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Abstract

This paper presents the LogDrive framework for mitigating the following problems of storage forensics in
Infrastructure-as-a-Service (IaaS) cloud environments: volatility, increasing volume of forensic data, and anti-forensic
attacks that hide traces of incidents in virtual machines. The proposed proactive data collection function of virtual
block devices mitigates the problem of volatility within the cloud environments and enables a time-traveling
investigation to reveal overwritten or deleted evidence files. We employ a sector-hash-based file detection method
with random sampling to search for an evidence file in the record of the write logs of the virtual storage. The problem
formulation, the investigation context, and the design with five algorithms are presented. We explore the
performance of LogDrive through a detailed evaluation. Finally, security analysis of LogDrive is presented based on
the STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege)
threats model and related work. We posted the source code of LogDrive on GitHub.

Keywords: Cloud forensics, Surveillance, Anti-forensics, Hypervisor, Virtual machine monitor, Parallel distributed
processing

Introduction
Our everyday lives depend on reliable and trusted
cloud services located at distant data centers. For exam-
ple, many products can be purchased from Internet-
based marketplaces, and cloud-based office software and
teleconferencing applications enable users to collabo-
rate with colleagues in remote places. The systems of
many Internet-based marketplaces and recent cloud-
based applications are deployed in Infrastructure-as-a-
Service (IaaS) cloud data centers [1].
This paper first describes three problems of cloud foren-

sics: volatility, increasing volume of forensic data, and
anti-forensic attacks. Reliable and efficient forensic inves-
tigation of the current cloud environments is essential as
the volume of activity within them increases. The next
section presents two key technologies for mitigating the
three problems: a wayback machine for a time-traveling
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investigation and sector-hash-based file detection with
random sampling. The notation, the problem formulation,
and the investigative context are presented. Then, Log-
Drive, the proactive data collection and analysis frame-
work for IaaS cloud environments, is proposed. The
framework can be employed in any organization where
an investigating authority or an administrator has control
over the user infrastructure. This paper presents an imple-
mentation strategy and a performance evaluation. Finally,
a discussion of the framework from the perspective of
security, performance, and size of logs is presented.

Contribution
This is an extended version of our previous work
[2, 3] that presented the concept of a novel write-logging
mechanism for virtual block devices in Infrastructure-as-
a-Service clouds. Here, we extend the previous work by
introducing sector hashing with random sampling for pro-
cessing a large amount of forensic data. Figure 1 shows the
overall architecture of the proposed LogDrive framework.
The LogDrive framework preserves all write operations
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Fig. 1 Overall architecture

on a virtual block device of an customer’s guest operat-
ing system. Then, the LogDrive database is converted into
a sector-hash database (i.e., HashDB) to search fragments
of evidence files in the past write operations. Finally, an
investigator’s workstation restores an virtual block device
at an arbitrary point in time from the LogDrive database
to collect evidence files in a past incident.
Furthermore, we extend the previous work by intro-

ducing the formal notation, the problem formulation, the
investigative context, the detailed design with five new
algorithms, and security analysis based on the STRIDE
(Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of service, and Elevation of privilege) threats
model [4]. We explore the performance of LogDrive
through a more detailed evaluation.
We posted the source code of LogDrive on GitHub.

Therefore, users can test the authors’ implementation for
proactive data collection on users’ IaaS infrastructure.
Time-series logs taken by LogDrive can be used to analyze
disk access patterns of applications. For example, a user
can use output of LogDrive to model disk access patterns
of ransomware using machine learning technique. Log-
Drive includes data-processing functions using Hadoop
MapReduce so that users will be able to process large
amount of data easily.

Problems of volatility
This section shows that the problem of volatility in cloud
environments negatively impacts forensic procedures and
why proactive data collection is needed.

The Digital Forensic Research Workshop (DFRWS)
released a forensic framework that consists of identifica-
tion, preservation, collection, examination, analysis, pre-
sentation, and decision [5]. The NIST SP800-86 defines
the following four forensic steps: collection, examination,
analysis, and reporting [6]. Recently, Elyas et al. proposed
a refined digital forensic readiness framework [7]. In con-
trast to investigations in conventional stand-alone com-
puters, forensic investigation in a cloud environment is
not easy. Ruan et al. proposed a definition of cloud foren-
sics as a mixture of traditional forensic techniques and
applications in cloud environments in 2011 [8]. Martini
and Choo presented a conceptual digital forensic frame-
work for cloud computing in 2012 [9]. Rahman et al. pro-
posed a forensic-by-design framework for cyber-physical
cloud systems [10].
Although most frameworks have preservation and iso-

lation steps of the evidence, Garfinkel stated that per-
forming these basic forensic steps is technically difficult
in cloud environments [11]. Typical IaaS cloud environ-
ments virtualize physical hardware resources as virtual
storage, virtual memory, virtual CPU, and other virtual
devices, and the cloud provider leases them to customers
in a “pay-as-you-go” manner [12]. Reilly et al. noted that
conventional search and seizure procedures are imprac-
tical because digital evidence in cloud data centers is
scattered in multiple physical machines that are shared by
many customers simultaneously [13]. Taylor et al. stated
that digital evidence in virtualized environments will be
more ethereal [14].
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Another important aspect in many cases of cloud foren-
sics is legal issues. As described above, the IaaS cloud
customers share the same physical hardware simulta-
neously (e.g., a customer runs a virtual machine on a
physical server while another customer runs a virtual
machine on the same physical server). Although cus-
tomers rent virtualized resources for a predetermined
period, they usually do not have ownership of the physi-
cal hardware from the perspective of their legal contracts.
Grispos et al. discussed how the traditional preserva-
tion and collection model is impacted by the cloud [15].
They stated that imaging entire physical drives is imprac-
tical and that partial imaging faces legal challenges. To
solve legal issues regarding cloud investigations, Ruan
et al. proposed creating a Service Level Agreement
(SLA) that enables cloud forensic investigations. The pro-
posed Service Level Agreement includes proactive foren-
sic preparation, data collection, incident response and
recovery, time synchronization, cross-border jurisdiction,
and multi-tenant data issues [16]. Although they noted
that proactive forensic data collection on cloud environ-
ments is important, such professional tools are not yet
available.
The problem is that investigative authorities cannot

obtain physical disks even if they have warrants because
the disks are shared by multiple tenants. Moreover, the
virtual block device is released when the contract is fin-
ished. Therefore, cloud providers need a mechanism to
keep records of previous virtual disks for a certain period
of time for a future possible investigation or incident
response.
In this paper, we assume that providers and customers

sign the Service Level Agreement (SLA) that enables the
future use of the customer’s previous records of disks
before starting the contract so that the provider can
enforce the proactive data collection function on the cus-
tomers. In addition, customers’ data might be present in
a data center that is in a different country that has its
own law regarding the ownership of that data. Nanda
and Hansen pointed out the difficulties of multiple juris-
dictions in their proposed Forensic-as-a-Service (FaaS)
architecture [17], an infrastructure-level forensic support
from cloud providers. The FaaS architecture includes a
procedure of legal teams to fetch the data from different
jurisdiction. Our proposal also needs a procedure of legal
teams to assure that the locations of virtual machines and
their write logs are in the countries that have appropriate
jurisdiction.
The proactive data collection function might not be

preferred by providers and customers who do not care
about auditability, but it will be preferred by providers
and customers who need auditability to ensure regulatory
compliance for their business operations. If a customer
does not agree with the SLA, the provider can reject the

customer’s use of the cloud service. It is dependent on the
operational and business policies of the providers.

Problems of increasing volume of data
In the “pay-as-you-go” cloud environments, virtual stor-
age is leased to customers. Such cloud environments
generate a large amount of data over a short period. Pub-
lic cloud services provide large amount of disk space to
users and employ some techniques to save their stor-
age space. File hosting services such as DropBox employ
data deduplication as compression technique to save their
storage capacity. The term data deduplication refers to
techniques that store only a single copy of redundant data,
and provide links to that copy instead of storing other
actual copies of the data [18]. On the other hand, Amazon
Elastic Compute Cloud (EC2), one of the major players of
public IaaS cloud service, does not employ data deduplica-
tion techniques for their virtual storage (i.e., Elastic Block
Store; EBS) because of its latency and degration of cus-
tomer experience. For example, users of Amazon EC2 can
employ ZFS [19], a copy-on-write file system with built-
in compression function, on their own EBS to reduce the
user’s storage space.
In addition to the large amount of data generated by cus-

tomers, if a provider employs proactive data collection for
a future investigation, an investigator needs to process the
large amount of collected forensic data when an incident
occured. Here, a brief review of previous studies on how to
process such a large amount of forensic data is presented.
In 2004, Richard and Roussev showed that a regular

expression search of a 6 GB disk image can be performed
18 to 89 times faster by using 8 machines with 1 GB RAM
in a 1000BASE-T network [20] in a laboratory setup. They
avoided the disk bound problem by storing all files in
each machine’s RAM. MapReduce [21] is a more scalable
solution to process a large amount of data using multiple
computing nodes. Roussev et al. proposed MPI MapRe-
duce [22] for CPU-bound processing in a forensic analysis.
They employed the Message Passing Interface (MPI) and
conventional Network File System (NFS) instead of using
the Hadoop Distributed File System (HDFS). Although
MPI MapReduce provides linear scaling with respect to
the number of CPUs and CPU speed, the paper did not
present an evaluation of a cluster composed of more than
three machines.
Garfinkel noted that parallel processing is not suitable

for conventional industry standard forensic tools based on
the “Visibility, Filter, and Report” model [11]. This model
depends on the tree structures of file systems. If foren-
sic data are distributed to computing nodes for parallel
processing, the system will not be able to identify each
segment’s meaning of the file system level. Ayers stated
that the current industry standard tools, such as EnCase
and FTK, are the first generation computer forensic tools.
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He defined second generation forensic tools as tools
that include parallel processing for a massive amount of
data [23].
One method to tackle the problem is the combina-

tion of parallel processing without file system information
and conventional standalone forensic tools based on the
file system information. In this paper, we employ sec-
tor hashing with random sampling [24–27, 42] to search
for an evidence file in a large amount of write logs by
using a MapReduce cluster. Moreover, we propose the
restoration function of a previous virtual block device at
an arbitrary point in the past so that investigators will
be able to perform detailed analysis of the restored disk
using conventional forensic tools based on the file system
information.

Problems of anti-forensics
Harris stated that anti-forensics is any attempt to com-
promise the availability or usefulness of evidence for the
forensics process [28]. The volatility of virtual environ-
ments of clouds has a negative impact on preserving the
traces of such anti-forensic attacks. Cloud environments
make erasing attackers’ traces easy. However, if a cloud
provider employs proactive data collection as described
earlier, the provider can keep track of the contents of
the customers’ virtual disks. The recorded logs will help
reveal some types of anti-forensic attacks. This section
presents what type of anti-forensic attacks can be detected
by proactive data collection. Please note that we describe
this process not to prevent anti-forensic attacks but to
preserve the traces of the attacks for future investigation.
First, we classify anti-forensic attacks in the cloud into

two types: type 1 attacks are launched inside virtual
machines. For example, a customer could delete evidence
of his or her crime or could overwrite the date and time
of important access logs to evade capture. An outside
attacker or malware who intruded into a virtual machine
could also delete traces of an intrusion. Type 2 attacks are
launched outside virtual machines, for example, from an
IaaS cloud provider’s management plane. Type 2 attacks
include direct attacks on forensic software.
Type 1 attacks: In type 1 attacks, a customer or an out-

side attacker inside the virtual machine deletes, destroys,
or manipulates his or her traces of files of incidents (e.g.,
access logs, rootkits, or temporary files) or hides evidence
in slack space or other hiding places in the file systems
[29]. The conventional collection method of IaaS clouds,
which is taking snapshots, cannot preserve traces of type
1 attacks because the evidence may be removed or tam-
pered with before acquisition of the virtual machine’s
snapshot.
In addition, Garfinkel noted that anti-forensic attacks

can exploit computer forensic tools by inputting data that
are not properly validated by generating a massive amount

of data or bypassing fragile heuristics (e.g., file detec-
tion by using a “magic number” of the first few bytes
of files) [29]. Kessler reported malicious programs that
alter file signatures and flip bits in order to evade file-
hash detection in forensic software [30]. These attacks
are launched in virtual machines to hide evidence from
forensic software.
Type 2 attacks: In type 2 attacks, cloud providers can

plant false evidence on a customer’s virtual machine image
from outside virtual machines, e.g., from their cloud man-
agement plane. Schneier and Kelsy proposed secure audit
logs to support computer forensics in 1999 [31]. Zawoad
et al. extended Schneier and Kelsy’s previous work to
Secure Logging-as-a-Service (SecLaaS) to prevent attacks
on logs in cloud environments by publishing proofs of
past logs on public web sites or on Rich Site Summary
(RSS) feeds periodically [32]. The limitation of both works
[31, 32] is that the system cannot prevent the falsifica-
tion of logs before creating the proof of the genuine logs.
Type 2 attacks are also launched on forensic software.
For example, an attacker might disable a forensic agent
program on his or her machine to hide evidence.
As described earlier, proactive data collection for future

investigation enables a time-traveling investigation by
using recorded logs. Even if someone launches type 1
attacks inside his or her virtual machine, the traces of
the attacks can be verified by using the records of disk
changes. Please note that our proposal preserves traces
of type 1 attacks, but it does not prevent type 2 attacks.
We have no silver bullet that prevents all types of attacks.
We discuss possible measures against these attacks in the
“Discussion” and “Related work” sections.

Preliminaries
This section introduces two key technologies of the Log-
Drive framework: a wayback machine for restoring virtual
block storage at an arbitrary point in time and sector hash-
ing for searching an evidence file from awaybackmachine.
The wayback machine mitigates the problems of volatility
in IaaS clouds and type 1 anti-forensic attacks. The sec-
tor hashing mitigates the problems of increasing volume
of forensic data using parallel distributed processing and
random sampling.

Wayback machine
A wayback machine is a mechanism for recording the
whole write history for future investigations and for
restoring the virtual block device at an arbitrary point in
the past to discover evidence of incidents. This section
presents the related work of the log-structured file system
and copy-on-write system that can be used for creating
the wayback machine.
The pioneering research on versioning and backup

mechanisms was conducted by Rosenblum and Ouster-
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hout in the early 1990s [33]. They presented the Log-
structured File System. The idea of the original Log-
structured File System is to collect a large amount of
writes in a page cache and to flush the file system data onto
a disk sequentially in a single large I/O for high through-
put. This behavior is similar to appending records to the
tail of a log file.
After the pioneering work [33], Cornel et al. employed

the Log-structured File System for their user-level ver-
sioning file system called Wayback by using the FUSE
framework [34]. Strunk et al. also employed the Log-
structured File System for their self-securing storage
called S4 to prevent attackers from tampering with data
[35]. Morrey and Grunwald applied the Log-structured
File System design to their time-traveling disk called
Peabody [36]. Peabody is implemented as an iSCSI tar-
get instead of a file system. Recently, the log-structured
design has been employed for file systems of non-volatile
memories (NVMs) [37, 38] because of its high through-
put and space efficiency. The design of the Log-structured
File System is also suitable for the latest cloud-based stor-
age services. For example, Vrable et al. presented the
BlueSky network file system backed by the cloud storage
service of Amazon S3 [39]. They noted that the log-
structured design on cloud storage services lowers costs
and improves performance.
Another candidate for versioning and backup systems

for block devices is copy-on-write. Copy-on-write systems
save a data block in another place when the write oper-
ation is issued, and then, the original data block is over-
written by a new data block. The important detail is that
copy-on-write systems save only the oldest data blocks
until a new snapshot is created. Therefore, they cannot
hold the complete history of write operations. Current
virtual machinemonitors or hypervisor software use a vir-
tual disk format such as QEMU Copy-on-write version 2
(QCOW2) [40] and Microsoft’s virtual hard disk (VHD)
[41]. They do not employ log-structured design but rather
copy-on-write design for creating space-efficient snap-
shots of virtual block devices.
Although the copy-on-write system restores a previous

block device from a snapshot, the log-structured system
can restore a past state of a virtual block device from
an arbitrary point in time. For this reason, the copy-on-
write system cannot reveal type 1 anti-forensic attacks
in certain circumstances. For example, an attacker in
a virtual machine can create files and delete the files
between two distant checkpoints in time. On the other
hand, the log-structure system records all write opera-
tions sequentially; therefore the traces of type 1 anti-
forensic attacks can be restored for the appropriate time
in the past. In this paper, we employ the log-structured
design for recording all written sectors on a virtual block
device.

Sector-hash-based file detection
Sector hashing is a technique to check the existence of
evidence files on a suspect’s media without reference to
the underlying file system. This section shows the related
work on sector hashing and presents how to apply sector
hashing to a large amount of write logs that are generated
from a wayback machine.
The pioneering work on sector hashing [24, 42, 43]

was conducted by Garfinkel et al. They proposed using
cryptographic hashes of small data blocks to identify file
fragments and entire files. In contrast to file hashing, sec-
tor hashing can find the fragments or remains of a piece of
a sector from partially deleted or corrupted physical disks.
Young et al. [26] examined the validity of sector hashing

on user-generated contents using three datasets (Gov-
docs [44], OpenMalware2012, and 2009 NSRL RDS) that
include word processing files, photos, and videos. For
example, they reported that 98.93% of the 512-byte sec-
tor hashes in the Govdoc dataset, which is a collection of
documents from .gov web sites, are distinct. Their study
indicated that sector hashing is effective for searching
user-generated files, for example, photographs taken by
pedophiles.
Garfinkel et al. [26, 42] described a performance

improvement method for sector hashing for a rapid and
largely automated analysis. They proposed random sam-
pling of sectors instead of searching every sector on
drives. Equation 1 shows the well-known “urn problem”
that describes the probability of pulling red beans out of
an urn that contains a mix of evenly distributed red and
black beans. The probability p of not finding even a single
red bean in n draws is as follows.

p = 1 −
n∏

i=1

((N − (i − 1)) − T)

(N − (i − 1))
(1)

Here, N is the total number of beans, T is the number
of red beans, and N − T is the number of black beans.
In our context, an investigator searches T target sectors
(red beans) obtained by splitting a target file out of an urn
that contains N sectors (red and black beans) in n ran-
dom samplings. Thus, p is the probability that at least one
sector of T target sectors will be found in the n random
samplings. For example, an investigator searches the sec-
tors of a 100 MiB video file out of a set of 512-byte sectors
that are obtained from many drives that contain 100 TiB
of data in total. If the 5,000,000 sectors are randomly sam-
pled, p ≈ 0.9915 (N = 214, 748, 364, 800, T = 204, 800,
and n = 5, 000, 000). The result means that there is a
greater than 99% chance that at least one sector of the
100 MiB video file will be found in the 5,000,000 random
samplings.
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Sector hashing has limitations in the following cases.
First, it cannot detect embedded files, such as pho-
tographs in the latest Microsoft Office documents (e.g.,
.docx and .pptx files), because the contents are com-
pressed in a ZIP archive file. To find embedded objects in
the latest Office documents, a mechanism to extract their
contents before applying sector hashing is needed. Addi-
tionally, sector hashing is not supported for encrypted
files or encrypted file systems. For encrypted file systems,
it is necessary to decrypt the file system by mounting
the media using an appropriate decrypting driver [24].
Although sector hashing has these limitations, it provides
efficient parallel search functions. Sector hashing can also
be applied to fragment detection of memory forensics.
The aim of this research is to extend the previous

research on sector hashing for media [24, 26, 42, 43],
such as HDD or SSD, by integrating this method
with the wayback machine described in the previous
section. Thus, sector hashing is used for searching frag-
ments of a target file from past write logs of virtual block
devices.

Notation
This paper uses the following notation.

C, A, P, and I - a customer, an outside attacker, a
cloud provider, and an investigator, respectively.
VMc - a virtual machine of a customer C.
E - evidence on a customer’s virtual machine.
VBDc - a customer C’s virtual block device, denoted
as VBDc = {so, s1, s2, . . . , sn−1}, where n is the number
of sectors. In the collection phase, aVBDc is accessed
through a C’s guest operating system. In the analysis
phase, any past state of VBDc can be reconstructed
from a LogDrivec database on an investigator I ’s
forensic workstation. Therefore, VBDc ∈ LogDrivec.
VBDc,t - customer C’s restored virtual block device
at the point in time t. An investigator I can access
VBDc,t in the read-only mode.
si - a sector that is written on an ith sector of VBDc.
i represents a Logical Block Address on VBDc. A
Logical Block Address (LBA) is the value used to
reference a logical sector of HDDs or SSDs [45].
LogDrivec - the database of recorded sectors that are
written onVBDc, denoted as LogDrivec = {Log0, Log1,
Log2, . . . , Logn−1}, where n is the number of sectors
in VBDc. A LogDrivec database is created for each
customer C’s VBDc.
Logi - logs of past written sectors at LBA i, denoted
as Logi = {Logi,0, Logi,1, Logi,2, . . . , Logi,m−1}, wherem
is the number of writes on LBA i. Logi,j means the log
of the (j + 1)th written sector at LBA i of VBDc.
Logi,j - each log is denoted as Logi,j = {times-
tamp in seconds ts, timestamp in nanoseconds tns,

byteOffsetOfPreviousLog, size, si,j}. The proposed sys-
tem uses the UNIX timestamp that is defined as
the number of seconds since 00:00:00 UTC, 1st Jan-
uary, 1970. size represents the size of a sector si,j.
The maximum value of size is 4096 in our current
implementation. The data structure of Logi is a singly
linked list of a set of Logi,j. The newly written block
is inserted in the head of the list. When the system
needs to read the previous sector si,j−1, it traverses
the list Logi by using Logi,j.byteOffsetOfPreviousLog.
The value of byteOffsetOfPreviousLog holds a byte
offset of the previous Logi,j−1 that is calculated from
the beginning of the LogDrive database file. If the
value of byteOffsetOfPreviousLog is null, then there
are no more previous sectors.
LogDrive.index[ i] - this value holds a byte offset
of the latest written Logi,m−1. This value points to
the head of a singly linked list Logi. The byte off-
set is calculated from the beginning of the LogDrivec
database. If the value is null, then any sector is not
yet written at LBA i.
LogDrive.disk_size - total size of a VBDc in bytes.
LogDrive.sector_size - internal sector size of a VBDc
in bytes. LogDrive uses 4096 in LogDrive. Please
note that LogDrive provides virtual block devices of
512 byte sector size (logical and physical) to virtual
machines.
HashDB - key-value pairs for sector-hash-based file
search.
H(s) - hash value of sector s.
N, T, r, and p - total number of sectors in HashDB,
total number of sectors in a file F, sampling rate,
and probability that at least one sector will be found,
respectively.

Problem formulation
The threat model of this paper involves the following
four entities: cloud providers P, cloud customers C, out-
side attackers A, and cloud investigators I, as shown in
Fig. 2. This paper assumes that cloud customers C and
outside attackers A are not trusted, while cloud providers
P and investigators I are trusted. Investigators I can be
law enforcement agents, incident response teams, or other
internal groups in the human resources or legal depart-
ments.
The crimes or incidents of the threat model include

possession of child pornography, leakage of classified
information, cyber espionage, fraud, ransomware, DDoS
attacks, or terrorist activities. A cloud customer C com-
mits a crime on his or her virtual machine VMc. Addi-
tionally, an attacker A, who is not the customer of the
cloud provider P, commits crimes on customer C’s virtual
machine VMc, for example, by sending malware remotely
to VMc or by intruding into VMc illegally. Although it
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Fig. 2 Threat model

is impossible to prevent every incident, it is important
to securely retain evidence even if type 1 anti-forensic
attacks (e.g., tampering with important logs or legal docu-
ments and hiding traces of crimes) are launched on VMc.
From the perspective of threat modeling, our model is
directly involved with “tampering with data” and “repudi-
ation” of the STRIDE threats model [4]. Please note that
we discuss how to detect false evidence created outside
VMc (i.e., type 2 attacks) in the “Related work” section.
If incidents occurred in the virtual machine VMc, an

investigator I has to collect and analyze digital evidence E
from cloud provider P’s physical storage devices. However,
the investigator I cannot seize the physical storage devices
because they may have data owned by other customers
who are not directly related to the crimes. Moreover, in
most cases, the cloud provider P does not need to keep
customer C’s VMc for a long time after the end of the
contract. A part of physical storage may be recycled to
other customers’ services immediately. Consequently, the
investigator I can no longer collect the digital evidence E.

Investigation context
The proposed system assumes the following investigation
context. First, a provider P and a customer C agree with
the Service Level Agreement (SLA) that permits proac-
tive data collection from the customer’s virtual machines
VMc in the provider’s IaaS cloud environments to allow

for future audits and investigations. At this point, the cus-
tomer C has no intention of doing illegal or malicious
activities. For example, a customer C will be able to
sign the SLA that permits proactive data collection for
monitoring the company’s employees who might commit
crimes in the future on their virtual machines (e.g., tam-
pering with important legal documents and access logs
to evade capture). If the provider P and the customer C
agree to the SLA, the provider begins to record the cus-
tomer’s activities on virtual machines VMc. Although the
proposed system cannot be used to investigate a crime
on a non-suspected or non-monitored customer’s virtual
machine VMc after the fact, it can be used to investi-
gate a crime after starting surveillance based on the SLA
between the provider P and the customer C.
The aim of the proposal is to reveal evidence of crimi-

nal activities and type 1 anti-forensic attacks (i.e., attacks
launched inside the virtual machine VMc). Please note
that the measures against type 2 anti-forensic attacks (i.e.,
attacks launched outside the virtual machine VMc) are
described in the “Discussion” and “Related work” sections.

Design goal
For efficient and reliable proactive collection and analysis
of forensic data in IaaS cloud environments, the proposed
LogDrive framework should achieve the following design
goals.
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1). Efficient collection: the collection function should
not affect customer C’s activities. We have to
minimize the overhead of a surveillance mechanism
on a virtual block device VBDc and a VMc.

2). Reliable collection: an attacker A or a malicious
customer C should not be able to bypass or destroy
the collection function. Moreover, the timestamps of
the mechanism should be protected against A and C.
Thus, the proposed framework must be executed
inside a trusted region.

3). Wayback storage: an investigator I needs to restore a
virtual block device VBDc,t at an arbitrary point in
time t to analyze the past state of the customer C’s
VBDc. The restored VBDc,t needs to be accessed as a
normal block device via an operating system in
read-only mode. This enables an investigator I to
analyze the restored VBDc,t by using conventional
forensic software, for example, EnCase or Forensic
Tool Kit (FTK). For this purpose, the read
throughput of the restored VBDc,t must be practical.

4). Rapid search of an evidence file in the wayback
storage: an investigator I needs to find an evidence
file F, which correlates with certain incidents, from
the LogDrivec database across time. The LogDrivec
database holds a large amount of sectors that were
recorded in the past. For a rapid and efficient search,
the system must support parallel distributed
processing.

5). Cost efficiency: we need to develop a forensic
framework that achieves maximum effectiveness by
using affordable hardware available to most
investigative organizations. The source code of the
software should be provided to forensic communities.

Design
The LogDrive framework consists of the following three
functions: proactive data collection, file search in a Log-
Drive database, and restoration from a LogDrive database.

Proactive data collection function
Figure 3 shows the system model of the collection func-
tion. The collection function monitors each written sec-
tor s on the virtual block device VBDc. The sectors s∗
can be written by a customer C’s applications (e.g., web
browsers, word processing software, or e-mail client) or
by an attacker A’s malicious programs such as rootk-
its. LogDrive saves each data of a sector si with Logical
Block Address (LBA) i, timestamp t, and size onto a
LogDrivec database immediately. The value of size can be
between one and 4096 (4 KiB). If customer C’s programs
or attacker A’s malicious codes on VMc read a sector si on
the virtual block device VBDc, LogDrive returns the lat-
est written sector si that is retrieved from the LogDrivec
database.

The LogDrivec database is a set of past written sectors
on customerC’s virtual block deviceVBDc. Figure 3 shows
that a type 1 anti-forensic attack deletes evidence (i.e., the
file F consists of the three sectors s6, s7, and s8) of the inci-
dent at t1 by overwriting them with three new sectors at
t3. The LogDrive framework records all written sectors of
both the original file F at t1 and the compromised file F ’
at t3 in the LogDrivec database so that it can be used for
wayback storage in a future forensic investigation.

File search function of the LogDrive database
Figure 4 shows how to generate HashDB from LogDrivec
and transfer it to the Hadoop distributed file system on
a forensic cluster. HashDB is a set of key-value pairs that
consist of the hash values of each sector H(s) as the key
and each sector’s timestamp t, LBA i, and size of the sector
as the value.HashDB is used for the sector-hash-based file
search function.
After creating a HashDB, an investigator I searches

the evidence file F (e.g., photographs or videos of child
pornography, evidence files of terrorist activities, mal-
ware, and rootkit) from theHashDB by using sector hash-
ing. The evidence file F is first sent to a forensic cluster;
then, the search function splits the file F into 512-byte sec-
tors and searches for F = {s0, s1, . . . , sn−1} in the HashDB,
where n is the number of sectors of evidence file F. The
results of the query are pairs of timestamp t, LBA i, and
size of each sector. Thus, the output is the creation time of
the sector s and its written location and size on the virtual
block device. No output indicates that the evidence file F
was not written on the monitored virtual block device in
the past. Even if the evidence file F was deleted or was
tampered with by a customer C or an attacker A before an
investigation (i.e., type 1 anti-forensic attack), an investi-
gator I can search the creation time of the evidence file F
from HashDB.
The LogDrive framework records all written sectors that

include the file system’s metadata in addition to the con-
tents of files. Therefore, the system can search sectors
not only from files but also from hidden data in the slack
space or other unused space of file systems. In addition,
the investigator I can search the evidence file F in a set of
HashDB that are generated from potential candidates of
multiple virtual machines.
Please note that the proposed system model assumes

that an investigator I already has an evidence file F that is
found from other sources such as a suspect’s thumb flash
drive or an e-mail. For now, automatic identification of an
evidence file F is outside the scope of this paper.

Restoration function of the LogDrive database
After identifying the creation time of the evidence file F
using the file search function, the investigator I can restore
a virtual block device VBDc,t at an arbitrary point in time
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Fig. 3 System model of the collection function

t for further analysis, where t0 ≤ t ≤ tn−1. The timestamp
of the first written sector on the VBDc is denoted as t0,
and the timestamp of the last (nth) written sector on the
VBDc is denoted as tn−1.
Figure 5 shows how the investigator I restores the vir-

tual block device VBDc,t2 that includes the evidence at
t1 before being overwritten by the anti-forensic attack
at t3. The investigator I first specifies t2, and the sys-
tem restores the past state of VBDc. Then, the inves-
tigator I can read any sector from the restored virtual
block device VBDc,t2 in read-only mode. The investiga-
tor I can apply conventional forensic software, such as
dd, EnCase, or FTK, to analyze VBDc,t2 . The investigator

I can also inspect the detail of the anti-forensic attack at
t3 by comparing the restored VBDc,t2 with the restored
VBDc,t4 .

4096-byte sector vs. 512-byte sector
The most common sector size in the current hard drive
industry is 512 bytes or 4096 bytes. Although enterprise
HDDs and SSDs are shifting to native 4096-byte sector
size known as 4Kn, consumer HDDs or SSDs still use
the 512-byte sector size. While current 512-byte sector
drives employ 4096-byte sectors at the physical level, they
emulate 512-byte sectors at the logical level for legacy
software. Major operating systems (e.g., Windows 8 or

Fig. 4 System model of the file search function
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Fig. 5 System model of the restoration function

later and Linux kernel 2.6.31 or later) already support
4096-byte sectors.
Because of the existence of two sector sizes, Log-

Drive provides VBD of 512-byte sector size to virtual
machines to support both legacy and new operating sys-
tems. Although LogDrive employs the 4096-byte sector
size for internal structure ofVBD, it employs 512-byte sec-
tor size for sector-hash-based file detection. LogDrive can
change both sector sizes to 4096-bytes whenmany storage
devices and software support the 4 KiB native setup.

Algorithms
This section presents five algorithms for proactive data
collection, file search, and restoration of a LogDrive
database.

Proactive data collection function
In the collection phase, the proposed LogDrive architec-
ture provides normal input and output operations of a
customer C’s VBDc with the help of the underlying hyper-
visor software. While the system provides the normal
I/O operations to C’s VMc, the data collection func-
tion records all written sectors on a LogDrivec database.
The LogDrivec database is a log-structured virtual block
device.
Algorithm 1 shows how the LogDrive framework works

during write operations on VBDc. The write operation
consists of creating Logi,j and appending it to the tail of
the LogDrivec database. The process for writing a log to
a LogDrivec database is executed for the group of Logi,j,

Algorithm 1:WriteSectorAsLog
input : A written 4 KiB sector s, LBA i, current

UNIX timestamp in seconds ts, and current
UNIX timestamp in nanoseconds tns

output: An updated version of a LogDrivec database
1 begin
2 foreach write request to VBDc on VMc do
3 previous ← LogDrivec.index[ i];
4 Logi,j ← createLog(ts, tns, previous,

sizeof(s), s);
5 appendLogToLogDrive(Logi,j,

LogDrivec);
6 LogDrivec.index[ i] ← sizeof(LogDrivec)

− sizeof(Logi,j) + 1;
7 end
8 end

not for every Logi,j, to minimize the overhead of frequent
writes on the physical block device by using the buffering
mechanism of the host operating system.
Algorithm 2 shows how the LogDrive framework works

during read operations. The read operation of a sector
is just retrieving the head element Logi,m−1 of the list
Logi at LBA i. The system does not need to traverse
the list structure of Logi; therefore, the read overhead
is minimized. Both input and output 512-byte sectors
from virtual machines are grouped into eight sectors and
LogDrive intepret them as a single 4096-byte sector.
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Algorithm 2: ReadSectorFromLog
input : An LBA i
output: A 4 KiB sector si,m−1, where (m − 1) is the

latest written sector at LBA i
1 begin
2 foreach read request to VBDc on VMc do
3 Logi,m−1 ←

retrieveLog(LogDrivec.index[ i]);
4 if Logi,m−1 != null then
5 return Logi,m−1.s;
6 else
7 return SEC-

TOR_PADDED_WITH_ALL_ZEROS;

8 end
9 end

10 end

File search function of the LogDrive database
The file search function is composed of the following two
steps: (1) creating HashDB and (2) searching HashDB for
a file F. The creation of HashDB is performed using the
MapReduce framework [21]. Please note that aHashDB is
not an index such as a B-tree index but a set of hash values
of each sector s for the sector-hash-based file search. The
search process for a file F is executed using the MapRe-
duce framework. When an investigator needs to triage an
evidence file F from a large LogDrive database, the random
sampling technique is applied.
We first tried to employ B-tree as an efficient and fast

search algorithm. However, we finally decided to employ
a simpler sequential search algorithm with statistical ran-
dom sampling, because (1) B-tree algorithm is not suitable
to be implemented on a scalable distributed parallel pro-
cessing framework such asHadoopMapReduce, (2) B-tree
search algorithm is fast but the creation time of a B-tree
index can be very long, especially when we need to create
the index from a large LogDrive database, and (3) statisti-
cal random sampling is faster than B-tree algorithm at a
certain confidence level.
Algorithm 3 shows how the LogDrive framework cre-

ates HashDB from the LogDrive database. A LogDrivec
database file is located on a local drive of a cloud
provider P. The first half of the algorithm transfers a
LogDrivec database from the local drive to a Hadoop
distributed file system (HDFS) [46] and converts the Log-
Drive database into the Hadoop’s SequenceFile format.
Hadoop’s SequenceFile format is used to process binary
key-value pairs. The last half of the algorithm creates
key-value pairs; the key consists of eight hash values for
each 512-byte sector created from a 4096-byte sector, and
the value consists of the timestamp, the LBA, and the size

Algorithm 3: CreateHashDB
input : A LogDrivec database file on a local file

system, random sampling rate r (e.g.,
r ← 0.005 for 0.5%)

output: A HashDB on a Hadoop Distributed File
System (HDFS)

1 begin
2 SECTOR_SIZE_FOR_FILE_SEARCH ← 512;
3 MAX_LBA ←

(
LogDrivec .disk_size
LogDrivec .sector_size − 1

)
;

4 for i ← 0 toMAX_LBA do
5 Logi,m−1 ←

retrieveLog(LogDrivec.index[ i]);
6 while Logi,j != null do
7 key ← concatenate(Logi,j.ts, Logi,j.tns,

i, Logi,j.size);
8 value ← logi,j.s;
9 writeBinaryPairToHDFS(key, value);

10 Logi,j ← retrieveLog(Logi,j.
byteOffsetOfPreviousSector);

11 end
12 end
13 foreach createHashDBMapper(key, value)

do
14 key_for_output ← null;
15 value_for_output ← null;
16 for k ← 0 to(

LogDrive.sector_size
SECTOR_SIZE_FOR_FILE_SEARCH − 1

)
do

17 sectork ←
splitIntoKthSector(value, k);

18 key_for_output ← key_for_output +
hash(sectork)+”,”;

19 value_for_output ← key;
20 end
21 if

allSectorsFilledWithConstant(key
_for_output) then

22 continue;
23 end
24 sendToReducer(key_for_output,

value_for_output);
25 end
26 foreach createHashDBReducer(key, value)

do
27 if random(0,1) < r then
28 writeBinaryPairToHDFS(key,

value);
29 end
30 end
31 end
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of the sector. For random sampling, the key-value pairs
must be stored in evenly distributed orders. The MapRe-
duce framework automatically sorts key-value pairs using
keys (i.e., hash values) in the reduce steps. Therefore, Log-
Drive guarantees evenly distributed orders of HashDB.
Please note that a 4096-byte sector filled with consntant
value (e.g., 0x00 or 0xFF) is ignored because the 4096-byte
sector cannot be distinct [42].
For searching a large amount of LogDrive databases, the

system employs a random sampling technique [47]. The
sampling rate r = n/N can be calculated using Eq. 1,
where N is the total number of sectors (i.e., key-value
pairs) inHashDB,T is the number of target sectors of a file
F, and p is the probability that at least one sector of the file
F will be found in the n random samplings. Because of the
seriousness of the cases that law enforcement deals with,
it is desirable to achieve a 99% confidence level [27]. We
employ a 99% confidence interval for the reliability of the
random sampling. The system prepares a set of sampled
HashDB at different sampling rate for some representa-
tive file size (e.g., 1 MiB, 10 MiB, 100MiB, 1GiB) of search
target in advance.
Algorithm 4 shows how the LogDrive framework

searches HashDB for a file F. The system first splits F into
512-byte sectors and calculates a hash value for each sec-
tor. If the last sector is smaller than 512 bytes, the system
pads the remainder of the sector with zeros before calcu-
lating its hash value. The system ignores a 512-byte sector
filled with consntant value (e.g., 0x00 or 0xFF) because
the 512-byte sector cannot be distinct [42]. The current
design employs the MD5 message-digest algorithm [48]
that computes a 128-bit hash value. Anti-forensic attacks
that use the weakness of the collision resistance in the
MD5 algorithm are described in the “Discussion” section.

Restoration function of the LogDrive database
Algorithm 5 shows how the LogDrive framework reads
a past sector si at the point in time t. The algorithm
is used for restoring a past state of a customer C’s
VBDc,t for the forensic analysis phase. The VBDc,t can
be accessed in read-only mode. For example, an inves-
tigator can mount the restored VBDc,t , access it via the
forensic workstation’s file system, make a disk image by
using dd, and analyze it by using conventional forensic
software.

Implementation
We implemented the system model and the algorithms
on the hardware and software shown in Tables 1 and 2,
respectively. The master server is used for collection,
restoration, and the management of the Hadoop slave
servers. The Hadoop slave servers are used for the sector-
hash-based file search. Table 3 shows the configuration of
the Hadoop MapReduce cluster.

Algorithm 4: SearchFile
input : A file F
output: A list of (ts, tns, LBA i, size)

1 begin
2 SECTOR_SIZE_FOR_FILE_SEARCH ← 512 ;
3 FILE_SIZE ← sizeof(F);
4 NUMBER_OF_SECTORS ←

roundup( FILE_SIZE
SECTOR_SIZE);

5 query[ ] ← null;
6 for k ← 0 to

(
NUMBER_OF_SECTORS − 1

)
do

7 sectork ← splitFileIntoKthSector(F,
k);

8 if filledWithConstant(sectork) then
9 continue;

10 end
11 if sizeof(sectork) <

SECTOR_SIZE_FOR_FILE_SEARCH then
12 zeroPadding(sectork);
13 end
14 query[ ] ⇐ hash(sectork);
15 end
16 foreach searchHashDBMapper(key, value)

do
17 for k ← 0 to(

LogDrive.sector_size
SECTOR_SIZE_FOR_FILE_SEARCH − 1

)
do

18 for l ← 0 to NUMBER_OF_SECTORS do
19 if KthHash(key) == query[ l] then
20 writeSearchResultToHDFS

(value, null);
21 end
22 end
23 end
24 end
25 end

Figure 6 shows the implementation of the proactive data
collection function. We implemented Algorithms 1 and 2
in the LogDrive collection driver of the Xen hypervisor
using the blktap2 mechanism [49–51]. The gray region
in Fig. 6 is protected against customers C and attackers
A. The isolation capability between a customer C’s vir-
tual machine and a provider P’s host operating system is
provided by the Xen hypervisor [52]. This paper assumes
that the customers C or attackersA cannot access the gray
region as long as the underlying hypervisor software is not
compromised.
We have confirmed that the current implementation of

the LogDrive drivers works on the specific minor version
of the kernel and Xen hypervisor shown in Table 2 because
the blktap2 software is tightly integrated with the specific
kernel driver for the Xen hypervisor.
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Algorithm 5: ReadPastSectorFromLog
input : An LBA i, a UNIX time in seconds ts, a UNIX

time in nanoseconds tns, a LogDrivec database
output: A 4 KiB sector si,j, where j satisfies

Logi,j.(ts.tns) ≤ ts.tns < Logi,j+1.(ts.tns)
1 begin
2 foreach read request on VBDc,t do
3 Logi,m−1 ←

retrieveLog(LogDrivec.index[ i]);
4 while Logi,j != null do
5 if Logi,j.(ts.tns) ≤ (ts, tns) then
6 return Logi,j.s;
7 end
8 Logi,j ← retrieveLog(Logi,j.byteOffset

OfPreviousSector);
9 end

10 return
SECTOR_PADDED_WITH_ALL_ZEROS;

11 end
12 end

Figure 7 shows how Algorithms 3 and 4 are imple-
mented using the Hadoop cluster. The first half of Algo-
rithm 3 converts a LogDrive database on a local drive
into a SequenceFile on a Hadoop cluster. The last half
of Algorithm 3 creates a HashDB. Algorithm 4 is exe-
cuted by using the combination of the sequential search
algorithm and random sampling. Both algorithms were
implemented in the MapReduce programs.
Figure 8 shows the implementation of Algorithm 5.

We implemented Algorithm 5 in the LogDrive restora-
tion driver by using the blktap2 mechanism of the Xen
hypervisor.

Evaluation
This section presents the performance evaluation. We
discuss how LogDrive can be adapted to larger cloud
environments in the Discussion section.

Table 1 Hardware specification

Master Slave

CPU Xeon E5-2630v3 x2 Core i7 5820K

(No. of cores) (16) or 7800X (6)

RAM DDR4 64 GiB DDR4 64 GiB

NIC 10GBASE-T 10GBASE-T

Storage RAID0 consists of M.2 SSD

three SATA3 SSDs (Samsung 960EVO)

(Crucial CT512)

Usage Algorithms 1, 2, and 5 Algorithms 3 and 4

No. of servers 1 7

Table 2 Software specification

Master Slave

Kernel 2.6.32.57 2.6.32-573.el6

OS CentOS 6.8 64bit CentOS 6.8 64bit

Hypervisor Xen-4.1.2 N/A

Hadoop Version 2.7.1 Version 2.7.1

Compiler gcc 4.4.7 OpenJDK 1.7.0

Usage Algorithms 1, 2, and 5 Algorithms 3 and 4

No. of servers 1 7

Proactive data collection function
Figure 9 shows the throughput of the block write and
block read of the LogDrive collection driver and of the
normal Xen hypervisor. The experiments were conducted
using the Bonnie++ benchmark software on up to 16 vir-
tual machines. The master server shown in Table 1 was
used for the experiments. Table 4 shows the configuration
of the virtual machines.
The write throughput of the proposed LogDrive col-

lection driver was higher than that of the normal Xen
hypervisor without LogDrive when two or more virtual
machines were executed simultaneously. For example,
the write throughput of LogDrive was 6.9 times faster
than that of the normal Xen hypervisor when 16 vir-
tual machines were executed simultaneously. The average
write throughput of LogDrive was 4.1 times faster than
that of the normal Xen hypervisor without LogDrive.
The read throughput of the proposed LogDrive collec-

tion driver was lower than that of the normal Xen hyper-
visor in all cases. The decreasing rate of the worst read
throughput of four virtual machines was 54%. The average
decreasing rate of the read throughput of LogDrive was
27%. We confirmed that the log-structured design mainly
offers users the advantage of write throughput.

File search function of the LogDrive database
We created a LogDrive database using the following pro-
cedures. First, a virtual machine with the configuration
shown in Table 4 was booted. CentOS 5.11 Linux as the

Table 3 Configuration of the Hadoop MapReduce cluster

Parameter Value

mapreduce.map.memory.mb 25000

mapreduce.map.java.opts -Xmx20000m

mapreduce.map.cpu.vcores 2

mapreduce.reduce.memory.mb 25000

mapreduce.reduce.java.opts -Xmx20000m

mapreduce.reduce.cpu.vcores 2

yarn.app.mapreduce.am.resource.mb 25000

yarn.app.mapreduce.am.command-opts -Xmx20000m

yarn.app.mapreduce.am.resource.cpu-vcores 2
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Fig. 6 Implementation of the proactive data collection function

guest OS was installed on the virtual machine. Then, files
of the Govdoc dataset [44, 53] were written on the virtual
machine for generating LogDrive databases. The Govdoc
dataset consists of one million files that were collected
from web servers of the .gov domain. The five LogDrive
databases shown in Table 5 were created for the following
experiments.

In the experiment, we used CentOS 6.8 with ext4 file
system for the host operating system and CentOS 5.11
with ext3 file system for guest operating system. In our
setup, we could not boot guest operating systems with
ext4 file system because of the limited support of Xen
4.1.2 we used. However, the design of LogDrive supports
any file system (e.g., an operating system with ext4 file

Fig. 7 Implementation of the file search function of the LogDrive database
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Fig. 8 Implementation of the restoration function of the LogDrive database

Fig. 9 Throughput of the LogDrive collection driver
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Table 4 Configuration of the virtual machines

Virtual CPU 1 core

Virtual RAM 2 GiB

Virtual block device LogDrive.disk_size = 1 TiB

LogDrive.sector_size = 4096

Guest OS CentOS 5.11 32bit

File system ext3

Benchmark software Bonnie++ 1.9.7

system) because LogDrive does not need to process any
specific information of underlying file system. As shown
in Algorithms 1 and 2, LogDrive processes a 4 KiB sec-
tor, a logical block address (LBA), and a UNIX timestamp
as an input. A UNIX timestamp is obtained from a host
operating system and the timestamp is independent of
file systems of guest operating systems. A 4 KiB sector
and an LBA are also independent of file systems. These
data do not include any file system related information
such as file system’s metadata. In addition, Algorithm 5
processes a logical block address and a UNIX timestamp
as an input. These data do not include any file system
related information. Therefore, the design of LogDrive is
independent of underlying file systems in guest operating
systems.
Figure 10 shows the time for converting the LogDrive

database into SequenceFile and for creating HashDB. The
Hadoop cluster that consists of the seven slave servers
shown in Table 1 was used. The average throughput of the
first half of Algorithm 3 was 28.4 MiB/s and of the second
half of Algorithm 3 was 239 MiB/s. As the size of the Log-
Drive database increased, the processing time increased
linearly. Therefore, the time complexity of Algorithm 3
is O(n), where n is the number of written sectors in a
LogDrive database.
Figure 11 shows the response time of Algorithm 4 with-

out random sampling. The experiments of a LogDrive

Table 5 Size of the LogDrive databases for the experiments

Size of LogDrive database [GiB] No. of written directories from (Each
directory holds 1,000 files) Govdoc

7.7 0

178.3 250

309.3 500

452.1 750

542.4 1,000

The first row shows the size of the LogDrive database after a clean installation of the
guest OS

database larger than 542.4 GiB were conducted usingmul-
tiple 542.4 GiB LogDrive databases. As the number of sec-
tors in a LogDrive database increased, the response time
increased linearly. Table 6 shows the average throughput
of the search queries (i.e., the slopes of the lines shown
in Fig. 11). While our setup searched for a file smaller
than 100 KiB at about 2.86 GiB/s, the query through-
put was dropped to 1.69 GiB/s when the system searched
for the 1 MiB file. Evaluating the average throughput
of an investigator’s setup is useful when the investiga-
tor has to estimate the processing time and to determine
the appropriate specification of the forensic cluster (e.g.,
the number of computing nodes). For example, our setup
will be able to search for a 100 KiB file in a 100 TiB
LogDrive database without random sampling in about
10.3 h.
Figure 12 shows the response time of Algorithm 4

with random sampling in logarithmic scale. The exper-
iments of a LogDrive database larger than 542.4 GiB
were conducted by using multiple 542.4 GiB LogDrive
databases. The sampling rate r = n/N was calculated
using Eq. 1, where p > 0.99, N is the number of sec-
tors in a LogDrive database, and T is the number of
sectors in a file F. Table 7 shows the sampling rate r for
each file size. The sampled HashDB files were created
using Algorithm 3 with these sampling rates. For exam-
ple, the search for the 10 MiB file (017804.pdf) in a 100
TiB LogDrive database required 2.9 min. Table 8 shows
the average throughput of Algorithm 4 with random sam-
pling. While our setup searched for a file smaller than
10 MiB at about 398 GiB/s, the query throughput was
dropped to 103 GiB/s when the system searched for the
100 MiB file.

Restoration function of the LogDrive database
First, a virtual block device VBD with 12 GiB capac-
ity formatted with ext4 file system was created. Then,
a LogDrive database was created by overwriting
an 8 GiB test file 16 times. The test file was gen-
erated by executing the command dd if=/dev/
urandom of=test.dat count=8 bs=`echo 2ˆ30|
bc`. After creating the LogDrive database, the read
throughput of the LogDrive restoration driver was
measured.
Figure 13 shows the throughput of the imple-

mentation of Algorithm 5. In the experiment, we
restored VBD at 16 points in time at which the test
file was overwritten. The throughput of the sequen-
tial block read was measured by the command
hdparam -t on VBD. The throughput of the file
system read was measured by mounting VBD as
an ext4 file system and by executing the command
dd if =/mnt/test.dat of =/dev/null bs = 1M
count=10 after dropping the kernel’s buffer cache
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Fig. 10 Conversion to SequenceFile and creation of HashDB

both in the guest OS and in the host OS. The page
cache read was measured by the same method instead
of dropping the page cache in the host OS. As
the number of overwrites increased, the read through-
put decreased except for the page cache read. The

file system read was slower than the sequential
block read. Once the file was loaded into the buffer
cache of the host OS, the proposed system could
access the restored file system at a throughput of
2 GB/s.

Fig. 11 Response time of search query (Algorithm 4 without random sampling)
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Table 6 Average query throughput of Algorithm 4 without
random sampling

Test file of Govdoc dataset [44] Throughput [MiB/s]

051563.gif (≈1 KiB, 3 sectors) 2,988

155818.jpg (≈10 KiB, 20 sectors) 2,988

997881.html (≈100 KiB, 216 sectors) 2,811

995936.ppt (≈1 MiB, 2,086 sectors) 1,738

Average throughput = size of LogDrive / response time

Discussion
This section presents a discussion about security, perfor-
mance, and size of the logs.

Security
We classify possible attacks on the LogDrive framework
into six categories based on the STRIDE threats model
[4]. The STRIDE threats consist of spoofing, tampering,
repudiation, information disclosure, denial of service, and
elevation of privilege. Table 9 shows the summary of
security threats against the LogDrive framework.
Spoofing. The system cannot detect identity spoofing

in virtual machines. If someone pretends to be a gen-
uine customer C by using remote control malware and
commits crimes in virtual machines, the LogDrive frame-
work cannot identify the person who commits crimes over
the Internet. The customer C is responsible for prevent-
ing identity spoofing by employing strict authentication

mechanisms and regular software updates on the virtual
machines.
Tampering. The current standard Linux kernel peri-

odically flushes the page cache if it is older than 30 s. If
attackers can set the interval of flushing the page cache
to be longer, the LogDrive collection driver cannot record
precise timestamps of each sector. However, a longer
interval affects normal operations of applications on the
virtual machines; therefore, the attack has only a limited
effect on timestamps. This limitation can be mitigated by
using memory forensics in addition to storage forensics.
Please note that the timestamps of the guest operating sys-
tem have no effect on LogDrive because the timestamps
of LogDrive are managed by the host operating system.
Tampering with LogDrive databases outside the virtual

machine is discussed in the “Related work” section.
Repudiation. Even if an attacker A creates a modified

file F′ by inserting an extra 1 byte near the start of an
original file F to bypass sector hashing, LogDrive pre-
serves both the original file F and the modified file F′. In
this case, similarity digest hash algorithms, such as sdhash
[54], are needed to find F′ using the original file F.
The current implementation employs MD5 to generate

hash values of sectors. MD5 and SHA-1 are vulnerable
against collision attacks [55, 56]. If the attackers can make
a false file or a malicious program that has hash values
of sectors identical to those of known-good files (e.g.,
known-good system files) and if the LogDrive framework
is used for excluding fragments of known-good files by

Fig. 12 Response time of search query (Algorithm 4 with random sampling)
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Table 7 Sampling rate for each file size

Target file size Sampling rate for p > 99%

1 MiB 0.00229492

10 MiB 0.000229490

100 MiB 0.000022950

1 GiB 0.0000022400

using white lists (not black lists), the system will not be
able to detect the malicious file created by the attacker.
To prevent the attack, the MD5 hash algorithm should be
replaced with collision-resistant hash algorithms such as
SHA-256 or SHA-512.
An attacker can make files unreadable in a virtual

machine by using cryptography or steganography to repu-
diate his or her past incidents. LogDrive cannot recover an
encrypted file or a stego file. Therefore, other tools such as
data recovery tools or memory forensic tools are needed
[57] for recovering the original message.
Information disclosure. If the attackers gains accesses

to the cloud management plane on the host operating
system, they can steal the LogDrive databases of all the
customers C of the provider P. LogDrive employs the
combination of the Xen hypervisor [52], a host operat-
ing system, and the LogDrive framework as a trusted
computing base (TCB). LogDrive assumes the integrity
of the underlying trusted computing base. Hardware-
based attestationmechanisms have the ability to check the
integrity of the trusted computing base both in bootstrap
step and in runtime [58]. A provider P is responsible for
protecting the TCB against attackers.
Denial of service. If attackers issue a large number of

write requests on virtual machines (e.g., DDoS attacks on
a web server in a virtual machine to overflow the web
server’s logs), the LogDrive framework may not be able to
save all written sectors on a LogDrive database because of
the limit of storage capacity. If LogDrive detects denial of
service (DoS) attacks, it can intentionally slow down the
throughput of the virtual block device VBD. The system
can also return I/O errors to mitigate the attacks. In addi-
tion, the system can mitigate the attacks by transferring
old logs of a LogDrive database to a Hadoop Distributed
File System (HDFS) or other cloud storage periodically to

Table 8 Average query throughput of Algorithm 4 with random
sampling (p > 0.99)

Test file of Govdoc dataset [44] Throughput [GiB/s]

995936.ppt (≈1 MiB, 2,086 sectors) 396

017804.pdf (≈10 MiB, 21,273 sectors) 400

042665.doc (≈100 MiB, 208,096 sectors) 103

118276.txt (≈1.3 GiB, 2,785,897 sectors) 26

Average throughput = size of LogDrive / response time

Table 9 The STRIDE threats of LogDrive

Threat Attack method Protection Anti-forensic attacks

type 1 type 2

Spoofing Pretending
someone in VMs

Authentication
on guest OS

�

Tampering Incorrect
timestamps

Memory
forensics

�

Tampering with
LogDrive
database

Secure audit
log

�

Repudiation Changing a few
bits of a file

Similarity
digest hash

�

Collision attacks Collision
resistant
hash
algorithm

�

Cryptography
and
steganography

Data
recovery
tools,
memory
forensics

�

Information
disclosure

Stealing
LogDrive
database

Protection of
TCB

�

Denial of
service

Overflowing
logs

Throughput
control of
LogDrive

�

Elevation of
privilege

Taking control of
LogDrive

Protection of
TCB

�

secure sufficient storage space. A log rotation mechanism
is needed both for long-term collection and for mitigating
the DoS attacks.
Elevation of privilege. Finally, we discuss direct attacks

on the LogDrive framework. If an attacker could elevate
his or her privilege, he or she might be able to attack
LogDrive directly on a host operating system. In addition
to hardware-based attestation mechanisms [58], minimiz-
ing the code size of the trusted computing base is also
important to reduce the complexity of the system and to
reduce the vulnerability of LogDrive. For this reason, we
have developed the LogDrive framework on a lightweight
security-purpose hypervisor called BitVisor [59].

Performance
Algorithms 1 and 2. As shown in Fig. 9, the average
write throughput of the LogDrive collection driver was
4.1 times faster than the normal write throughput of
the Xen hypervisor without LogDrive. The reason for
the better throughput is the combination of an efficient
log-structured design and a buffered I/O. The LogDrive
collection driver groups multiple Logi,j into a single large
I/O and flushes it at the tail of the LogDrive database. This
designmakes it possible to improve the write performance
compared to a normal Xen hypervisor that writes each
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Fig. 13 Throughput of the LogDrive restoration driver

sector si onto scattered positions of each LBA i on the host
operating system. On the other hand, the average decreas-
ing rate of the read throughput was 27%. The reason for
the decrease in the read throughput is the overhead of the
log-structured design. We confirmed that the LogDrive
collection driver offers users improved write throughput
(i.e., four times faster than the normal throughput without
LogDrive) and moderate read throughput.
We believe that LogDrive is the first work to log all

write operations on a virtual block device for forensic
purpose. Therefore, we cannot compare with other prior
work of same purpose. Here, we compare LogDrive with
SNPdisk (snapshot disk), a copy-on-write snapshot mech-
anism. Table 10 shows the performance comparison with
SNPdisk [60]. Although SNPdisk degrades the both read
throughput and write throughput, LogDrive improves
write throughput because of our log-strucutred design.
King et al. presented time-traveling virtual machine

Table 10 Performance comparison with copy-on-write snapshot

LogDrive (Log-structured) SNPdisk (Copy-on-write)

Read throughput 73% 86%

Write throughput 410% 86%

The above values are the percentage of read throughput and write throughput
compared with non-snapshot. The performance of SNPdisk is based on scheme 1 of
the experiment in [60]

for reverse debugging of operating systems [61]. King
et al. implemented their time-traveling virtual machine
(TTVM) by using ReVirt [62] and User-Mode Linux.
TTVM records the contents of a virtual machine’s CPU
registers, virtual memory pages, and virtual disks (i.e.,
virtual block devices). While TTVM employs a copy-on-
writemethod to save changes inmemory pages and in disk
blocks, LogDrive employs log-structured design to save
changes in a virtual block device. Although TTVM takes
checkpoints at a certain interval such as 10 s, LogDrive
takes continuous checkpoints without any interval. The
performance overhead of TTVM that took checkpoints
every 10 s was 16–33%. In contrast, the average decreas-
ing rate of read throughput in LogDrive is 27% and the
average increasing rate of write throughput in LogDrive is
410%. LogDrive improved write throughput because of its
log-structured design.
Algorithm 3. Algorithm 3 consists of two parts. The

first part is to transfer a LogDrive database to a Hadoop
cluster and to convert it into a SequenceFile. The sec-
ond half is to create HashDB from the SequenceFile.
Although the setup employs 10GBASE-T Ethernet, the
average throughput of the first half of Algorithm 3 was
28.4 MiB/s and of the second half of Algorithm 3 was
239 MiB/s as shown in Fig. 10, respectively. For exam-
ple, our setup needs to transfer write logs to a Hadoop
cluster at 305 MiB/s when the single virtual machine is
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executed. The throughput of the first half of Algorithm 3
could be improved by introducing parallel processing of
each part of LogDrive database. The throughput of the
second half of Algorithm 3 could be improved by increas-
ing the number of slave machines. For mitigating the
low throughput of Algorithm 3, LogDrive has to perform
Algorithm 3 periodically in the background. This paper
presented the evaluation of the proof-of-concept of the
LogDrive framework. Further studies of more efficient
transfer mechanism of write logs to a cluster is required.
Algorithm 4. If LogDrive monitors k virtual machines

that writes data at an average throughput of TVM byte/s
during D days, LogDrive needs to process LogDrive
databases of Stotal bytes. The database size Stotal is
calculated using Eq. 2.

Stotal = k ∗ TVM ∗ D ∗ (60 ∗ 60 ∗ 24) [bytes] (2)

For example, if we have to monitor 10 virtual machines
of the average throughput TVM = 1,048,576 (i.e., 1,024
KiB/s) in 100 days, then the total size of the LogDrive
databases Stotal is 82.4 TiB.
The response time of the search query tsearch can be

estimated using Eq. 3, where Texperiment is the average
throughput obtained from the experiments shown in
Table 6 and in Table 8, respectively.

tsearch = Stotal
Texperiment

[sec] (3)

The response time of the search for a 10 MiB file with
random sampling (p > 99%) in a 82.4 TiB LogDrive
database is 210 sec (i.e., 3.5 min) when the parameters are
Texperiment = 400 ∗ 230 and Stotal = 82.4 ∗ 240.
For faster search, the number of slave machines have to

be increased. Our setup consists of seven slave machines.
If we assume that the number of slave machines is pro-
portioned to the query throughput because Algorithm 4 is
essentially sequential search algorithm, the following Eq. 4
is derived. Tsingle is the throughput of single slave machine
andNslave is the number of the slave machines that derives
Texperiment .

Tsingle = Texperiment
Nslave

[byte/s] (4)

The throughput of the single slave machine that
searches for a 10 MiB file with random sampling (p >

99%) is 57 GiB/s. If the total number of slave machine is
100 then the throughput of the cluster is 5.5 TiB/s. In this
setup, LogDrive can search LogDrive databases of Stotal =
82.4 ∗ 240 bytes (82.4 TiB) for a 10 MiB file in 14.7 sec.
From the perspective of the technique we used, one

of the most similar work with ours is statistical random
sampling in combination with sector hashing to find a
physical drive holding such as child pornography or mal-
ware. Taguchi [63] shows that with 15 min of sampling

they can give a 90% confidence that less than 10 MiB of
target data is present on a 500 GB hard disk drive (i.e.,
556 MB/s). We cannot directly compare LogDrive with
Taguchi’s work because LogDrive needs to create HashDB
before searching, for example, we need 380 min to make
HashDB from about 500 GiB write operations. However,
in our setup, once the HashDB is created, we can search
any target file of 10MiB with 99% confidence in 400 GiB/s
as many times as needed.
Algorithm 5. As shown in Fig. 13, as the number of

writes of the restored virtual block device increased, both
the read throughput of sequential block read and file sys-
tem read increased. The reason of the increase of the read
throughput is the number of traversal in the linked list in
the LogDrive database. The latest log can be accessed at
the first traversal of the linked list. Conversely, the oldest
log can be accessed at the last traversal of the linked list.
The sequential block read throughput of a single virtual

machine without LogDrive was around 300 MB/s. In con-
trast, the lowest sequential block read throughput on the
restored virtual block device was around 40 MB/s; there-
fore, our restoration driver’s throughput is about 13% of
the read throughput without LogDrive.
Time-traveling virtual machine (TTVM) [61] is simi-

lar work with LogDrive except for that TTVM’s purpose
is reverse debugging. While TTVM employs a copy-on-
write virtual block device to create checkpoints, Log-
Drive employs log-structured virtual block device. In the
paper [61], restoration time of a checkpoint in TTVM
were between 5 s and 23 s when TTVM took check-
points every 25 s. In contrast, LogDrive does not need to
restore a checkpoint prior to analysis because LogDrive
can dynamically restore the virtual block device at a spec-
ified point in time when an investigator requested. The
average read throughput of the dynamically restored Log-
Drive is about 13% of the original read throughput without
LogDrive. Our setup will need 7 h to make a disk image
using dd command from the restored 1 TiB virtual block
device. However, once the disk image was created, the
investigator can use conventional forensic tools for ana-
lyze the disk image. This paper presented the evaluation
of the proof-of-concept of LogDrive. Further studies of
more efficient restoration mechanisms of a log-structured
database are needed.

Size of logs
The LogDrive framework collects all written sectors;
therefore, it needs a large amount of storage for LogDrive
databases. If users do not need to restore the past state
of virtual block devices, an accumulator such as a bloom
filter [64] can be used for holding only proof of previous
possession of sectors. In this case, the system stores hash
values of written sectors in bloom filters. An investigator
I will be able to search an evidence file F = {s0, s1, . . . ,
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sn−1}, where n is the number of sectors of the file F, from
the LogDrive database that is a set of bloom filters. A log-
rotation mechanism, such as the cleaning functions in the
design of an original log-structured file system [33], is also
needed to recycle the space of old logs.

Related work
This section compares the LogDrive framework with sim-
ilar systems. Table 11 shows the comparison of different
collection methods of virtual block devices in IaaS cloud
environments.
Dykstra and Sherman evaluated forensic acquisition

tools, including Guidance EnCase and AccessData Foren-
sic Toolkit, in a public IaaS cloud [65]. They success-
fully returned volatile and non-volatile data from Amazon
EC2 by injecting remote data acquisition agent pro-
grams (EnCase servlet and FTK agent) into the guest
operating systems. These agent programs run on the
guest operating systems. In this method, a cloud cus-
tomer can bypass the collection mechanism or can
tamper with collected data because he or she has full
control of the guest operating system. Thus, remote data
acquisition using agent programs cannot prevent type 1
anti-forensic attacks.
Dykstra and Sherman presented the design and imple-

mentation of FROST [66]. FROST acquires virtual disks
from OpenStack cloud platforms. The aim of FROST is to
develop a cloud management plane for forensic data col-
lection rather than interacting with guest operating sys-
tems in virtual machines. FROST retrieves virtual disks as
QCOW2 (QEMU copy-on-write, version 2) [40] images.
QCOW2 images support snapshot functions. Investiga-
tors can inspect the history of changes between two
snapshots. However, the frequency of taking snapshots
of copy-on-write disk images is dependent on cloud cus-
tomers. Even if cloud providers have full control of taking
snapshots of customers’ virtual machines, they cannot
preserve the traces of type 1 anti-forensic attacks between

two snapshots. For example, if a cloud provider took two
snapshots at t0 and at t4 in Fig. 3, the evidence file F
does not remain on the copy-on-write snapshots. FROST
provides an authenticated logging service that guarantees
integrity of the logs; however, the service cannot prevent
attacks launched on a host operating system (i.e., type 2
anti-forensic attacks) because FROST assumes that cloud
providers are trusted.
Zawoad and Hasan proposed a forensic-enabled cloud

(FECloud) [67] designed on top of OpenStack. The advan-
tage of FECloud is protection of logs against collusion
attacks between dishonest cloud providers, customers,
and investigators. Building secure logging mechanisms on
untrusted machines operated by dishonest entities is a
challenging problem [31]. The typical solution is secure
audit logging using a trusted third party. FECloud includes
the function of Secure Logging-as-a-Service (SecLaaS)
[32] that publishes proofs of past logs on public web
sites or on Rich Site Summary (RSS) feeds periodically.
A proof of past logs is created by using a hash-chain of
previous logs and proof accumulators (i.e., bloom filters
or RSA accumulators). FECloud provides a secure audit
of logs only after issuing a proof of logs. If a dishonest
provider tampered with the customers’ logs before issu-
ing a proof of the logs, FECloud cannot detect the attacks.
From the perspective of storage forensics, they proposed
a virtual file system (VFS) monitor in the kernel layer. The
VFS monitor requires trust in the guest operating sys-
tem; therefore, the VFS monitor cannot protect against
type 1 attacks from customers who have full control of
the guest operating system. FECloud does not provide
analysis functions.
The LogDrive framework records all written sectors on

virtual block devices as logs; therefore, investigators can
search for the evidence file F that was deleted by type 1
anti-forensic attacks. However, the LogDrive framework
does not prevent attacks launched on the host operating
system (i.e., type 2 anti-forensic attacks). To guarantee

Table 11 Comparison of different collection methods of virtual block devices in IaaS clouds

Trust Method Preserving traces of Protection from Parallel
required anti-forensic attacks anti-forensic processing

attacks of type 1 attacks of type 2 of past logs

Remote data acquisition [65] OS, HV, Host, HW Agent
programs

Management plane [66] HV, Host, HW CoW snapshots Depends on
of VMs frequency of snapshots

FECloud [67] OS, HV, Host, HW VFS �
with SecLaaS [32] monitor (audit logging)

LogDrive (proposal) HV, Host, HW Log-structured � �
virtual storage

The field of “Trust required” shows the trust required in the guest operating system (OS), hypervisor (HV), host operating system (Host), and host hardware (HW)
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the integrity of the LogDrive database on a host operat-
ing system, LogDrive needs to be integrated with a secure
audit logging mechanism such as SecLaaS [32]. SecLaaS
provides integrity of log files by publishing a proof of
logs on public web sites or on RSS feeds periodically.
LogDrive records all written sectors as logs. Therefore,
we believe that LogDrive can be integrated with SecLaaS
without changing fundamental parts of the two schemes.
To enforce the LogDrive and secure audit of LogDrive
databases, the integrity of the trusted computing base (i.e.,
underlying host operating system, hypervisor, and Log-
Drive programs) must be guaranteed by using hardware-
based attestation mechanisms [58].
Finally, we compare the abilities of parallel process-

ing in the analysis phase. In the remote data acquisition
method [65] and themanagement planemethod [66], con-
ventional forensic tools are used to analyze disk images.
Conventional forensic tools can be processed by grouping
files on each machine of a cluster [20, 68], as Richard and
Roussev presented. LogDrive has an advantage of search-
ing files that were overwritten or deleted in the past via
parallel distributed processing.

Conclusion
This paper presented the LogDrive framework to miti-
gate the following problems of storage forensics in IaaS
cloud environments: (1) volatility of virtual block storage
and difficulty in imaging the physical drives in cloud data
centers, (2) increasing volume of forensic data, and (3)
anti-forensic attacks that hide traces of attacks in virtual
machines. The LogDrive framework provides a proactive
data collection and analysis function for mitigating these
three problems. We employed a log-structured design to
archive all written sectors to mitigate problems (1) and
(3) and the sector-hash-based file detection method with
random sampling to mitigate problem (2). This paper pre-
sented the problem formulation, the investigative context,
the design with five new algorithms, the implementation
process, and the performance evaluation.
This paper presented a proactive data collection mech-

anism to preserve writes history in virtual machines. This
paper showed that the average write throughput of the
LogDrive proactive collection driver was 3.1 times faster
than the normal write throughput of the Xen hypervisor
without LogDrive. Additionaly, we integrated a sector-
hash-based file detection method with random sampling
with LogDrive. For example, the average throughput
of the search for a 10 MiB file with random sam-
pling was 400 GiB/s and our setup searched a 100 TiB
LogDrive database for the 10 MiB file (017804.pdf) in
2.9 min.
The design and evaluation of the proof-of-concept of

the LogDrive framework will help investigators consider
more advanced proactive data collection and analysis

mechanisms for time-traveling investigations in volatile
IaaS cloud environments. The software of this article is
available in the GitHub repository, https://github.com/
manabu-hirano/logdrive. In future work, we are going
to use the logs obtained from the LogDrive system in
machine learning for anomaly detection and future pre-
diction. The proposed hypervisor-based LogDrive system
can be used as a common platform to collect and to
analize forensic evidences in cloud environments.
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