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Abstract

Cloud instances are vulnerable to cross-core, cross-VM attacks against the shared, inclusive last-level cache.
Automated cache template attacks, in particular, are very powerful as the vulnerabilities do not need to be manually
identified. Such attacks can be devised using both the Prime+Probe and the Flush+Reload techniques. In this paper,
we present PokerFace, a novel method to identify and mitigate such attacks. This approach allows us to identify
suspicious cache accesses automatically, without prior knowledge about the system or access to hardware metrics.
PokerFace consists of two components, Poker and Face. Poker executes a memory bus benchmark to measure the
available bus bandwidth and derive information about cache accesses and possible side channel attacks. Our
experiments with cache attacks show a reduction of up to 14% in the memory bandwidth during the attack. When an
attack is detected, Poker triggers Face which performs cache obfuscation. We demonstrate the effectiveness of our
approach against keypress logging attacks. We also test it against generic Prime+Probe and Flush+Reload attacks and
show that it is practically useful against a variety of cache timing attacks. PokerFace incurs modest overheads (<8%)
and moreover, does not require support from the cloud provider or changes to the hypervisor. Unlike previously
proposed techniques, it can be implemented by cloud subscribers.
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Introduction
Cloud services provide virtualized resources to the end
users on a pay-per-use model. Infrastructure-as-a-service
vendors provide virtualized hardware by providing a sep-
arate virtual machine (VM) to each tenant. The high
resource utilization achieved by sharing is fundamental
to the economy of cloud providers: they co-host multiple
VMs on the same hardware and rely on the underlying
hypervisor to provide isolation and security, in addition
to scheduling and sharing of system resources. Only the
high-end instances are hosted on a dedicated hardware,
e.g., D15 v2 onMicrosoft Azure1. However, such instances
are expensive and also lead to over provisioning for most
use cases. While virtual machines might give the impres-
sion of isolation and dedicated resources, the dedicated
virtual resources are mapped to shared physical resources.
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This results in potential for interference and side channel
attacks [1].
Cache-based side channels have been used to attack

cryptographic implementations [2, 3] on inclusive last-
level caches. Ristenpart et al. [4] observed cache activity
to get keystroke timing information on a system. How-
ever, these attacks were limited by their sophistication.
Extensive knowledge about the victim algorithm or soft-
ware is required to identify vulnerable memory accesses.
In certain cases, even modifications to the source code is
required [5] for manual execution of specific code frag-
ments. To overcome these difficulties, a generic approach
was proposed in the form of cache template attacks
[6]. These attacks can automatically determine memory
addresses which are accessed by a program depending on
cryptographic keys or specific events. The authors also
propose to use the cache template attacks as a system
service to identify attacks, which can be mitigated by dis-
abling page sharing or adding noise to the specific lines
under attack.
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During our experiments on keypress logging, we
observe that the profiling phase of the cache template
attacks takes multiple hours to execute and also renders
the system unusable due to the continuous stream of key-
presses. Most cloud instances have larger shared caches
and are rented on a per-need basis, often for short dura-
tions to handle spikes in the load. Hence, keeping in mind
the performance and economy, we require a faster method
to detect, and if possible, disrupt these attacks.
In this paper, we make use of memory bus monitor-

ing and cache obfuscation [7] to present the PokerFace
defense mechanism, a generic approach for detecting sus-
picious activity on the inclusive last-level cache and miti-
gating them by cache obfuscation. PokerFace is based on
the following concepts about cache and cache attacks.

1. Cache attacks are based on flushing and reloading
cache lines (or priming and probing cache sets, as the
case may be) and measuring the timing information.

2. Cache attacks target the commonly used (shared)
libraries. Hence, the flushes (or probes) will be
followed by large number of cache misses.

3. Data and instructions will have to be fetched from
memory, resulting in memory bus usage.

4. Knowledge about currently executing applications on
the monitored VM and the exact duration of the
attack can be used for switching the mitigation
techniques like cache obfuscation on and off as
needed.

Based on these observations, we demonstrate how to
monitor the memory bus and detect cache side channel
attacks, based on the constant measurement of memory
bandwidth. We also provide a simple cache obfuscation
technique to impede the attacks. We test these methods
against the real-world attack scenario of keypress log-
gers and find them to be highly effective. We further
test them against generic Prime+Probe and Flush+Reload
attacks. The defense mechanism is triggered only when
safety-critical applications are being executed. These set
of applications can be edited any time by the user. Our
approach can be used on any hardware and any oper-
ating system, as long as the last-level cache is inclusive
and shared. We also show that our approach incurs a
very low overhead when compared to existing techniques.
We demonstrate our approach on Intel Xeon processors,
which have an inclusive last-level cache and are commonly
used by public cloud providers to host cloud instances.
Our mechanism can also be extended to platform-as-a-
service (PaaS) clouds.
The paper is organized as follows. We discuss the rel-

evant background about cache attacks in “Background”
section. We present the design and implementation of
the PokerFace framework in “Design and implementation”

section. We empirically evaluate our security framework
against common cache attacks in “Evaluation” section. In
“Related work” section, we explore existing related work.
We discuss the relevance of our design choices along
with alternative approaches in “Discussion: the case for
guest-based solutions to cache attacks” section and finally
conclude in “Conclusion” section.

Background
Virtualization
Xen [8] and KVM [9] are the most popular hypervisors
used in cloud systems. Xen is used by Amazon EC2,
Rackspace, etc., while KVM is the hypervisor choice for
OpenStack and Google Compute Engine. Both Xen and
KVM allow multiple VMs to be created on a physical host
and rent them to customers. We perform our experiments
on the KVM hypervisor. Hypervisors provide a certain
level of isolation between virtual machines running on the
same host. CPU cores can be statically pinned to VMs and
memory can be partitioned so that the region allocated to
one VM can not be accessed by other VMs. However, the
last level cache (LLC), memory bus, secondary storage,
network adapter, etc., are shared among all the co-hosted
VMs. Modern processors have a sliced LLC with a differ-
ent slice for each core, but all slices can be accessed by all
cores, the design being motivated by data locality rather
than isolation.

Cache attacks
Cache attacks are a type of side-channel attacks. They
exploit the impact of cachememory on the execution time
of algorithms. The first attacks propounded were theo-
retical in nature [10, 11]. In 2004, the first time-driven
cache attack against AES was proposed by Bernstein [12].
Gullasch et al. [2] implemented a powerful attack on the
L1 cache based on the fact that different processes can
have shared pages loaded into the same cache sets.
Cache attacks are primarily of two types:

• Prime+Probe Attack: Here, the attacker occupies a
specific cache set and monitors it to deduce when the
victim accesses the set [1]. If the victim loads data
into the set, the attacker’s data will be flushed,
resulting in cache misses. It does not require the
sharing of memory pages between the victim and the
attacker and are practical on cloud infrastructure.
Oren et al. [13] showed that such an attack can be
launched from within a browser running JavaScript
code, using which the attacker can eavesdrop on
mouse movements and other activities.

• Flush+Reload Attack: Yarom and Faulkner [3]
proposed the Flush+Reload attack targeting the
shared L3 cache. This attack relies on shared libraries
between the attacker and victim programs. The
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attacker uses the clflush instruction to constantly
flush cache lines. After the victim accesses the shared
memory, the attacker measures the time taken to
access the same address. The access time reveals
whether the victim used the library, thereby loading it
into the cache or not. Memory deduplication is often
disabled on infrastructure-as-a-service (IaaS) clouds,
but Flush+Reload attack has been shown to be
practical on platform-as-a-service (PaaS) clouds like
DotCoud [14, 15].

These attacks are indigenous to inclusive caches, where
flushing data from the last-level cache will flush them
from the upper level caches as well.

Cache template attacks
Gruss et al. [6] presented cache template attacks on
the shared, inclusive last-level cache. These attacks can
exploit any cache vulnerability in any program execut-
ing on any operating system or hardware with shared
memory enabled. Though they devise their attack on the
Flush+Reload attack, the same concept can be utilized
even with Prime+Probe attacks at the granularity of the
cache set. Cache template attacks consist of two phases:

1. Profiling phase: The profiling phase determines the
number of cache hits on a specific address for a
specific event. This is performed for each address
and each event in the target binary and the results
stored in a cache template matrix. This is a highly
exhaustive and intensive process.

2. Exploitation phase: In the exploitation phase, all the
addresses in the cache template matrix are
continuously monitored and cache hits are recorded.
Events are detected by cross-referencing the
information gathered with data in the matrix.

Both the phases are based on Flush+Reload and hence
result in heavy cache activity (Prime+Probe attacks also
have similar characteristics, which will be explained in
detail in subsequent sections). These attacks are a gen-
eralized template for different kinds of cache attacks.
The authors have used them to launch keypress logging
attacks, attacks on GDK key remapping, OpenSSL AES
T-Table attack, etc. In other words, they provide the
generic method which is the key to launch any kind of
cache-based side channel attack.

The relevance of the profiling phase in cloud
Many implementations [1, 3] discuss cache attacks in
terms of ‘monitored cache lines’, ‘generated eviction sets’,
etc., which suggest that these attacks have no or min-
imal profiling period. However, the attacker needs to
know which cache lines or sets to monitor since the
large size of the last-level cache makes it impractical to

continuously monitor the whole cache and no prior
knowledge is available on third party cloud instances.
Knowledge about cache access patterns are unusable with-
out information about what those specific cache lines or
sets represent. For e.g., let us assume the address 0x40
corresponds to the keypress of letter a. Without this
knowledge (which can be obtained only via profiling), the
attacker can only ascertain that the victim is performing
some activity and nothing more.

Detecting cache attacks
Most of the existing techniques for detecting side channel
attacks rely on detecting the unique signatures of attacks
using hardware performance counters [16]. The appli-
cation behaviour is compared with pre-identified attack
signatures, which requires an exhaustive set of signatures.
Though the rate of false positives is low, there can be false
negatives since it can be evaded using metamorphic code.
Moreover, this can not be implemented by cloud users
since hardware counters are unavailable, which serve as
the basis for generating the signatures. Other techniques
include anomaly-based detection, which flag any anoma-
lous behaviour as an attack. They can potentially identify
“zero-day" and any new attacks. However, since cache
attacks resemble memory intensive benign applications, it
is difficult to precisely model attack behaviour. This can
lead to false positives, though there can never be any false
negatives.
CloudRadar [17] utilizes both these mechanisms to

identify side channel attacks by monitoring hardware
performance counters on both the victim and attacker
VMs. They propose CloudRadar as a value added ser-
vice by the cloud provider, but to the best of our
knowledge, such a service is not available in practice.
Moreover, they require the victim to submit signatures
of all security-critical cryptographic applications to the
service.

Non-temporal instructions
When produced data is not immediately consumed, stor-
ing them in cache is detrimental to performance since
they will evict other cache lines which might have an ear-
lier temporal reference. Also, for large data structures,
their sheer size might end up evicting their own elements,
making caching ineffective. To avoid the eviction of data
in such cases, non-temporal write operations are provided
by the processors. The support for SSE (Streaming SIMD
Extensions) [18] is found in Intel Pentium III and sub-
sequent processors. Since the data is non-temporal, i.e.,
it will not be used anytime soon, it need not be cached
and can be written directly to memory. Non-temporal
instructions are represented by MOVNT* (MOV non-
temporal) such as MOVNTI (double word), MOVNTQ
(quad word),MOVNTPS (single-precision floating point),
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etc. They avoid cache pollution but these writes result in
higher memory bus usage for transferring the address and
data bits.

Design and implementation
The system model for the attack and defense scenario is
shown in Fig. 1. The attacker and victim VMs are hosted
on the same hardware. The shared resources include the
last-level cache and the memory bus. We introduce Poker
and Face into these shared resources in order to detect and
obstruct cache attacks.

Poker: anomaly-based detection of cache attacks
CloudRadar is a provider-centric mechanism which relies
on hardware counters. It flags an attack if 1) the victim is
executing an application with signature similar to crypto-
graphic applications, and 2) the attacker shows anomalous
behaviour at the same time. Poker does something similar,
though with a lower resolution. Since Poker is running on
the victim VM, it does not require complex techniques to
ascertain if cryptographic code is being executed or not. It
can simply obtain the information from the linux process
tree. In essence, Poker flags an attack if

1. A security-critical application is running on the
victim VM. The default set of applications contains
AES, RSA, etc., and the user can add his own custom
choices. This information is directly available from
the process tree with no overhead.

2. An anomalous behaviour in the memory bus is
observed. Since Poker has knowledge about the
applications running on the victim, it can filter out
any anomalies generated by the victim itself.

Fig. 1 System model. The figure shows the attack scenario for
cross-VM attacks and the placement of Poker and Face modules

Implementation
Poker is essentially a memory bandwidth monitor. The
memory bus connects the shared last-level cache with the
physical memory and is used when there is a miss in the
cache. Poker is developed in C and assembly language
using SSE primitives. These streaming instructions avoid
cache usage and perform non-temporal writes directly to
the memory. The user interface is written in C for main-
tainability, but the actual SSE instructions are coded in
assembly to assist hand coded optimizations and avoid
compiler optimizations. The pseudocode of Poker is given
in Listing 1.
Poker utilizes the XMM SSE double quad word instruc-

tions. MOVNTDQ moves a 16-byte aligned 64-bit quad
word value from a 128-bit XMM register to a 128-bit
memory address. Poker continuously writes 8 KB blocks
to the memory and measures the bandwidth by calcu-
lating the time taken for the writes. (In other words, it
continuously pokes around in thememory bus tomeasure
the available bandwidth.) In a virtualized environment,
the time measured for a memory write is liable to be
inaccurate due to virtualization overheads. However, we
are concerned with the relative decrease in the band-
width (and hence, with the corresponding increase in
write latency) and not the actual time taken by the opera-
tion. Even with virtualization overheads, we can estimate
the memory bandwidth as viewed from within the virtual
machine.
// poker.c
extern int poker(int blksize);

while (true) {
poker(8K);

}

; poker.s
poker:

MOVNTDQ %XMM0 , 0(% R8)
MOVNTDQ %XMM0 , 16(% R8)
...
MOVNTDQ %XMM0 , 496(% R8)
DECQ % RAX
JNZ poker

Listing 1 Poker Pseudocode

Poker uses the gathered information to ascertain the
state of the last-level cache. It is based on the following
fundamental concepts:

A. The Memory Hierarchy: The last level-cache is con-
nected to themainmemory (RAM) via thememory bus. A
miss in the last-level cache will force the usage of memory
bus, in order to fetch the data or instructions from main
memory.
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B. The Nature of Cache Attacks: Cache attacks build
upon the effect of cache memory on the runtime of
algorithms. During Prime+Probe, the attacker repeatedly
probes certain cache sets and checks for cachemisses after
the victim executes. Hence, cache misses will be higher
when the victim executes the monitored code. During
Flush+Reload, attackers repeatedly flush and reload the
cache lines and measure the access times to ascertain if
the victim has accessed the same lines. The attacks are
targeted on frequently used shared libraries. This results
in large number of cache misses on the victim after every
flush. With multiple lines and sets being monitored, the
memory bus usage is high. This similarity in the anoma-
lous behaviour of Prime+Probe and Flush+Reload has
been observed previously [17, 19].
We surmise that during a cache attack, the load on the

memory bus will be higher than usual and hence, available
bandwidth will be lower. We validate our claims by sub-
sequent experiments. Since cache attacks have behaviour
similar to applications like media streaming, anomaly-
based detection will flag such applications also as attacks
leading to false positives. However, an attack is flagged
only when secure applications are being executed on the
victim VM and anomalous behaviour is detected on other
co-located VMs. Since security is of paramount impor-
tance during this period, even with false positives, the
defense mechanism must be activated.

Face: opportune cache obfuscation
Cache obfuscation has been proposed as a technique for
online mitigation of side channel attacks. Zhang et al.
[7] used it on L1 and L2 caches between different itera-
tions of the attack, with promising results and termed it
cache cleansing. In [6], the authors propose the usage of
cache template attacks as a system level service to con-
stantly monitor the last-level cache. They further suggest
that noise can be generated on specific address ranges
when an anomaly or attack is observed. Such precision,
however, comes at a price and is not always feasible. The
complete cache needs to be profiled, which is a time-
consuming process followed by constant monitoring of all
the cache lines. This is highly unsuitable in cloud environ-
ments where the instances might be rented only for short
periods, leaving insufficient time for profiling.
Since time is the limiting factor here, we focus on the

when and not the where. Poker can detect a cache attack
while it is under progress, but not the exact cache region
(and thereby the shared library) being targeted. We follow
a similar principle here as well: generate enough random
noise to obfuscate the data while it is being gathered.
(Always show a poker face to the attacker when you
suspect him to be peeking.)
Face is a temporal cache cleanser, i.e., it generates ran-

dom noise during specific intervals of time. An attacker

will commonly target the standard libraries which are
routinely utilized. We argue that the same libraries can
be used to generate random cache events to obscure
the attacker’s view of the cache. As a proof of con-
cept, we implement Face to generate a sequence of ran-
dom alphanumeric keypresses, which access a series of
different addresses in the cache lines occupied by the
related shared library. We test this against keypress log-
ging attacks on the GDK library and find it to be highly
efficient. We believe that a more rigorous implementation
using multiple events pertaining to different libraries can
impede a variety of cache attacks.
The process is very lightweight in nature, but normally

renders the system unusable due to the continuous stream
on keypresses on screen. In order to isolate the pro-
cess and restrict the resources used, we execute Face in
a containerized, single core environment. Linux contain-
ers [20] are a lightweight alternative to conventional VMs
with kernel namespace isolation and resource guarantees
based on cgroups. We run Face on Docker [21], which
is a popular containerization platform. This also makes
Face portable, since it is packaged with all its dependen-
cies and does not require any support from the underlying
platform.
The addresses accessed by the GDK-based proof-of-

concept implementation of Face are shown in Fig. 2 for
two separate executions. We map the address ranges for
the shared GDK library which handles keystrokes and
represent them in a 180×60 grid (approximately 10,800
addresses in a 10 MB last-level cache). The cache regions
are shown in the form of a heat map. White represents
0 hits. Blue, yellow, orange, red, gray and black portray
progressively increasing number of cache hits. It can be
observed that the noise is sufficiently spread across the
cache regions which are likely to be used by the GDK
library during keypress events. Some addresses are com-
mon to multiple keys and hence, frequently accessed.
It can also be observed that the addresses which are
more frequently accessed are different in the two cases,
showing that the noise is adequately random and non-
deterministic in nature.

Non-standard libraries
Cloud infrastructure is used for a variety of applica-
tions and the same instance need not necessarily run the
same programs all the time.Moreover, detailed knowledge
about the exact processes is not possessed by the attacker.
An attack on a non-standard library like libhadoop (used
by HDFS) is more likely to fail than that on a commonly
used library like libgdk since keypress events always occur
but HDFS might not be present on the instance at all.
It is primarily for this reason that cache attacks usu-

ally target commonly used libraries like GDK (keypresses),
AES (encryption), etc. They are also more likely to leak
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Fig. 2 Cache accesses made by Face during two different executions. The figure shows the cache hits made during cache obfuscation represented
in the form of a heat map. They depict approximately 10,800 addresses in a 10MB last-level cache in a 180 x 60 grid. This is just to show that the hits
are sufficiently random to make the obfuscation process effective

sensitive information like passwords. Our approach allows
any library to be plugged into Face to generate cache noise.
A safe approachwould be to use amix of standard libraries
and specific non-standard libraries which are being used
regularly on the instance at a given time.

Side effects of obfuscation
Cache obfuscation generates random noise in the last-
level cache which, in turn, evicts the data already present
in those cache lines. If the evicted data is needed again,
it is fetched from the main memory which can result
in moderate overheads. However, incorrect data is never
supplied and data consistency is always maintained. In
essence, Face behaves like any other cache intensive work-
load and since it is executed only when an attack is
suspected by Poker, the effect is minimal. Also, only one
instance of Face is executed. If Face is already running
and Poker detects an outer anomaly (Poker filters out the
effect of locally executing programs), Face is not executed
multiple times.

Evaluation
We perform our experiments on two virtual machines,
hosted using the KVM hypervisor on a HP Z420 worksta-
tion with 8 Intel Xeon E5-1620 CPUs @ 3.60 GHz and 16
GB of RAM. The L1i and L1d cache are 32 KB in size, the
L2 is 256 KB and the shared L3 cache is 10 MB. Both the
VMs have 4 cores and 4 GB of RAM. We demonstrate the
utility of our approach by using a specific attack, but the
technique is generic enough to detect any kind of cache-
timing side channel attacks. Since cloud instances are also
commonly hosted on Intel Xeon processors and many
frameworks like Google Compute Engine and OpenStack
use KVM hypervisor, we expect comparable results to
those in public cloud environments.

Poker
We constantly run Poker on the victim VM to assess
the memory bandwidth and launch the automated key-
press logging attack proposed in [6] from the attacker VM.
We divide the timeline into epochs of 100 s each and
launch the cache template attack between the 30th and
65th seconds. Figure 3 shows the memory bus bandwidth
measured by Poker averaged over a hundred executions.
We ensure that no other applications are running on the
host machine during the experiment, to avoid third-party
interference. As we can see, there is a significant and
constant decrease of 2-3 GBps in the bandwidth while
the attack is in progress. This because the cache is con-
tinuously being flushed by the attacker, leading to cache
misses. Since this includes shared libraries which are rou-
tinely utilized, they need to be fetched from the main
memory after every flush. This leads to significant usage
of the memory bus, leading to reduction in available
bandwidth.

Fig. 3Memory bandwidth during a cache template attack, as
measured using Poker. A cache template attack is launched from a
co-located VM between the 30th and 65th seconds. The figure shows
the decrease in bandwidth measured by Poker during that interval



Raj and Dharanipragada Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:28 Page 7 of 14

We use Poker to benchmark the memory bus perfor-
mance of an idle Azure D14 instance with 16 cores,
112 GB of RAM and a last-level cache with size 20 MB.
The results are shown in Fig. 4. The results depict the
bandwidth measured during a day at intervals of 30 min.
We continuously monitor the instance and ensure that
there is no constant drop which might signify a cache
attack or cross-VM interference. It can be seen that the
bandwidth varies between 31.5 and 33 GBps and is unpre-
dictable. The results depict the general variation in the
available memory bandwidth on public cloud instances
which we can observe to be erratic in nature but varying
within a small range. Hence we surmise that if we notice a
constant drop in bus bandwidth over long periods of time,
we can reasonably assume the presence of abnormal or
suspicious cache activity.

Scalability withmultiple tenants and effect of background
noise
Multiple guest VMs are hosted on the same hardware
in cloud infrastructure. Each instance can run a variety
of processes with varying cache access patterns, thereby
generating noise. However, this noise can only reduce
the available memory bandwidth. Since Poker suspects
an attack when it notices a decrease in the available
bandwidth, any background noise can only amplify the
requirements.
Non-temporal instructions are often used during appli-

cations like media streaming and sparse matrix computa-
tions. In such cases, flagging a decrease in bus bandwidth
as an indicator of a possible attack might not be correct.
One possible solution would be check for disk contention
as well in addition to bus contention, since these appli-
cations are associated with disk writes (for e.g., storing
the media file or the computed results on disk). Disks
are also shared across VMs and have been shown to be

Fig. 4 Variation of memory bandwidth on an Azure D14 instance. The
graph shows the variation in memory bandwidth on an idle Azure
cloud instance during the course of a day. This depicts the general
trend on public clouds and lays the foundation for the inference that
a sudden steep decrease in bandwidth can be due to a side channel
attack

liable to performance interference [22]. Sysbench [23] file
benchmarks can be utilized to measure the disk write
latency.

Face
As we have described in previous sections, Face is a
temporal cache cleanser which can be augmented with
different libraries to perform cache obfuscation. The
libraries need to be properly chosen for the obfusca-
tion to be successful. The attacker will target shared
libraries which are regularly used by the victim. The same
libraries can be used for performing obfuscation. To jus-
tify our claim, we provide a proof-of-concept implemen-
tation against keypress logging attacks. Since the attacker
targets the GDK library, we use the same to perform
obfuscation.
We first launch the attack from the second VM and gen-

erate the cache profiles. In the next step, we run Face
in the first VM and generate the profiles again. We per-
form extensive experiments on individual keys and opine
that enough noise is generated in the profiles to render
them ineffective in their purpose of identifying individual
keypresses. Due to lack to space, we present the consoli-
dated results for the five vowels in Fig. 5. We have chosen
them because they are among the most used alphabets
in the English language. The graphs show the number
of hits for each address in the last-level cache (approx-
imately 16,000 addresses) with and without obfuscation.
The bars are concentrated in the region which is used
by the GDK library for keypresses. Majority of the cache
lines accessed by alphabetic keys are the same and the
frequency of individual hits is the key to distinguish-
ing them. The number of accesses on certain addresses
decrease due to Face interfering with the attacker and
decreasing the bandwidth available for the attack. On
the other hand, hits on different addresses increase
due to the random cache obfuscation being performed
by Face.
Cache obfuscation can be considered an effective

defense mechanism only if the noise generated is random
and makes the profiles indistinguishable. As we can see
from Fig. 5, the noise added by Face to the profiles of
different alphabets renders them similar for all practical
purposes. For instance, the normal profile of a can be eas-
ily distinguished from that of e or o, but the same can not
be done for the corresponding obfuscated profiles. As a
result, it becomes difficult for the attacker to distinguish
between different keys and renders the attack ineffective.

Indistinguishability of obfuscated profiles
Chi-square (χ2) distance or metric [24] is a distance
measure used to compare two histograms. We use the
formula given by the authors in [25] since it is symmet-
ric w.r.t. both the variables. The chi-square metric for the
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Fig. 5 Effect of Face on the profiling of vowels (a, e, i, o and u from top
to bottom). The graphs show the number of hits for each address in
the last-level cache (approximately 16,000 addresses) with and
without obfuscation. The bars are concentrated in the region which is
used by the GDK library for keypresses. As we can see, obfuscation
changes the profiles considerably and also makes them
indistinguishable. The normal profiles of the five vowels can be easily
differentiated, but the obfuscated profiles of multiple vowels look the
same. The blue bars have been drawn slightly wider for clarity during
overlaps with the red ones

distance between two binned histograms, whose values
are represented by variables xi and yi, is given by

χ2 =
n∑

i=1

(xi − yi)2

(xi + yi)
(1)

To remove noise from the calculation, we discard the bin
indexes where the difference is less than 45. We chose this
value since the highest number of cache hits recorded are
in the range of 450 and 10% is within reasonable bounds
of fluctuation. We apply the formula to the histograms in
Fig. 5 and tabulate the results in Table 1. As we can see, the
χ2 metric reduces significantly in almost all of the cases.
Since the normal profiles of a and u are highly similar
in nature, the distance measure increases after obfusca-
tion. However, it is still lower than the average distance
between other pairs of normal profiles. On average, the χ2

metric drops by more than 60% after cache obfuscation.

Performance overhead
Both Poker and Face are extremely lightweight single-
threaded processes. We evaluate the performance impact
of PokerFace on the STREAM [26] and Sysbench [23]
micro benchmarks and also on the Parsec [27] bench-
mark. We have chosen them since they represent differ-
ent types of workloads at different scale. The STREAM
benchmark performs operations like copy, add, scale, etc.
on arrays larger than the caches. The Sysbench CPUwork-
load verifies primes less than 2000. The Sysbenchmemory
benchmark performs continuous reads and writes on a
5 GB memory buffer and the file benchmark does the
same on a 2 GB file. The Parsec benchmark suite consists
of different programs which perform a variety of tasks
like cache-aware simulated annealing (canneal), frequent
itemset mining (freqmine), online clustering (streamclus-
ter), image processing (vips), video encoding (x264), etc.
Since cloud instances are regularly used for machine
learning and image/video processing applications, these
set of benchmarks are a representative set of real world
use cases.
Figure 6 shows the overhead imposed on basic oper-

ations from the micro benchmarks. As we can see,
Poker causes an overhead of close to 4% during memory

Table 1 χ2 metric for the histograms in Fig. 5, without (top) and
with obfuscation (bottom)

A E I O U

A - 1247.71 1308.60 1230.45 230.35

E 1247.71 - 1587.27 1819.73 968.50

I 1308.60 1587.27 - 2067.68 1129.04

O 1230.45 1819.73 2067.68 - 953.80

U 230.35 968.50 1129.04 953.80 -

A - 655.77 764.80 459.05 534.83

E 655.77 - 433.50 305.31 351.23

I 764.80 433.50 - 551.15 434.12

O 459.05 305.31 551.15 - 373.71

U 534.83 351.23 434.12 373.71 -
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Fig. 6 PokerFace performance overhead on micro benchmarks. The
graph shows the overhead incurred by Poker on the Sysbench and
STREAMmicro benchmarks. These benchmarks represent CPU,
memory and file workloads. Since PokerFace essentially operates on
the memory subsystem, the memory benchmarks suffer an overhead
of up to 7%, of which 4% is due to Poker and always sustained. The
additional 3% overhead due to Face occurs only when an attack is
suspected and cache obfuscation is triggered. CPU and file
benchmarks incur negligible overheads of 1-2%

benchmarks. This is even lower in case of CPU and file
operations. Since Poker is always executed, this is themin-
imum overhead incurred. Face is utilized only when Poker
detects abnormal cache activity. It adds an additional
overhead of around 3% to memory operations during the
period, which is insignificant considering the task it per-
forms. The maximum overhead due to the approach does
not exceed 7% and is very nominal.
Figure 7 depicts the performance overhead incurred on

applications from the Parsec benchmark. Programs which
are only CPU intensive like blackscholes (application
of Black-Scholes differential equation) and fluidanimate
(simulating an incompressible fluid for interactive ani-
mation purposes) incur close to no overhead, since both
Poker and Face are memory intensive and are restricted to
a single CPU core each. Programs with frequent memory
access patterns like streamcluster and canneal suffer from
up to 5% overhead from Poker and up to 8% overall. Other
programs incur around 2-3% overhead which is highly
minimal. Even with real world applications, performance
overheads due to PokerFace are limited to 8%.

Application of PokerFace during the exploitation phase of
Prime+Probe and Flush+Reload attacks
Wehave discussed the application of PokerFace during the
profiling phase of cache template attacks in detail due to
the following reasons:

1. The profiling phase is highly significant since it helps
the attacker to intelligently launch attacks on critical
locations and also make sense out of the data
gathered.

Fig. 7 PokerFace performance overhead on Parsec benchmark. The
graph shows the overhead incurred by Poker on the Parsec
benchmark suite. The benchmark suite consists of different programs
which perform a variety of tasks like cache-aware simulated annealing
(canneal), frequent itemset mining (freqmine), online clustering
(streamcluster), image processing (vips), video encoding (x264), etc.
Since cloud instances are regularly used for machine learning and
image/video processing applications, these set of benchmarks are a
representative set of real world use cases. Memory intensive
applications like streamcluster and canneal suffer from 5% overhead
due to Poker and a maximum of 8% overall. Other applications which
are predominantly CPU intensive like blackscholes (Black-Scholes
partial differential equation), ferret (content similarity search) and
fluidanimate (fluid dynamics for animation) incur overheads of up to 3%

2. Cache template attacks automate the process to
reduce human involvement.

3. It is easier to understand the effect of cache
obfuscation on attacker profiles.

In essence, the exploitation phase is similar to the pro-
filing phase in nature. Here, we demonstrate the effec-
tiveness of our strategy during different kinds of attacks
and also during the exploitation phase. Gruss et al. [19]
demonstrated that Prime+Probe attack incurs a larger
number of cache misses for the attacker as well as the
victim when compared to Flush+Reload attack. This is
because both the attacks are similar in approach. The
attacker fills the last-level cache with his data and waits
for the victim to use the cache. Prime+Probe oper-
ates at a higher granularity of cache sets compared to
Flush+Reload which operates on cache addresses. After
the prime phase, the victim incurs cache misses since
the attacker would have placed his data in the cache.
During the probe phase, the attacker would have cache
misses if the victim accessed the data in the meantime.
The authors also propose a variant of the Flush+Reload
attack called Flush+Flush, which relies only on the exe-
cution time of the flush instruction. However, this attack
can be easily mitigated by fixing the execution time of
the instruction without hampering the performance of the
system.
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We launch Prime+Probe and Flush+Reload attacks from
our attacker VM on specific cache addresses (acquired
during the profiling phase of our previous experiments)
and deploy PokerFace on the victim VM. During our
experiments, we encrypt a large file using AES on the vic-
tim. It is important to note that a single address is the
lowest granularity at which the profiling and exploita-
tion phases can proceed. The attacker can slow down his
attack rate by increasing the interval between targeting
different addresses, but he/she cannot slow down the pro-
cess on a single address since the behaviour of the victim
needs to be regularly monitored. However, for the attack
to be practically successful, monitoring one single address
is insufficient. From the histograms in Fig. 5, we can see
that at least 5-10 addresses need to be simultaneously
monitored to roughly distinguish key presses. Hence, in
our experiments, we monitor 5 addresses as a minimal
representation of practical attacks.
Figure 8 shows the decrease in bandwidth measured by

Poker when the attacks are launched. As we can see, dur-
ing Flush+Reload, the observed bandwidth is close to what
was observed during the profiling phase with a drop of
2-2.5 GBps. During the Prime+Probe attack, the decrease
is a significantly higher and varying between 2.5 and
4.8 GBps. This is similar to what was observed by the
authors in [19] though they considered cache counters
and we observe memory bandwidth.
Though the profiling phase is imperative to successful

attacks, we test the robustness of Face with the assump-
tion that the attacker has access to genuine profiles and
is monitoring specific cache addresses. Let us consider
the profiles of alphabets a and e generated during the
profiling phase. We list a subset consisting of signifi-
cant addresses in Table 2. Under the assumption that the
attacker is constantly attacking these addresses and trying
to detect when the victim presses the keys, we launch both

Fig. 8Memory bandwidth during Flush+Reload and Prime+Probe
attacks, as measured using Poker. The figure shows the decrease in
bandwidth measured by Poker on the victim VM when Flush+Reload
and Prime+Probe attacks are launched independently from the
attacker VM

Table 2 Set of significant addresses from the profiles of the
vowels a and e

Address A E

0x2b640 © ×
0x34f40 © ©
0x34f80 © ©
0x35040 © ©
0x3c700 © ×
0x42300 × ©
0x42340 × ©
(© denotes the cache address being accessed and × denotes a miss)

Prime+Probe and Flush+Reload attacks on the specified
addresses with and without Face running on the victim.
We add the results for an additional address to consider
the different cases.
The consolidated results are shown in Table 3. We

observed similar behaviour with both Prime+Probe and
Flush+Reload and hence, show them together. As we can
see, the attacker can discern useful information and dis-
tinguish between keypresses when no securitymechanism
is in place. When Face is running on the victim, it adds
noise in the cache with the result that the attacker can not
distinguish between keys. This is a minimalistic example
of how cache obfuscation will function. As the keys moni-
tored and the related cache addresses increase in number,
the patterns will become more and more complex, mak-
ing it difficult for the attacker to distinguish individual
events. We believe that obfuscation during both the pro-
filing and the exploitation can increase the effectiveness of
the strategy.

Related work
Multiple approaches to detecting and defeating cache
attacks have been proposed in literature. They can be
broadly classified into two categories: host-based and
guest-based. The host-based techniques rely on access to
the system and hardware can be implemented only by the
cloud provider or vendor. Wang and Lee [28] proposed
security-aware cache designs (RPcache or random permu-
tation cache) to prevent side channels. StealthMem [29]
locks a set of cache lines per core which the users can
use to store sensitive information. CATalyst [30] describes
hardware cache partitioning using Intel cache allocation
technology to avoid cache side channels completely. Hex-
PADS [31] gathers information about individual processes
from hardware counters to correlate and detect attacks.
CloudRadar [17] monitors co-located VMs using a com-
bination of signature-based and anomaly-based detection
techniques to check for abnormal cache behaviour. The
authors compare a set of common linux commands like
ls, grep, ssh, etc. with cache attacks to show a low rate
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Table 3 Effect of Face during the exploitation phase of keypress logging attack on a and e

Profiles Keypress without Face Keypress with Face

Address Profile of A Profile of E No keypress ‘A’ keypress ‘E’ keypress No keypress ‘A’ keypress ‘E’ keypress

0x2b640 © × × © × © © ©
0x34f40 © © × © © © © ©
0x34f80 © © × © © © © ©
0x35040 © © × © © © © ©
0x3c700 © × × © × © © ©
0x42300 × © × × © © © ©
0x42340 × © × × © © © ©
0x4eec0 × × × × × × × ©
(© denotes the cache address being accessed and × denotes a miss)

of false positives. However, such commands do not have a
behaviour similar to attacks and will never generate false
positives. In [32], the authors utilize hybrid hardware-
software approaches to further secure existing techniques
like RPcache. However, they incur performance overheads
of up to 45% and more than 12% on average. To the best of
our knowledge, no purely guest-based approach has been
proposed in literature.
Düppel [7] uses periodic cache cleansing on the time-

shared L1 and L2 caches to evict as much of the victim
data as possible. Gruss et al. [6] proposed a type of
spatio-temporal cleansing on the last-level cache, which
is not suitable to cloud infrastructures due to its high
preprocessing time. We, on the other hand, propose
an online temporal cleansing approach which generates
noise on random addresses. Our method has no pre-
processing steps and has reasonably low performance
overheads.

Discussion: the case for guest-based solutions to
cache attacks
Cache attacks can be detected and mitigated both by
the cloud provider as well as the cloud subscriber. All
of the existing techniques rely partly or wholly on hard-
ware support and hence, can only be implemented by the
cloud provider. We have advocated the need for security
approaches which can be implemented by the common
cloud user, without relying on the provider’s SLAs. We
compare the essential features of the two approaches here.

Host-based solutions
The provider can statically partition the cache among
multiple tenants hosted on the same hardware such that
they do not share common cache lines, thereby removing
the attack scenario. This can be done using Intel’s Cache
Allocation Technology (CAT) [30]. However, resource
sharing is vital to the economy of clouds. Moreover, static
partitioning might lead to wastage of resources which

might otherwise be used by other non-adversarial ten-
ants. The overheads incurred due to such methods have
been shown to be on the higher side. Kong et al. [32] state
that the performance of memory intensive benchmarks
degrades by up to 45% and the average overhead is greater
than 12%.
Alternatively, the provider can monitor hardware

performance counters like LLC_MISS (last-level cache
misses) andMEMORY_BW_READS (memory bandwidth
consumed by reads) offered by the Intel memory con-
troller. Whenever a malicious cloud subscriber launches
a cache attack, the LLC_MISS will increase across all
cores, due to the flushing of the shared last-level cache.
Subsequently, the MEMORY_BW_READS counter will
increase due to higher bus usage. Once the host detects
unusual or abnormal cache activities from a particular
cloud instance, CAT can be used to allocate a portion of
the last-level cache to it, leaving the other instances to
share the remaining cache.
However, there is no way to distinguish between cache

attacks and legitimate cache accesses without intruding
into the suspected tenant, which is against the service
level agreements (SLAs). A cache attack will necessar-
ily increase the LLC_MISS and MEMORY_BW_READS
counters, but the converse is not true. Any mem-
ory intensive computation can lead to cache line evic-
tions and increased memory bus usage. Hence, the
provider is faced with a dilemma: whether to ignore
the situation and risk a cache attack or partition the
cache on mere chance and lose out on the economic
advantages of resource sharing? Further, cache parti-
tioning might lead to underutilization and wastage of
resources since all the instances might not use the portion
allocated to them.
The service level agreements (SLAs) provided by cloud

providers2,3,4 are oriented towards high availability and
do not provide any performance or security guarantees
regarding side channels. With cache-based side channel



Raj and Dharanipragada Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:28 Page 12 of 14

attacks shown to be practical on public clouds [1, 4, 14],
there is a need for other approaches to tackle them.

Guest-based solutions
Since cloud subscribers do not have access to hardware
counters, they need to measure the memory bus band-
width by performing writes and measuring the latency.
If a subscriber can detect the occurrence of an attack,
he/she can take appropriate measures depending on the
nature of the instance and the processes running on it.
For e.g., if the reservation on the instance is expiring in
a short period of time, a new instance can be reserved
rather than renewing the current one. If the processes
running on the instance are not performing secret or
sensitive computations, it might be reasonably safe just
to ignore the attack. Also, since no guarantees regard-
ing side channel attacks are provided in the SLAs of any
cloud provider, the subscriber-centric approach is the only
alternative.
If the attack is liable to affect the cloud user, he/she can

either move the application to another instance or mit-
igate the attack by cache obfuscation. In essence, guest-
based, subscriber-centric solutions provide the subscriber
with a plethora of choices, which is not feasible in the
case of host-based, provider-centric solutions since the
provider does not have information regarding the pro-
cesses running on the different instances. Moreover, these
solutions have a very low performance overhead. The
notable differences between the two approaches are listed
in Table 4.
One drawback which both types of solutions suffer

from is their inability to precisely differentiate between
adversarial attacks and legitimate, non-malicious cache
accesses. However, we trigger the defensemechanism only
when security-critical applications are running on the

monitored VM and the extra overhead (even if it is a false
alarm) is justified.

Potential evasive attacks
To evade detection by Poker, the attacker can reduce the
profiling speed, so that a significant decrease in memory
bus bandwidth might not observed. However, that would
drastically increase the duration of the profiling period,
making the attack less practical and more difficult. Also,
cloud instances are often rented for short durations and
the victim VM might not be active long enough for the
extended profiling phase to finish.

Conclusion
Cloud instances are usually virtual machines hosted on
shared hardware. The inclusive last-level cache is suscep-
tible to cross-core side channel attacks. Since resource
sharing is paramount to the economy of the cloud, pub-
lic cloud instances are left vulnerable. These attacks can
be detected and impeded either by the cloud provider or
subscriber. Most of the existing solutions like cache parti-
tioning and system-level monitoring have been proposed
from the perspective of the provider. To the best of our
knowledge, cloud providers do not actively adopt these
techniques. We present PokerFace, a user-level cache
monitoring and obfuscation technique, which can work
on unmodified clouds without any changes to the hard-
ware or hypervisor. It can be safely and conveniently used
by security-conscious cloud subscribers. Poker detects
abnormal cache activity by observing the load on the
memory bus and Face performs cache obfuscation while
the attack is in progress. Unlike existing techniques in
literature, our approach allows the cloud user to use mit-
igation techniques only when cryptographic applications
which need to be protected are executing and an attack

Table 4 A comparison of Host-based and Guest-based solutions against cache-based side channel attacks

Property Host-based (CAT, RPCache, etc.) Guest-based (PokerFace)

Detection Hardware counters Bus monitoring

Mitigation Cache partitioning, locked cache, VM
migration

Cache obfuscation, app migration

Can differentiate between attacks and legit
accesses (free from false positives)

No No

Underutilization of resources Yes No

Mitigation policies active even when attack is
not in progress

Yes No

Mitigation approaches can adapt to the work-
load on victim instance

No Yes

Implementable in practice Subject to the SLAs and economics of
provider

Easily, by the subscriber

Performance overheads Subject to high drop in performance
due tonoresource sharing (up to 45%)

Modest overhead of <8%
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is suspected. We show PokerFace to have modest per-
formance overheads of less than 5% without obfuscation
and less than 8% with cache obfuscation enabled. We also
compare host-based and guest-based solutions and infer
that guest-based solutions are more flexible and adaptable
in the scenario of public clouds.
Poker and Face have been developed as decoupled

components with no dependencies on each other.
We are exploring other approaches to mitigate cache
attacks. With containers supporting cross-cloud porta-
bility, security-critical applications can be migrated to a
different instance when an attack is detected. Poker and
live container migration together can be used to build
advanced moving target defense mechanisms against per-
sistent attackers.

Endnotes
1 https://azure.microsoft.com/en-us/pricing/details/

virtual-machines/linux/
2 https://aws.amazon.com/ec2/sla/
3 https://azure.microsoft.com/en-us/support/legal/sla/

virtual-machines/
4 https://cloud.google.com/compute/sla
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