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Abstract

This paper focuses on an integrated workload scheduling and pre-fetching model in a multimedia mobile cloud
computing environment to enhance the performance of response time and reduce the cost to process multimedia
data. The response time and cost optimization problems are presented along with the computation resources such as
virtual machines (VMs) allocation, workload conservation, queueing stability constraints, and to overcome the total
response time and cost, a heuristic approach of workload scheduling method is proposed. The integrated workload
scheduling at pre-fetcher and cloud are considered to study the effects of various parameters such as VM’s processing
speed, pre-fetcher’s utilization, the user requests arrival rate. The performance analysis results reveal that the cost and
transmission speed are directly relevant factors, meaning that, once the rate of data transmission is increasing, the
cost is also increasing and vice versa. Hence, the time and cost efficient workload scheduling is essential to satisfy
both delay and cost in pre-fetcher enabled multimedia cloud systems.
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Introduction
Multimedia communication over the cellular network
with minimum latency become critical with the ever
increasing number of cellular users along with multi-
media data traffic. The evolution of cloud computing
technology, data transmission methods have changed.
Since cellular devices (e.g., smart phones, tablets etc.)
face some limitations such as power, memory and com-
puting power, the cloud providers offer services such
as scalable and reconfigurable computing, storage and
network services [1, 2]. Moreover, the cloud comput-
ing is a technology with growing popularity for many
organizations. The main advantages that lead to this
popularity are unlimited storage, backup and recovery,
cost efficiency, easy maintenance and quick deployment
[1]. Even though cloud computing has made our life
much easier, there are many challenges to face. Latency
along with security is the most important factor to sat-
isfy when it comes to delay-sensitive transactions like
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banking, stock market and real time multimedia data
transfer.
Another challenging issue is to process multimedia ser-

vices in cellular network environment [3]. Cellular data
transmission was so successful until battery lives could
not keep up with the users’ need. The cellular users,
mostly cell phone users do not have unlimited storage to
store all the information they require. To overcome this
challenge, mobile cloud computing was introduced [4, 5].
In mobile cloud computing, mobile users utilize cloud
servers, known as virtual machines (VMs) to process high
computational services such as real time multimedia data
processing (e.g., video on demand (VoD), online gaming,
etc). Utilizing cloud computing with mobile networks do
not need to consider storage capacity and battery life.
However, delay became a new challenge in mobile cloud
computing. Pre-fetching was one of the techniques that
was proposed to reduce the delay in multimedia delay
sensitive mobile communication [6]. This technique can
reduce the delay significantly if it is well designed and
implemented.
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This paper investigates the performance of response
time and cost in the integrated workload scheduling
and pre-fetching model in mobile cloud computing envi-
ronment to process multimedia data requests. In this
paper, we propose a heuristic based workload scheduling
method which utilizes both cloud and pre-fetcher to dis-
tribute workload to minimize the total response service
time and cost.
The remainder of this paper is organized as follows.

In the section system model and assumptions, the pre-
fetcher enabled multimedia cloud computing model, fol-
lowed by the description of system model and problem
formulation is presented. Response time and cost opti-
mization problem sections present the analytical formu-
lation of time and cost minimization problems along with
a combined pre-fetcher in a cloud system. The solution
of workload scheduling in multimedia cloud networks is
discussed in Heuristic approach of workload scheduling
section. Performance analysis section provides the results
of our proposed model. Finally, conclusion section con-
cludes the paper and provides some insights of future
research in multimedia mobile cloud computing model.

Related work
The topic of cloud computing is undergoing a grow-
ing popularity among practitioners, and scientific
researchers. The cloud provides services such as software,
platform, infrastructure and these services are maintained
by cloud providers (e.g., AWS, Google cloud platform,
Microsoft azure etc.)[1, 2]. The cloud technologies help
service providers to provide faster and more secure com-
puting services to users. The vast computing resources
led to the selection of cloud as the integrating stage for
the mobile environment. The core of the cloud is data
center, consisting of different type of the servers, e.g.,
master, computing, etc.
Authors in [7, 8] present a three-tier architecture for

multimedia data center which comprises three different
types of servers; master, computing and transmission, as
depicted in Fig 1. In the beginning phase, the master
servers distribute the workload to the computing servers
and the cloud provider utilizes different types of VM
clusters to complete each service task. In the end phase,
the transmission server allocates bandwidth resources to
transfer the results to the users. One of the challenges
considered in [7, 9] is to schedule the workload among
the VM clusters in such a way that each service utilizes
minimum number of computing resources (e.g., VMs) and
simultaneously ensures the quality of experience (QoE)
among users.
Authors in [10, 11] allocate VMs at both user level

and task level. In [11], authors proposed a task based
workload scheduling method where each multimedia ser-
vice is decomposed into independent tasks. The authors

proposed three types of workload scheduling methods
(e.g., serial, parallel, andmixed) where one VM is allocated
to one task. However, in [11] the authors did not consider
the dependency among tasks, total independent paths and
the scheduling weight among paths. The Bayesian based
workload scheduling method, proposed in [12] resolves
the aforementioned issue and utilizes both task and user
level scheduling to minimize the mean service time.
Multimedia processing enforces new challenges to

cloud computing, according to attributes such as being
delay sensitive, high computation intensity and signifi-
cant bandwidth demands [13]. For delay sensitive appli-
cations, the authors in [8] consider the total round trip
time (RTT) (e.g., both service time and transmission
time), whereas in [12] only service time is considered.
Moreover, to minimize delay, authors in [6, 14] proposed
cloudlets model to process multimedia service requests.
The cloudlets represent a small scale data center which
resides within the proximity to the users and minimize
the transmission delay. On the other hand, authors in [15]
consider data processing delay in the mobile edge com-
puting model. Similar to the above concepts, we proposed
the pre-fetcher enabledmultimedia mobile cloud comput-
ing model, shown in Fig.1, where the pre-fetcher is located
in close proximity to the users and contains high speed
VMs and storage servers. The next section presents the
pre-fetcher enabled multimedia cloud computing model.

Systemmodel and assumptions
Multimedia mobile cloud computing with pre-fetcher
We consider a pre-fetcher enabledmultimedia cloud com-
puting model, depicted in Fig. 1 to enhance the multime-
dia end user communication process. Introduced model
consists of three main components: multimedia cloud
provider, pre-fetcher and end users. Multi-media cloud
provider follows the three-tier architecture, presented in
[7, 8, 10, 12]. The multimedia data center has a core which
is called master server. Master server receives the portion
of the workload sent to computing server. The workload
scheduler and load balancer are responsible for distribut-
ing the workload over N server clusters for processing.
In addition, we consider a pre-fetch updater which is the
intelligent core of the transmission server which calculates
the probability of the next call on the same request and
sends a copy to pre-fetcher. Each server cluster receives
a portion of the total workload and processes it with
different processing speed until the entire workload is pro-
cessed. Then pre-fetch updater gradually fills the storage
clusters in it by sending a copy of the critical data for
next call.
Pre-fetcher is located near to the users, contains storage

clusters and limited number of high speed VM clusters
compared to the cloud. Pre-fetcher performs two types
of operations: caching and pre-fetching. The latter one is
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Fig. 1 Data transmission between cloud and end users in the presence of pre-fetcher

the main focus of this paper. For caching, we assume that
the storage clusters store data which is more likely to be
requested next. Once thememory is full, it will be overrid-
den based on adaptive replacement algorithm (ARA) [16].
For pre-fetching, we develop an integrated model that
utilizes workload scheduling and pre-fetching operation
both in the pre-fetcher and in the cloud with minimum
cost and time.
There are Z end users considered in the model, and the

probability of end users reaching pre-fetcher is βλ ver-
sus the probability of reaching multimedia cloud which
is(1 − β) λ. β denotes the accessing probability of pre-
fetcher and λ denotes the number of user requests arrival
per second. All symbols and parameters in the optimiza-
tion problem are listed in Abbreviation.

Response time optimization problem
We assume that the multimedia cloud data center
supports Bayesian method based workload scheduling

[12] where eachmultimedia service request is represented
by directed acyclic graph (DAG) [11] and is decomposed
into tasks. Hence, the service requests are modeled by
parallel structure of tasks and inter-connected by path.
One VM is allocated to one task. Assume that M tasks
are scheduled into each path and served by VM clus-
ter i with scheduling weight wi. Thus,

∑N
i=1 θij class-i

VMs work together as the class-i virtual cluster with
the mean service rate

∑N
i=1

∑M
j=1 θijμij, and the service

time of a request is assumed to be exponentially dis-
tributed with an average of 1∑N

i=1
∑M

j=1 θijμij
. Similar to [10],

the service process of each path follows an M/M/1 queu-
ing model. The average response time of path k can be
calculated as:

Tk =
N∑

i=1

ωk,cloud
∑N

i=1
∑M

j=1 θijμi,cloud − ωk,cloudλi,cloud
. (1)
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The total mean response time is considered as the QoS
requirement of the system and can be formulated as:

TQoS = (1 − β)TCloud + (β)TPF (2)

where β is the probability (or percentage of time) of using
pre-fetcher in time slot t,

β =
⎧
⎨

⎩

1, if only pre-fetcher is used,
0, if only cloud is used,
> 0 and < 1 otherwise.

(3)

TCloud = ∑K
k=1 Tk represents the total mean response

time in the cloud and TPF represents the total mean
response time in the pre-fetcher. The pre-fetcher’s mean
response time TPF can be formulated as:

TPF =
K∑

k=1

ωk,PF
∑N

i=1
∑M

j=1 αijμi,PF − ωk,PFλi,PF
. (4)

The response time optimization problem for workload
scheduling in cloud systemwith pre-fetcher can be formu-
lated as:

P1: Minimize
ω,θ ,α

: TQoS = (1 − β)TCloud + βTPF ,

Subject to: θij = {1, 0} ,αij = {1, 0} , γ > 1,

C1:
∑M

j=1 θij = 1 ∀i ∈ N ,
C2:

∑N
i=1 θij ≥ 1 ∀j ∈ M,

C3:
∑M

j=1 αij = 1 ∀i ∈ N ,
C4:

∑N
i=1 αij ≥ 1 ∀j ∈ M,

C5:
∑K

k=1 ωk,Cloud = 1
C6: ωk,Cloudλi,Cloud ≤ ∑N

i=1
∑M

j=1 θijμi,Cloud,
C7:

∑K
k=1 ωk,PF = 1

C8: ωk,PFλi,PF ≤ ∑N
i=1

∑M
j=1 αijμi,PF ,

C9: μi,PF = γ μi,Cloud.

The objective of P1 is to minimize the total mean
response time of the system. Constraints C1 and C3 illus-
trate that at time instance t, each VM serves only one
task whereas constraints C2 and C4 indicate that one task
needs more than one VM. Constraint C5 is the work-
load conservation constraint for cloud. Constraint C6 is
the queuing stability constraint associated with cloud.
Constraint C7 is the workload conservation constraint
related to pre-fetcher, constraint C8 is pre-fetcher’s queu-
ing stability constraint, and C9 shows the processing
capacity relation between the VMs in multimedia-cloud
and pre-fetcher. Note pre-fetcher is assumed to process
the requests faster, γ times faster than the processor in
multimedia-cloud.

Cost optimization problem
According to our system model in Fig. 1, there is delay
associated with pre-fetcher’s functionality denoted by

T$(sec). The delay T$ was chosen in a way that it is expo-
nentially increasing with γ and β in our model. This
delay is a time frame that pre-fetcher requires to react
towards the received request. The cost problem for work-
load scheduling presence of pre-fetcher can be formulated
as follows in (5).

TTotal = TQoS + T$

TQoS = (1 − β)TCloud + βTPF

T$ = βg(γ ) = βCγmβm′
,C > 0

(5)

The cost optimization problem can be formulated as

P2: Minimize
ω,θ ,α

: TTotal = TQoS + T$,

Subject to: θij = {1, 0} ,αij = {1, 0} ,β = [0, 1] ,
γ > 1, C > 0.

C1 : to C9: ,
C10: 0 < TCloud−TPF <

(
m′ + 1

)
Cγm.

The objective ofP2 is tominimize the cost of the system.
Constraint C10 is the cloud and pre-fetcher’s response
time difference threshold constraint that ensures that the
difference is always a positive number and less than a
maximum.

Heuristic approach of workload scheduling
Since the response time (P1) and cost (P2) problem
are known as a convex mixed-integer problem, it is not
easy to solve with mathematical and theoretical solu-
tions. Hence, we propose a heuristic (exhaustive search)
approach to optimize the response time and cost prob-
lems. However, the access probability for pre-fetcher (β)

in our cost optimization problem can be analytically found
as follows:

TTotal = TQoS + T$

TQoS = (1 − β)TCloud + βTPF

T$ = β
(
Cγmf (β)

)
(6)

Assume f (β) = βm′ ,C > 0, 0 ≤ β ≤ 1
A = ∑K

k=1
∑N

i=1
ωk,Cloud∑N

i=1
∑M

j=1 θijμi,Cloud−ωk,Cloudλi,Cloud

A′ = ∑K
k=1

∑N
i=1

ωk,PF∑N
i=1

∑M
j=1 αijμi,PF−ωk,PFλi,PF

,

Then TTotal = (1 − β)A + β
(
A′ + Cγmβm′)

,

= (1 − β)A + βA′ + Cγmβm′+1,

∂T/ ∂β = −A + A′ (m′ + 1
)
Cγmβm′ = 0,

⇒ β =
(

A − A′

(m′ + 1)Cγm

) 1/ m’
, when A > A′

(7)
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In our assumption, initially, we consider a function of
β to relate the cost problem to the probability of received
workload in pre-fetcher, as well as replace the cloud’s
and the pre-fetcher’s objective functions with A and A′ to
simplify (6).
As it was discussed previously, heuristic approach

for workload scheduling is proposed and algorithms
are provided for pre-fetcher (Algorithm 1) and cloud
(Algorithm 2). In every algorithm, there are several steps
to be followed in order to achieve the optimized solution.
The scheduling procedure of heuristic approach is shown
in Fig. 2 and works as follows:

Algorithm 1:Workload scheduling in pre-fetcher with
access probability β

Input: μPF ,μCloud, λi, Number of VMs
Output: β , λi,Cloud,TPF

1 Compute γ = μPF
μCloud

which is the cost of using one
class-i VM to process one unit request, respectively.

2 Decompose the requests into tasks and compute the
maximum number of path [12].

3 for all the VMs are processed do
4 Select the smallest γ from the γ set.
5 if

∑N
i=1 μi,PF >

∑N
i=1 λi,PF is satisfied. then

6 Calculate Bayesian weight of each path (ωk,PF )
from [12] then

7 Check the constraint
∑K

k=1 ωk,PF = 1 .
8 Computeβ =

(
A−A′

(m′+1)Cγm

) 1/m′
. Reservetheith class VMand

schedule theβλi,PF workload among VM.

9 Compute the remaining arrival requests for Cloud
λi,Cloud = λi − βλi,PF .

10 Compute time/cost (TPF ) using (4).
11 return β , λi,Cloud,TPF .

Pre-fetcher: The pre-fetcher executes Algorithm 1 to
distribute the workload among high speed VMs to faster
processing. In the integrated model, we assume that VMs
in pre-fetcher are γ times faster than Cloud VMs. For
workload scheduling, the pre-fetcher receives requests
from users. At first, each multimedia service request is
decomposed into tasks based on directed acyclic graph
(DAG) method [11] and then the maximum number of
path and Bayesian weight is estimated [12] for the alloca-
tion of VM clusters. In this process, if the pre-fetcher finds
the requested results in the storage servers, the results are
served to the users. Otherwise, the lowest cost VMs are
selected with Bayesian scheduling weight until all the VMs
are occupied. During the workload scheduling stage the

Algorithm 2: Workload scheduling at cloud with
access probability (1 − β)

Input: λi,Cloud,β ,μCloud,TPF
Output: Time/Cost: TTotal, TQoS

1 Sort ith Class VM in accessing order of cost.
2 Decompose all (1 − β) λi,Cloud requests to tasks and
compute the maximum number of path [12].

3 for all (1 − β) λi,Cloud requests are processed do
4 if

∑N
i=1 μi,Cloud >

∑N
i=1 λi,Cloud is satisfied. then

5 Compute Bayesian/Optimum weight ωk,Cloud
from [12] then

6 Check the constraint
∑K

k=1 ωk,Cloud = 1 .
7 Reserve the ith class VM and schedule the

workload among VM.

8 Compute TTotal, TQoS.
9 return TTotal, TQoS.

access probability (β) and the remaining requests (λi,cloud)
are estimated if any further processing needed for cloud.

Cloud: The cloud executes Algorithm 2 to distribute the
workload among VMs in cloud. The cloud starts the work-
load scheduling when the requested results are not found
in the pre-fetcher and all the pre-fetcher VMs are occu-
pied with βλi,PF service requests. The remaining requests
λi,cloud are scheduled at cloud with access probability
(1 − β). Similar to the pre-fetcher workload scheduling,
the cloud decomposes each service into tasks based on
DAG method, estimates the maximum number of path
and schedules the workload among VMs using Bayesian
weight.

Performance analysis
All simulations are written and done in Matlab scripts.
The results are categorized based on whether the values
of γ and β are fixed or changing. γ is the speed indicator
in pre-fetcher’s processor and β is the distribution prob-
ability of received workload in pre-fetcher and accord-
ingly (1 − β) is the probability of workload reaching to
multimedia cloud in our system model. The simulation
variables and their value/range are depicted in Table 1.

Response time performance analysis
In this part of our study, the primary objective is the
total response time minimization. Hence, we performed
simulations while changing different variables to see how
advantageous pre-fetching scheme is towards the goal.
The main variables in our model are β , γ and λ. Accord-
ingly, we discuss each scenario individually and analyse
the results.
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Fig. 2 Heuristic approach of workload scheduling between cloud and end users in the presence of pre-fetcher

Response time study with fixed γ and changing β:
We compare the proposed pre-fetching enabled cloud
computing model with the former model [12] where pre-
fetcher was not considered (β = 0). The processing speed
in pre-fetcher is assumed to be fixed (γ = 4) which is
four times faster than processing time in multimedia
cloud.
As expected, the response time in the results is

ascending, while using pre-fetcher benefits us by saving a
significant amount of time in the long run. This means,
instead of financially investing on data transmission, a
portion of the investment can be done to improve and
maintain the processor in pre-fetcher.

Table 1 Simulation setup and variable value/range

Variable Symbol Value/Range

PF processing speed multiplier γ 1-50

PF utilization β [0,1]

Arrival rate (requests/sec) λ 1000-9000

Processing delay (sec) C 1 × 10−4

PF processing cost factor m [0.2,0.25]

PF utilization cost factor m′ 1

Processing speed (sec) μ [10,20,30]

Number of clusters N 3

As presented in Fig. 3, the top curve represents the
response time of multimedia cloud based on the arrival
rate without considering pre-fetcher. According to Fig. 3,
as the number of the requests/sec increases, there is a
slight elevation in the curve which means requests will
need slightly more time to process and send back the
requests to the source. The curve with lower response
time represents the solo use of pre-fetcher without consid-
ering any load being shared or sent to multimedia cloud.
The results show that there is a remarkable performance
enhancement in response time when only pre-fetcher is
responding to requests. The reason behind the perfor-
mance enhancement is because the requests already exist
in the memory of the pre-fetcher and they just need to be
located and sent back, versus in multimedia cloud, there is
an extra step required to compute the request. Therefore,
their response process in the pre-fetcher is significantly
faster. In Fig. 4, metrics and increment units are consid-
ered to stay the same similar to the previous figure. The
value of γ is also is fixed and deemed to be four while β is
changing.
In Fig. 4, we increase the workload distribution

probability from 0 to 1 for 0.2 units in every increase
to show how it would affect the response time as we
move toward pushing more workload to pre-fetcher
and less to multimedia cloud. As expected, when the
percentage of access probability of pre-fetcher increases,
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Fig. 3 Response time vs. arrival rate in solo use of the pre-fetcher or multimedia cloud. Without the pre-fetcher (β = 0 and γ = 4), With pre-fetcher
(β = 1 and γ = 4)

the response time drops, and it is minimum in the
purple curve when β = 1. All the results show that,
with the assumption of γ = 4, the processor in pre-
fetcher is running four times faster than in multimedia
cloud.

Response time study on fixed β and changing γ : It is
also shown that Fig. 5, with fixed β regardless of whether
we increase the pre-fetcher utilization factor, the increase
is still linear and at all various utilization levels there is no
difference between using cloud and pre-fetcher.
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Fig. 4 Response time vs. arrival rate while the workload is shared between multimedia cloud and pre-fetcher at probability distribution of β . With
pre-fetcher (β = 0.2) and γ = 4, With pre-fetcher (β = 0.4) and γ = 4, With pre-fetcher (β = 0.6) and γ = 4, With pre-fetcher (β = 0.8) and γ = 4,
With pre-fetcher (β = 1) and γ = 4,
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Fig. 5 Response time vs. arrival rate while the workload is shared between multimedia cloud and pre-fetcher at probability distribution of β . With
pre-fetcher (β = 0.2) and γ = 1, With pre-fetcher (β = 0.4) and γ = 1, With pre-fetcher (β = 0.6) and γ = 1, With pre-fetcher (β = 0.8) and γ = 1,
With pre-fetcher (β = 1) and γ = 1,

Even though, increasing processing speed in pre-fetcher
decreases response time, it also increases the cost (pro-
cessing delay) associated with processing time. The delay
is also considered and optimized using proposed heuristic
approach. Results are shown and compared later. Initially,
we perform simulations on pre-fetcher while consider-
ing the impact of delay and later, after considering the
impact of cost (processing delay), we compare the results
and show how an integrated model using pre-fetcher and
cloud computing is beneficial towards minimization of
total response time. Note that in our model we only
study the dynamic communication of multimedia cloud,
pre-fetcher and end users. We will also find the opti-
mal β for different situations, since it changes based on
circumstances from time to time.
In this part, we study the response time behaviour of the

arrival rate λ = [1000, 3000, 500] and, γ = [1, 4, 1] at the
probability distribution of β = 0.6. As presented in Fig. 6,
we observe the speed enhancement while speedmultiplier
γ is increasing as expected, the shortest response time
belongs to the bottom curve with γ = 4. Another notice-
able result in Fig. 6 is that the response time gap between
each curve is significantly decreasing as a result of speed
enhancement. Here all the results and the performance
analysis are on using pre-fetcher without considering the
delay associated with its processor.

Response time study while β is changing: Figure 7
could be one of the most interesting comparisons. In this

figure we have total response time (sec) on Y axis versus
workload distribution probability (β) changing on X axis
from 0.2 to 1 with 0.1 increment unit. As can be inter-
preted, when the response time increases and the load is
pushed toward the pre-fetcher, only the top line is con-
stant value at γ = 1 , since is it running at the same
speed as the cloud and the other curves are all descending.
Descending curves show that the response time decreases
as the processor’s processing time increases and it reaches
its minimum on the bottom curve.
As the workload is leaning more towards pre-fetcher,

the processing speed is highlighted more than before.
As we can observe in Fig. 7, the bottom curve has the
minimum total response time, and the total response time
is minimized when entire workload is sent to pre-fetcher.
Accordingly, a faster processor is needed which means
higher cost, and we will study that in the next part.

Performance analysis of cost
In this section, we investigate the cost improvements
based on the simulation results. We will change the values
of β , γ and λ to observe the changes in total cost and total
response time.

Total cost improvement while PF utilization is β = 0.6
and λ is increasing: In Fig. 8, we observe the simulation
result when only 0.6 (β = 60%) of the total workload is
sent to pre-fetcher and arrival rate is increasing. γ is also
considered to be increasing from 0 to 50. As expected, the
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total cost is increasing while the number of requests/sec
increases. This cost is associated with the delay that
occurs when pre-fetcher is processing the requests.
As presented, the initial γ is set to be 1 in all curves,

which means processor of the multimedia cloud and pre-
fetcher are both running at the same speed.

Total cost improvement while λ = 3000 and PF uti-
lization is increasing: As presented in Fig. 9, in this
simulation arrival rate is set at 3000 while the use of
pre-fetcher is increasing. Total cost is linear and con-
stant when there is no pre-fetcher. While pre-fetcher is
operating, initially β = 1 has the minimum total cost and,
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as γ is increasing β = 0.6 takes its places and becomes the
overall optimum β for this particular instance.
The value of optimal β varies as we change the simu-

lation criteria and change the arrival rate or pre-fetcher’s
processing speed. For example, if we take γ = 50, the
optimum value for β is 0.4 and similarly optimal β changes
its place based on the condition applied in the simulation.

In other words, the percentage of using pre-fetcher varies
from time to time, and it is not always best to allocate
the entire workload to pre-fetcher even though it operates
faster than cloud.

Response time Vs. β while PF is processing at fixed
speed γ = 15: One of our goals is to find the optimal
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Fig. 11 Comparison of optimum β values while γ = 15 and λ is changing. Arrival rate=1000, Arrival rate=2000, Arrival rate=3000, Theoretical
optimum β ,
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Fig. 12 Comparison of optimum β values while γ is changing and λ = 2000. γ = 15, γ = 25, γ = 35, Theoretical optimum β

response time for the amount of workload sent to pre-
fetcher. In order to study that, we performed a simulation
where arrival rate is set to be 2000 requests/sec and
γ = 15. Values of m are considered to be 0.25 and m′ is
considered as 1.
Based on the results, response time is optimum

when (β = 0.48) almost half of the workload is sent to

pre-fetcher when γ = 15. The theoretical optimum β

is also calculated and marked on Fig. 10 to show that
both simulation and theoretical results are aligned at the
same point. Staring from β = 0, response time (sec) is
considerably high, and it decreases slowly while the use
of pre-fetcher increase up to 0.5, and after that, it starts
rising again until it hits β = 1. It is understandable that if
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only pre-fetcher is used, it is not the optimum condition,
since response time and accordingly costs are increasing.
In Figs. 11 and 12, we investigate the impact of chang-

ing γ and λ, on optimum β . As presented, in both figures
theoretically calculated optimum β is marked as well. As
we can observe from the trends as increase in the arrival
rate of the response time slightly increases, the β optimum
point moves to the right. In other words, if the amount of
the requests/sec is increasing, it is more beneficial to push
the load toward pre-fetcher.
As shown in Fig. 11, all the curves for response time

are slowly decreasing to the optimal point, and then it
increases. The gap between all curves is also shrinking as
we move away from the optimal point using (6) and we
allocate more load toward pre-fetcher to handle. The opti-
mum point of β aligns with the theoretical value β in all
the curves. The response time gap between curves is also
maximized at the optimal point and minimized at β = 1.
In Fig. 12, we study the changing trend of the curves

according to the processing speed, while arrival rate is
fixed at λ = 2000. Unlike the previous figure, in this
figure, the gap between curves is slowly increasing as we
push more load toward pre-fetcher.
As we push more load to pre-fetcher, initial response

time decreases to the optimal point and after that,
increases to maximum where all the workload is allocated
to pre-fetcher. All the curves start basically from the same
starting point and initially, their response time decrease is
linear to β = 0.5. Using pre-fetcher is most advantageous
at pre-fetcher’s utilization optimum point. Similar to the
previous figure, the optimum point of β aligns with theo-
retical value β in all the curves. In both Figs. 11 and 12, we
can observe the impact of varying γ and λwhen β = [0, 1].

Optimal and heuristic optimization performance analysis
Figure 13 compares optimal and heuristic optimiza-
tion approaches with and without cost factor. We per-
formed both optimal and heuristic approaches on the total
response time. In this simulation, pre-fetcher processing
speed, γ is at 3, pre-fetcher utilization factor, β , is set at 0.6
while arrival rate changes from 4000 requests/sec to 9000
requests/sec. The heuristic scheme has longer response
time than the optimal scheme with a small difference. The
optimal scheme weights vary with the change of λ, while
weights in the heuristic scheme are constant since it is
normalized by the service rate.

Conclusion and future works
Our previous work was done with the primary objec-
tive in convex workload scheduling problem for cloud
based multimedia applications. In this paper, we pro-
pose path selection algorithm to reduce response time
by adjusting weights among the paths of tasks both in
pre-fetcher and cloud. The considered problem was more

complex compared to previous similar work, and hence
the heuristic algorithm was considered to be the solu-
tion. In this study, we used a pre-fetcher that adopts and
learns new frequent requests to cache and store them
prior to the actual request. Even though our goal was to
design and develop an intelligent pre-fetcher, there are
times that request does not exist within the storage of the
pre-fetcher (miss-ratio). The multimedia cloud commu-
nication method is becoming one of the major focuses
of researchers nowadays, yet intelligent pre-fetching and
caching learning schemes can be improved and reduc-
ing miss-ratio of intelligent caching schemes would be an
interesting topic to work on in future studies.
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