
RESEARCH Open Access

A hybrid approach to automatic IaaS
service selection
Sima Soltani1* , Patrick Martin1 and Khalid Elgazzar2

Abstract

Cloud computing provides on-demand resources and removes the boundaries of resources’ physical locations. By
providing virtualized computing resources in an elastic manner over the internet, IaaS providers allow organizations
to save upfront infrastructure costs and focus on features that discriminate their businesses. The growing number
of providers makes manual selection of the most suitable configuration of IaaS resources, or IaaS services, difficult and
time consuming while requiring a high level of expertise. In our previous paper we proposed QuARAM recommender,
a general platform for automatic IaaS service selection. In this paper, we present in detail the hybrid approach to
automatic service selection used in our platform. The selection process begins with automatic extraction of an
application’s features, requirements and preferences, which are then used to produce a list of potential services
for the application’s deployment. We use case-based reasoning and MCDM (Multi-criteria Decision Making) to
provide a recommendation of suitable services for application deployment, clustering to handle the problem of a
large search space and a service consolidation method to improve the resource utilization and decrease the total
service price. We carry out a case study with a prototype implementation of our platform to demonstrate
that automatic IaaS service selection using a combination of all the proposed approaches is both practical
and achievable.

Keywords: Cloud computing, Service selection, Case-based reasoning, Multi-criteria decision making

Introduction
Cloud computing has become a technology that affects
many aspects of our everyday life. Organizations
started to adopt cloud computing as an approach to
augment, or even entirely replace, their existing IT in-
frastructure. As a result, many organizations are con-
sidering moving their applications and data to a cloud
environment in order to take advantage of its flexibility
and potential cost savings [1]. It is anticipated that the
fluidity of, and the competition within, the cloud com-
puting market will grow as the technology matures. This
will encourage providers to adopt a wider range of mecha-
nisms, such as discounts and incentives, to attract poten-
tial consumers [2].
There are currently more than 60 public IaaS pro-

viders [3] who offer a variety of services, that is con-
figurations of VMs, storage, and bandwidth, across
the globe. Competing providers attract customers by

improving their performance while lowering their
prices. Although this large number of services pro-
vides customers with the opportunity to focus on
their core business and revenue growth, it makes the
decision of selecting a suitable combination of ser-
vices challenging. Such a decision must be made
based on meeting both the application’s requirements
and the customers’ goals, desires and constraints.
Cloud customers need a system to help them in de-
ciding what services to select in order to optimize
their resource allocation.
Consider a simple application that needs to be de-

ployed on a public cloud. Figure 1 illustrates the mini-
mum system requirements (CPU, RAM, storage, OS) of
the different components of this application, the QoS
requirements (availability, security) and application re-
quirements (maximum concurrent users, region, and
bandwidth). The number to the right of each feature
represents the customer’s respective preferences, ran-
ging from 0 to 10, where 0 means “no preference” and
10 means “most required”. Given the requirements

* Correspondence: soltani@cs.queensu.ca
1School of Computing, Queen’s University, Kingston, Canada
Full list of author information is available at the end of the article

Journal of Cloud Computing:
Advances, Systems and Applications

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications
 (2018) 7:12
https://doi.org/10.1186/s13677-018-0113-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0113-8&domain=pdf
http://orcid.org/0000-0001-9967-2576
mailto:soltani@cs.queensu.ca
http://creativecommons.org/licenses/by/4.0/

described for the application, it can be deployed on two
VM instances, one for the Apache Webserver and the
other one for the MySQL database server.
There are more than 20 different IaaS providers who

can satisfy the requirements and provision service
(VMs) to these two server instances. In 2018, for pla-
cing each component on a separate VM the price varies
from $10 to $98 for each instance (e.g., eApps: Basic in-
stance, Joyent Cloud: Hardware VM standard 1.75 GB
RAM, Rackspace: 1–2 SSD instance). Another option is
to deploy the two servers on a single instance (e.g.,
eApps: Advance instance or Rackspace: General 1–4
SSD instance) [4]. The decision on the appropriate ser-
vice is not simply based on the service price, but also
must take into consideration the service performance
and the experience of previous customers.
Previous studies show that due to the large size of

the search space of available services, and the wide
range of heterogeneous selection criteria used by cus-
tomers, there is a need for a robust approach that can
reduce the complexity of the search by either reducing

the search space or the number of comparisons re-
quired to select the appropriate service [5]. The ap-
proach should support both qualitative and quantitative
criteria.
To develop an automatic cloud service selection sys-

tem, three challenges need to be addressed:

1. Automatic identification and extraction of
application requirements and customer
preferences: The application requirements and
customer preferences should be automatically
extracted from the application description document.
This includes defining new descriptive features of
application requirements that can be used in decision
making. These features must therefore be incorporated
into the specification of cloud applications.

2. Automatic evaluation, selection and integration
of services: Lacking the proper level of experience
in the field of cloud services makes it difficult for
customers to select the best deployment plan for
their applications on the cloud. Moreover, providing
them with too many options makes it even more
confusing. The decision must balance several factors
including the application’s requirements, the
customer’s goals, desires and constraints, price and
performance. This wide range of heterogeneous
selection criteria and the large search space of
available services mandate the need for an
automatic and robust approach that simplifies cloud
service selection. A comprehensive approach must
consider all determining attributes (both quantitative
and qualitative) to present the best options to
consumers. The approach should be able to handle
the large number of alternatives as well as missing
values for some of the attributes. Medium and large
size applications are likely to need multiple services
for deployments. In fact, for many applications, it is
more cost effective if they are deployed on multiple
small services (i.e., split the application into separate
deployment entities and deploy each one separately)
instead of one large service. This is especially in cases
a deployed large service is under-utilized by an
application (i.e., the customer pays for resources that
are not used by the application). Service integration
is therefore an additional challenge that service
selection needs to carefully handle. In addition, the
deployment region is an important attribute in the
application deployment to facilitate communications
between its different components. Another important
characteristic of the approach that can affect the
performance of the service selection system is to
be able to remember previous deployments in
order to reduce the number of searches and the
response time.

Fig. 1 Deployment components, requirements and customer
preferences of a simple application

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 2 of 18

3. Adaptation to dynamically changing
environment: The cloud is highly dynamic and
the status of its services is continuously changing
(e.g., change in price, or QoS). A robust system
must have the ability to adapt to these changes
to persistently meet the customer’s satisfaction.
Otherwise, the service reputation will be
compromised and customers will provide
negative feedback and low ratings. The service
selection system must incorporate the customer’s
feedback as well as feedback from monitoring
systems to support better recommendations.

In this paper, we describe in detail the models and
techniques used in QuARAM Service Recommender
to address the aforementioned challenges in recom-
mending suitable services for cloud application deploy-
ments and extend our previous work on a platform for
service selection [6]. The platform is a part of the

QuARAM (QoS-aware cloud application management)
framework [7] (Fig. 2). This autonomic framework
facilitates selecting an appropriate cloud provider,
provisioning resources on that provider, deploying the
application on those resources, monitoring the execu-
tion of application, and dealing with performance
challenges and errors that may arise. The QuARAM
Service Recommender provides the Deployment En-
gine and Recommender components of the QuARAM
framework. The Deployment Engine is responsible for
parsing and extracting information from the specifica-
tion of applications and interaction with the customer
in selection process. The Recommender component is
responsible for the rest of service recommendation
process.
The QuARAM Service Recommender platform is a

comprehensive extension to our previous work [2, 6].
In that previous work, we described a recommenda-
tion service for an application using the case-based

Fig. 2 A block diagram of QuARAM framework

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 3 of 18

reasoning approach. In this paper, we present three
extensions to our initial system and demonstrate our
comprehensive platform that encompass all the com-
ponents for service selection.
First, our case-based reasoning approach to service

selection requires cases in the case base that are simi-
lar to the target case. We consider the situation when
there are no similar experiences in the case base. We
therefore need to find providers that can supply the re-
quired functionality for the entire application (or deploy-
ment entities) without the case-based recommender
system. We propose to use Multi-Criteria Decision-Making
(MCDM), and specifically the TOPSIS method, to rank the
available offerings.
Second, we consider the scenario where the VMs se-

lected by our service are underutilized. We need to in-
crease the resource utilization, while maintaining or
decreasing the total application deployment price. We
propose a method for service consolidation to reach this
objective.
Third, as mentioned in third challenge above, the sys-

tem needs to incorporate feedback from the customer
and monitoring system to be able to provide better rec-
ommendations. We describe how reinforcement learning
is used in our platform to improve the accuracy of the
recommendation system using customer and monitoring
feedback.
The remainder of the paper is organized as follows.

Related work section describes related work and their
relationship to our work. Hybrid service selection sec-
tion describes in detail the use of MCDM for service se-
lection. We present service consolidation method for
better utilization and lowering the price in Service
consolidation section. An overview of the QuARAM
Service Recommender architecture along with a detailed
description of the platform components and the recom-
mendation procedure is presented in QuARAM service
recommender architecture section. Validation of the
QuARAM service recommender section provides a val-
idation of our approach with a case study involving a
proof-of-concept implementation and a step-by-step
process of service selection. Finally, Summary section
concludes the paper and highlights future research
directions.

Related work
Several studies have addressed the selection of IaaS
cloud services. CSRS [8] is a conceptual framework that
compares all available cloud services based on the per-
formance of virtual machines, QoS and users’ feedback.
This framework selects services that satisfy the tech-
nical requirements of the application first and then
eliminates those that do not accommodate the cost
constraints of the customer. The selected set is then

ranked and presented to the customer. Zang et al. [9]
propose a two-step approach that uses a maximum
gain and minimum cost to optimize the service selec-
tion. In this proposed algorithm, first available services
are selected and then based on the defined gain and
cost of the services, a service is recommended to the
user. Rehman et al. [10] introduce a mathematical for-
mulation and method based on a set of abstract cri-
teria for selecting a cloud service provider. The
authors pointed out that this method is only effective
for service selection amongst offerings that have simi-
lar specifications but different performance. All these
approaches entail high complexity as they compare all
available cloud services against all criteria. They also
do not scale well, given that the number of services is
increasing dramatically.
Chen et al. [11] utilize Constraint Programming

(CP) to solve the problem of service selection in the
cloud. Although the authors aim at reducing the
number of comparisons, the complexity of the algo-
rithm is still high when the numbers of constraints
and services are large. Their approach also does not
accommodate preferences of the user over different
requirements.
Another group of studies define service selection as

a multi-criteria decision making (MCDM) problem
[12]. Godse et al. [13] employ the Analytical Hierarchy
Process (AHP) method to provide SaaS cloud service
selection. The drawback of this method is its limitation
with respect to the number of alternatives with mul-
tiple criteria [5]. Chung et al. [14] used ANP (Analytic
Network Process) for service selection. They suggest a
set of high level criteria for cloud service selection and
use a survey of CIO, CEO, and ICT experts to deter-
mine the importance of each criteria. The CloudRe-
commender [5, 15] cloud service selection system
defines cloud service selection as a multi-criteria
optimization problem. It defines ontologies for service
and QoS to facilitate the discovery of services based on
their functionality and QoS parameters. The system
solves the problem with genetic algorithms and AHP
as the fitness function to handle mixed quantitative
and qualitative criteria. Qian et al. [16] propose a heur-
istic approach to search the solution space. Their ap-
proach organizes the selection problem as a graph that
encompasses the components of the target application
and the application’s potential clients. It then finds a
service for each node in the graph based on the service
cost, distance to clients, distance to other components
of the application, and the reliability of the provider.
Lee et al. [17] proposed a hybrid MCDM model fo-
cused on IaaS service selection for firms’ users that is
based on balanced scorecard (BSC), fuzzy Delphi
method (FDM) and fuzzy AHP. BSC is used to prepare

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 4 of 18

a list of decision making factors. FDM is used to select
the list of important decision-making factors based on
the decision makers’ opinion (using a questionnaire)
and FAHP is used to rank and select the best cloud
service. This work’s focus is on the migration of the
whole company ICT to cloud based on a set of general
cloud service features. Baranwal et al. [18] propose to
use Improved Ranked Voting Method (IRVM). In this
method, the services are compared and ranked first
based on each metric individually and then the services
are scored based on the preference of the customer
and the ranking in the previous step. In all of the
above methods, the decision is made by comparing
and ranking all of the available services. With the rapid
growth of the cloud industry, there would be a large
search space problem for all of these methods.
Sunderes et al. [19] tackle the problem of a large

search space through indexing the cloud services (using
iDistance techniques) based on their common set of
properties. This approach first indexes cloud providers
based on their properties in a B+-tree, and then uses the
K-NN algorithm (K-Nearest Neighbor) to find the ser-
vice that fits the requirements of the customer. Since a
cloud service user may have a set of service require-
ments that cannot be fulfilled by any single service pro-
vider, they propose to aggregate service providers. If the
result of the search satisfies all the requirements, then it
is recommended to the user. Otherwise, if only some of
the requirements are satisfied, a new query is issued to
satisfy the remaining requirements. The process con-
tinues until all the requirements are satisfied.
We identify two shortcomings in service selection

approaches in the literature. They reduce the number
of comparisons by either using heuristic algorithms
or indexing the search space. However, they do not
accommodate the customers’ preferences in the deci-
sion making. Furthermore, all approaches handle
every application deployment as a new case without
taking into account the results of similar previous
deployments.

Hybrid service selection
In order to address the second challenge in providing
automatic service selection (automatic evaluation, selec-
tion and integration of services) we primarily use
case-based reasoning for evaluation and selection of ser-
vices that can accommodate the application [2]. We in-
corporate the application’s requirements, and the
customer’s priorities in our decision making using a set
of similarity measures and weights in similarity calcula-
tion. In case-based reasoning system, previously de-
ployed applications are used to help in selection of
services for new applications. Using a set of similarity
functions (local and global similarity functions) the

similarity of the target application’s requirements and
preferences to the applications already in the case base
is calculated and the top most similar ones are used to
recommend a list of solutions (services) for the target
application. The discovered solutions are then adapted
to the requirements and preferences of the target
application.
To use case-based recommendation for service selec-

tion, it is required to have cases in the case base that
are similar to the target case. Sometimes there are no
similar cases available in the case base. In this situation,
we need to find providers that can supply the required
functionality for the entire application without the
case-based recommender subsystem.
A cloud application consists of a set of deployment

entities. For example, the application in Fig. 1 has two
deployment entities. For each of the deployment en-
tities, the search for the suitable service can be per-
formed using the case-based recommender. If no
similar deployment entities are found in the case base
(i.e., the similarity of all cases is less than a specified
threshold), then the recommendation system searches
for a suitable service among all available services that
are offered by the cloud providers.
The number of possible services available from IaaS

providers for deployment of entities is large and grow-
ing rapidly. We use clustering to decrease this search
space and improve the overall response time, while
maintaining high precision. We use the k-means clus-
tering algorithm [20] to build a model to cluster all
available services based on their advertised features.
The model is then used to find the cluster to which a
deployment entity belongs. The search engine aims to
find the service in that cluster from different providers
that best satisfies an entity’s requirements. Within the
cluster, we use the K-Nearest Neighbor (K-NN) algo-
rithm [21] to find the most similar service to the target
entity. Customer preferences for different requirements
are represented as weights in the similarity function,
which is given as:

Sim service; deployment entityð Þ ¼
Pn

i¼1wi � Sim f si ; f
d
i

� �
Pn

i¼1wi

ð1Þ

where wi is the weight1 of the ith requirement of the ap-

plication entity, f di is the application’s required value for
the ith requirement and f si is the value for the service’s
corresponding feature.
The following steps summarize our service selec-

tion algorithm as an alternative to using case-based
reasoning:

1) For all the deployment entities of the application:

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 5 of 18

a. Classify the deployment entity in one of the clusters
using the clustering model

b. Find the most suitable service for the deployment
entity in that cluster with respect to the entity’s
requirements, service price and performance

2) For each “distinct” provider that is suggested for the
deployment entities (results of step 1), redo step 1
for potential services on that provider.

3) Rank potential providers based on the total price,
average performance and average similarity of the
services to the deployment entities

For example if in step 1 the suggested services for the
deployment entities are on “Amazon” and “eApps” then in
step 2, we find the suitable services for all deployment en-
tities on “Amazon” and on “eApps”. The two sets of ser-
vices on these providers are then compared based on the
overall price, performance, and similarity.
In order to recommend a suitable provider for the ap-

plication when there is no similar application in the
case base, we first search for the most suitable service
for each deployment entity separately (step 1-b). The
similarity is calculated based on the matches between
requirements and services’ features, the performance of
the services for the application category (e.g. “CPU-Op-
timized”) and price. Price is always an important factor
in making decisions. The importance of the service
price attribute to the customer is represented as a
weight for this feature by the customer. In addition to
comparing available services based on the application’s
and deployment entities’ requirements, services are also
compared based on performance. The performance in-
formation on services can be obtained by an independ-
ent third-party service like CloudHarmony [22] or the
service proposed by Acs et al. [23].
The objective performance measures for most IaaS ser-

vices are available in CloudHarmony. It provides inde-
pendent and objective analysis on cloud services using
various benchmarks to compare cloud providers. Acs et
al. [23] use a hierarchical fuzzy system to reduce the com-
plexity of the performance comparison and provide a
comparable and readable performance analysis of IaaS
providers. The performance objective can be based on in-
dividual resources such as CPU, memory, and disk or the
overall service performance.
Cloud providers provision VMs in different categories

with various configurations in terms of CPU, storage,
memory and networking capacity. These categories are
optimized to offer better performance with specific
applications (such as computation-intensive or
memory-intensive).
The most suitable service is selected based on the similar-

ity of the service to the system requirements of the

deployment entity, the service price, and the performance
of the service based on the deployment entity’s “category”.
For example, if the “category” of a deployment entity is of
type “CPU-Optimized” the service price and the
CPU-relevant performance of potential services are used
for comparison.
A service with the highest similarity, lowest price and

highest performance is the most suitable service for the
deployment entity. Since this combination is not always
possible for a service, the similarity, price and perform-
ance of the potential services are compared to the max-
imum and minimum values for these parameters
amongst the top n most similar services to the deploy-
ment entity. We incorporate the customer preferences
on each of these parameters by adding appropriate
weights to each of these parameters.
With these conflicting criteria for selecting suitable ser-

vices for deployment entities, we can use multi-criteria de-
cision making (MCDM) approaches [24] to solve service
selection problem. MCDM (a.k.a., multi-criteria deci-
sion analysis (MCDA)) is a sub-discipline of operations
research, which aims to design mathematical and com-
putational tools for selecting the best alternative among
several choices with respect to several criteria [12].
Rehman et al. [25] provide a comparative study on dif-
ferent methods of MCDM for IaaS service selection
based on performance measurements made by Cloud-
Harmoney [22]. While their study shows MCDM tech-
niques are effective and can be used for IaaS service
selection, it also reveals that TOPSIS (Technique for
Order of Preferences by Similarity to Ideal Solution) is
the most suitable method for service selection when
the number of available services is large. Based on their
findings, we use the TOPSIS method for ranking and
selecting the most suitable service for a deployment
entity.
TOPSIS was proposed by Hwang and Yoon in 1981

[24]. The main idea of this method is to select an al-
ternative that is the closest to the positive ideal solu-
tion and simultaneously the farthest from the negative
ideal solution (anti-ideal solution). The distance of al-
ternatives from positive and negative ideal solutions
are calculated based on Euclidean distance [24]. The
optimal solution should have the shortest distance
from the ideal solution and the farthest from the
anti-ideal one [12].
The procedures of the TOPSIS method in our IaaS

service selection are described as follows.
Given a set of available services, A = {Ak | k = 1, …, n},

a set of criteria (i.e., similarity, price and performance in
our service selection), C = {Cj | j = 1,…,m}, a set of values
for each criterion, X = {xkj | k = 1,…, n; j = 1,…,m}, and a
set of weights, W = {wj |j = 1, …,m}, the information
Table 1 = (A, C, X, W) can represented as in Table 2.

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 6 of 18

The first step is to calculate the normalized ratings
using Eq. 2.

rkj xð Þ ¼ xkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1x

2
kj

q ; k ¼ 1;…; n; j ¼ 1;…;m: ð2Þ

Then the weighted normalized ratings are calculated
as follows:

vkj xð Þ ¼ wjrkj xð Þ; k ¼ 1;…; n; j ¼ 1;…;m: ð3Þ
The next step is to find the positive (PIS) and negative

(NIS) ideal solutions. These solutions are derived as:

PIS ¼ vþ1 xð Þ; vþ2 xð Þ;…; vþj xð Þ;…; vþm xð Þ
n o

¼ maxkvkj xð Þ� �� j∈ J1� �
; minkvkj xð Þ� �� j∈ J2Þ j k ¼ 1;…; ng;

ð4Þ

NIS ¼ v−1 xð Þ; v−2 xð Þ;…; v−j xð Þ;…; v−m xð Þ
n o

¼ minkvkj xð Þ� �� j∈ J1� �
; maxkvkj xð Þ� �� j∈ J2Þ j k ¼ 1;…; ng;

ð5Þ

where J1 are the benefit attributers (larger is better, e.g.,
similarity and performance) and J2 are cost attributes
(smaller is better, e.g., price).
The next step is to calculate the distance of each avail-

able service from the positive and negative ideal solu-
tions (i.e., Dh and Dl respectively) using Euclidean
distance,

Dh ¼
ffiXm

j¼1
vkj xð Þ−vþj xð Þ
h i2r

; k ¼ 1;…; n ð6Þ

and

Dl ¼
ffiXm

j¼1
vkj xð Þ−v−j xð Þ
h i2r

; k ¼ 1;…; n: ð7Þ

The similarity of the available services to PIS is then
calculated as:

Similarity index ¼ Dl

Dh þ Dl
ð8Þ

We use α, β, and γ as the weights for similarity,
price and performance criteria respectively, where α,
β and γ are calculated using the weights that the cus-
tomer assigns for each of the requirements as follows:

α ¼ Avg W −ð Þ
total weight

; β ¼ Wprice

total weight
; and γ ¼ Wperf

total weight

ð9Þ

where W is the set of customer-assigned weights to
the requirements of the deployment entity, W−⊆W =
W - {Wprice}, Wprice is the price weight and Wperf is
the performance weight. This performance weight is
determined by a domain expert. The total_weight is
defined as follows.

total weight ¼ Avg W −ð Þ þWprice þWperf ð10Þ

where Avg (W−) is the average of all the customer-assigned
weights except the price weight.
For example, assume that a deployment entity has the

following customer-assigned weights to the requirements
(in range [0,10]): WvCPU = 6, WMemory = 6, WStorage = 4, WRe-

gion = 5, WPrice = 10, WOS = 10, WAvailability = 6, WI/O Perform-

ance = 10, WDataTransfer = 4. The expert set the performance
weight asWPerf= 5.

Avg W −ð Þ ¼ 6þ 6þ 4þ 5þ 10þ 6þ 10þ 4
8

¼ 6:375

total weight ¼ Avg W −ð Þ þWprice þWperf

¼ 6:375þ 10þ 10 ¼ 26:375

wsimilarity ¼ α ¼ Avg W −ð Þ
total weight

¼ 6:375
26:375

¼ 0:242

wprice ¼ β ¼ Wprice

total weight
¼ 10

26:375
¼ 0:379

Table 2 Similarity, price and performance of 5 most similar
services to a deployment entity

Service number Similarity Price Performance

1 0.95 1.18 87

2 0.94 1.10 87

3 0.94 1.08 85

4 0.90 1.00 90

5 0.98 1.28 88

Table 1 Information table of topsis

Available
services

Criteria

Similarity Price Performance

A1 x11 x12 x13

A2 x21 x22 x23

. . . .

. . . .

An xn1 xn2 xn3

W α β γ

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 7 of 18

wperformance ¼ γ ¼ Wperf

total weight
¼ 10

26:375
¼ 0:379

Finally the available services are ranked by their simi-
larity index and the top service is selected as the best
solution.
For example, consider the services with similarities,

performances and prices for a deployment entity as
shown in Table 1.
Using TOPSIS and the weights (α, β and γ) above,

the similarity index of the services are as follows: ser-
vice1 = 0.37, service2 = 0.62, service3 = 0.65, service4 =
0.82, service5 = 0.20. The ranking of these services is:
4,3,2,1, and 5. Therefore, service 4 is selected for the
deployment entity.
Studies show that deploying cloud applications on

federated clouds [18], can bring several benefits in-
cluding cost effectiveness, scalability, fault tolerance,
and reliability [26–28]. We therefore perform an ini-
tial search for the most similar service for the entire
application from the available services of all pro-
viders, given that there is no customer preference for
specific providers. Although federated clouds may de-
crease the total price of the deployment entities, appli-
cations with multiple deployment entities may suffer
from performance degradation and price increases due
to communication and data transfer costs between en-
tities deployed on different cloud providers. Inter-cloud
communication and interoperability issues remain chal-
lenging for cloud providers, which makes deployment
over federated clouds a less desirable option in most
cases [27]. There are also other challenges related to
federated clouds like security, management and moni-
toring [26, 28]. However, federated clouds could be a
much cheaper option for applications that do not re-
quire a high amount of communications between their
different deployment entities.
Given the difficulties with federated clouds, while

federated clouds solutions are considered, we cur-
rently favor a list of services on the same provider for
performance purposes. Comparing the total price, the
average similarity and performance of the services for
the whole application, we can rank potential providers
and recommend the best match.

Service consolidation
Although the service search engine finds the best service
(i.e., VM in our case) for each deployment entity of the
application, in a typical scenario the VM is underutilized.
To increase the resource utilization of selected cloud
services, the service consolidator integrates as many de-
ployment entities as possible in each service, thus de-
creasing the number of required services for application
deployment. The final configuration must support all

the requirements of the application and the preferences
of the customer.
In our approach, we start with the largest service in

the list of suggested services for the application. We use
the price as an indicator of service capacity. Then, we
accommodate as many deployment entities as possible
in this service.
Next, we upgrade the service and consolidate more

deployment entities in the service. If the new service
configuration (i.e., the upgraded service) has an
equal or lower price than the earlier configuration of
all consolidated services, the upgrade is positive and
acceptable. We continue the same process for the
remaining deployment entities of the application. Al-
gorithm 1 illustrates this procedure in detail.
To consolidate deployment entities in a service, we

cast consolidation into the knapsack problem [29].
In this case the knapsack is the largest service that
is underutilized. A greedy approximation algorithm
[29, 30] is used to solve this knapsack problem.
We set the following rules on the consolidation

process:
1- Two instances of the same deployment entity can-

not be consolidated onto the same service to maintain
the system’s fault tolerance features.
2- Consolidated deployment entities must be of the

same operating system.
3- The region for the consolidated deployment entities

must be the same or the deployment entities must have
low preference on the region (which means satisfying
other requirements, e.g., price, is more important than
the deployment region).
Service consolidation has advantages and disadvan-

tages. Consolidating deployment entities with inter-
communication reduces the network overhead (and
cost) and increases the application’s performance.
However, service consolidation poses challenges re-
lated to fault tolerance. In our step - by-step case
study in Summary section we demonstrate a compre-
hensive example of using consolidation for utility
improvement.

QuARAM service recommender architecture
The architecture of QuARAM Service Recommender is
illustrated in Fig. 3. It is composed of 5 main compo-
nents: requirement/deployment entity extractor, recom-
mendation manager, case-based recommender, service
search engine, and service consolidator. It also in-
cludes three knowledge bases: application case base,
adaptation case base and providers knowledge base.
Components in dash-line boxes (i.e. the Service search
engine and the Service Consolidator) may or may not
participate in the process of recommendation based on
the circumstances.

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 8 of 18

A query to the system is in the form of a TOSCA
[31] Service Template for an application, which is de-
fined using a set of Normative Types. This template
includes the deployment entities of the application,
application requirements, and customer preferences.
The QuARAM Service Recommender extracts the in-
formation and sends it to the recommendation man-
ager, which sends a query based on this information to

the case-based recommender subsystem. The case--
based recommender searches for similar cases and pro-
poses a solution. The recommended solution is given
a similarity value that indicates how similar it is to the
target case. If the customer is not satisfied with the
recommendations or the similarity values of all solu-
tions are less than a specified threshold, the system
searches for a suitable service for each deployment

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 9 of 18

entity separately. This search involves both the case--
based recommender and the service search engine
which searches among all available offerings in the
clouds. When the system finds a suitable service for
every deployment entity, it consolidates the services,
where possible, to improve the resource utilization
and reduce the deployment costs. Then, a set of rec-
ommendations is suggested to the customer. Based on
the selection of the customer (customer selection
feedback) a case is added to the case base. Monitoring
systems also provide feedback on the service perform-
ance with respect to QoS requirements. This feedback
is used to update the case bases. In this section we de-
scribe the different components of the QuARAM Ser-
vice Recommender system and how they interact to
provide recommendations for service selection.

QuARAM service recommender components
Requirement/deployment entity extractor
A challenge in cloud service selection is specifying
cloud applications in such a way that a system can
automatically identify and extract the requirements and
customer preferences from the specification. TOSCA

[31] (Topology and Orchestration Specification of
Cloud Applications) is a standard specification method
for cloud applications that allow integration of the ap-
plication’s requirements (e.g., hardware requirements
and QoS), customer preferences and characterizations
of the application (e.g., application type) into the speci-
fication. With a standard specification, brokers can
identify and extract the requirements and characteriza-
tions automatically, select suitable services, provision
the service instances, configure and deploy the applica-
tion on the cloud.
The Requirement/deployment entity extractor com-

ponent receives the TOSCA Service Template of the
application from the customer and extracts the appli-
cation requirements, customer preferences, and the
deployment entities of the application. It provides a
couple of .csv documents based on this information
and sends them to the recommendation manager,
which in turn distributes them to the other compo-
nents. To evaluate, select and integrate services for an
application deployment, the platform uses the
case-based recommender, the service search engine
and the service consolidator components.

Fig. 3 The architecture of QuARAM Service Recommender

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 10 of 18

Case-based recommender
The Case-Based recommender receives the require-
ments of an application or one of its deployment en-
tities as input, searches the case base for similar
cases, and returns a list of recommended deployment
configurations to the target application. The Case--
Based recommender has access to three knowledge
bases. The first one is the application case base
which contains previously deployed applications/ de-
ployment entities, their requirements and the suitable
platform configuration for cloud deployment. The ap-
plication case base also includes the customer prefer-
ences and the SLAs. The second knowledge base is
the adaptation case base which incorporates the
knowledge about how to adapt a solution so that it
fits the features of the target problem (i.e., the new
application). The third knowledge base is the pro-
viders knowledge base. This knowledge base contains
knowledge about the available cloud service offerings,
the performance of each service from different per-
spectives (e.g., computation, I/O, etc.) and knowledge
about the transition from one service to another. The
implementation and evaluation of the Case-Based rec-
ommender is presented in detail in Soltani et al. [2,
6]. Our experimental results show up to 90% preci-
sion of recommended services using case-based
recommender.

Service search engine
The service search engine uses the approach described in
Hybrid service selection section to search the available
offerings from cloud providers for a suitable service for
the application’s deployment entities, based on the re-
quirements of each entity, customer preferences and the
performance of cloud services. It uses TOPSIS to rank
potential services and returns a list of ranked suitable
services for the application’s deployment entities.

Service consolidator
This component consolidates the services proposed
for a set of deployment entities, using the algorithm
presented in Service consolidation section, to recom-
mend a list of suitable configurations for the applica-
tion deployment on the cloud. The final configuration
must support all the requirements of the application
and the preferences of the customer. The service con-
solidator takes into consideration the preferences of
the customer with respect to the service price and
performance. This component uses the greedy ap-
proximation algorithm to handle the problem of large
search space for consolidating multiple deployment
entities into services.

Recommendation manager
The Recommendation Manager is the core component
of the QuARAM Service Recommender that manages
and coordinates the various components. The recom-
mendation manager receives the requirements of the
customer’s application and its deployment entities from
the requirement/deployment entity extractor. Then, it
sends these requirements to the case-based recom-
mender, which returns a list of recommendations, along
with their similarity to the customer’s query and the
adapted solutions. Based on the similarity of the re-
trieved cases, the recommendation manager decides
whether to send the recommendations to the customer
based on a pre-specified similarity threshold. The top 5
recommendations (or the top n that have similarity
above the threshold where n < =5) are sent to the cus-
tomer to choose from if all of the top 5 have similarity
above the threshold. If none of the retrieved cases scores
has a similarity above the threshold, the recommenda-
tion manager uses the information of the deployment
entities of the application to find a more fine-grained
configuration for the application deployment. All pro-
posed configurations are sent to service consolidator,
which returns a list of aggregate recommendations that
best fit the whole application. The recommendation
manager then sends this list to the customer.

Feedback components
Customer selection feedback and monitoring system
feedback are responsible to provide the feedback from
customer and monitoring system to the case-based rec-
ommender for maintenance and system improvement.

Summary of recommendation process
The following steps summarize the recommendation
process (as illustrated in Fig. 3):

1) The customer sends the Service Template of his/her
application to the QuARAM Service Recommender.

2) The requirements/deployment entity extractor
parses the template and extracts a list of the
application’s deployments entities, requirements and
customer preferences and sends them to the
recommendation manager.

3) The recommendation manager creates a query
based on the application requirements, the
deployment entities and customer preferences and
sends it to the case-based recommender (a). The
case-based recommender provides a list of
recommendations for the application deployment
using the knowledge bases (application case base,
adaptation case base, and providers knowledge
base). The list of recommendations along with the

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 11 of 18

case similarity is then sent back to the
recommendation manager (b).

The recommendation manager decides on the next
step based on the similarity of retrieved cases and a spe-
cified similarity threshold.
4) The recommendation manager sends to the customer

a list of retrieved cases whose similarity is above the thresh-
old. In the context of the QuARAM framework the list is
sent to the Deployment engine to pass it to the customer.
4*) If none of the retrieved cases has a similarity above

the specified threshold then, for each of the application’s
deployment entities the recommendation manager per-
forms the following steps:

a. Query the case-based recommender for suitable
services for the entity.

b. The case-based recommender returns a list of
recommendations for the deployment entity to the
recommendation manager.

c. If the similarity of all retrieved cases is below the
specified threshold then recommendation manager
queries the service search engine and receives a list
of recommendations for the deployment entity. This
list could be empty which means there is no
available service that fits the entity requirements.

d. The recommendation manager sends all the
application’s deployment entities information and
the recommended services to the service
consolidator.

e. The service consolidator returns a more cost-efficient
configuration for the deployment of the application
to the recommendation manager.

f. The configurations are sent back to the customer
(or the deployment engine in the terminology of
QuARAM framework.

This process assumes that the application can be de-
ployed on federated clouds. To avoid the current chal-
lenges of federated clouds, we further perform the
following steps to restrict our recommendations to only
a single provider for the entire application.

1) The recommendation manager sends the list of
deployment entities of the application and the
recommended provider for each entity to the
service search engine.

2) The service search engine returns a list of
recommendations for the deployment of the
application (i.e., all the deployment entities) on
each of the providers that are listed by the
recommendation manager.

3) The recommendation manager sends these
recommendations (i.e., the deployment entities and

the set of services recommended on each provider)
to the service consolidator.

4) The service consolidator makes possible aggregation
for services and sends a more cost-efficient
configuration of services on each candidate provider.

5) The list is then presented to the customer to make
a final selection.

Validation of the QuARAM service recommender
To validate our framework, we developed a proto-
type of the service recommender by extending the
case-based recommender in Soltani et al. [2]. In the
original case-based recommender system, the case
base includes a problem part and the solution part.
The problem part has the application requirements
and the customer preferences as the weights for each
the requirements, and the solution part describes the
selected service and the configurations. In our ori-
ginal system, we assume that the applications re-
quirements can be satisfied by just one VM. Here,
we assume that an application may require more
than one VM.
The schema for the updated application case base is

given in Fig. 4. The new application case base includes
cases with the problem part attributes as follows: appli-
cation type (type), application tiers (tiers), maximum
number of concurrent users (maximumusers), region,
response time, security, availability, maximum latency
(latency), number of load balancers (loadbalancers),
number of servers, servers, priority (weight for each of
the attributes), and price. Some of the features are using
just for comparison of the previously deployed applica-
tions and the target application in the case base (e.g.
maximumusers).
The “Number of servers” attribute contains the num-

ber of deployment entities used by the application. The
“servers” attribute is an array of attributes for each of
the servers in the application. The attributes of a “ser-
ver” are as follows:

• Memory • NOSQL storage (NoSQL)

• CPU power • application server (AppServer)

• number of CPU cores (VCPU) • storage (Amount of required
storage for the application)

• OS (Lonux, Windows) • bandwidth (download, upload)

• DBMS (e.g. DB2, SQL Server, Oracle) • priority

The solution part of a case in the case base is also
updated to contain the following attributes: VMs and
configuration. The “VMs” attribute represents the
service instances (e.g., “m1.large, Amazon”, “Performance1,
GoGrid”). The ServiceNumber represents the service that is
used for the application and the ServiceID represents the

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 12 of 18

unique instance of that service for the deployment of the
application. The “configuration” attribute is an array of the
servers and the VMs (services) on which they are deployed.
Each server and each VM is identified by a unique number
(e.g., “1,1”, “2,1”, “3,2” which means that servers 1 and 2 are
deployed on VM 1 and server 3 is deployed on VM 2). The
“Services” table is our provider knowledge base. It contains
the available services from different providers and their
advertised features.
We validate the prototype with the sample application

whose requirements are given in Table 3. The application
includes 7 servers with two instances of one of the
servers. The “0” value in any column indicates that the
deployment entity has no specific requirement for
this feature. We set the region to “US” for our

entire experimental setups. This means that the
customer prefers to deploy the application on one of
the “US” regions (e.g. “US-West”, “US-East”, etc.).
Some applications run multiple instances of the
same deployment entity.
While the customer may specify the type of

application in the specification, it’s not necessarily that
this type applies to the deployment entities. For
example, an application may be of type
“CPU-intensive” but it does not mean that all its
deployment entities are “CPU-intensive”. It may have
a database server deployment entity which is
“memory-intensive”. To compare the performance of
potential services, we need to identify the “category”
of deployment entities.

Fig. 4 The EER schema of application case base

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 13 of 18

Most cloud providers classify their services into the
following “categories” based on VM configurations:
“Compute optimized”, “Memory optimized”, “Storage
optimized” and “General purpose”. Using the configuration
information (i.e., memory, CPU, and storage) of potential
services, we train a classifier and use it to categorize the
application deployment entities based on their system
requirements. We use the WEKA data mining tool [32]
and c4.5 algorithm [33] (implemented with the name J48 in

WEKA) to train our classifier model. Each column has the
feature and the assigned weight for that feature. Assigned
weights range from 0 to 1, where 1 means “most
important” and 0 is “least important”.
Figure 5 shows the process flow of the recommendation

system and the interactions between the various
components. The Service Template of the application is
sent to the requirement/deployment entity extractor (1).
The deployment entities of the application, the

Table 3 System requirements of tested application and the assigned weight for the requirement

Deployment entity vCPU/w Mem/w Storage/W Category Price OS

1 4/0.6 6/0.6 0/0 ‘CPU Purpose’ 0 Win

2 2/0.6 8/0.6 0/0 ‘General Purpose’ 0 Win

3 2/0.6 1/0.6 20/1 ‘General Purpose’ 0 Win

3 2/0.6 1/0.6 20/1 ‘General Purpose’ 0 Win

4 0/0 0/0 111/1 ‘General Purpose’ 0 Lin

5 2/0.6 3/0.6 0/0 ‘General Purpose’ 0 Win

6 8/0.8 32/0.8 50/0.6 ‘Memory optimized’ 0 Win

7 4/0.8 8/0.8 0/0 ‘CPU optimized’ 0 Win

Fig. 5 QuARAM Service Recommender sequence diagram

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 14 of 18

requirements and the customer preferences are returned
in the form of two .csv files, application.csv and
servers.csv, shown in Fig. 5. Application.csv contains the
requirements and customer preferences of the application.
Servers.csv includes the requirements and the customer
preferences of each deployment entity.
The Recommendation manager receives these .csv files

(2) and queries the case-based recommender (3). The
case-based recommender returns the recommendations
in the form of a .csv file (4), which contains the servers
and their candidate services (the “configuration” part of
the solution).
We assume that our case base contains the applications

previously deployed on cloud that have just one server
which was deployed on one service.
Since in this test case there is no other application in

the case base that has more than one server, the
case-based recommender returns an empty list to the
recommendation manager for the application.
The recommendation manager then creates queries for

each of the deployment entities separately. Figure 6 is an
example of the .csv files for one of the deployments
entities that are passed to the case-based recommender.

Some values are set to null for attributes such as
application tiers since they cannot map to a single
server.
The queries are sent to the case-based recommender

(5) and a list of recommendations is returned to the
recommendation manager (6). The recommendation
manager uses the solution of the most similar retrieved
case as the recommended solution for the deployment
entity. The recommended solution from the case-based
recommender for the deployment entity in Fig. 6 is
“Amazon, m2xlarge, sim= 52.8%”, where sim is the simi-
larity of the retrieved case to the entity. The threshold
for accepted similarity is set as 80%. Therefore, the rec-
ommended solution with the similarity of 52.8% is
rejected.
The recommendation manager then generates a query

to the service search engine as illustrated in Fig. 7 (7).
The search engine proposes “Athlantic.net, Xlarge” and
returns it to the recommendation manager (8). The
steps 5–8 are repeated for each deployment entity.
Table 4 illustrates the recommended solution for each
of deployment entities of our test application. The
column “Recommended by (R/B)” indicates whether
the solution is provided by the case-based recommender
(CBR) or the service search engine (SSE). “-” in the
name column indicates that the provider doesn’t
specify a name for the service.
Then recommendation manager sends the list of

recommended services for the deployment entities to
the service consolidator to integrate potential services
(9). Table 5 shows the results of the consolidation that
are returned to the recommendation manager (10). The
total price for the application dropped to $1.98/h
(compared to the non-consolidated services in Table 4)
for the deployment of the application.
In this example, we assume that federated cloud is

a viable option for the application deployment. If the
customer prefers the deployment on a single cloud
provider, the recommendation manager forwards the
requirements of the deployment entities and the list
of potential providers (i.e., Microsoft Azure, eApps,
Joyent, and Amazon for this application) to the service

Fig. 6 The .csv files pertaining to server 1 of the application Fig. 7 Query for service search engine

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 15 of 18

search engine to find the best service for each entity
on each provider. The results are sent to the service
consolidator and then to the recommendation
manager (11) (Tables 6, 7 and 8).
Following the process of service selection step-

by-step for the case study using our proposed
platform shows the feasibility of our approach in IaaS
service selection.

Summary
The motivation of our research comes from the need
to develop a platform for cloud application
deployment to cope with the growing cloud market.
Although the market growth provides economic
benefits to customers due to increased competition
between providers, the lack of similarity with respect
to how services are described and priced by different
providers makes the decision on the best option
challenging. The decision also needs to consider the
customer’s preferences over different features. We
recognized three challenges of automatic service
selection: 1) Automatic extraction of application
requirements and customer preferences, 2) Selection of
suitable services from a large pool of available services
that is constantly growing. The heterogeneity and the

large number of selection criteria pose additional
challenges. Consolidation of selected services to maximize
the resource utilization, minimize the deployment price,
and improve the application performance is required, 3)
Adaptation to the dynamic cloud environment.
The 1st and 3rd challenges are addressed in our

previous works [2, 6]. In this paper, we focus more
on 2nd challenge. We adopted our case-based recom-
mender that was presented in Soltani et al. [2] and
extended it in a number of ways to improve the pre-
cision of the recommendations. We incorporate an al-
ternate method of service recommendation using
MCDM when the case base lacks similar previous ap-
plication deployments. Consolidation of the services is
further introduced in the process to improve resource
utilization and lower deployment costs where applic-
able. A step-by-step case study of the recommenda-
tion process using our prototype shows the feasibility
of the proposed methods and techniques in service
recommendation for application deployment on cloud.
Our platform adopts a hybrid approach in service

selection, where we alternate between case-based rea-
soning and MCDM based on the presence of similar
cases in the case base. The solutions generated with
MCDM are currently not automatically added to the
case base in order to extend its coverage for future

Table 4 Recommended services for each deployment entity

Server Similarity Provider Name Mem (GB) Storage (GB) Region Price($/hr) OS Storage price ($/hr) R/B

1 86.59 eApps – 8 75 US-West 0.182 Win 0 SSE

2 86.98 Amazon r3.large 15.25 32 US-West 0.3 Win 0 CBR

3 86.55 Microsoft Azure Medium(A2) 3.5 60 US-West 0.154 Win 0 SSE

3 86.55 Microsoft Azure Medium(A2) 3.5 60 US-West 0.154 Win 0 SSE

4 82.12 eApps 1024 1 15 US-East 0.029 Lin .0039 CBR

5 84.81 Amazon t2.medium 4 0 US-West 0.072 Win 0 CBR

6 85.88 Joyent ‘High Storage 32 7680 Us-South 0.923 Win 0 SSE

7 88.47 eApps – 8 75 US-West 0.182 Win 0 SSE

Total Price = $2.00/h

Table 5 Results of service consolidation for the tested
application

Service Provider Price OS Servers Additional disk size Total price

1 Amazon 0.3 Win 2 0 0.3

2 Azure 0.154 Win 3 0 0.154

3 Azure 0.154 Win 3 0 0.154

4 eApps 0.029 Lin 4 96 0.029

5 Amazon 0.072 Win 5 0 0.072

6 Joyent 0.923 Win 6 0 0.923

7 eApps 0.349 Win 1,7 0 0.349

Table 6 Results of service consolidation for the tested
application on microsoft azure

Service Price OS Servers Additional disk size Total price

0 0.592 Win 1,3,5 0 0.592

1 0.31 Win 2 0 0.31

3 0.154 Win 3 0 0.154

4 0.02 Lin 4 91 0.026233

6 1.2 Win 6 0 1.2

7 0.6 Win 7 0 0.6

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 16 of 18

deployments. We plan to develop techniques that can
better update the information in case bases for use in
future searches. An offline simulator could perform
this task (i.e., re-select services) for already deployed
applications and provide the information to retain in
the case base when new services or providers are reg-
istered into the system.
Based on the studies on service selection using

MCDM, we use TOPSIS [24] for the search-based
service selection to combine with case-based reason-
ing. We are interested in studying the performance of
other MCDM methods [24] (e.g., ELECTRE,2 PRO-
METHEE,3 etc.) and hybrid methods [34] (e.g., com-
bination of EMO4 and MCDM methods) compared
with TOPSIS.
There are several limitations in the proposed work

which require further study. The deployment of an
application’s component as independent deployment
entities entails communications between these
entities. This communication presents data transfer
overhead and incurs unnecessary network traffic. The
current platform ignores the network overhead in
decision making. We plan to study the effect of this
deployment method on both the network load and
application performance. We also plan to
quantitatively study how service consolidation may
alleviate the overhead on the network and lower
communication costs. Our focus in this paper is on
the selection of IaaS service model using case-based
reasoning and MCDM. We plan to check the feasibil-
ity of the proposed approach for SaaS and PaaS service

models and compare the results with the state of the
art methods for these two cloud service models.

Endnotes
1Defined by the customer as the importance of the

requirement
2Elimination Et Choix Traduisant He Realite
3Preference Ranking Organization Method for

Enrichment Evaluations
4Evolutionary Multi-Objective Optimization

Abbreviations
AHP: Analytical Hierarchy Process; ANP: Analytic Network Process;
BSC: Balanced Scorecard; CBR: Case-Based Reasoning; CP: Constraint
Programming; EER: Enhanced Entity Relationship; ELECTRE: Elimination Et
Choix Traduisant He Realite; EMO: Evolutionary Multi-Objective Optimization;
FDM: Fuzzy Delphi Method; IaaS: Infrastructure as a service; IRVM: Improved
Ranked Voting Method; K-NN: K-Nearest Neighbor; MCDM: Multi-criteria
Decision Making; PROMETHEE: Preference Ranking Organization Method for
Enrichment Evaluations; QoS: Quality of Service; QuARAM: QoS-aware cloud
application management; SLA: Service Level Agreement; SSE: Service Search
Engine; TOPSIS: Technique for Order of Preferences by Similarity to Ideal
Solution; VM: Virtual Machine

Acknowledgements
We acknowledge Natural Sciences and Engineering Research Council of
Canada (NSERC) for funding this project.

Funding
This project was funded by NSERC (Natural Sciences and Engineering
Research Council of Canada) as a part of PhD project.

About the Authors
Dr. Sima Soltani received her PhD in Computer Science in 2016 from
Queen’s University, Canada. She received her MSc. in software engineering in
2007 from Amirkabir University of Technology and her BSc in software
engineering in 2004 from Isfahan University, Iran. She was faculty member of
Islamic Azad University and was instructor for multiple universities in Iran.
Her research interest include cloud computing, data mining and data
analysis, big data and automatic computing systems.
Prof. Patrick Martin is a Professor in the School of Computing at Queen’s
University and the Director of the Database Systems Laboratory. He is a
Faculty Fellow and Visiting Scientist with IBM’s Centre for Advanced Studies,
a Scotiabank Scholar, a member of the Southern Ontario Smart Computing
Innovation Platform (SOSCIP) Scientific Committee and a member of the
Advisory Panel on Analytics for the Ontario Brain Institute. His research
interests include big data analytics, database system performance, cloud
computing and autonomic computing systems.
Dr. Khalid Elgazzar is an assistant professor with the Center of Advanced
Computer Studies at the University of Louisiana at Lafayette. Before joining
CACS, he was an NSERC postdoctoral fellow at Carnegie Mellon School of
Computer Science. He received his PhD in Computer Science in 2013 from
the School of Computing at Queen’s University in Canada. Dr. Elgazzar
received the prestigious NSERC PDF award (2015–2017) from the Canadian
Government and the 2014 distinguished re-search award from Queen’s
University. He also received sever-al recognition and best paper award at top
international venues. His research interests span the areas of mobile and
ubiquitous computing, context-aware systems, Internet of Things, and elastic
networking paradigm. Dr. Elgazzar is currently leading a team to create the
next generation of IoT open stack, get-ting every connected device onboard
to bring the future even closer.

Authors’ contributions
PM and KE were PhD supervisor and co-supervisor of SS for this project. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Table 7 Results of service consolidation for the tested
application on joyent

Service Price OS Servers Additional disk size Total price

0 1.02 Win 1,2,3 0 1.02

4 0.02 Lin 4 91 0.02536

6 0.923 Win 6 0 0.923

7 1.02 Win 3,7 0 1.02

Table 8 Results of service consolidation for the tested
application on amazon

Service Price OS Servers Additional disk size Total price

0 0.752 Win 1,2,3 0 0.752

3 0.1 Win 3 20 0.10274

4 0.026 Lin 4 111 0.041205

5 0.1 Win 5 0 0.1

6 1.08 Win 6 0 1.08

7 0.6 Win 7 0 0.6

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 17 of 18

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Computing, Queen’s University, Kingston, Canada. 2School of
Computing and Informatics, University of Louisiana, Lafayette LA70503, USA.

Received: 15 January 2018 Accepted: 28 June 2018

References
1. Buyya R, Yeo CS, Venugopal S (2008) Market-oriented cloud computing:

vision, hype, and reality for delivering IT services as computing utilities. In:
2008 10th IEEE international conference on high performance computing
and communications. IEEE, Dalian, pp 5–13

2. Soltani S, Martin P, Elgazzar K (2014) QuARAMRecommender: case-based
reasoning for IaaS service selection. In: The international conference on
cloud and autonomic computing (CAC 2014). IEEE, London, pp 220–226

3. Best Infrastructure as a Service(IaaS Providers. https://www.g2crowd.com/
categories/infrastructure-as-a-service-iaas?order=alphabetical&page=
3#product-list. Accessed 5 Jan 2018

4. Cloudorado. https://www.cloudorado.com/. Accessed 5 Jan 2018
5. Zhang M, Ranjan R, Haller A, et al (2012) Investigating decision support

techniques for automating Cloud service selection. 4th IEEE Int Conf Cloud
Comput Technol Sci Proc 759–764. https://doi.org/10.1109/CloudCom.2012.
6427501

6. Soltani S, Elgazzar K, Martin P (2016) QuARAM service recommender: a
platform for IaaS service selection. In: 9th international conference on utility
and cloud computing. ACM Press, Shanghai, pp 422–425

7. Martin P, Soltani S, Powley W, Hassannezhad M (2013) QoS-aware cloud
application management. In: Catlett C, Gentzsch W, Grandinetti L et al (eds)
Cloud computing and big data. IOS Press, Amsterdam

8. Han S, Hassan MM, Yoon C, Huh E (2009) Efficient Service Recommendation
System for Cloud. In: Proceeding: International Conference on Grid and
Distributed Computing, GDC 2009, Held as Part of the Future Generation
Information Technology Conferences, FGIT 2009. Jeju Island, pp 117–124

9. Zeng W, Zhao Y, Zeng J (2009) Cloud service and service selection
algorithm research. In: The first ACM/SIGEVO summit on genetic and
evolutionary computation - GEC 09. ACM Press, New York, pp 1045–1048

10. Rehman ZU, Hussain FK, Hussain OK (2011) Towards multi-criteria cloud service
selection. In: 2011 fifth international conference on innovative mobile and
internet Services in Ubiquitous Computing. Ieee, Seoul, pp 44–48

11. Chen C, Yan S, Zhao G, et al (2012) A systematic framework enabling
automatic conflict detection and explanation in cloud service selection for
enterprises. In: 2012 IEEE fifth international conference on cloud computing.
IEEE, Hawaii, pp 883–890

12. Whaiduzzaman M, Gani A, Anuar NB et al (2014) Cloud service selection
using multicriteria decision analysis. Sci World J 2014:1–10. https://doi.org/
10.1155/2014/459375

13. Godse M, Mulik S (2009) An Approach for Selecting Software-as-a-Service
(SaaS) Product. In: 2009 IEEE International Conference on Cloud Computing.
IEEE, Bangalore, pp 155–158

14. Do CB, Kwang-Kyu S (2015) A cloud service selection model based on
analytic network process. Indian J Sci Technol 8:1–5. https://doi.org/10.
17485/ijst/2015/v8i18/77721

15. Zhang M, Ranjan R, Menzel M, Haller A (2012) A declarative recommender
system for cloud infrastructure services selection. In: 9th international
conference on economics of grids, clouds, systems, and services, GECON
2012. Springer, Berlin and Heideiberg, pp 102–113

16. Qian H, Zu H, Cao C, Wang Q (2013) CSS: facilitate the cloud service
selection in IaaS platforms. In: 2013 International Conference on
Collaboration Technologies and Systems (CTS). IEEE, San Diego, pp 347–354

17. Lee S, Seo K (2016) A hybrid multi-criteria decision-making model for a
cloud service selection problem using BSC, fuzzy delphi method and fuzzy
AHP. Wirel Pers Commun 86:57–75. https://doi.org/10.1007/s11277-015-2976-z

18. Baranwal G, Prakash Vidyarthi D (2016) A cloud service selection model
using improved ranked voting method. Concurr Comput Pract Exp 28:
3540–3567. https://doi.org/10.1002/cpe.3740

19. Sundareswaran S, Squicciarini A, Lin D (2012) A Brokerage-Based Approach
for Cloud Service Selection. In: 2012 IEEE Fifth International Conference on
Cloud Computing. IEEE, Hawaii, pp 558–565

20. Han J, Kamber M (2006) Data mining: concepts and techniques. Morgan
Kaufmann, p 800

21. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley- Interscience
Publication, Canada, p 280

22. CloudHarmony transparency for cloud. http://cloudharmony.com. Accessed
5 Jan 2018

23. Acs S, Zsolt N, Gergely M (2014) A Novel Approach for Performance
Characterization of IaaS Clouds. In: Euro-Par 2014: Parallel Processing
Workshops. Springer International Publishing, Porto, pp 109–120

24. Tzeng G-H, Huang J-J (2011) Multiple attribute decision making, Methods
and Applications. Boca Raton, CRC Press

25. Rehman ZU, Hussain OK, Hussain FK (2012) Iaas Cloud Selection using
MCDM Methods. 2012 IEEE Ninth Int Conf E-bus Eng 246–251. https://doi.
org/10.1109/ICEBE.2012.47

26. Subramanian T, Savarimuthu N (2015) A Study on Optimized Resource
Provisioning in Federated Cloud. CoRR abs/1503.03579, p 1–6

27. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing
environments. ACM Comput Surv 47:1–47. https://doi.org/10.1145/2593512

28. Shareef O, Kayed A (2015) A survey on federated clouds environment. Int J
Adv Res Comput Sci Softw Eng 5:83–92

29. Neapolitan RE, Naimipour K (2011) Foundation of algorithms, 4 edn. Jones
Bartlett Learn, Sudbury. http://common.books24x7.com.proxy.queensu.ca/
toc.aspx?bookid=35300. Accessed 10 Sept 2015

30. Williamson DP, Shmoys DB (2011) The Design of Approximation Algorithms.
Cambridge University Press, Cambridge

31. OASIS. Topology and orchestration specification for cloud applications
(TOSCA) Version 1. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-
v1.0-os.html. Accessed 12 Dec 2014

32. Weka: Datamining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/.
Accessed 2 June 2015

33. Mitchell TM (1997) Machine learning. McGrawHill, New York
34. Odu GO, Charles-Owaba OE (2013) Review of multi-criteria optimization

methods – theory and applications. IOSR J Eng 3:01–14. https://doi.org/10.
9790/3021-031020114

Soltani et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:12 Page 18 of 18

https://www.g2crowd.com/categories/infrastructure-as-a-service-iaas?order=alphabetical&page=3#product-list
https://www.g2crowd.com/categories/infrastructure-as-a-service-iaas?order=alphabetical&page=3#product-list
https://www.g2crowd.com/categories/infrastructure-as-a-service-iaas?order=alphabetical&page=3#product-list
https://www.cloudorado.com/
https://doi.org/10.1109/CloudCom.2012.6427501
https://doi.org/10.1109/CloudCom.2012.6427501
https://doi.org/10.1155/2014/459375
https://doi.org/10.1155/2014/459375
https://doi.org/10.17485/ijst/2015/v8i18/77721
https://doi.org/10.17485/ijst/2015/v8i18/77721
https://doi.org/10.1007/s11277-015-2976-z
https://doi.org/10.1002/cpe.3740
http://cloudharmony.com
https://doi.org/10.1109/ICEBE.2012.47
https://doi.org/10.1109/ICEBE.2012.47
https://doi.org/10.1145/2593512
http://common.books24x7.com.proxy.queensu.ca/toc.aspx?bookid=35300
http://common.books24x7.com.proxy.queensu.ca/toc.aspx?bookid=35300
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.9790/3021-031020114
https://doi.org/10.9790/3021-031020114

	Abstract
	Introduction
	Related work
	Hybrid service selection
	Service consolidation
	QuARAM service recommender architecture
	QuARAM service recommender components
	Requirement/deployment entity extractor
	Case-based recommender
	Service search engine
	Service consolidator
	Recommendation manager
	Feedback components

	Summary of recommendation process

	Validation of the QuARAM service recommender
	Summary
	Defined by the customer as the importance of the requirement
	Abbreviations
	Acknowledgements
	Funding
	About the Authors
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

