
Journal of Cloud Computing:
Advances, Systems and Applications

Jarray et al. Journal of Cloud Computing: Advances, Systems
and Applications  (2017) 6:27 
DOI 10.1186/s13677-017-0099-7

RESEARCH Open Access

Efficient resource allocation and
dimensioning of media edge clouds
infrastructure
Abdallah Jarray*, Ahmed Karmouch, Javier Salazar, Jocelyne Elias, Ahmed Mehaoua and Faisal Zaman

Abstract

Media Edge Cloud Data Centers (MEC-DCs) that are interconnected by a Metro Network were selected as
infrastructure to enhance the Quality of Experience (QoE) for end users of multimedia applications. Unlike the
traditional Data Centers, MEC-DCs, which are kept closer to the user, have limited availability of resources at a given
Data Center. Therefore, it is of paramount importance for Infrastructure service providers to efficiently dimension and
use the media resources in an environment where the applications have high resource demand and the infrastructure
has limited availability. To perform this task dynamically, we first propose a resource allocation strategy that considers
the physical characteristics of the networking layer while minimizing the costs of deploying media applications.
Second, we analyze the different configurations of the networking layer in order to enhance the use of MEC-DCs
resources and the QoE for the end-users. Simulation results show a clear advantage of this proposed
optimization-based approach over the benchmarks in terms of provisioning costs, blocking ratio and resource use.

Keywords: Media cloud service, Media edge data center, Resource allocation, Cloud provider, Optical network, Linear
programming, Column generation

Introduction
The evolution in network technologies is changing the
way in which communications are designed. With the
development of Web 2.0 that supports multimedia appli-
cations, customer expectations of rich media provisioning
have increased. Media applications are becoming essen-
tial to our everyday life [1]; their popularity is increasing
both because of the spread of social networks and the ease
with which they can share audio, videos, and streaming
services.
Media applications can vary from video sharing (such

as YouTube and Netflix), to online radio (Spotify) or
image sharing (Pinterest). Most of these services demand
a significant amount of media processing and have strin-
gent Quality of Service (QoS) requirements [2]. This
is particularly the case with User Generated Content
(UGC), with its huge volume of short videos and its
significantly fluctuating user demand. Cloud computing is
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gaining enormous momentum as a cost-efficient solution
for providing media services with storage and processing
requirements [3]. Large-scale public clouds that offer their
computing, storage, and network resources in the form
of Infrastructure-as-a-Service (IaaS) have attracted Cloud
Service Providers (CPs) [4–6].
A current area of rapid innovation is the use of Media

Edge Cloud Data Centers (MEC-DCs) using several hun-
dred servers [7, 8]. This MEC model allows CPs to reduce
their capital costs and to benefit from the elasticity of the
cloud by placing Virtual Machines (VM) running media
processing tasks closer to the end-users.
The Edge Cloud infrastructure uses smaller DCs located

in the last mile, closer to major population centers, in
order to honor Service Level Agreement (SLA) contracts
for the QoS requirements of highly interactive content
delivery: online searching (such as Google), social net-
working (such as Facebook), video streaming, and so on
[8]. This requires a topology located in the metropolitan
area that can transfer media data among DC locations.
Metro optical fiber networks have been investigated as
the best way to guarantee an efficient data transport
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service among MEC-DC locations [9]. Metro optical net-
works can indeed transport large files with short time
delays, making for a suitable architecture for applications
where avoiding delay is critical, such as on-line gam-
ing, video streaming and image sharing. Advancements
in optical communication have enabled the grooming of
low-granularity traffic using optical Multi-service Provi-
sioning Platform (MSPP) transponders [10]. Examples are
the media applications in social networks, often in the
form of small files like profile pictures or short videos.
To ensure the SLA of the hosted applications, it is

important that the cloud substrate resources and the link
latency constraints are satisfied. The presence of MEC-
DCs closer to the user gives service providers two advan-
tages over traditional DCs, (a) a reduction in the cost/bit,
and (b) an increased performance and throughput of
the application. On the other hand, compared to tradi-
tional DC networks, MEC-DCs have limited resources at
a given site. Smart site selection is important in order to
ensure both QoS and a minimum cost for the CPs. It is
our belief that overall substrate resource use is improved
if the incoming media cloud request is mapped to the
MEC-DCs simultaneously for both its networking and
computing requirements. Our approach, proposed in
“Media edge cloud resource allocation approach” section,
has two crucial improvements over related works in the
literature [11–20, 20]. The first improvement is a resource
allocation strategy that uses the physical characteristics
of the networking layer to reduce the deployment cost.
The strategy, referred to as L-CG-MEC, uses Column
Generation as a large-scale optimization technique for
mapping media cloud requests to the MEC-DCs. L-CG-
MEC defines a media cloud request as a Virtual Network
(VN); a set of nodes and a set of links with QoS require-
ments. The second improvement is to evaluate different
networking configurations so as to determine which can
provide better QoS.
The remainder of this paper is organized as fol-

lows. “Related works” section describes other work
related to our proposal. “Media cloud computing” section
defines the MEC-DCs resources allocation problem.
“Media edge cloud resource allocation approach” section
presents the mapping solution of media cloud requests
intoMEC-DCs infrastructure. “Numerical results” section
introduces benchmarks and simulation results to evaluate
performance. “Conclusion” section concludes the paper.

Related works
The literature contains a number of approaches to effi-
ciently solving the challenges of media cloud requests
mapping. This can be defined as mapping a set of incom-
ing media cloud requests on the MEC-DCs infrastructure
so as to enhance goals such as reducing cost, increasing
profit, or network use. It is important to ensure that the

QoS constraints of the incoming requests are satisfied.
The challenges mainly result from the increased com-
putational complexity when media cloud computing and
the requirements of networking resources are considered
jointly.
To overcome these issues, proposals in the literature

have considered either relaxing networking QoS by focus-
ing only on the computing requirements [11, 13] or
adopting a two-phase approach [14, 15, 18], which first
pre-selects the mapping of hosting nodes and then maps
virtual links.
The authors in [11] present a Bin-packing approach that

dynamically maps Virtual Machines (VMs) into Physical
Machines (PMs). As a result, networking requirements
are not considered in the optimization model, which may
mean that QoS requirements are not met.
In [12], the authors introduce an optimization algo-

rithm based on a multi-objective formulation that opti-
mizes the power used as well as the load balancing
among DC servers. But the cost of networking equipment
is not considered. The model therefore lacks a realis-
tic evaluation of the economic benefits of cloud service
requests and could also result in QoS requirements not
being met.
In [13], the proposal is for two cloud VN embedding

approaches using an optical network. The author’s focus is
to minimize the power and spectrum used. The proposal
does not detail the dimensioning of the optical layer and
the impact of networking parameters on the quality of the
services offered. The parameters of the optical networking
layer are likewise not considered.
In [14], the authors use a two-phase mapping approach,

which first preselects the mapping of hosting nodes and
then maps virtual links. Node mapping and link mapping
are performed independently. Hence, non-join node and
link embedding may result in a high number of blocked
requests and in underused resources, meaning less profit
for the cloud provider. In addition, the mapping is done
using heuristic approaches, which may make the solution
less than optimal.
The authors in [15] propose a mathematical program-

ming scheme in order to coordinate node and link
mapping. The proposal handles online Virtual Network
requests and introduces a better correlation between vir-
tual node and virtual link embedding phases. However,
the solution seems less satisfactory than simultaneous
mapping.
In [18], the authors propose a greedy algorithm that

jointly optimizes the global workload assignment and the
local VM allocation in order to minimize the resource cost
under the response time requirements. While the focus is
on themedia cloud request and the stringent QoS require-
ments, the analysis does not study the impact of the key
networking layer factors on performance.
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The authors of [19] study a joint optimization model
that is geographically distributed and interconnected
using an optical network. However, the resource alloca-
tion applies more to a general IaaS request model. The
impact of the networking layer on a higher QoS received
much less attention.
The proposal in [20] is possibly the closest to our work.

The light-trial approach adapts well for multi-casting
applications. The proposal also considers the character-
istics of the optical layer. However, the authors do not
analyze the impact of the networking layer on the QoS
for media cloud applications and their resource allocation
proposal is better suited to general IaaS requirements.
In [21], the authors propose a next-generation, ubiq-

uitous, converged infrastructure. The proposal connects
fixed and mobile end users with Data Centers through
a heterogeneous, network-integrating optical metro net-
work, based on time-shared network technology and
wireless access. The approach ensures allocation of the
required resources across all technology domains to sup-
port their specific characteristics such as end users’
mobility.
In [22], the authors provide a VN planning scheme with

the development of Wavelength Division Multiplexing
(WDM) techniques and cloud computing. The approach
uses a united virtualization of optical and server resources
that collaboratively incorporates the optical backbone into
Data Centers. The authors demonstrate the effectiveness
of their strategy in the context of power outages and
evolving recovery.
In [23], the authors use compressive sensing (CS) tech-

niques to support scalable service provisioning in con-
verged optical/wireless clouds. They claim that the CS
techniques achieve optimal service provisioning with
significantly reduced control and less computational
complexity.
In [24], the authors use a column generation approach

for the VN embedding. Their focus is on ensuring
resiliency for the accepted VN requests. The network
is formed by interconnected, geo-distributed DCs that
are not limited by their computing resources. In this
paper, the network topology is composed of Edge DCs
with limited resources. As a result, the focus of our
work is on ensuring QoS even with those limited
resources.
In [25], the authors propose a VN embedding approach

on a wireless optical network. Incoming VN requests
are mapped to a local Wireless Mesh Network (WMN)
so as to reduce the transmission power. If a request is
not satisfied by the WMN, it is mapped to the Optical
Edge Network. The main constraints, however, are the
computational power and the wavelength availability. In
addition, the modeling ignored several optical network
attributes such as node grooming capacity and different

optical architectures. In our work, we consider the opti-
cal network characteristics in order to make an informed
decision on the VNs’ mapping location and the availability
of DC resource.
In [26], the authors propose an approach to determine

the risk associated with a given Virtual Machine using
threat and vulnerability factors. These factors identify
which incoming VN requests can be risky. The main deci-
sion on the location of VM is governed by how risky the
VN requests are. In our work, by contrast, the decision
is based on the characteristics and performance of the
network.
Most of these works had the following common fea-

tures: (1) the use of two-phase VN mapping, (2) the
general Infrastructure as a Service (IaaS) requirements,
and (3) the mapping of VN request one at a time (i.e.,
online). Our proposal differs as follows: (1) for each
accepted media cloud request, we calculate the optimal
one-shot networking and hosting scheme with respect to
QoS requirements (latency, bandwidth, computing, and
mapping location). This guarantees a better use of MEC-
DCs resources and an increased number of accepted VN
requests, (2) media cloud requests are served by batch (see
“Small-batch MEC mapping” section) which allows us to
calculate a better mapping solution over time.

Media cloud computing
Media edge cloud architecture
Two classes of DC-based cloud architecture can be iden-
tified. They are (1) large, geographically distributed DCs,
and (2) MEC-DCs as shown in Fig. 1. Large DCs are
centralized and highly manageable, thereby providing an
economy of scale. However, geographically distributed
DCs have inherent limitations in service hosting. Sim-
ple economic factors determine that they are built only
in locations where capital and operational costs are low.
Large DCs are therefore generally located far from end-
users. This may result in failed QoS requirements (such
as latency and bandwidth/throughput) as well as higher
networking costs. To address these drawbacks, Edge DCs
(such asMicro-DCs and Edge Cloud) have been proposed.
This new class of small-scale DCs, known asMEC-DCs, is
well suited to service hosting. In MEC architecture, media
content and processing are pushed to the edge of the cloud
based on user profile.

Networking transport architecture
As mentioned, MEC-DC locations are interconnected
using a metro optical network. A metro optical network
is able to transport large files with short time latency,
making it suitable for critical-delay applications such as
on-line video gaming, video streaming and image shar-
ing. An optical light-path transport architecture is used
to allow grooming of low-granularity traffic using optical
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Fig. 1 Position of media edge clouds in Internet

MSPP transponders. We provide details in the following
sections on the transport architecture.

Light-Path transport architecture
Data flows among MEC-DC locations are transported
using a set of light-paths built on wavelengths available on
each fiber link that interconnects MEC locations. A light-
path is an optical routing path that allows communication
between the set of nodes along the path. A light-path
uses only one wavelength between its end-nodes. AMulti-
service Provisioning Access Platform (MSPP) transponder
is used to add signals to or drop them from a wavelength
at a given MEC-DC node.

Add/Dropmedia request in edge cloud node
A Multi-Service Provisioning Platform (MSPP) fabric is
set up in each node of the interconnecting MEC-DC
locations. MSPPs allow data flow to be added to or
dropped from network transport signals according to traf-
fic demand. Apart from the conventional SONET signals,
MSPPs handle a wide variety of client signals (Gigabit
Ethernet, ATM, IP, and so on). Furthermore, the MSPP
equipment is modular and can be configured by select-
ing the component appropriate for the desired network-
ing task for a given node [10]. Of these components,
transponders, the interfaces between the optical and the
electrical domains, make up the main element of cost on
a MSPP fabric. MSPP transponders are used to add/drop
and groom low-client signals into wavelengths.

Media edge cloud resource allocation approach
Resource allocation is one of the most important aspects
of MEC-DCs management, since it is directly related
to the cost and the QoS requirements of media cloud

services. Efficient resource allocation has a positive
impact on the service provider’s profitability. The resource
allocation problem is to minimize hosting and networking
costs while preserving QoS constraints. The QoS require-
ments are: (1) Specific data transfer capacity with a short
latency, (2) Pre-defined computing and graphic processing
capacities, (3) Storage and memory capacity, and (4) Spe-
cific processing order of each task to compose the media
cloud request. MEC-DCs Resources are allocated to the
incoming media cloud requests in a batch-wise fashion, as
described in the following section.

Small-batch MECmapping
In a realistic scenario, media cloud requests usually do not
arrive one after another at regular time intervals [15]. A
realistic mapping scenario of MEC requests may therefore
involve an approach, in which MEC requests are queued
and then processed in small batches in order to opti-
mize costs for the MEC provider over time [17]. To do
so, we divide the mapping planning time into a set of
consecutive short periods (windows) and we describe the
demandwith a set ofMEC requests, one for each newwin-
dow. From one period to the next, we assume that most
MEC requests remain the same, representing as an exam-
ple the global steady-state of the long-term Service Level
Agreement (SLA) between the provider and its customers.
The change in demand can therefore be measured with
a turnover rate, such as 20% of incoming (new) and 30%
of leaving (drop or ending) requests. Expressed more pre-
cisely, let P be the set of mapping planning periods of time
andM(0) the initial set of MEC requests. The set of MEC
requestsM(p) indexed by p ≥ 1 is defined as:

M(p) = M(p − 1) + MNEW(p) − MDROP(p) (1)
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Where M(p − 1) is the set of accepted MEC requests at
the end of period p− 1.MNEW(p) is the set of new incom-
ing and MDROP(p) is the set of ending MEC requests at
the start of period p. Where NEW and DROP are randomly
selected between 10 and 40%, giving us a range of cases
from slowly fluctuating (10%) to quickly changing (40%) of
MEC demand.

Mathematical modeling
To evaluate the merits of the allocation approach of MEC-
DCs resources, we propose a mathematical formulation as
follows.
The MEC-DCs infrastructure is represented by a

directed graph Gm = (Hm,Em), where Hm is the set of
MEC-DCs locations, and Em is the set of optical fiber
links. The network topology is composed of either a Uni-
directional Path Switching Ring (UPSR), consisting of one
optical directional fiber, or a Bidirectional Path Switch-
ing Ring (BLSR), consisting of two fibers, one in each
direction.
End-to-end delay between two MEC-DC nodes is also

impacted by the number of MSPP transponders used in
the light-path. Figure 1 shows an example of MEC-DCs,
where each physical optical link e ∈ Em between two
MEC-DC locations offers W wavelengths, each of which
has a bandwidth capacity B. We define a light-path l as a
set of consecutive optical links. We denote by L the set
of light-paths available to serve the networking require-
ments of media cloud requests Mn, n ∈ N . Candidate
light-paths can be calculated using a K-shortest path algo-
rithm [27] for all couples of MEC-DC locations that are
connected using optical WDM links. Either ring or mesh
topologies can be used in calculating the paths. The ring
topology is evaluated in “Numerical results” section. It
is considered because most current metro topologies are
ring-based and still favored over mesh topologies because
of their inherent simplicity of design and low OPEX.
Client signals can be added and dropped on any MEC-

DC hosting node u using MSPP transponders NMSPP(u).
In addition, each MEC-DC hosting node u ∈ Hm offers
a Compute Processing Unit (CPU) capacity Pu, a Graphic
Processing Unit (GPU) capacity Gu, a memory capacity
Mu, and a storage capacity Su. Table 1 shows the generic
description of these parameters.
Similarly, a media cloud request is divisible into a set of

interdependent atomic tasks modeled as a weighted, undi-
rected Task Dependencies Graph (TDG) Mn = (Tn,An),
where n ∈ N = {1, 2, . . . , |N |}. Tn denotes the set of
Tasks and An the set of directional virtual networking
links between tasks that form media cloud request Mn.
Figure 2 shows an example of a TDG graph. Amedia cloud
request could be, for example, a MapReduce request [32]
where the input is a huge amount of data split into smaller
parts. The Mapper code is executed on every part, and

Table 1 Notation of MEC-DCs infrastructure

Parameters Description

Substrate network Gm(Hm , Em)

Hm Set of substrate nodes

Em Set of substrate bidirectional links

L Set of optical light-paths in susbtrate

W Number of wavelength per link

B Bandwidth wavelength capacity

NMSPP(u) Number MSPP transponders at node u

Pu CPU capacity of node u

Gu GPU capacity of node u

Mu Memory capacity of node u

Su Storage capacity of node u

csu Storage unit price of substrate node u

cpu CPU unit price of substrate node u

cmu Memory unit price of substrate node u

cgu GPU unit price of substrate node u

cbe Bandwidth unit price of substrate link e

all the results after Sort/Shuffle are sent to one or more
reducers that merge all the results into one. More specif-
ically, according to the dependency graph, task T1 is the
Splitter/initializer, T2, T3 and T4 are the Mapper, T5 is
the Shuffle/Sorter and T6 is the Reducer that combines
the results.
Each task t ∈ Tn has a set of VM cloud comput-

ing requirements: (a) CPU capacity pt , (b) GPU capacity
gt , (c) memory processing requirement mt , (d) storage
capacity st , and (e) processing order ot with respect to
any t ∈ Tn. Similarly, each link a ∈ An has network-
ing requirements: (a) data transfer capacity btt′ between
media service sub-tasks t and t′, and (b) maximum num-
ber of Optical-Electrical-Optical (OEO) conversions htt′
of an optical path that links tasks t and t′, as the time delay
in the transport signal is affected mainly by the number
of conversions between electrical and optical domains. It
should also be noted that loading client signals requires
an OEO conversion of the transport signal (wavelength).
Table 2 shows the description of these parameters.
Each media cloud request Mn can be divided into host-

ing and network mapping. Each virtual hosting node t ∈
Tn from a media cloud request n is mapped into substrate
hosting nodes u ∈ Hm by mappingMN : Tn �→ Hm.
Similarly, each virtual link a ∈ An belonging to a media

cloud request n is mapped to an optical light-path l ∈
lau,v ⊂ L by mappingML : An �→ L, where (u, v) are MEC-
DC nodes assigned to virtual nodes, respectively the (s, d)

source and destination nodes of virtual link a.
When a media cloud request arrives, the CP has to

determine whether to accept or reject it. This decision
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Fig. 2 Task dependencies graph

is largely based on the QoS requirements of the request,
the availability of MEC-DCs resources, and the economic
cost of accepting the request. Since we are focusing on
cloud computing and optical networking, we propose to
calculate the mapping cost of each service request
n, Gn = (Tn,An), as follows.

COST[Mn]= COST [MN(Tn),ML(An)] . (2)

Details of mapping cost calculation are provided in the
following section.

Column Generation formulation for MEC-DCs resource
allocation (L-CG-MEC)
To avoid the scalability issue identified in the Integer
Linear programming formulation [28], we propose the

Table 2 Notation for media cloud requests

ParametersDescription

Virtual Network Mn(Tn , An)

N Set of virtual network requests

Tn Set of tasks in request n

An Set of directional links between tasks

s and d Source and destination nodes

pt Required CPU capacity of task t

gt Required GPU capacity of task t

mt Required memory capacity of task t

st Required storage capacity of task t

ot Processing order of task t

btt′ Transfer bandwidth between tasks t and t′

htt′ Maximum number optical-electrical-optical conversions of a
light-path that links tasks t and t′

lau,v Set of optical light-paths between substrate nodes u and v
used for mapping of virtual link a.

approach L-CG-MEC using the Column Generation tech-
nique [29]. We reformulate the resource allocation prob-
lem in terms of Independent Media Cloud Configurations
(IMCCs). An IMCC configuration (Fig. 3) defines the
mapping solution of at least one MEC request; it is rep-
resented by the set of substrate nodes used to handle
resource requirements (CPU, memory, GPU and storage)
and the links/light-paths, all with the same wavelength,
used to connect these nodes. We denote by C the set
of all possible IMCCs. The resource allocation problem
can then be formulated with respect to the variables
(λc), c ∈ C. Here, variable λc = 1 if IMCC c is used
in the mapping solution and 0 otherwise. In the new
formulation, the MEC mapping problem is to choose a
maximum of W IMCCs, as W wavelengths are avail-
able in each optical fiber link. Each IMCC is mapped on
one WDM wavelength. The resulting configuration cor-
responds to what is known as the master problem in a
column generation approach [29], while each IMCC con-
figuration corresponds to what is known as the pricing
problem.
An IMCC configuration c ∈ C is defined by the

vector (acn)n∈N such that: acn = 1 if IMCC c serves
media cloud request Mn and 0 otherwise. We denote
by COSTc the cost of configuration c. This corre-
sponds to the costs of the resources used (hosting and
networking) for the set of MEC requests granted by
IMCC c.
The use of Column Generation divides the orig-

inal problem into a master problem and a pricing
problem: (1) The problem of finding the best sub-
set among the already generated IMCCs that mini-
mize the objective function: mapping resources cost,
and (2) the problem of generating an additional col-
umn (IMCC) to the constraint matrix of the master
problem.
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Fig. 3 Combining IMCCs in order to build a mapping solution for
media cloud requests

Master problem
The master problem, denoted by IMCC-ILP, is defined as
follows:

Objective function:

min
∑

c∈C
COSTc λc (3)

where

COSTc =
∑

u∈Hm

Tc(u) × cMSPP +
∑

e∈Em
Bc(e) × cbe

+
∑

u∈Hm

Sc(u) × csu + Pc(u) × cpu + Mc(u) × cmu

+ Gc(u) × cgu
(4)

csu, c
p
u, cmu , c

g
u and cbe are respectively unit costs of storage,

CPU, memory, GPU and bandwidth at MEC-DC loca-
tion u and optical link e. Tc(u) is the number of MSPP
transponders used in node u by IMCC c. cMSPP denotes
the unit cost of a MSPP transponder. Bc(e) is the band-
width used on optical link e by IMCC c. We also denote
by Sc(u), Pc(u), Mc(u) and Gc(u) respectively the stor-
age, CPU, memory and GPU in MEC-DC location u used
by IMCC c. We note that the objective function Eq. (3)
minimizes the mapping cost of accepted MEC requests.

Constraints
∑

c∈C
λc × Sc(u) ≤ Su; u ∈ Hm (αu) (5)

∑

c∈C
λc × Pc(u) ≤ Pu; u ∈ Hm (βu) (6)

∑

c∈C
λc × Gc(u) ≤ Gu; u ∈ Hm (γu) (7)

∑

c∈C
λc × Mc(u) ≤ Mu; u ∈ Hm (ηu) (8)

∑

c∈C
λc ≤ W ; (u0)

(9)

∑

c∈C
λc ×Tc(u) ≤ NMSPP(u);u ∈ Hm (ζu) (10)

∑

c∈C
λc × anc ≥ 1; n ∈ N (ψn) (11)

Equations (5), (6), (7) and (8) guarantee the respect
of available physical storage, CPU, GPU and memory
capacity respectively. Equation (9) defines the number
of WDM wavelengths available per optical link (fiber)
l to guarantee the transport of data flows among MEC
locations. Equation (10) defines the number of MSPP
transponders available in optical network node u to
add/drop/groom request flows to/from/with the wave-
length available in the optical fibers connecting MEC-DC
locations. Equation (11) guarantees that service requests
can be satisfied with the available MEC-DCs resources.

Pricing problem
As mentioned previously, the pricing problem is to gen-
erate an additional configuration (IMCC), an additional
column, for the constraint matrix of the current master
problem. It is defined as follows.
Let αu, βu, γu, ηu, u0, ζu, θu and ψn be the dual variables

associated with constraints (5), (6), (7), (8), (9), (10) and
(11) respectively. Then, the reduced cost of variable λc can
be written:

COSTc = COSTc +
∑

u∈Hm

(αu × Sc(u) + βu × Pc(u)

+ γu × Gc(u) + ηu × Mc(u) + ζu × Tc(u)) + u0
−

∑

n∈N
anc × ψn

(12)

We now express (12) in terms of the decision variables
of the pricing problem. Those variables are defined as
follows.

• zn = 1 if media cloud requestMn is served by IMCC
c and 0 otherwise.

• yu = 1 if a MSPP transponder is installed in
MEC-DC location u ∈ Hm and 0 otherwise.
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• xal = 1 if virtual link a ∈ An is assigned to light-path
l ∈ La and 0 otherwise, where La is the set of
light-paths where their lengths do not exceed the
number of OEO conversion htt′ allowed for a virtual
link a = (tt′) ∈ An, n ∈ N .

• xtu = 1 if task t ∈ Tn is assigned to MEC-DC location
u ∈ Hm and 0 otherwise.

Next, we derive the relations between the pricing vari-
ables and the coefficients of the master problem. For each
c ∈ C and n ∈ N , anc = zn, and for each node u ∈ Hm, we
have:

Sc(u) =
∑

n∈N

∑

t∈Tn

st × xtu (13)

Pc(u) =
∑

n∈N

∑

t∈Tn

pt × xtu (14)

Gc(u) =
∑

n∈N

∑

t∈Tn

gt × xtu (15)

Mc(u) =
∑

n∈N

∑

t∈Tn

mt × xtu (16)

Tc(u) = 2 ∗ yu (17)

Constraints:

Mapping of media cloud service tasks

i. Mapping is done for all tasks of an accepted media
cloud requestMn.

zn ≤
∑

(u,u′)∈H2
m

xtu xt
′
u′ ; (tt′) = a ∈ An, n ∈ N . (18)

ii. A task t of an accepted requestMn is assigned to
only one MEC-DC location node u.

∑

u∈Hm

xtu ≤ zn ; t ∈ Tn, n ∈ N . (19)

Mapping of media cloud request link

xtuxt
′
u′ ≤

∑

l=(u,u′)∈Lau,u′

xal ; (u,u′) ∈ H2
m, (tt′) = a ∈ An.

(20)

Where Lau,u′ is the set of light-paths between node u
and u′ having a number of O-E-O conversions less than
allowed value htt′ for virtual link a = (tt′). The con-
sideration of htt′ has the following two major roles in
determining the optimal solution:

1. It ensures that the number of O-E-O conversions are
not more than the maximum allowed for each virtual
link of any media cloud request. This is important
because metro networks often are not composed of

optical amplifiers. The amplifiers are used mostly in
Wide Area Networks, with a significant distance
between source and destination.

2. It also ensures that data is placed in the closest
MEC-DC, which can ensure QoS and cost
requirements.

Accordingly, if request Mn is accepted, then at least
one light-path l is assigned to allow data transfer between
tasks t and t′ assigned respectively toMEC-DC locations u
and u′.

Number of MSPP transponders
∑

n∈N

∑

t∈Tn

xtu ≤ M × yu ; u ∈ Hm. (21)

An add/drop/grooming MSPP transponder port is set
up in a MEC-DC location node u if at least one con-
stituent task of a media cloud request is assigned to
this location. We note that M is constant and should be
equal to or greater than the maximum number of vir-
tual nodes a ∈ An that can be mapped to substrate node
u. M = G × NMSPP(u), where NMSPP(u) is the num-
ber of available MSPP transponder in node u and G is
the grooming factor, i.e., the number of client signals
that can be uploaded on each wavelength using a MSPP
transponder.

Wavelength bandwidth capacity
∑

n∈N

∑

a∈An

∑

l∈La
xal × δel × ba ≤ B ; e ∈ Lm. (22)

where ba is the bandwidth transfer requirement between
any pair of tasks (t, t′) = a ∈ An. B is the bandwidth
capacity of the wavelength supporting all light-paths and
δel = 1 if light-path l uses optical substrate link e.

Wavelength grooming factor
∑

n∈N
zn ≤ G. (23)

G is the wavelength grooming factor that allows con-
trol of the number of media cloud requests that can be
loaded on a given wavelength (IMCC). By so doing, CP
controls the load and congestion of optical network links.
It allows the Cloud Provider to define a maximum use on
the most congested links. In addition, it avoids an optical
link becoming overloaded, thereby improving the latency
experienced.

Linearization of quadratic terms Constraints (18) and
(20) include quadratic terms xtuxt

′
u′ . However, since this

quadratic term is the product of two binary variables, it
can be linearized easily by replacing the this term with
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a new binary variable yt,t
′

u,u′ where yt,t
′

u,u′ = xtuxt
′
u′ and by

adding the following constraints.

yt,t
′

u,u′ ≥ xtu (24)

yt,t
′

u,u′ ≥ xt
′
u′ (25)

Inequalities (24) and (25) ensure that yt,t
′

u,u′ is zero if
either xtu or xt

′
u′ are zero.

yt,t
′

u,u′ ≥ xt
′
u′ + xtu − 1 (26)

Inequality (26) ensures that yt,t
′

u,u′ takes value 1 if both
binary variables xtu or xt′u′ are set to 1. In our simulation,
this linearization technique is done implicitly by the linear
solver CPLEX [30].

Solving L-CG-MECmodel:
This section discusses the steps involved in solving the
L-CG-MEC model formulated in “Media edge cloud
resource allocation approach” section.

Solving linear relaxation of the problem
We use the following Column Generation method
to generate an embedding solution for media cloud
requests.
ColumnGenerationProcedure():

1. Denote LP(M) the continuous relaxation of the
master problem ILP(M) obtained by exchanging the
integrality constraint (12) by λc ∈ [0, 1] for any c ∈ C.

2. Initialize LP(M) by a dummy subset, that is, a set of
artificial IMCCs with a zero cost.

3. Solve the linear relaxation LP(M) of the master
problem optimally using the CPLEX solver. Then go
to step 4.

4. Solve optimally the pricing problem as follows:

(a) First, solve the pricing problem using a
heuristic developed based on K- shortest path
and the technique of node/link stress function
proposed in [14].

(b) If this heuristic generates a new column with
a negative reduced cost, go to step 5.

(c) Otherwise, Solve exactly the pricing problem
using the CPLEX solver. Then go to Step 5.

5. If a column with a negative reduced cost has been
found, add this column to the current master
problem and repeat Steps 3 and 4. Otherwise, the
master problem is optimally solved.

The optimal solution of LP(M) only provides a lower
bound on the optimal integer solution ILP(M). To derive
an integer VN embedding solution, we use the following
approach.

L-CG-MEC-B&B approach
• Remove relaxation on variable λc.
• Apply the classic Branch-and-Bound CPLEX

procedure on the optimal solution of the linear
relaxation LP(M) generated using
ColumnGenerationProcedure().

Complexity analysis
How often Cplex solver is used?
The use of the Column Generation technique means that
the MEC mapping problem is divided [29] into a mas-
ter problem (which includes constraints related to the
availability of substrate resources) and a pricing problem
(which includes the constraints related to the embedding
resources used for granted MEC requests). The problem
becomes one of generating an IMCC that improves the
current value of the master objective function. To check
the optimality of a solution of the LP(M) master model,
a sub-problem called the pricing problem is solved to
try to identify new columns (IMCC configurations) with
negative reduced cost.
At each new iteration of the column generation pro-

cess, the master problem is solved to optimality using a
CPLEX solver to guarantee the optimality of the solution
obtained at the previous iteration [29]. A CPLEX solver
is used to solve the pricing problem only if the heuristic
approach based on k-shorted path is unable to find a new
IMCC configuration (column) with a negative reduced
cost. Accordingly, CPLEX is used only very infrequently to
solve the pricing problem at the last iterations of the Col-
umnGeneration process and to prove the optimality of the
mapping solution. By so doing, we speed up the column
generation approach and we guarantee the optimality of
the LP(M) solution.

Would determining all IMCCs in an online manner incur
significant latency?
The Column Generation approach addresses the high
computation time of the MILP problem by dividing the
MEC embedding problem into a set of sub-problems. A
sub-problem involves embedding a small number of MEC
requests. The solution is represented by an IMCC con-
figuration. Enumerating all IMCCs takes a huge amount
of time: there are simply too many, an exponential
number. The key concept of the Column Generation
optimization approach is that there is no need to enu-
merate all IMCC configurations. Only a few of them are
used to serve the MEC requests and the sub-problems
track and generate them. The solving of linear relax-
ation LP(M) of the master problem chooses a max-
imum of N IMCCs each time to serve the N MEC
requests. The solving of LP(M) is done in polynomial
time [33] since the number of generated columns is
quite small.
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Numerical results
Simulation benchmark
To better illustrate the efficiency and superior per-
formance of the Column Generation approach L-CG-
MEC, we compare our proposal to the performance
of three well-known virtual network embedding algo-
rithms found in the literature, using a well defined set
of metrics.

• Two-phase mapping approach (2-Phase-Mapping)
[14], which first pre-selects the mapping of hosting
nodes and then maps virtual links.

• Bin packing [11] (BP), where hosting and network
requirements are mapped using a Bin per type of
media cloud resource. The Bin packing in [11]
introduces a method for forming and classifying Bins
based on the resources available. Using the
information of Bin classification, the incoming
requests are mapped accordingly. The pseudo code
for mapping of incoming requests using Bin packing
is shown in Algorithm 1.

• Greedy node mapping combined with a K-shortest
path algorithm for the link mapping phase
(Multi-Site) [18]. The main difference between the
greedy approach and Bin packing is that we classify
Bins based on the resources. With the greedy
approach, the model follows some of the well-known
queue approaches such as First In First Out. We
arrange the incoming requests in ascending order of
their cost. Cost is defined by the function described
in equation (2). The requests then are mapped to the
MEC-DCs infrastructure. The pseudo-code for the
resource allocation is shown in Algorithm 2.

Two main metrics differentiate our proposals from the
benchmarks. These are (1) the applied MEC request map-
ping approach, i.e., one-shot vs. two-phase embedding,
and (2) small-batch vs. online mapping. To highlight the
advantages of the one-shot node and link embedding
approach, we compare our proposal to the 2-Phase-
Mapping embedding approach. To evaluate the perfor-
mance of small-batch vs. online embedding, we use BP
and Multi-Site as benchmarks.

Experiment setup
To evaluate the efficiency of the L-CG-MEC model,
we carried out experiments using IBM CPLEX solver
[30]. The experiments were conducted with a physical
infrastructure of 10 MEC-DCs interconnected through
a ring metro WDM optical network topology [20]. For
each media cloud request, virtual nodes, between 2
and 20 in number, are randomly but uniformly dis-
tributed. The minimum connectivity degree is fixed to
2 links. QoS requirements are randomly determined

Algorithm1:Adaption of Bin Packing proposed in [11]
for MEC-DCs resources allocation
Input : Set of Bins B, virtual tasks Tn
Let bi ∈ B represent the set of bins
AcceptedNode a set of nodes that can be hosted in B
SearchAndMapToBin(Tn, pt , gt ,mt , st)
begin

foreach t in Tn do
Search a bin in B which satisfy
pt , gt ,mt , st of t.

end
Return {Bin bi, Satisfied Tn }

end
foreach n ∈ N do

foreach Tn do
AcceptedNode[] ←
SearchAndMapToBin(Tn, pt , gt ,mt , st)

end
end
Output: bi responsible for hosting tasks Tn, and set of

accepted tasks in Tn

Algorithm 2: Adaption of Multi-Site in [18] for MEC-
DCs resources allocation
Input : Cost of resources at substrate Hm,virtual

tasks Tn ,QoS requirements for tasks Tn
Cost(pt , gt ,mt , st)
begin

Costt = UnitCost(p) * pt + UnitCost(g) * gt +
UnitCost(m) *mt + UnitCost(s) * st
Return {Costt}

end
foreach n ∈ N do

foreach t ∈ T do
Costs[] ← Cost(pt , gt ,mt , st)

end
end
Arrange Costs[] in Ascending order
foreach t in Costs[] do

Not Possible to Map the request
end
foreach AcceptedNode[] do

lau,v ← Calculate K- Shortest path b/n s and d for t
end
foreach path ∈ lau,v do

if(path satisfied the QoS)
AcceptedRequest[] ← a
Continue
else(Mapping Not Possible)

end
Output: Accepted Tasks in Tn, Path between hosting

substrate nodes Hm
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by a uniform distribution among the following QoS
classes [31]:

1. High-level delay sensitivity 1 (On-Line Gaming):
requires High bandwidth and low latency.

2. High-level delay sensitivity 2 (High Definition
Telepresence): requires high bandwidth connection
and storage due to high data volume and GPU for
real-time audio-visual processing to support a high
level of immersion and natural interaction between
participants, as in face-to-face meetings.

3. Mid-level delay sensitivity 1 (Live video streaming
e.g., sport event): requires minimum latency and high
CPU/GPU powers.

4. Mid-level delay sensitivity 2 (Office applications e.g.,
CRM solutions): requires high storage capacity.

5. Loose-level delay sensitivity (Yahoo and Google
Mail): requires loose sensitive delay and high storage
capacity.

Bandwidth/CPU/GPU/memory/storage unit cost, are
expressed in terms of $X, which represents the price of 1
Mb of bandwidth or 1 unit of CPU/GPU/GB.

Performance evaluation metrics
In our experiments, we evaluated the following metrics.

1. Mapping Cost: The cost of the MEC-DCs resources
used.

2. Media cloud demands’ blocking ratio: Blocking ratio
measures the overall number of rejected MEC
requests at each embedding period. It is the ratio of
the number of rejected requests to the overall
number of requests. While it gives a sense of how
well an algorithm is performing, it cannot completely
capture the performance and customer satisfaction,
as these depend on the quality and the cost of the
service. In fact, depending on the cost of MEC
requests, it is possible for 10% of MEC requests, as an
example, to provide a revenue equivalent to that
offered by the remaining requests.

3. Wavelength utilization: The average ratio between
the used and the overall amounts of available
wavelength bandwidth.

4. CPU/GPU/Storage utilization: The ratio between the
used and the overall available amounts.

5. Average number of hops: The average number of
hops per mapped virtual link.

Evaluation results
This section describes the performance of the L-CG-MEC
approach compared to related works in terms of resource
usage. We also analyze the key factors that impact the
optical transmission network among MEC-DC locations

(wavelength grooming factor, number of wavelengths, and
the network linking topology (i.e., UPSR vs. BLSR)).

Efficiency of light-path resource allocation approach
We first study the performance of the proposed L-CG-
MEC model compared to the benchmarks in terms of
mapping cost, media cloud blocking ratio, CPU, GPU
storage and wavelength bandwidth usage.
Figure 4a plots the cumulative CP mapping cost against

the allocation time periods. It compares the mapping
cost for L-CG-MEC and for benchmark models BIN, 2-
Phase-Mapping and Multi-site. The results show that the
L-CG-MEC model provides the lowest cost by approxi-
mately 37% compared toMulti-Site, which had the highest
cost during the simulation run period 10. The cost for the
greedy approaches,Multi-Site and BP, is high because they
inherently map requests without optimizing. By contrast,
the 2-phase-mapping solution is solved for optimization,
resulting in minimal cost.
Figure 4b plots the blocking ratio of media cloud

requests against the allocation time periods. The Bin and
Two-Phase-Mapping approaches show a major blocking
ratio on some periods and a higher cumulative cost.Multi-
Site provides the lowest blocking ratio, but at the highest

Fig. 4 Performances L-CG-MEC vs. benchmarks. aMapping cost.
b Blocking ratio
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cost. This is because, with the exception of L-CG-MEC,
no approach performs global optimization. Therefore, the
solution determined at the node phase cannot be satisfied
during the light-path mapping phase because resources
in the selected paths are not available. On the other
hand, with L-CG-MEC, requests are blocked because the
incoming request requirements were beyond those the
infrastructure service provider could satisfy at that time.
For every period, several combinations of different

classes of traffic are generated to mimic the real traffic.
This explains the jagged nature of the substrate resource
graphs (Fig. 5 and 6). In other words, if, in period one,
10% of the traffic is class 1 (online gaming traffic) and the
remaining 90% of the traffic is class 2 (mail traffic), the
resource requirement is lower and acceptance is higher
compared to a scenario where 80% of the traffic is class 5
and remaining 20% is class 1.
Figure 5a shows the wavelength use of the selected

approaches compared to L-CG-MEC. A higher wave-
length use in an optical network can be related to higher
link throughput. The higher the wavelength use, the bet-
ter the system. At the same time, care needs to be taken
that selected paths for the requests do not perform too
many O-E-O conversions (more detail is given in Impact

Fig. 5MEC-DCs Resource utilization for L-CG-MEC vs. Benchmark
approaches. aWavelength bandwidth usage. b CPU usage

Fig. 6 Periodical MEC-DCs nodes resources usage. a GPU usage.
b Storage usage

of number of wavelengths per optical Fiber section). From
the results, it is clear that 2-phase mapping has the least
bandwidth use. Although 2-phase had better acceptance,
the wavelength use was poor. This is due to an improper
selection of requests accepted for the embedding. The
number of requests could be higher but the revenue gen-
erated from the request leads to too much wastage of
resources. The L-CG-MEC had the highest overall wave-
length use because an initial global optimization was per-
formed. This solution yielded the overall optimal solution
in terms of the highest use of link resources at the low-
est cost to the service providers. A similar conclusion can
be drawn from the other approaches, BP and multi-site,
where lack of optimization and a one-shot solution can
lead to poor use of link resources. Hence, we can ascertain
from Fig. 5a that a global optimization, if designed with
proper constraints, provides better resource use and less
complexity.
Figures 5b, 6a and b show the QoS resource usage

in different approaches. Although in Fig. 6a and 6b, 2-
phase-mapping had better overall use of GPU and storage
resources, we can see that L-CG-MEC had better (i.e.
least) use of wavelength, CPU, GPU and Storage. The
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worst performance was by BP, because of its first-come-
first-served approach.

Analysis of network dimensioning key factors
Below, we analyze the key factors that impact MEC-DCs
resource utilization and uses QoE i.e., acceptance ratio,
number of hops, and mapping cost.

Impact of grooming factor Figures 7a, b and c plot the
variation of mapping cost, the average number of hops
and the wavelength bandwidth use against the grooming
factor (the number of client signals that can be loaded
on a given wavelength). The figures show the impact of
the grooming factor on the L-CG-MEC model in terms
of bandwidth wavelength use and the average number of
hops. These two parameters have a big impact on latency,
the most stringent QoS requirement. The grooming fac-
tor, in fact, needs to be kept as low as possible in order to
avoid congestion and to guarantee an acceptable degree
of latency in multimedia applications. These figures show
grooming factor values that provide the optimal aver-
age number of hops per service request link as well as
the optimal wavelength use. In other words, the results
of the simulation illustrate the adjustment of the groom-
ing factor with respect to expected wavelength bandwidth
use and the average number of hops needed to keep the
latency below accepted values.

Impact of number of wavelengths per optical Fiber
Figures 7d, 8a and b plot the variation of blocking
ratio, mapping cost and average number of hops against
the number of wavelengths used per optical fiber link.
First, the blocking ratio is clearly closely related to
the number of wavelengths used to transmit service
request data among MEC-DC locations. The blocking
ratio actually decreases as the number of wavelengths
increases. Second, these figures show that, for a given
demand pattern, increasing the number of wavelengths
beyond a certain value has no impact on mapping
cost and the average number of hops. For example,
when the number of wavelengths equals 5, the map-
ping cost and the average number of hops are quite
constant. These results help to optimize capital expendi-
tures while honoring the QoS requirements inherent in
media cloud demand. Also, the number of hops is cru-
cial in an optical network as it might lead to O-E-O
conversion. Care needs to be taken to reduce O-E-O
conversion as the system strives to increase its link
resource use.

Impact of linking topology Figures 9a, b and c plot
respectively the average number of hops, blocking ratio
and mapping cost against the allocation time periods.
The results show the impact of the network topology on
the performance of the proposed L-CG-MEC approach.

Fig. 7 Impact of Grooming factor. aMapping cost and Number of hops. bWavelength use and mapping cost. cWavelength use and Number of
hops. d Blocking and mapping cost
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Fig. 8 Impact of number of wavelengths per fiber. a Blocking and
number of hops. bMapping cost and Number of hops

UPSR and BLSR topology are the most widely used con-
figurations in optical networks. We therefore studied
mapping performances in comparison to UPSR vs BLSR
topologies. The results show that BLSR topology reduces
the average number of hops permapped virtual link. How-
ever, both topologies provide almost equal mapping costs
and blocking ratios.We can conclude that the use of UPSR
and BLSR has a minimal effect on the initial acceptance
or performance of the user requests. On the other hand,
UPLSR and BLSR have an impact in providing resilience
to the accepted requests. Nonetheless, the proposed
model can be used with both UPSR and BLSR metro
networks.

Simulation CPU time
Only one network configuration is used in our simula-
tion and this may limit the generalization of the results.
It is hard to give a clear relationship between CPU time
and network parameters (# nodes, # links) and traffic pat-
tern/volume. However, although there might be a signifi-
cant impact in increasing the network parameters (nodes,
links) on simulation CPU time, our Column Generation
approach calculates a feasible and near-optimal solution
by heuristically solving the pricing problem with a large
network and a large number of requests. As for any net-
work design problem, it is expected that the larger the
numbers of network nodes and links, the longer the CPU
time. There is a certain trade-off between reducing the
simulation CPU time and calculating the optimal solution.
In addition, the current solution is suggested for metro

Fig. 9 Performance UPSR vs. BLSR topologies. a Number of Hops. b Blocking ratio. cMapping cost
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optical ring topology where the number of nodes/links
and the number of requests are relatively less important
than with meshed and large-scale networks. According
to the simulation results, the L-CG-MEC decomposition
approach showed a higher computation time than the
benchmarks. The two benchmarks showed a computation
time of a few seconds to a few minutes and L-CG-MEC
a computation time varying from 10 to 20 minutes. How-
ever, we showed that Column Generation L-CG-MEC
decreased the MEC mapping cost by 37% and blocking
ratio by 15% on average and that MEC resources are used
more efficiently.
One might ask whether the significant difference in

computation time between the benchmarks and L-CG-
MEC is reasonable. Yes, it is. The benchmarks use a
heuristic approach, which means using a local search
algorithm to browse for feasible solutions. Only a small
number of possible solutions are examined, so computa-
tion time is short. But the heuristic approach is unable
to indicate how far the solution obtained is from the
optimal one. However, L-CG-MEC is based on an exact
approach (ILP modelling) using a global search algo-
rithm to browse for feasible solutions. Accordingly: (a)
the computation time increases significantly with the size
of the space, and (b) an exact algorithm can consume
a lot of memory, also leading to a high computation
time. Nevertheless, the L-CG-MEC approach provides
the gap between the obtained solution and the opti-
mal one, even when the algorithm is stopped before
completion. It can even prove optimality, if the integer
embedding solution is equal to the optimal lower bound
provided by the linear relaxation of the master problem
LP(M).
Computation times are obtained using a CPLEX solver

12.3 and an Intel Duo Core Dell machine running Win-
dows 7 Enterprise. Since L-CG-MEC uses a Branch-and-
Bound algorithm to find an integer solution, we cannot
claim that we have calculated the optimal solutions. How-
ever, the solutions are still satisfactory compared to those
obtained using benchmark models. In addition, the differ-
ence between the value of the incumbent integer solution
of ILP(M) model and the optimal value of the linear
relaxation LP(M) is smaller than 5%. This is satisfactory,
given that most proposals in the literature are heuristic
or based on two-phase mapping and that one-shot node
and link embedding is a NP-hard problem. For an opti-
mal solution, the L-CG-MEC approach can be combined
with branch-and-price procedure, where branching rules
can be properly defined to avoid generating a huge num-
ber of pricing problems. Branching can be done either on
the variables of the master problem using cuts, or on the
variables of the pricing problem, using a classic branch-
and-bound procedure or cuts.We propose to examine this
technique in our future work.

Conclusion
Processing, transmitting and storing media data in MEC-
DCs can enhance the QoE of an end user in terms of
latency, acceptance ratio, reliability and cost. The use
of MEC-DCs compared to traditional DCs for media
requests has known limitations: limited resource avail-
ability at a given DC, and a high resource require-
ment. To efficiently manage both the network and the
MEC-DCs resources, we proposed a CG-based one-shot
model. For each accepted request, an optimal one-shot
networking and hosting scheme is calculated to ensure
QoS requirements. We also analyzed the key factors that
impact the network among MEC-DC locations: wave-
length grooming, wavelength bandwidth capacity, the
number of wavelengths per optical link, the number of
MSPP transponders and the impact of network topol-
ogy (UPSR vs. BLSR). Simulation results proved that
the L-CG-MEC approach performed significantly bet-
ter compared to the benchmark approaches from the
literature.
As a future improvement, we would like to consider

Dense Wavelength Division Multiplexing factors and
study their impact on QoE of multimedia application
users.
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