
RESEARCH Open Access

Online architecture for predicting live video
transcoding resources
Pekka Pääkkönen*, Antti Heikkinen and Tommi Aihkisalo

Abstract

End users stream video increasingly from live broadcasters (via YouTube Live, Twitch etc.). Adaptive live video streaming is
realised by transcoding different representations of the original video content. Management of transcoding resources
creates costs for the service provider, because transcoding is a CPU-intensive task. Additionally, the content must be
transcoded within real time with the transcoding resources in order to provide satisfying Quality of Service. The
contribution of this paper is validation of an online architecture for enabling live video transcoding with Docker in a
Kubernetes-based cloud environment. Particularly, online cloud resource allocation has been focused on by executing
experiments in several configurations. The results indicate that Random Forest regressor provided the best overall
performance in terms of precision regarding transcoding speed and CPU consumption on resources, and the amount of
realised transcoding tasks. Reinforcement Learning provided lower performance, and required more effort in terms of
training.

Keywords: Rancher, FFmpeg, Docker, Random Forest, Reinforcement learning, RL-Keras, Gym, Cassandra

Introduction
Video content is provided to consumers with Content De-
livery Networks (CDN). Typically video is streamed on-
demand, but live streams are increasingly consumed (e.g.
game play videos in Twitch, other live video content in
YouTube Live). In order to provide video streams with
high quality to end users, the original video has to be
transcoded for delivery via the CDN. Transcoding is a
CPU-intensive process, in which several representations
of the original video are created. Typically, the end users
adaptively switch between the available video representa-
tions due to the variable conditions of the (wireless) net-
work. In live streaming cloud resources have to be capable
of providing real time speed of transcoding. Thus, video
transcoding as a CPU-intensive task requires powerful
computing resources to be utilised. Several commercial
companies (e.g. Encoding.com [1], Wowza Media System
[2], Bitmovin [3]) provide services for live video transcod-
ing. The companies should have incentive to spend less
on provisioning of the transcoding services with rented or
proprietary resources. Machine learned models [4] have
been used for improving efficiency of transcoding with
cloud resources, and some of the approaches [5–10] have

been developed for the live video transcoding context.
Particularly, machine learning was utilised for predicting
performance of transcoding tasks with available virtual re-
sources. The predictions were utilised for selecting the
most suitable set of virtual resource(s) for transcoding.
However, architecture design for facilitating prediction

of virtual resources for live video transcoding based on
online data collection on Kubernetes platform hasn’t
been studied (to the author’s best knowledge), which is
the contribution of this paper. Several challenges were
encountered during this research. Realisation of accurate
predictions was complicated by the way Kubernetes allo-
cates and schedules CPU cores for the transcoding tasks.
Also, a new data collection method had to be designed
for supporting machine learning based on live video
transcoding tasks. Finally, variability of video transcod-
ing environment complicated prediction of performance.
For example, configurations of transcoded video repre-
sentations (e.g. resolution, bit rate), video encoder, or
cloud resources may change. In order to predict suitable
cloud resources, the changes of the environment should
be considered in the development of the prediction
models.
The goal of this research is to find out how cloud re-

sources can be efficiently utilised based on predictions

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: pekka.paakkonen@vtt.fi
VTT Technical Research Centre of Finland, Kaitoväylä 1, 90570 Oulu, Finland

Journal of Cloud Computing:
Advances, Systems and Applications

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications
 (2019) 8:9
https://doi.org/10.1186/s13677-019-0132-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0132-0&domain=pdf
http://encoding.com
http://creativecommons.org/licenses/by/4.0/
mailto:pekka.paakkonen@vtt.fi

in a cloud platform, where transcoding is realised with
Docker containers running on a cloud-based Kubernetes
platform. Particularly, an online architecture for predict-
ing live video transcoding resources has been validated
with a prototype. Also, prediction of transcoding speed
and CPU consumption has been analysed in several
learning configurations. The results of the experiments
indicate that Random Forest (RF) regressor achieved the
best overall performance in prediction, when compared
to Reinforcement Learning (RL) or Stochastic Gradient
Descend (SGD) regressor in this particular case.
The paper is structured as follows. First, related work

is presented. Subsequently, the architecture is described
from different viewpoints. Then, the executed experi-
ments are presented, which is followed by analysis of the
results. Next, the lessons learnt are discussed. In the
end, future work is presented, and the study is con-
cluded. The Appendix contains detailed views (data, se-
quence) of the architecture.

Related work
Related work is reviewed in terms of Docker/Kuber-
netes, cloud based architectures for video transcoding,
and machine learning techniques for cloud resource
management.
Docker ecosystem is increasingly adopted in the IT in-

dustry [11, 12]. Rancher [13] is a management suite,
which supports deployment of Docker-based services on
multiple cloud domains. Cloud resources are registered
to Rancher, and services can be deployed on the re-
sources based on Rancher Compose [13], Docker Com-
pose [14], or Helm chart [15] descriptions. The 2.x
version of Rancher can be utilised for management of
services on Kubernetes clusters. Rancher’s service cata-
log consists of descriptions for facilitating deployment of
services. Prometheus [16] is a resource monitoring tool,
which is available for deployment as a part of Rancher’s
service catalog.
Kubernetes [17] is a system for automating the manage-

ment of Dockerized applications. Pod is a concept in
Kubernetes, which refers to a set of tightly-coupled con-
tainers deployed on a node [18]. In order to utilise com-
mon CPU resources efficiently with multiple Pods, access
to the CPUs can be limited. CPU resources can be re-
served for Pods with CPU requests and CPU limits [19].
Kubernetes guarantees a specified minimum amount of
CPU cores to a Pod based on the CPU request. CPU limit
is the upper level of CPU cores, which can be utilised by
the Pod. If the Pod tries to use more resources than has
been allowed, Kubernetes restricts access of the Pod.
Several architectures have been used for managing the

video transcoding process, which should be considered
in the context of this paper. Twitch usage has been ana-
lysed for motivating the need for adaptive bitrate

streaming (ABR) [20]. The idea is to adjust the trade-off
between increasing Quality of Experience (QoE), and
reducing bandwidth by selectively deciding, which videos
to transcode (for ABR). An integer linear programming
model has been developed for transcoding of live adap-
tive streams [7]. Elasticity support for cloud computing
[21], and on-demand QoE aware transcoding [22] in 5G
networks have been proposed. Video transcoding tasks
can be distributed among multiple nodes with Storm
[23]. Morph [24] has been used as part of a distributed
system for video transcoding, which is able to predict
execution time of transcoding [4]. An architecture has
been proposed [5], in which video files are initially
divided into several Group of Pictures (GOP), which are
scheduled for live video transcoding. Measurements of
related GOP transcoding tasks of the same video stream
are utilised for choosing the optimal virtual machine
(VM). Further work has extended the solution for het-
erogeneous resources [25]. Resources have been allo-
cated based on queueing theory predictions [8]. Partial
pre-transcoding of videos and re-transcoding rest of the
video stream based on demand has been suggested [26].
The method can significantly reduce resource consump-
tion cost (70%), when the amount of frequently accessed
videos increases. Chen [27] presented cloud-based
service platform for video transcoding, which is able to
lower the cost of provisioning. Performance of parallel
and sequential Video on Demand (VoD) transcoding has
been measured on heterogeneous VMs [28]. The aim
was to create a predictive model for improving delivery
time of the system. Vbench is a benchmark for compar-
ing cloud video services [29]. The results indicated that
GPUs are more suitable for live streaming scenarios due
to higher speed and quality of video produced. A
priority-based resource provisioning scheme for video
transcoding has been developed [9]. The results indicate
that the solution can guarantee Quality of Service (QoS)
requirements of live video transcoding, while reducing
resource consumption.
Different machine learning techniques have been

utilised for supporting decision making in cloud re-
source usage, which is the main focus of this paper.
Earlier studies reported the use of regression [30–32],
Markov chain [33], decision trees [6], neural networks
[31], Bayesian network [34], or polynomial approxi-
mation [22]. Deep RL refers to learning through
interaction [35]. An RL agent interacts with the envir-
onment, and observes consequences of its actions
based on rewards. The goal of the agent is to learn a
policy, which maximises rewards. RL can be modelled
as a Markov Decision Process consisting of states,
actions, transitions, and rewards (and its discount fac-
tor). RL has been utilised in many real world applica-
tions such as learning to play Go (AlphaGo), Atari’s

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 2 of 24

2600 video games, production scheduling [36], and
video transcoding [10]. Random Forests have trad-
itionally been successful for solving classification
problems (examples in [37]). When Random Forests
are applied for solving problems with big data, new
approaches can be used for improving performance
(e.g. sub sampling, parallel environments or online
adaptations, divide-and-conquer) [38]. Finally, Sto-
chastic Gradient Descent (SGD) is an iterative
method for optimizing an objective function. SGD is
one of the many gradient descent options for training
of various machine learning models including neural
networks. Iterative nature of the method enables on-
line learning from mini-batches of data, which makes
SGD regression interesting from the research perspec-
tive of this paper.
The review of related work indicates that video trans-

coding process has been scaled within the cloud domain
[4, 8, 22, 28], and also from live streaming point of view
[5–10]. However, architecture design for cloud resource
management has not been focused on (to the authors’
best knowledge), when transcoding resources are pre-
dicted based on online data collection. Especially, per-
formance of different machine learning techniques has
not been compared for live video transcoding in a
Kubernetes-based environment.

Based on the literature study, the following research
questions (RQ) were posed:

� RQ 1: What kind of architecture facilitates online
data collection based prediction of cloud resource
allocation for live video transcoding?

� RQ 2: How to allocate resources (based on online
data collection) on a cloud-based computing plat-
form for live video transcoding?

An experimental architecture was designed and imple-
mented as a proof-of-concept prototype for providing an
answer to RQ 1. Experiments were performed with the
prototype for evaluating performance of prediction algo-
rithms (RQ 2) based on statistical evaluation.

Architecture design
In this chapter architecture design is presented with use
case, deployment, and sequence views with Unified
Modelling Language (UML) diagrams. The Appendix in-
cludes more detailed views (data, big data, sequence) of
the architecture.

Use case view
Figure 1 presents the use case view of the architecture.
Live video can be produced by the end users (e.g. mobile

Fig. 1 Use case view of the architecture (adapted based on [6])

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 3 of 24

phone apps) or other content providers (e.g. web cam-
era). The produced content is transcoded into different
representations (resolution, bit rate, frame rate etc.).
Data are collected from the transcoding process, and
from the cloud resources, which are utilised for the
transcoding. The collected data is utilised for the cre-
ation of prediction models with machine learning. The
models are utilised for predicting transcoding speed and
CPU consumption on resources. The predictions are
used, when selecting an optimal cloud resource type for
transcoding. A transcoding service provider manages the
transcoding process, and defines a strategy for managing
the transcoding process. The purpose of the strategy is
to enable specification of goals by the transcoding ser-
vice provider (in this work CPU consumption of VMs or
transcoding speed). The main long term goal of the
transcoding service provider is assumed to be provision-
ing of good QoS (i.e. transcoding speed) with efficient
utilisation of the transcoding resources. In practise, the
Transcoding service provider has to select a VM from
heterogeneous resources (VMs) to be utilised for execu-
tion of the transcoding task on a cloud platform. Finally,
the CDN provider delivers the transcoded video files to
the end users for streaming.

Deployment view
The deployment view of the architecture is described in
Fig. 2. All the nodes were VMs, and managed with the Eu-
calyptus cloud computing environment. Video source-
node acted as the source of video files, which were served

by NGINX [39]. FFmpeg [40] (Transcoding-node) was
used for video transcoding on VMs of different sizes.
Node exporter (Transcoding-node) collected resource sta-
tistics to Prometheus from the transcoding nodes. FFmpeg
progress information (e.g. speed statistics) was saved to
Cassandra [41] via a Collector (Monitoring-node). A
separate VM (Learner-node) was dedicated for creating
predictors based on machine learning. The Learner
periodically trained a new model based on stored trans-
coding and CPU consumption measurements. A Gym-
environment was created for training of the
Reinforcement Learning-based model (Learner-node).
The transcoding process was managed on the

Management-node. Tester created configurations for the
experiments, which were forwarded to the ServiceSche-
duler. DecisionMaker selected a suitable preallocated
VM based on information provided by the Predictor.
ResourceManager provided information of available
cloud resources. TranscodingDataCollector calculated
transcoding statistics, when a new transcoding task was
started or stopped. Further, ResourceDataCollector cal-
culated resource consumption based on information
provided by Prometheus.
Kubernetes’ components were installed on the

Monitoring nodes, and the Transcoding nodes by
Rancher. One Kubernetes cluster was used, in which the
Monitoring-node contained most of the components for
controlling resource allocation and scheduling.
Transcoding-nodes acted as workers in the Kubernetes
cluster.

Fig. 2 Deployment view of the architecture

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 4 of 24

Sequence view
Figure 3 presents the sequence view for starting of the
video transcoding service. The steps are as follows:

Steps 1–2: ServiceScheduler starts a new video
transcoding task based on the service specification. A
resource/VM is requested from the DecisionMaker
based on the service specification and the strategy.
Step 3: Available resources/VMs are fetched from the
ResourceManager.
Step 4: Count of transcoding tasks is queried from the
resources.
Step 5: Count of transcoding tasks on resources is
embedded into the HTTP POST request, which is
sent to the Predictor. The predictor provides the
received information as input to the prediction
model, and returns prediction(s) as output (in HTTP
200 OK).
Steps 6–7: The prediction is saved into Cassandra,
when SGD/RF is used as an algorithm for prediction.
Steps 8–9: The most suitable resource is selected based
on the prediction(s). When RL is used, the smallest
VM (lowest count of CPU cores) with a positive
prediction is selected. When SGD/RF is used, the
smallest VM with an acceptable prediction (satisfies the
target in the strategy) is selected. Subsequently, it is
checked if the transcoding task can be scheduled on
the resource based on Kubernetes CPU requirements.
Finally, a VM with the smallest CPU count is selected.
Step 10: The service specification is updated with
Kubernetes CPU requirements (CPU request and CPU
limit) based on the type of transcoding and resource.

Steps 11–12: The information of the service
specification is transformed into service parameters,
which are provided via Rancher Command Line
Interface (CLI). The parameters include transcoding
information for FFmpeg (e.g. target resolution, bit rate,
frame rate etc.), Kubernetes CPU requirements, and
the resource where the transcoding task will be
deployed.
Step 13: Information of the started transcoding task is
saved into Cassandra.
Step 14: The started transcoding task is indicated to the
Resource-object, which keeps track of executed trans-
coding tasks.

Prototype
The configuration of the different nodes has been
depicted in the deployment diagram (Fig. 2). The experi-
ments were performed with a Dell Server Rack (R820,
32 CPUs, 512 GB RAM). Eucalyptus [42] is a technology
for building and managing private cloud environments.
Eucalyptus v3.4.2 cloud was installed on Cent OS 6.5.
Rancher (v2.1.1) was used for managing VMs, which
were created to the Eucalyptus cloud system. Docker CE
(v17.03.2) [43] was installed on each node. Prometheus
(v6.2.1) [16] was installed as a plug-in from Rancher’s
service catalog. Prometheus automatically collected CPU
consumption data from the VMs with Node exporters
(v0.15.2). Grafana [44] is a time series-based solution for
monitoring data visualisation with dashboards. Grafana
(v5.0.0) was used for visualising CPU consumption of
the nodes. Apache Cassandra [41] is a wide column
database, which is able to provide high availability and

Fig. 3 Sequence view for starting of video transcoding task

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 5 of 24

scalability for big data. Apache Cassandra (v3.11.3) was
used as a database for storing collected measurement
data.
SGD, Random Forest predictors, and related data

models were created with Python (v3.5.2) and related
data science tools (scikit-learn [45], numpy [46]).
Reinforcement Learning implementation was created to
the Gym framework (v0.10.5) [47] with Keras (v2.2.2)
[48] and Tensorflow (v1.5.0) [49]. Keras provides a high
level Python-based API for accessing deep learning func-
tionality provided by lower level libraries (e.g. Tensor-
flow). Tensorflow is an open source library for machine
learning. Gym is a toolkit for developing RL algorithms.
Gym consists of an environment and an RL agent. The
agent provides actions to the environment, which
returns rewards and observations as a response, which
can be utilised for training of RL models. Keras-RL in-
cludes implementation of RL algorithms, and is compat-
ible with Gym and Keras. Keras-RL (v0.4.2) [50] was
used for building a neural network based model (as a
DQN Agent). Flask [51] is a micro framework for devel-
opment of web services. Flask (v0.12) provided a REST
API framework for the predictor.
FFmpeg is a multi-media toolkit for processing (e.g.

encoding, decoding, demuxing etc.) of video/audio
content. A Docker image including FFmpeg (v4.0)
[52] functionality was used for video transcoding to
the MPEG-DASH (Dynamic Adaptive Streaming over
HTTP) format [53]. With MPEG-DASH the video
stream is split into short media segments. A Media
Presentation Description (MPD) indicates to the video
client, how the individual segments form a video
stream. In order to support adaptivity, the MPD file
may include descriptions of multiple video presenta-
tions. By utilising the video descriptions, the client
may dynamically switch between the available video
representations on a per segment basis.

Experiments
First, the design of measurement data collection func-
tionality is presented. Subsequently, the experiments re-
garding real time transcoding speed and measurement
variance are described. Then, the experiments for train-
ing data collection and data modelling are provided.
Finally, online prediction experiments are presented.

Design of measurement data collection
The design of measurement data collection has been il-
lustrated with an example (Fig. 4), which will eventually
be utilised for building of prediction models with ma-
chine learning. Three new transcoding tasks (X, Y and
Z) are created sequentially (at timestamps T1, T2 and
T3). Measurement data is collected every time a new
transcoding task is started or stopped. For example,

when the third transcoding task is started at T3, meas-
urement data will be collected for the previous transcod-
ing tasks (X and Y) for the measurement period T2-T3.
Average transcoding speed will be calculated for both
transcoding tasks, and the lowest transcoding speed will
be associated with the transcoding configuration (X and
Y). The collected measurement data contain the follow-
ing attributes:
features = (f1, f2), where

� f1 = number of simultaneous transcoding tasks
(target resolution, bit rate, frame rate) in a single
VM during T2-T3

� f2 = VM type (vCPU count = 4,6,8,16; memory = 40
GB)

label = the lowest average transcoding speed during T2-
T3.
Measurement data regarding CPU consumption will

be collected by calculating average CPU consumption in
a VM during T2-T3 based on Prometheus measure-
ments. The following query is sent to Prometheus [16]
(measurement period = 60 s):

1−irate node cpu mode ¼ }idle}f g 60s½ �ð Þ

The reply from Prometheus contains percentual CPU
consumption of all CPU cores, which is accumulated to
a sum. The sum (of the CPU consumption) is divided by
the count of the CPU cores to get the average CPU con-
sumption of the node per CPU core. The average CPU
consumption is labelled with the transcoding configur-
ation (see features above), when the measurement data
is stored.
When the third transcoding task is stopped (at T4),

transcoding speed is measured for the previous trans-
coding tasks (X, Y, and Z) during measurement period
T3-T4, and the minimum speed in collected as a meas-
urement (1). Also, average CPU consumption of the VM

Fig. 4 Design of measurement data collection. x marks the
timestamps (T1-T5)

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 6 of 24

is collected (as described above with the Prometheus
query). Accuracy (2) is determined by calculating differ-
ence to the realised measurement (transcoding speed/
CPU consumption). For example, a prediction was made
at T3 for lowest transcoding speed (regarding all three
transcoding tasks), when the third transcoding task is
started. The related measurement (lowest transcoding
speed) is collected at T4, when the third transcoding
task is stopped.

MT4;Speed ¼ Min SpeedT3−T4;X ; SpeedT3−T4;Y ; SpeedT3−T4;Z

� �

ð1Þ

Accuracy ¼ j MT4−PT3 j �100
MT4

ð2Þ

where P = prediction.
It should be noticed, that accuracy can only be calcu-

lated, when new transcoding tasks are started or the last
transcoding task (Z) has been stopped. For example,
when the second transcoding task is stopped at T5, the
measurement cannot reliably be associated with the earl-
ier prediction, which was related to having two transcod-
ing tasks in a VM (at T2). Instead, the third transcoding
task (Z) was started later on, which would skew the
results.

Real time transcoding speed and measurement variance
Before measurement data could be collected, a few ex-
periments were executed with the prototype. The goal of
the first experiment was to find out the minimum count
of vCPU cores needed for achieving real time transcod-
ing performance with different target resolutions and bit
rates (Table 1). Average and minimum transcoding speed
were measured.

The goal of the second experiment was to find out
how much variance different vCPU request levels create
to measurements. Low variance would lead to determin-
istic results in prediction. The parameters of the experi-
ment are provided in Table 2. Similar video/audio
encoding, output format and transcoder were used as in
the previous experiment (Table 1).
The following CV (Coefficient of Variation) metrics

were used in the experiment:

CV ¼
Std

PMeasurements
i¼0 Speedi

� �
PMeasurements

i¼0 Speedi=i
ð3Þ

CVAvg ¼
PConfigurations

i¼0 CVi

Configurations
ð4Þ

, where.
Measurements =measurements in a transcoding

configuration.
Speed = Average transcoding speed.
Configuration = VM associated with a specified

amount of simultaneous transcoding tasks.
CV indicates the relationship between variance and

mean in similar transcoding configurations. CVAvg indi-
cates average CV across all transcoding configurations.
CVAvg enables comparison of variance in different trans-
coding configurations.

Training data collection
Finally, training data was collected by creating new
transcoding tasks in a setup where vCPU request and
vCPU limit were fixed (Table 3) based on the results of
the previous experiment (Table 2). The fixed vCPU pa-
rameters enabled low measurement variance in similar
configurations. Other parameters of the experiment were
similar as described in Table 2.

Machine learning methods for training of the prediction
models
The main utilised machine learning methods were su-
pervised learning and reinforcement learning. Random
Forest regressor and SGD regressor were used (as super-
vised learning methods) for solving a regression prob-
lem, because a quantity (transcoding speed, CPU
consumption) was predicted. With RL the problem was
modelled as a Markov Decision Process [35], which con-
sisted of the RL environment, and the RL agent (with
state and action). Particularly, the RL environment
returned a reward, when selecting a particular cloud re-
source (VM) for transcoding. A positive constant reward
(Table 4) was returned, when a specified goal (transcod-
ing speed or average CPU consumption) was achieved in
a particular state (configuration of transcoding tasks in
VMs). A negative constant reward (Table 4) was

Table 1 Parameters in the experiment for finding the minimum
count of vCPU cores in a VM, which achieves real time speed in
transcoding

Parameter Description

Resolution
(bit rate)

256 × 144 (197 kilobits per second (kbps)), 426 × 240
(338 kbps), 640 × 360 (829 kbps), 854 × 480 (1380 kbps)

Video files 50 popular video files (length > 4min). Resolution:
1920 × 1080, 24 Frames Per Second (FPS), Video
format: MKV

Test length 3 h (a new transcoding task every 4 min)

Audio
encoding

AAC (128 kbps)

Video encoder H.264, GOP length = 24, closed-GOP

Output format DASH ISO Based Media File Format, segment
length = 1 s

Video
transcoder

FFmpeg with real time flag (simulates live
transcoding)

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 7 of 24

returned, when the goal wasn’t achieved in a state. The
purpose of the positive/negative reward was to indicate
to the RL agent, which state transitions would lead to a
desired/undesired outcome in terms of transcoding
speed or CPU consumption. Particularly, the rewards
were utilised in the training of a neural network (RL
agent), which was utilised for decision making regarding
the utilised VM for transcoding.
First, prediction models were created offline based on

the training data set. The purpose of the models was to
provide initial predictions, before any new data would be
available for training and fine-tuning of the models in
online prediction experiments. The models were trained
based on the type of VM (4, 6, 8, 16 vCPUs), and the
amount of simultaneous video transcoding tasks per tar-
get resolution executed in a VM (the features were de-
scribed earlier in the ‘Design of measurement data
collection’-section). The features were labeled with mini-
mum average transcoding speed among video transcod-
ing tasks executed in a VM, or with average CPU
consumption on a node. Table 4 presents machine learn-
ing models, and parameters of the models.
Additionally with RF and SGD, the data was cross-

validated (CV) [54] with K-Fold 10. Prediction accuracy
was calculated as Mean Absolute Percentage Error
(MAPE) as follows (where.

P = prediction, M =measurement):

AccuracyMAPE ¼

XSamples

i¼0

ABS
P−M
M

� �
� 100

Samples
ð5Þ

Finally, cross-validation accuracy (6) was calculated
based on the accuracies of the folds (Avg = average, δ =
deviation):

AccuracyCV ¼ AvgAccuracyMAPE
� 2 � δAccuracyMAPE

ð6Þ

Online prediction
Configuration of suitable cloud resources was predicted
and scheduled online for live video transcoding. The
trained models were utilised for performing initial pre-
dictions. Additionally, the models were updated online
(every 30 min) based on new transcoding data. Perform-
ance of the models was compared to the reference case,
in which 100% of vCPU limit was requested for each
transcoding, and transcoding tasks were started ran-
domly to an available VM. Parameters of the experiment
are described in Table 5 (other parameters are similar as
in Table 2).
Precision and accuracy in prediction was evaluated

based on formulas 6 and 7:

Precision ¼ SamplesIn RequiredRange
Samples

� 100 ð7Þ

Online prediction: a new target resolution
In the experiment a new target resolution/bitrate (426 ×
240/338 kbps) was transcoded, when there was no earlier
data available for training, where the new resolution
would have been transcoded. The goal of the experiment
was to find out, how fast new accurate predictions can
be created online. The parameters of the experiment are
described in Table 6 (other parameters are similar as in
Tables 2 and 5).

Online prediction: cold start
In the experiment no earlier data was available at the
start of the experiment (cold start). New transcoding
tasks were created until at least 100 measurement sam-
ples had been collected, and the predictor was trained
every 5 min afterwards. The parameters of the experi-
ment have been described in Table 7.

Online prediction: twitch
In the experiment online live video data sources from
Twitch game play were utilised for transcoding. Video
from Twitch is in HTTP Live Streaming (HLS) format,
when the transcoder receives a one-second video file

Table 2 Parameters in the experiment for finding vCPU request
level from Kubernetes, which achieves low variance in
measurements

Parameter Description

Resolution 256 × 144 (197 kbps), 640 × 360
(829 kbps), 854 × 480 (1380 kbps)

Video files 50 popular video files
(length > 4 min)

Test length 10 h (a new transcoding task
every 15 s)

Transcoding episode length (new
transcoding tasks are scheduled)

900 s

Idle period after an episode (no
transcoding tasks are scheduled)

300 s

vCPU limit 4 vCPU = 256 × 144 (197 kbps), 5
vCPU = 640 × 360 (829 kbps), 6
vCPU = 854 × 480 (1380 kbps)

vCPU request x %*vCPU limit per VM

Minimum length of constant
transcoding configuration in a VM
for measurements

30 s

Table 3 The parameter in transcoding experiment for creating
a training data set

Parameter Description

vCPU
request

45%*vCPU limit for VM with 4 vCPU, 52,5%*vCPU limit for
VM with 6 and 8 vCPU, 57,5%*vCPU limit for VM with 16
vCPU

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 8 of 24

every second. The parameters of the experiment have
been described in Table 8.

Results and evaluation
Real time transcoding speed and measurement variance
Table 9 presents transcoding speed, when source video files
were transcoded to different target resolutions. 6 vCPUs were
required for transcoding the four smallest resolutions with ~
0.99x (1.0x = real time) average transcoding speed. However,
the largest resolution (1280 × 720) required too much CPU
resources for the experiments. Thus, the four smallest target
resolutions were utilised in further experiments.
Different values for vCPU request and vCPU limit

were experimented, when three target resolutions were
tested (see Table 3). The goal was to achieve standard
deviation to a lower than 5% level of the mean. Table 10
presents CV regarding transcoding speed with the speci-
fied vCPU request levels. Thus, acceptable values for
vCPU request (Table 10) and vCPU limit (Table 9) were
found, which were utilised in training data collection.

Model training
Table 11 presents offline cross validation accuracy, when
machine learning experiments were executed with the
training data set. It can be seen, that RF achieves better
accuracy than SGD regressor. Accuracy of CPU con-
sumption prediction is much lower in comparison to the
prediction of transcoding speed.

Online prediction
In the online prediction experiments, the models created
with the training data set were used initially for predic-
tions. Also, every 30 min, the models were retrained with
all collected data. ~ 46 (912 data samples in a 10 h ex-
periment) new data samples were generated during the
time period (30 min), which were added to the initial
data set (Table 11). Thus, the size of the data set
increased by less than ~ 5% (46/912*100) during a
retraining interval.
Experiments were executed with different targets set

for transcoding speed. Figure 5 presents precision of ma-
chine learning algorithms, when the target of transcod-
ing speed is varied. Random Forest and SGD regressor
achieved best precision in transcoding, while all machine
learning approaches achieved at least a precision of 89%.
Figure 6 presents the count of executed transcoding
tasks. It can be seen that, when cloud resources are pre-
dicted with RL/RF, 17–46% higher number of transcod-
ing tasks can be realised in comparison to the reference.
SGD regressor performs worst in terms of realised trans-
coding tasks, even though precision is high.
Figure 7 presents precision, when different CPU con-

sumption levels are targeted. RL achieves a little higher
(~ 1–3%) precision in comparison to RF. Accuracy in RF
prediction was 10–10.6%, which is close to the cross val-
idation accuracy (Table 11).
Figure 8 presents precision in simultaneous prediction

of transcoding speed and CPU consumption with a dif-
ferent target for CPU consumption. RF achieves higher
precision than RL (speed: ~ 4–5%, CPU consumption: ~
5–12%), and also a larger amount of executed transcod-
ing tasks (~ 24–62% (Fig. 9)). RF accuracy in CPU pre-
diction was 12–14.7%, which is a bit lower, when
compared to the accuracy in CPU consumption predic-
tion without transcoding speed prediction. However, in
overall the precision of both measures is higher, when
compared to prediction of only CPU consumption
(Fig. 7) or transcoding speed (Fig. 5).

Online prediction: a new target resolution
Figure 10 illustrates precision, when transcoding is exe-
cuted for a new target resolution and bit rate. Figure 11
presents how precision changes during the test case. It
seems that RL and RF achieve more than 90% precision
after 1–2 h. Figure 12 presents achieved number of
transcoding tasks in the experiments. RF achieves ~ 39%
higher amount of transcoding tasks than RL.

Online prediction: cold start
Figure 13 presents precision, when transcoding is executed
after a cold start. RF achieves higher precision (~ 8%) than
RL, but has a lower amount of transcoding tasks (~ 4% in
Fig. 14). ~ 23–28% more transcoding tasks are executed in

Table 4 The machine learning models and utilised parameters

Model Parameters

RL Neural network = Input: 25 Integers; 3*(32 Unit layers+RELUs),
output: Integer (linear activation)
DQN Agent (target_model_update = 1e-3, nb_steps_
warmup = 50,
policy = Boltzmann Q Policy), Adam Optimizer (learning
rate = 1e-2), Training steps = 4000
Reward: 0.4 (goal achieved), −0.5 (goal not achieved)

RF RandomForestRegressor(n_estimators = 100)

SGD SGDRegressor (max_iter = 1000)

Table 5 Parameters in online prediction experiments

Parameter Description

Video files 20 popular unseen video files from YouTube.
Resolution: 1920 × 1080, 24 FPS, Video format: MKV

Prediction
algorithms

RF, RL, SGD

Reference vCPU request = vCPU limit

Online model
training

Every 30 min

Target Transcoding speed > 0.98 or 0.99; CPU
consumption < 80 or 70%

vCPU request 45%*vCPU limit for VM with 4 vCPU, 52,5%*vCPU
limit for VM with 6 and 8 vCPU, 57,5%*vCPU limit
for VM with 16 vCPU

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 9 of 24

comparison to the reference. Figure 15 illustrates how pre-
cision improves during the test case, when new measure-
ment data is utilised online for model training. It seems
that RF achieves higher precision faster than RL. It takes 3–
6 h (~ 200–400 training data samples) for both algorithms
to reach a precision higher than 90%.
Figure 16 presents precision, when CPU consumption

and transcoding speed are predicted with a cold start.
There are no significant differences in precision, when
RF and RL are compared, although RF seems to achieve
a better overall precision. When the amount of executed
transcoding tasks are compared (Fig. 17), RF achieves
significantly higher amount of transcoding tasks (~ 63%),
when CPU consumption level is targeted below 70%.
However, RL achieves higher amount of transcoding
tasks (~ 13%), when CPU consumption level is targeted
below 80%.

Online prediction: twitch
Figure 18 presents precision, when live video streams
from Twitch were transcoded. It can be observed that all
predictors achieve a better precision, when compared to
the reference. RF achieves the highest amount of
executed transcoding tasks (Fig. 19). RL multi-agent ap-
proach realises a bit lower amount of transcoding tasks,
but has a higher precision. In the reference case, the
highest amount of transcoding tasks can be realised with
the lowest precision.

Discussion
In the following, the main lessons learnt are discussed. Ac-
curate prediction of live video transcoding speed on
Kubernetes required execution of preliminary experi-
ments. First, live video transcoding speed was tested with
each target resolution/bit rate for finding the minimum
count of vCPU cores capable of achieving real time speed.
The discovered values (vCPU cores) were utilised as CPU
limits in Kubernetes for each target resolution/bit rate.
Secondly, different CPU request levels from Kubernetes
were experimented, and resulting variance in similar con-
figurations was measured. Based on the results, CPU re-
quest was defined as a fixed percentage of CPU limit for
each VM, in which the transcoding was executed. Finally,
when CPU request and CPU limit was specified separately
for each transcoding task, transcoding speed or CPU con-
sumption level could be predicted accurately based on the
collected measurement data.
A new data collection method had to be designed for

enabling machine learning based on online data collec-
tion. Data samples were collected, when a new transcod-
ing task was added or removed from the Kubernetes
cluster. However, data samples were collected only,
when the amount of transcoding tasks had been con-
stant in a VM for a time period (30 s). If the time period
would have been smaller, the variance between measure-
ments in similar transcoding configurations would have
increased (leading eventually to lower prediction accur-
acy). On the contrary, the variance would have been
smaller with a larger time period, but fewer amount of
data samples would have been collected. Thus, deter-
mination of a suitable time period for data collection
may require a trade-off between the size of collected
data, and prediction accuracy.
Prometheus was utilised for collection of CPU con-

sumption data from VMs. Prometheus reported low
CPU consumption (typically a few samples) every 2 h
during the experiments. This may have been caused by
Prometheus flushing samples from memory to disk [57].
Thus, low values (< 10%) of CPU consumption were fil-
tered out of data modelling. The scraping interval of
data from Node exporters was reduced to 5 s (default 60
s) for improving granularity of CPU consumption data.
When video was transcoded for a new target reso-

lution and bit rate (with no previous training data), pre-
cision improved to over 90% after 1–2 h of testing.
Hard-coded positive rewards were returned by the RL
environment, until a minimum of 50 samples were col-
lected for the new target resolution/bit rate. The artifi-
cial limit (50 samples) was required, because positive
predictions required availability of initial training data.
Similarly, a minimum amount of 100 training samples
were collected, when transcoding was started without
training data (a cold start). When the minimum limit

Table 6 The parameters in online prediction experiments with
a new target resolution

Parameter Description

Prediction
algorithms

RF, RL

Online model
training

Every 5 min

vCPU limit 4 vCPU = 256 × 144 (197 kbps), 5 vCPU = 640 × 360
(829 kbps), 6 vCPU = 854 × 480 (1380 kbps),
4 vCPU = 426 × 240 (338 kbps)

Table 7 The parameters in live prediction experiments with
cold start

Parameter Description

vCPU request 47,5%*vCPU limit for VM with 4 vCPU,
52,5%*vCPU limit for VM with 6, 55%*vCPU
limit for VM with 8 vCPU, 60%*vCPU limit
for VM with 16 vCPU

Target Transcoding speed > 0.99; CPU
consumption < 80 or 70%

Prediction algorithms RF and RL

Minimum amount of
samples for training

100

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 10 of 24

was too low (50 training samples), RF didn’t schedule
any transcoding tasks for some VMs. Based on the expe-
riences, it seems that prediction based on online data
collection may require manual configuration of the ini-
tial data set size prior to predicting for new target reso-
lution/bit rate(s).
Keras-RL [50] enabled Reinforcement Learning in the

prototype. A Gym [47] environment was created for
training of the predictor. When a neural network was
created, training data was read initially from the data-
base into the Gym environment. Also, target threshold
for transcoding speed or CPU consumption was read
from the database (Environment in Fig. 21). The Gym
environment returned corresponding reward based on
measurement samples of a specified transcoding config-
uration in a VM. For example, when the goal for trans-
coding speed was > 0.99, a positive reward was provided,
if transcoding speed of a random sample (with specified
transcoding configuration in a VM) satisfied the goal.
RL agent utilised the observed rewards for training of

the neural network. A 3*32 layer neural network for a
DQN Agent was trained. The input was a Keras Box
[50] (25 integers), which was used for describing

transcoding status of VMs (state). The output (action)
was a Keras Discrete [50] (one Integer), which was used
for representing a new transcoding on a specific re-
source. It was discovered, that possible new transcoding
resolutions or VM types (VM with specified number of
CPU cores and memory) should be taken into account
in advance, when input/output dimensions of the neural
network are designed with Keras. This would enable eas-
ier extension of the algorithm, when parameters of the
environment change.
Predictions with RL required a lot of configuration for

experimentation. Initially, parameters of the neural net-
work (Table 4) were tested with the training data, and
loss/reward were monitored. Constant reward type was
used for training. Constant [36] and variable [10] reward
types have been utilised in the earlier RL studies. The
maximum level of training steps (4000), and other
parameters (Table 4) were fixed based on the initial test-
ing. However, different rewards (returned from the RL
environment) were experimented in the actual tests in
order to discover optimal performance in terms of trans-
coding tasks, transcoding speed or CPU consumption.
This led to additional work, which was not required with
RF/SGD.
In this work, real time streaming was mostly simulated

with FFmpeg (with -re flag) by reading source files with
native frame rate. The simulation enabled control to the
source video files and their duration, which wasn’t pos-
sible, when real time streaming sources (e.g. Twitch)
were used. Real time speed (1.0x) was never achieved in
practise. Instead, transcoding speed lagged a bit behind
(i.e. ~ 0.99x) of real time speed. However, when video
was streamed from Twitch without the simulation, real
time speed was achieved. The downsides of using a real
video source (such as Twitch) is possible changes to the

Table 8 The parameters in online prediction experiments with
Twitch

Parameter Description

Video source Online live video from Twitch. Resolution: 1280 × 720,
Video format: HLS (segment length: 1 s)

Prediction
algorithms

RF, RL, RL with multiple RL agents (4)

Reference vCPU request = x%*vCPU limit

Online model
training

Every 30min

Target Transcoding speed > 1.0

vCPU limit 2 vCPU = 256 × 144 (197 kbps), 3 vCPU = 640 × 360
(829 kbps), 4 vCPU = 854 × 480 (1380 kbps)

vCPU request 35%*vCPU limit for VM with 4 vCPU, 45%*vCPU limit
for VM with 6 and 8 vCPU, 50%*vCPU limit for VM
with 16 vCPU

Video URL
source

Twitch Stream API (v5) [55]

Video URL
conversion

Streamlink [56]

Table 9 Average and minimum transcoding speed with the
different transcoding resolutions

Resolution vCPUs Average Minimum

256 × 144 4 0.9937x 0.9803x

426 × 240 4 0.9934x 0.9872x

640 × 360 5 0.9953x 0.9933x

854 × 480 6 0.9894x 0.9782x

1280 × 720 12 0.9793x 0.9534x

Table 10 CV with the specified vCPU request levels

Resource (vCPUs) vCPU req./ vCPU limit (%) CVAvg

4 45 0.0345

6 52.5 0.0165

8 52.5 0.0202

16 57.5 0.0335

All – 0.0278

Table 11 Cross validation accuracy with RF and SGD regressor
for transcoding speed and CPU consumption. The size of the
training data set for transcoding speed was 912 samples. The
size of the training data set for CPU consumption was 911
samples

Algorithm Transcoding speed: CV
accuracy (%)

CPU consumption: CV
accuracy (%)

RF 2.53 +/− 0.83 9.60 +/− 7.48

SGD 2.89 +/− 0.71 15.73 +/− 11.42

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 11 of 24

API or to the video content, quota limitations of the
API, and non-repeatability of experiments due to chan-
ging video content.
When video was transcoded from live sources

(Twitch), transcoding speed wasn’t artificially lowered
to the frame rate of the original video, a lower reso-
lution/bit rate in the original video (720p) was used,
and a different type of video format (HLS) was ap-
plied. All/any of these differences may have caused
higher amount of transcoding tasks (~ 2.8x) to be rea-
lised (Fig. 19), when compared to the results with a
simulated live streaming video source (Fig. 6). RF per-
formed better than RL, when Twitch was utilised as a
video source. However, the multi-agent approach of
RL led to improved performance. Dedicated RL
agents were trained for predicting transcoding per-
formance on a single VM, instead of predicting per-
formance on all VMs with one RL agent.

Rancher worked well as part of the prototype system,
and enabled easy setup and configuration of services on
a Kubernetes cluster. A service catalog entry was created
into Bitbucket [58], which contained transcoding service
as a Helm description [15]. Location of the catalog entry
was configured into Rancher, which caused automatic
downloading of the catalog entry content into Rancher
via Git [13]. New transcoding tasks were configured and
started to Rancher by utilising Rancher CLI from the
Service scheduler (Fig. 2). A service catalog entry was
also created to Bitbucket for the Collector. Additionally,
a Docker image was created for the Collector, which was
stored to the Docker Hub [59].
Reliability of this research may be improved by run-

ning more test iterations in different configurations.
However, the executed experiments (~ 40) required a
significant amount of time (~ 2months) to be com-
pleted. Also, tuning of the RL network/DQN agent may

Fig. 5 Precision in online prediction, when the targeted transcoding speed is varied

Fig. 6 Number of executed transcoding tasks, when the targeted transcoding speed is varied

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 12 of 24

lead to improved performance. In this work, the choice
of parameters available for DQN agent training was
experimented with the testing data set. Particularly, the
effect of different configurable parameters was observed
regarding loss and reward. Subsequently, the parameters
(except reward) were fixed (Table 4) in the further ex-
periments. In the future, the effect of the parameters on
training model performance may be improved with a
grid/randomized search.
Cost of cloud resources wasn’t explicitly considered in

this work. This work focused on predicting and realising
required performance in terms of transcoding speed
and/or CPU consumption of VMs with available cloud
resources. However, when the transcoding service

provider can realise more transcoding tasks with avail-
able resources (up to 46% more (Fig. 6)), fewer cloud re-
sources need to be rented, which may lead to a lower
provisioning cost.
The results can be compared to related work. This

work is continuation of the earlier work [6], in which
live video transcoding was predicted based on offline
supervised learning with the earlier Rancher (v1.6) plat-
form. The main difference of this work is the capability
of online data collection and machine learning for
prediction of suitable cloud resources. Also, the focus in
this work was on the Kubernetes-based platform with
the newer version of Rancher (v2.1). In overall, predic-
tion performance has improved in this work. The main

Fig. 7 Precision in CPU consumption prediction with different CPU consumption targets

Fig. 8 Precision in CPU consumption and transcoding speed prediction

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 13 of 24

reason may be related to the improved granularity in
data collection, and limitation of CPU usage for Kuber-
netes Pods. In the earlier work, samples were collected
in isolated experiments, which were executed offline.
The approach presented in this paper is to collect new
samples for training online, when a transcoding task is
started/stopped.
Other works have focused on live video transcoding

[5] [7] [8] [9] [10]. Some of the works are based on sim-
ulations [5], solving an ILP problem on commercial de-
cision optimisation technology [7], predicting with a
queueing model [8], or RL for live video transcoding
with High Efficiency Video Coding (HEVC) [10]. None
of the works [5, 7–10] focus on predicting live video
transcoding on a Kubernetes-based platform. A pre-

emptive priority-based resource provisioning scheme [9]
is closest to our work. The idea is to split video into
chunks, which are dispatched into resources with queue-
ing based on QoS requirements. Neural networks and
Model Predictive Control were used for predicting video
chunk arrival rate. The predictors were validated with a
cloud system, which consisted of 20 homogeneous
Docker containers, while we focused on the allocation of
heterogeneous VMs for live video transcoding. RL-
approach for HEVC-based video transcoding [10] didn’t
consider allocation of cloud resources, but instead
focused on optimisation of transcoding based on video
quantisation parameters, number of threads, dynamic
voltage frequency scaling, and sequence of RL agents.
Other approaches [4, 25] have mainly concentrated on

Fig. 9 Amount of executed transcoding tasks, when CPU consumption and transcoding speed were predicted simultaneously

Fig. 10 Precision, when video is transcoded for a new target resolution/bit rate

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 14 of 24

VoD transcoding. VoD transcoding with Docker has
been predicted [4], but prediction on homogeneous VM
types was focused on. VoD transcoding tasks were
scheduled on heterogeneous resources, where transcod-
ing time was estimated based on related GOP tasks in a
queue [25]. None of the studies utilise both simulated
and real live video sources in the experiments.

Future work
The simulated video sources were located on the same
cloud system with the transcoding VMs. Thus, the im-
pact of location on transcoding speed wasn’t taken into
account, which can be considered as future work.
The presented online architecture may be considered

as a starting point, when designing architecture of future
systems, which predict performance of CPU intensive
workloads on Kubernetes platform based on online data

collection. Also, the selected technologies of this paper
may be considered, when building such new systems.
The presented online architecture in the small trans-

coding cluster is able to collect a relatively small amount
of data. It would be interesting to collect big data in a
real operating environment, in which thousands of
transcoding tasks would be executed in parallel. In such
a future scenario, incremental approach of online learn-
ing becomes essential, because it may not be feasible to
train models with the whole data set(s), as was done in
this work.

Conclusion
This work focused on the management of cloud resources
on Kubernetes platform for live video transcoding. The
first research question (RQ 1) was related to architecture
design for facilitating prediction of cloud resource

Fig. 11 Hourly precision, when video is transcoded for a new target resolution/bit rate

Fig. 12 Number of transcoding tasks, when video is transcoded for a new target resolution/bit rate

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 15 of 24

allocation for live video transcoding based on online data
collection. An experimental architecture was designed and
validated as a proof-of-concept with a prototype, which
provides an answer to the research question. The main
components of the architecture were transcoding nodes,
resource monitoring, Kubernetes cluster, database, pre-
dictor, online learner, decision maker, transcoding/re-
source data collector, service scheduler, and cloud
management solution. FFmpeg was used for live video
transcoding. Prometheus monitored CPU consumption of
cloud resources, which were utilised for transcoding.
Training data (transcoding and resource monitoring data)
was collected to Cassandra database, when a transcoding
task was started or stopped. A new method was designed
for supporting machine learning based on online data col-
lection from transcoding tasks. The collected data was

utilised in the training of the prediction models. Online
learners (Keras-RL, Python scikit-learn) were used for
training predictors for cloud resource management. Deci-
sion maker utilised predictions for deciding the most suit-
able resource for live video transcoding. Service scheduler
created transcoding tasks on a Kubernetes cluster with
Rancher’s cloud management platform.
The second research question (RQ 2) focused on the

allocation of resources on a cloud computing platform
for live video transcoding. For enabling accurate predic-
tions, CPU cores had to be allocated separately for each
transcoding task based on the target resolution, and
VM. Many experiments were executed in different con-
figurations, in which transcoding on cloud resources was
predicted with SGD regressor, RF and RL. A regression
problem was solved with SGD regressor and RF, in

Fig. 13 Precision, when video is transcoded with a cold start

Fig. 14 Number of transcoding tasks, when video is transcoded after a cold start

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 16 of 24

which transcoding speed or CPU consumption was pre-
dicted, and utilised for allocation of cloud resources.
With RL the problem was modelled as a Markov Deci-
sion Process [35], which consisted of the environment,
and the agent (with state and action). In this case, the
RL agent returned a reward for selecting a particular
cloud resource (VM) for transcoding. The rewards were
utilised in decision making regarding the allocated VM.
The initial experiments were executed for finding out

the minimum amount of CPU cores required for achiev-
ing real time transcoding speed with different target
resolution/bit rates. The results of further experiments

indicated, that low variance in similar configurations can
be achieved, when CPU request level of Kubernetes Pods
is limited as a percentage of CPU limit. CPU limit was
determined separately for each transcoding task based
on target resolution/bit rate and VM (based on results
achieved in the initial experiments). Low variance en-
abled deterministic prediction of transcoding speed and
CPU consumption. Training of the initial models offline
indicated that prediction of CPU consumption had a sig-
nificantly lower accuracy (~ 10–16%), when compared to
the prediction accuracy of transcoding speed (~ 2–3%).
Online prediction experiments with transcoding speed

Fig. 15 Precision and size of measurement data with RF/RL, when transcoding after a cold start

Fig. 16 Precision, when video is transcoded after a cold start, and CPU consumption, and transcoding speed are predicted

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 17 of 24

based on models trained offline indicated best overall
performance with RF (38–46% more transcoding tasks,
when compared to the reference). SGD regressor
achieved a good precision, but a significantly lower
amount (13–38%) of executed transcoding tasks in com-
parison to RL/RF. Thus, SGD regressor wasn’t used in
further experiments.
Additionally, experiments were performed for new tar-

get resolutions, which didn’t have previous training data.
Instead, training data was collected and used for training
of the prediction models online. When video was trans-
coded for a new target resolution/bit rate, RF achieved
higher precision (~ 96%) and amount of executed trans-
coding tasks than RL. When new transcoding tasks were
started without any initial training data (cold start), a

small data set (50–100 samples) had to be collected for
training of the initial prediction model. During online
training, precision improved to over 90% within 3–6 h
from the start of the experiment. Both RL/RF achieved
23–28% higher amount of transcoding tasks, and higher
precision in comparison to the reference. RL achieved
higher amount of transcoding tasks, but a lower preci-
sion than RF. Finally, both transcoding speed and CPU
consumption were predicted simultaneously, and RF had
a slightly better precision (CPU: ~ 73–82%, transcoding
speed: ~ 90–91%) than RL, but the predictors achieved
inconclusive performance in terms of realised transcod-
ing tasks. Experiments with real live video data source
(Twitch) indicated that RF had also a better performance
than RL.

Fig. 17 Transcoding task count, when video is transcoded after a cold start, and CPU consumption, and transcoding speed are predicted

Fig. 18 Precision, when video is transcoded from Twitch

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 18 of 24

In overall, it can be concluded that SGD achieved a
good precision, but a low number of realised transcoding
tasks, when compared to RF or RL. RF had in almost all
cases the best performance in either transcoding speed
or CPU consumption prediction. RF was also easier to
deploy than RL. Only, when prediction was started with-
out any data (cold start) or transcoding speed and CPU
consumption was predicted simultaneously, RL achieved
in some cases a larger amount of realised transcoding
tasks. Additionally, a multi agent approach with RL may
improve transcoding performance.

Appendix
Big data view
Figure 20 presents the big data view of the architecture.
The view has been created based on a published big data
reference architecture [60], where functionality is de-
scribed with rectangles, data stores with ellipsis, and data
flows with arrows. Similar functionalities have been
mapped into functional areas. Node exporter extracts re-
source consumption data periodically from the nodes
(VMs), and raw measurement data is stored to Prome-
theus. The Collector extracts transcoding statistics from

Fig. 19 Transcoding task count, when video is transcoded from Twitch

Fig. 20 Big data view of the architecture

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 19 of 24

FFmpeg as a stream, which is stored temporarily into Cas-
sandra (TranscodingData in Fig. 21). New information
(average speed, transcoding configuration, VM type) is
extracted from the temporary transcoding data, and the
information is stored into a Preparation data store (Temp-
Measurement in Fig. 21), which holds processed data.
ResourceDataCollector queries raw CPU consumption
data from Prometheus, and extracts it into the Preparation
data store (average CPU consumption, transcoding config-
uration, VM type). Data RC reads contents of the Prepar-
ation data store (TempMeasurement), cleans and
replicates it for machine learning purposes (Measurement
in Fig. 21). Data is analysed with machine learning tech-
niques (RF, SGD) and Deep analytics (RL), and new data
models are created for providing predictions. The pre-
dictor transforms predictions into decisions regarding a
suitable VM for live video transcoding, which is utilised by

the transcoding scheduler. Finally, the transcoding process
can be visualised in the end user application (Rancher’s
UI).

Data view
Figure 21 presents data view of the architecture. The data
structures indicate how data was stored into Cassandra.
TranscodingJob contained information of video transcod-
ing jobs, which may consist of multiple VideoTranscod-
ings. VideoTranscoding stored configuration information
of a transcoding task. TranscodingData stored statistics,
which were collected during a transcoding from FFmpeg.
TempMeasurement stored transcoding speed or CPU
consumption, and associated configurations of transcod-
ing tasks in a VM. Data was periodically transferred into a
permanent store (Measurement) for machine learning.
Environment contained information related to the

Fig. 21 Data view of the architecture

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 20 of 24

Fig. 22 Sequence view for data collection

Fig. 23 Sequence view for training of the models

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 21 of 24

creation of models based on machine learning. It indicated
the range of data to be utilised for training, and the goal/
threshold for creating a model based on RL. Prediction
was used for storing predictions created with SGD/RF,
which were matched with measurements. Strategy con-
tained high-level goals for transcoding or VM usage.

Sequence views
Figure 22 presents sequence view for data collection.
The steps are as follows:
Step 1: ServiceScheduler starts a new video transcod-

ing task based on the service specification. The service is
created to the VM with Rancher CLI.
Steps 2–3: Timestamp and identifier of the transcod-

ing are provided as parameters, when the transcoding
process is started. The parameters are transferred with
FFmpeg progress information to the Collector.
Step 4: The Collector accepts a HTTP chunked encod-

ing stream connection from each FFmpeg process, and
saves the received data (timestamp, transcoding identi-
fier, and progress information) into Cassandra. Time-
stamp and transcoding identifier are used later (steps
10–12), when transcoding statistics are collected.
Step 5: Resource consumption information is periodic-

ally (every 5 s) scraped from Node exporters, which are
executed on each transcoding node.
Step 6: The transcoding is added to the Resource. Sub-

sequently, steps 9–16 are executed.
Step 7–8: Transcoding is stopped, which is indicated

to the Resource. Date is used for mapping to the
Transcoding-object.
Step 9: Transcoding status on the resource is saved

into the database.
Step 10–12: Statistics are collected for transcoding

tasks, which are executed on the resource. Transcoding
statistics are read from Cassandra, and the lowest aver-
age transcoding speed is saved (to TempMeasurement).
Step 13–14: Resource consumption information is col-

lected from Prometheus.
Steps 15–16: Average CPU consumption on the re-

source is saved into measurements together with trans-
coding configuration information. Also, the measured
average CPU consumption is updated to the related pre-
diction, when SGD/RF was used for predicting CPU
consumption.
Figure 23 presents sequence view for training of the

models. The steps are as follows:
RL:

Step 1: Learner creates a new RL environment (Gym).
Steps 2–3: RLEnvironment reads configuration
information from the Environment-table, and transcod-
ing related data from the Measurement-table.

Step 4: A DQNAgent is created and fitted. A neural
network is trained.
Step 5: Step-function is called by the Gym-environment
for getting reward related to a particular action. Gym-
environment stores state, which contains count of
transcoding tasks on VMs. The reward is created based
on how well the target is achieved (e.g. transcoding
speed) in a specific future state. The reward is calcu-
lated based on the measurements, which were read
earlier (Step 3).
Step 6: The weights of the model are saved into a file.
Steps 7–8: A predictor is started, which creates a new
RLEnvironment, and reads the weights from the saved
model.
SGD:
Step 9–10: SGDRegressor reads configuration
information from the Environment-table, and transcod-
ing related data from the Measurement-table.
Step 11: The model is created based on all
measurement samples.
Step 12: The final model is saved into a file.
Step 13: SGDPredictor loads the saved model for
providing predictions.

Abbreviations
ABR: Adaptive Bit Rate; API: Application Programming Interface;
CDN: Content Delivery Network; CLI: Command Line Interface; CPU: Central
Processing Unit; CV: Coefficient of Variation; DASH: Dynamic Adaptive
Streaming over HTTP; DQN: Deep-Q-Network; FPS: Frames Per Second;
GPU: Graphical Processing Unit; HEVC: High Efficiency Video Coding;
HLS: HTTP Live Streaming; HTTP: Hypertext Transfer Protocol; kbps: kilobits
per second; MAPE: Mean Absolute Percentage Error; MPD: Media
Presentation Description; MPEG: Moving Picture Experts Group; QoS: Quality
of Service; REST: Representational State Transfer; RF: Random Forest;
RL: Reinforcement learning; RQ: Research question; SGD: Stochastic Gradient
Descend; UML: Unified Modelling Language; VM: Virtual machine; VoD: Video
on Demand; YAML: Yet Another Markup Language

Acknowledgements
This research was conducted in CELTIC-Plus VIRTUOSE-project.

Authors’ contributions
PP designed the research in collaboration with AH and TA. PP performed the
literature review, designed and implemented the prototype, executed the
experiments, analysed the results, and wrote the article. AH and TA
contributed to the review of the article, and provided feedback. All authors
read, and accepted the final version of the article.

Funding
This research has been partially funded by Business Finland and VTT
Technical Research Centre of Finland.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 February 2019 Accepted: 20 June 2019

References
1. Encoding.com (2019). Live event streaming. https://www.encoding.com/

http-live-streaming-hls/. Accessed 24 Jan 2019

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 22 of 24

https://www.encoding.com/http-live-streaming-hls/
https://www.encoding.com/http-live-streaming-hls/

2. Wowza Media System (2019). Live Video Streaming. https://www.wowza.
com/live-video-streaming. Accessed 24 Jan 2019.

3. Bitmovin (2019). Bitmovin video encoding. https://bitmovin.com/encoding-
service/. Accessed 24 Jan 2019.

4. Gao G, Hu H, Wen Y (2016) Resource provisioning and profit maximization
for transcoding in clouds: a two-timescale approach. IEEE T on Multimedia
19:836–848. https://doi.org/10.1109/TMM.2016.2635019

5. Li X, Salehi MA, Bayoumi M (2016) VLSC: video live streaming using
cloud services. In: Proceedings of the IEEE international conferences on
big data and cloud computing, social computing and networking,
sustainable computing and communications. IEEE, Piscataway, 8–10
October 2016

6. Pääkkönen P, Heikkinen A, Aihkisalo T (2018) Architecture for predicting
live video transcoding performance on Docker containers. In: IEEE
international conference on services computing. San Francisco,
Piscataway, 2-7 July 2018.

7. Aparicio-Pardo R, Blanc A, Pires K, Simon G (2015) Transcoding live adaptive
video streams at a massive scale in the cloud. In: Proceedings of the 6th
ACM multimedia Systems conference. ACM, New York, 18–20 March 2015

8. Wei L, Cai J (2016) QoS-aware resource allocation for video transcoding in
clouds. T on circuits and Syst for video tech 27:49–61. https://doi.org/10.
1109/TCSVT.2016.2589621

9. Gao G, Wen Y, Westphal C (2018) Dynamic priority-based resource
provisioning for video transcoding with heterogeneous QoS. Transactions
on circuits and Systems for Video Technology. https://doi.org/10.1109/
TCSVT.2018.2840351

10. Costero L, Iranfar A, Zapater M, Igual FD, Olcoz K, Atienza D (2019) MAMUT:
multi-agent reinforcement learning for efficient real-time multi-user video
transcoding. Paper presented at the design, automation, and test in Europe,
Florence, Italy, 25–29 March 2019.

11. Datadog (2019) 8 surprising facts about real Docker adoption. https://www.
datadoghq.com/docker-adoption/. Accessed 24 Jan 2019

12. Peinl R, Holzschuher F, Pfitzer F (2016) Docker cluster Management for the
Cloud – survey results and own solution. J Grid Comput 14:265–282.
https://doi.org/10.1007/s10723-016-9366-y

13. Rancher Labs (2019) Rancher 2.0 documentation. https://rancher.com/docs/
rancher/v2.x/en/. Accessed 24 Jan 2019

14. Docker Docs (2019) Docker compose file reference. https://docs.docker.
com/compose/compose-file/. Accessed 24 Jan 2019

15. Helm (2019). Helm charts. https://docs.helm.sh/developing_charts/.
Accessed 24 Jan 2019

16. Prometheus (2019) Prometheus. https://prometheus.io/. Accessed 24 Jan 2019
17. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016) Borg, Omega,

and Kubernetes. Queue - Containers 14:70–93. https://doi.org/10.1145/
2898442.2898444

18. Medel V, Tolon C, Arronategui U, Tolosana-Calasanz R, Banares JA,
Rana OF (2017) Client-side Scheduling Based on Application
Characterization on Kubernetes. In: Pham C (ed) Economics of Grids,
Clouds, Systems, and Services. Lecture notes in computer science, vol
10537. Springer, Cham

19. Heidari P, Lemieux Y, Shami A (2016) QoS assurance with light
virtualization - a survey. In: Proceedings of the IEEE international
conference on cloud computing technology and science, Luxembourg
City. IEEE, Piscataway, 12–15 Dec 2016.

20. Pires K, Simon G (2014) DASH in Twitch: Adaptive Bitrate Streaming in Live
Game Streaming Platforms. In: Hassan M (ed) Proceedings of the Workshop
on Design, Quality and Deployment of Adaptive Video Streaming. ACM,
New York, 2 Dec 2014.

21. Dutta S, Taleb T, Ksentini A QoE-aware elasticity support in cloud-native 5G
Systems. In: Proceedings of the IEEE international conference on
communications. IEEE, Piscataway, pp 22–27 May 2016

22. Dutta S, Taleb T, Frangoudis PA, Ksentini A (2016) On-the-fly QoE-aware
transcoding in the Mobile edge. In: Proceedings of the IEEE global
communications conference. IEEE, Piscataway, 4–8 Dec 2016

23. Chang ZH, Jong BF, Wong WJ, Wong MLD (2016) Distributed video
transcoding on a heterogeneous computing platform. In: Proceedings of
the IEEE Asia Pacific conference on circuits and Systems. IEEE, Piscataway,
pp 25–28 Oct 2016

24. Gao G, Wen Y (2016) Morph: a fast and scalable cloud transcoding System.
In: Proceedings of the ACM on multimedia conference. ACM, New York, 15–
19 Oct 2016

25. Li X, Salehi MA, Bayoumi M, Tzeng N, Buyya R (2018) Cost-efficient and
robust on-demand video transcoding using heterogeneous cloud services.
IEEE T Parall Distr 29:556–571. https://doi.org/10.1109/TPDS.2017.2766069

26. Darwich M, Beyazit E, Salehi MA, Bayoumi M (2017) Cost efficient repository
Management for Cloud-Based on-Demand Video Streaming. In: Proceedings
of the 5th IEEE international conference on Mobile cloud computing,
services, and engineering. IEEE, Piscataway, pp 6–8 April 2016

27. Chen K, Chang H (2017) Complexity of cloud-based transcoding platform
for scalable and effective video streaming services. Multimed Tools Appl 76:
19557–19574. https://doi.org/10.1007/s11042-016-3247-z

28. Benkacem I, Taleb T, Bagaa M, Flinck H (2018) Performance benchmark of
transcoding as a virtual network function in CDN as a service slicing. In:
Proceedings of the IEEE wireless communications and networking
conference. IEEE, Piscataway, 15–18 April 2018

29. Lottarini A, Ramirez A, Coburn J, Kim MA, Ranganathan P, Stodolsky D,
Wachsler M (2018) Vbench: benchmarking video transcoding in the cloud.
In: Proceedings of the twenty-third international conference on architectural
support for programming languages and operating Systems. ACM, New
York, pp 24–28 March 2018

30. Iqbal Q, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource
provisioning for read intensive multi-tier applications. Future Gener Comp
Sy 27:871–879. https://doi.org/10.1016/j.future.2010.10.016

31. Islam S, Keung J, Lee K, Liu A (2011) Empirical prediction models for adaptive
resource provisioning in the cloud. Future Gener Comp Sy 28:155–162. https://
doi.org/10.1016/j.future.2011.05.027.

32. Samreen F, Elkhatib Y, Rowe M, Blair GS (2016) Daleel: simplifying cloud
instance selection using machine learning. In: Proceedings of the IEEE/
IFIP Network Operations and Management Symposium, Istanbul, Turkey,
pp 25–29 April 2016

33. Gong Z, Gu X, Wilkes J (2010) PRESS: predictive elastic ReSource scaling for
cloud systems. In: Proceedings of the international conference on network and
service management. IEEE, Piscataway, pp 25–29 Oct 2010

34. Shyam GK, Manvi SS (2016) Virtual resource prediction in cloud
environment: a Bayesian approach. J Netw Comput Appl 65:144–154.
https://doi.org/10.1016/j.jnca.2016.03.002

35. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) A brief
survey of deep reinforcement learning. In: IEEE Signal Proc Mag, vol 34,
pp 26–38. https://doi.org/10.1109/MSP.2017.2743240

36. Waschneck B, Reishstaller A, Belzner L, Altenmuller T, Bauernhansl T, Knapp
A, Kyek A (2018) Optimization of global production scheduling with deep
reinforcement learning. Procedia CIRP 72:1264–1269. https://doi.org/10.
1016/j.procir.2018.03.212

37. Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random
forests: a survey and results of new tests. Pattern Recogn 44:330–349.
https://doi.org/10.1016/j.patcog.2010.08.011

38. Genuer R, Poggi J, Tuleau-Malot C, Villa-Vialaneix N (2017) Random
Forests for Big Data. Big Data Res 9:28–46. https://doi.org/10.1016/j.bdr.
2017.07.003.

39. NGINX (2019) NGINX. https://www.nginx.com/. Accessed 24 Jan 2019
40. FFmpeg (2019) FFmpeg. https://www.ffmpeg.org/. Accessed 24 Jan 2019
41. The Apache Software Foundarion (2019) Apache Cassandra. http://

cassandra.apache.org/. Accessed 24 Jan 2019
42. AppScale Systems (2019) Eucalyptus. https://www.eucalyptus.cloud/.

Accessed 12 Apr 2019
43. Docker (2019) Docker. https://www.docker.com/. Accessed 24 Jan 2019
44. Grafana Labs (2019) Grafana. https://grafana.com/. Accessed 24 Jan 2019
45. scikit-learn (2019) scikit-learn. https://scikit-learn.org/stable/. Accessed 24 Jan 2019
46. numpy (2019) NumPy. http://www.numpy.org/. Accessed 24 Jan 2019.
47. OpenAI (2019) Gym. https://gym.openai.com/docs/. Accessed 24 Jan 2018.
48. Github (2019) Keras: the Python deep learning library. https://keras.io/.

Accessed 24 Jan 2019
49. Tensorflow (2019) Tensorflow. https://www.tensorflow.org/. Accessed 24 Jan 2019.
50. Github (2019) Keras-RL. https://github.com/keras-rl/keras-rl/. Accessed 24 Jan 2018
51. Flask (2019) Flask. http://flask.pocoo.org/. Accessed 24 Jan 2019.
52. Docker Hub (2019) JRottenberg FFmpeg image. https://hub.docker.com/r/

jrottenberg/ffmpeg/. Accessed 24 Jan 2019.
53. ISO/IEC 23009–1:2014 (2014) Information technology - Dynamic adaptive

streaming over HTTP (DASH) Part 1: Media presentation description and
segment formats

54. Refaeilzadeh P, Tang L (2009) Liu H (2009) cross-validation. In: Liu L, Özsu
MT (eds) Encyclopedia of database Systems. Springer, Boston, MA

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 23 of 24

https://www.wowza.com/live-video-streaming
https://www.wowza.com/live-video-streaming
https://bitmovin.com/encoding-service/
https://bitmovin.com/encoding-service/
https://doi.org/10.1109/TMM.2016.2635019
https://doi.org/10.1109/TCSVT.2016.2589621
https://doi.org/10.1109/TCSVT.2016.2589621
https://doi.org/10.1109/TCSVT.2018.2840351
https://doi.org/10.1109/TCSVT.2018.2840351
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://doi.org/10.1007/s10723-016-9366-y
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.helm.sh/developing_charts/
https://prometheus.io/
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1109/TPDS.2017.2766069
https://doi.org/10.1007/s11042-016-3247-z
https://doi.org/10.1016/j.future.2010.10.016
https://doi.org/10.1016/j.future.2011.05.027.
https://doi.org/10.1016/j.future.2011.05.027.
https://doi.org/10.1016/j.jnca.2016.03.002
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.patcog.2010.08.011
https://doi.org/10.1016/j.bdr.2017.07.003.
https://doi.org/10.1016/j.bdr.2017.07.003.
https://www.nginx.com/
https://www.ffmpeg.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://www.eucalyptus.cloud/
https://www.docker.com/
https://grafana.com/
https://scikit-learn.org/stable/
http://www.numpy.org/
https://gym.openai.com/docs/
https://keras.io/
https://www.tensorflow.org/
https://github.com/keras-rl/keras-rl/
http://flask.pocoo.org/
https://hub.docker.com/r/jrottenberg/ffmpeg/
https://hub.docker.com/r/jrottenberg/ffmpeg/

55. Twitch (2019) Twitch API v5. https://dev.twitch.tv/docs/v5/. Accessed 12 Apr 2019
56. Streamlink (2019) Streamlink https://streamlink.github.io/. Accessed 12 Apr 2019
57. Zaitsev P (2018) Prometheus 2 Time Series Performance Analyses https://

www.percona.com/blog/2018/09/20/prometheus-2-times-series-storage-
performance-analyses/. Accessed 24 Jan 2019

58. Bitbucket (2019). Bitbucket. https://bitbucket.org/. Accessed 24 Jan 2019
59. Docker Hub (2019) Docker Hub. https://hub.docker.com/. Accessed 24 Jan 2019
60. Pääkkönen P, Pakkala D (2016) Reference architecture and classification of

technologies, products, and Services for big Data Systems. Big Data Res 4:
166–186. https://doi.org/10.1016/j.bdr.2015.01.001

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Pääkkönen et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:9 Page 24 of 24

https://dev.twitch.tv/docs/v5/
https://streamlink.github.io/
https://www.percona.com/blog/2018/09/20/prometheus-2-times-series-storage-performance-analyses/
https://www.percona.com/blog/2018/09/20/prometheus-2-times-series-storage-performance-analyses/
https://www.percona.com/blog/2018/09/20/prometheus-2-times-series-storage-performance-analyses/
https://bitbucket.org/
https://hub.docker.com/
https://doi.org/10.1016/j.bdr.2015.01.001

	Abstract
	Introduction
	Related work
	Architecture design
	Use case view
	Deployment view
	Sequence view

	Prototype
	Experiments
	Design of measurement data collection
	Real time transcoding speed and measurement variance
	Training data collection
	Machine learning methods for training of the prediction models
	Online prediction
	Online prediction: a new target resolution
	Online prediction: cold start
	Online prediction: twitch

	Results and evaluation
	Real time transcoding speed and measurement variance
	Model training
	Online prediction
	Online prediction: a new target resolution
	Online prediction: cold start
	Online prediction: twitch

	Discussion
	Future work
	Conclusion
	Appendix
	Big data view
	Data view
	Sequence views
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

