Total amount of resource that can be allocated for the containers

mapreduce.map.memory.mb 1440 The amount of memory for each map task.

mapreduce.map.java.opts -Xmx1152m Maximum JVM heap memory for map task.

mapreduce.reduce.memory.mb 2880 The amount of memory for each reduce task.

mapreduce.reduce.java.opts -Xmx2304m Maximum JVM heap memory for reduce task.

yarn.app.mapreduce.am.resource.mb 2880 The memory allocation for MapReduce Application Master.

Table 4 Cluster resources

No of nodes in
cluster

Total memory
(GB)

Total
vCores

Total
containers

5 nodes 56.25 40 40

10 nodes 112.50 80 80

15 nodes 168.75 120 120

19 nodes 213.75 152 152
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A1 : p < q;A2 : p > q;A3 : p ¼ q ð1Þ
B1 : r < q;B2 : r > q;B3 : r ¼ q ð2Þ

and, finally (v) the algorithm merged the event A and B
corresponding to a total of nine CP features. Thus, a
total of 9 × 3 = 27 CP features were computed for three
different orientations.

Image classification
We obtained 6000 feature files from the feature extraction
process. Then, we ran a Python script to convert and ap-
pend all the feature files into a single comma delimited
(CSV) file to matchApache Mahout’s input format. We
reduced the number of computing nodes to 3 and only
varied the number of mappers during the classification
process. The classification process implemented Mahout’s
Random Forest algorithm used the following default
options:

i) Number of trees to be generated, I = 100
ii) Number of attributes to be used in random

selection, K = 15

The number of random features to be selected, K, dur-
ing the build process is selected using cross validation
parameter selection. We have tested a range of numbers
and identified 15 as the selection that gave the best re-
sults. The performance of the algorithms are evaluated
using 10-fold cross validation method.The crossvalida-
tion method divides the extracted features into ten equal
sets. Each set is further divided into two groups: 90%
training set and 10% testing set. Then, it builds classifier
models for each set before averaging the performance of
all the classifiers. Cross validation produces a more reli-
able result as it uses a unique split when evaluating the
performance of the classifier. We repeated the classifica-
tion process using 1,3,5,7 and 10 mappers to observe the
performance of the model.

Results and discussion
In this paper, a distributed computing cluster was built
using Amazon EMR Hadoop. Multiple clusters with up to

19 nodes were used to demonstrate the effect of imple-
menting source camera identification process in distributed
computing. The execution times obtained on different
clusters are compared to a single node standard computer
having the same technical specifications. Table 5 shows the
experimental results.
An exponential decrease in processing times are re-

corded. A single node computer took nearly 3 h to
complete the source camera identification process. The
process included feature extraction of 6000 images and
classification.When the same process is run on a 5-node
cluster, we observed 34% improvement in processing
time. A similar pattern followed when 10, 15 and 19
nodes are used. We achieved 83% decrease when

Fig. 3 Conditional probability orientations: horizontal, vertical and diagonal

Table 5 Processing times of each different clusters

Type of cluster Processing time
(minutes)

Memory
Utilization (%)

vCores
Utilization(%)

Traditional computer
(m3.xlarge)

162 100 97.5

5 nodes 106.8 100 97.5

10 nodes 53.3 100 97.5

15 nodes 33.55 100 97.5

19 nodes 27.9 100 97.5

Fig. 4 Graph of processing times against number of nodes
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running the process in the 19-node cluster. On the other
hand, we achieved full memory utilization during the
process. Figure 4 shows the graph of processing times
against the number of nodes while Fig. 5 shows a
screenshot of the 19-node cluster utilization.
To gauge the performance of the Hadoop cluster fur-

ther, the speedup is also chosen as our metric. Speedup
is defined as the ratio of the execution time on a single
node computer (T1) to the execution time as the num-
ber of nodes in the cluster is increased. It is represented
by the following equation:

speedup ¼ T1=Tn ð3Þ

Figure 6 shows the speedup as more computing nodes
are added to the cluster. From the graph, it is evident
that we obtain an impressive linear speedup. It proves
Hadoop’s superiority when dealing with large datasets.
We have also noted that even the largest cluster used in
this study achieved full utilization. This shows that a
larger Hadoop cluster can be used to obtain better per-
formance. The claim holds true until the cluster begins
to show slower speed up and less utilization. In other
words, we would try to increase the size of the cluster
until its memory and vCores usage become less than

100%. It indicates that the cluster’s resources have
exceeded the demand from the source camera identifica-
tion process.
On the other hand, we reduced the cluster’s size dur-

ing the classification phase. We used a 3-node cluster to
build and test Mahout’s Random Forest classifier on the
dataset. As a justification, we have shrunk the cluster to
avoid resource wastage as the classification process was
less resource intensive. Our findings reveal that the
memory and vCores utilization were less than 50% of
the total available resource on average. Table 6 shows
the resource utilization across different number of
mappers.
We achieved good classification accuracies across the

cluster. Although we recorded a proportional drop in ac-
curacy with every map increase, the precision, recall and
F1 score maintained at values close to 1. We present the
scores in Table 7 shown below.
The accuracy ranges between 85 to 95% depending on

the number of mappers used.
We can observe that we gained 1% in accuracy as we

decreased a single mapper. This is due to the fact that as
the number of mappers increases, the amount of data
processed on each map tasks decreases, leading to
smaller trees being produced on each map task, which

Fig. 5 19-node cluster resource utilization

Fig. 6 Graph of speedup against number of nodes

Table 6 Cluster resource utilization during classification

Number of maps Memory Utilization (%) vCores Utilization (%)

1 12.5 8.3

3 33.3 29

5 41.6 37.5

7 41.6 37.5

10 54 50

Table 7 Random Forest classification results

Number of maps Accuracy (%) Precision Recall F1 score

1 95.3 0.954 0.953 0.953

3 92.9 0.932 0.933 0.933

5 90.1 0.906 0.902 0.902

7 87.8 0.885 0.879 0.879

10 85.4 0.862 0.855 0.854
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impacted the accuracy of the classifier. However, we also
take into consideration the precision, recall and F1
scores of the classifier. Our lowest performing model re-
corded 0.862 precision and only a slight drop in recall
and F1 score at 0.855 and 0.854 respectively. We con-
sider the mas a promising result because they are still in
close range to the best score of 1. Figure 7 shows the
graph of classifier accuracy against the number of maps.
Besides that, it is also important to observe the num-

ber of false positives during the classification. This can
be done through the confusion matrix. It indicates the
performance of the classifier by showing the number of
actual and predicted instances. Each column of the
matrix corresponds to the predicted class while each
row represents the actual class. Confusion matrix pre-
sents an easy way for analysis because all correct predic-
tions or also known as true positives will lie in the main
diagonal of the matrix. Tables 8, 9, 10, 11 and 12 show
the confusion matrix for each number of mappers used
in this study.
From the confusion matrices above, we can see that

Sony Xperia C had the best features because it per-
formed very well on all numbers of mappers tested.
Among possible reasons would be that the camera for
this model was significantly different from all other
models in the study. On the other hand, Samsung

Galaxy Note 4 was often misclassified as Sony Xperia Z.
In future works, more consideration will be put into re-
ducing the number of misclassifications or false positives
when classifying in a distributed environment. One pos-
sible solution would be fine-tuning Mahout’s hyper pa-
rameters so that as the mappers increased, the number
of trees grown in each mapper would be well balanced.
Based on the study, we can conclude that the time

taken for source camera identification is exponentially
reduced when all related processes are implemented in

Fig. 7 Graph of classifier accuracy against the number of maps

Table 8 Confusion matrix for 1 mapper

iPhone 4S iPhone 5S Xperia C Xperia Z Note 3 Note 4

394 4 0 7 11 5 iPhone 4S

2 391 0 6 2 6 iPhone 5S

0 0 423 0 0 0 Xperia C

1 5 0 408 5 2 Xperia Z

12 2 0 9 386 6 Note 3

2 1 0 26 4 398 Note 4

Table 9 Confusion matrix for 3 mappers

iPhone 4S iPhone 5S Xperia C Xperia Z Note 3 Note 4

372 13 1 13 14 8 iPhone 4S

3 386 0 8 4 6 iPhone 5S

0 0 423 0 0 0 Xperia C

3 4 0 403 10 1 Xperia Z

10 2 0 18 377 8 Note 3

4 4 0 30 13 380 Note 4

Table 10 Confusion matrix for 5 mappers

iPhone 4S iPhone 5S Xperia C Xperia Z Note 3 Note 4

355 17 1 27 12 9 iPhone 4S

3 381 0 15 5 3 iPhone 5S

0 0 418 0 3 2 Xperia C

6 8 0 395 10 2 Xperia Z

11 5 4 17 367 11 Note 3

6 14 0 42 14 355 Note 4

Table 11 Confusion matrix for 7 mappers

iPhone 4S iPhone 5S Xperia C Xperia Z Note 3 Note 4

342 22 2 28 18 9 iPhone 4S

6 370 0 19 5 7 iPhone 5S

0 0 421 0 2 0 Xperia C

6 13 4 386 12 0 Xperia Z

9 4 4 29 359 10 Note 3

7 21 0 45 24 334 Note 4

Table 12 Confusion matrix for 10 mappers

iPhone 4S iPhone 5S Xperia C Xperia Z Note 3 Note 4

334 29 2 35 12 9 iPhone 4S

9 372 0 15 4 7 iPhone 5S

0 0 419 0 4 0 Xperia C

1 5 0 375 5 2 Xperia Z

11 6 6 38 338 16 Note 3

7 27 0 54 29 314 Note 4
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distributed computing. While proper attention is re-
quired to fine-tune the classifier, we showed that the
classification accuracies were promising. Besides that,
our study also revealed that more resources can be
utilized to speed up the processing of datasets having
similar size like ours.

Conclusion
As we venture into an era where technology advances at
a rapid pace, more attention has to be given in the area
of digital security. We have investigated the effect of
implementing source camera identification method in a
distributed computing environment by using Apache
Hadoop. It was done to facilitate a fast and accurate
source camera identification process that generally con-
sumes a large amount of time. We implemented the
process of classifying images based on their source cam-
eras on Hadoop to study the difference in execution
time as the number of nodeswere increased. A total of
6000 images from sixdifferent mobile phones of different
models were collected and undergone the classification
process which started with image feature extraction in
Hadoop followed by image classification using Apache
Mahout’s Random Forest classifier.
In terms of execution times, Hadoop proved to be a

reliable distributed computing platform. The execution
times recorded in the experiment showed impressive im-
provements as the number of nodes increased. We
achieved almost a speedup of six when a 19-node cluster
was in place compared to a single node computer. In
general, we obtained a linear speedup as we added more
computing nodes in the cluster. The overall processing
times also showed exponential decrease across the
clusters. Besides that, all cluster resources were utilized
during feature extraction. The results provided a strong
evidence that more resources can be put to use to fur-
ther shorten the processing times.
In addition, we demonstrated Apache Mahout on

Hadoop which is a scalable machine learning tool. We
built a predictive model based on Mahout’s Random
Forest algorithm. Our results showed high accuracies
even as the number of mappers were increased. Al-
though it can be argued that a slight loss of accuracy oc-
curred in the process, other metrics such as precision,
recall and F1 scored showed that the model was reliable.
Furthermore, in order to argue that the dependency of
the accuracy of the Random Forrest classifier on the
number of map processes run was not a result of
randomness, a 10-fold cross validation was utilized. Al-
though only a single run was provided for each value,
yet 10-fold cross validation ran the algorithm for 10
different subsets of the training and testing dataset. As a
result, it is plausible to argue that the variation in per-
formance of the Random Forrest classifier was due to

the number of map processes run and was not due to
randomness.
In the future, we plan to improve in the area of classi-

fication accuracies in distributed computing by experi-
menting with different types of classifier algorithms.
Besides that, we would also like to investigate larger
scale resources to observe the capacity of the cluster to
handle large datasets. It is also interesting to analyze the
model’s performance among mobile phones of the same
model. As a conclusion, this study contributes to the
advancement in the field of image forensics as image
classification is done faster without complicating the
accuracy of the classification.
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