
Journal of Cloud Computing:
Advances, Systems and Applications

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems
and Applications (2019) 8:14
https://doi.org/10.1186/s13677-019-0137-8

RESEARCH Open Access

Replaceability and negotiation in a
cloud service ecosystem
Adrija Bhattacharya1* , Sankhayan Choudhury1 and Agostino Cortesi2

Abstract

Cloud federation is an aggregation of services from different providers in a single pool supporting interoperability
and resource migration. In federation, Services are assigned to the consumer’s service access pool as per their specific
functional and associated Quality level requirements. The said assignment is based on the advertised features of
services. Sometimes, the selected provider fails to provide the committed service or, it fails to fulfill the expected QoS
level. As a result, the consumer is being deprived of getting the services at required quality levels, in spite of
subscribing and paying. Re-federation i.e. the inclusion of new services from different providers in the resource pool is
a solution. This costly and time consuming re-federation process harms the overall harmony, reputation and
performance of the existing federation. In this paper, the necessary strategies to make a federation autonomic is
proposed. It helps federation to work in a self-adaptive manner by delaying the re-federation process through
replacement and negotiation mechanisms. This allows the federation to keep a balanced state in case of failures. The
proposed methods are simulated and the claims are substantiated by the preliminary experimental outcomes.

Keywords: Cloud federation, Ecosystem, QoS, Replacement, Broker negotiation

Introduction
In the competitive cloud market, Cloud Service Providers
(CSPs) advertise their offerings and service consumers
choose the most suitable one from the offerings according
to their need. Consumer comes with typical requirements
in terms of functionalities and associated Quality of Ser-
vice parameters (QoSs). The said request can be satisfied
by a composed service generated through the execution
of service discovery and composition in sequence. A com-
posed service is represented by a typical workflow of
atomic services. The selected workflow is capable to ren-
der the functionalities, as requested, with desired QoS
levels. But in a real time provisioning, the provider may
fail to offer the committed services with the advertised
QoS level. Moreover, due to some unavoidable situations,
a provider may fail to render one (or more) of the con-
stituent services of the selected workflow. As a result
the consumer is not getting the subscribed services with
desired QoS levels.

*Correspondence: adrija.bhattacharya@acm.org
1University of Calcutta, Kolkata, India
Full list of author information is available at the end of the article

A cloud federation is constructed of multiple cloud
providers that have easy collaborations. This could help
to elevate the cloud service performances into more effi-
cient one [8]. The collaborated service providers in a cloud
federation contribute to construct a service pool contain-
ing all services of all providers. The service requirement
for any consumer belongs to the federation is fulfilled by
a set of candidate services from this service pool. The
challenges in multi-cloud scenario can be solved by cloud
brokers also. Broker is defined formally in [14]. It works
as a middleman between the service provider(s) and con-
sumer. Broker takes consumer’s service request and tries
to find out plausible solution from multiple clouds. Then
it provides an integrated solution to the consumer through
this brokerage.
Unfortunately, the provisioning in real time within a

federation fails due to the challenges stated above. In gen-
eral, there exist a set of services (after discovery) that can
serve the request, but one of them can be consumed. The
approach to restore the previous situation is to replace
the failed service with the alternatives. This concept of
replacement is available in the domain of web services
with respect to workflow composition [2].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0137-8&domain=pdf
http://orcid.org/0000-0002-8536-7754
mailto: adrija.bhattacharya@acm.org
http://creativecommons.org/licenses/by/4.0/

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 2 of 14

A concept of replacement can be used for riskmitigation
in federation. The provisioning and replacement of ser-
vices within pool under federation could result an “out of
resource" situation. In that case, newer service providers
with demanding services are included in the pool. This is
referred as a process of re-federation [1]. This is a costly
and time consuming process. In this paper, we propose a
mechanism that can effectively maximize the usage of an
existing service resource pool within the federation and
delays the re-federation process as much possible.
Re-federation can be triggered due to the following

incidents

1. The CSP deviated from the agreed quality. The
failure of QoS delivery cannot be met by existing
available services in the resource pool.

2. New requests cannot be served by existing services in
the resource pool.

The maintenance of the agreed service quality level is
important throughout the period of service provisioning.
There may be some breach of SLA (Service Level Agree-
ment) if the quality parameter significantly deviated from
the subscribed one. Here, 9 QoS parameters (Response
time, Availability, Reliability, Throughput, successability,
Latency, Compliance, Best Practices and Documentation)
are considered for SaaS and standard QoSs are consid-
ered for IaaS. Our objective is to restore the previous state
without performing a re-federation through a proposed
alternative. The challenge of delaying re-federation can be
resolved through the solution of the following issues.

1. How to maintain the service quality levels on the fly
in case of failure of an atomic subscribed service?

2. How to accommodate a new service request (with
subsequent QoS) in case of unavailability of
resource(s)?

3. How to fulfill the increased QoS request for an
ongoing allocated service by a consumer?

The rest of the paper is organized as follows: The
scope of the problem is described in “Scope of the
work” section and its formal definition is discussed
in “Problem formulation” section. Service ecosystem
definition and related terms are introduced in “Ser-
vice ecosystem and related term definitions” section.
“Solution proposal” section describes the proposed algo-
rithm. Implementation and experimental results are
depicted in “Experiments” section. “State of the art”
section discusses the Related work. Finally, “Conclusion”
section concludes.

State of the art
Cloud Federation refers to the unionization of software,
infrastructure and platform services [10]. In federated

Cloud one CSP helps to serve the requests of other CSPs
[9]. Celesti et al. [8] has an approach of establishing feder-
ation by a software component in charge of executing the
three main functionalities required for a federation. These
three functionalities are identified as discovery of service
information, matching the requirement and services and
authenticating those services. In [6], Federation approach
extends the idea of market-oriented side of clouds. In that
approach the hint towards the cloud exchange policies
were discussed as a future work. Further in [5], a federa-
tion with opportunistic and scalable application environ-
ment was created. Research issues were pointed out in
[5] as flexible mapping, user specific QoS optimization,
enterprise integration and scalable monitoring of system
components. In another approach [13], a federated envi-
ronment is conceptualized on top of EASI-Cloud Project.
This mainly focuses on the infrastructure part; such as
VMmigration, scheduling, performance optimization etc.
The challenges found in EASI-Cloud documentation with
respect to SaaS offering is limited. Moreover, the main
challenge (that is someway unachievable) in EASI-Cloud
is with respect to SLA-monitoring. Another challenge
as mentioned by the final reporting of EASI-Cloud was
absence of offer (as provided by many providers) com-
parison. Comparison among the service prices and QoS
monitoring was mainly unachieved. At another part in
EASI-Cloud project, a tool for migrating application to
SaaS was introduced.The challenge faced in this part was
to make the service scalable and easy deployable on top of
cloud’s virtual infrastructure resources. However, in case
of SLA violation, a proper alternative has to be found out
to satisfy consumers. In most of the discussed approaches
only have some simulated experiments that does not
included any replacement strategies or SLA negotiation
proposed in SaaS layer. Moreover, the QoS monitoring
only in IaaS level restricts the actual application deploy-
ment and concerned QoS parameters (in SaaS layer) are
deprived of actual performance assessment.
In current scenario, majority of the cloud federation

approaches work in IaaS layer. However, it is clear from
the above discussion that QoS consideration and moni-
toring for SaaS provisioning within cloud federation is a
challenging area to contribute. Let us discuss some par-
allel approaches for quality management in federation.
A selection process that can be used by cloud providers
for collaboration is discussed in [20]. It discusses several
pricing and QoS issues but no implementation has been
done. Approach in [21] describes QoS aware composition
architecture using evolutionary algorithm. It has an opti-
mization component that allows QoS constraints. How-
ever energy efficiency of services is not considered in this
approach. It is no clear from the implementation that how
the mechanism would work in a federated environment.
Dynamic resource pricing in the federation is introduced

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 3 of 14

in [15]. Only cost parameter is used as criteria and no
other QoS is in consideration of this approach. Similarly
in [22] discussed about price and reliability of services.
Kertsz et al. [12] discusses approach for autonomous ser-
vice provisioning in federation. They employed the idea
of Global Service Registry that would contain service per-
formance information. Depending on this information the
broker chooses services. This approach does not con-
sider energy efficiency as a parameter to judge the service
abilities.
Another concern in SaaS provisioning and mainte-

nance is service replaceability. The reason behind it is
described in [7]. In [7] it is shown that structural, behav-
ioral, and QoS induced changes to services may cause
failures.[16] incorporates replanning of the service bind-
ings when an failure occurs. A large deviation of QoS
or violates a user constraint, then replanning approach
works. This alternative replacement services are not avail-
able automatically. An adaptive replanning mechanism in
[2] places more emphasis on the cause-effect relation-
ship among services and accounts the service failures. An
adaption framework and dynamic optimization strategies
selection is the key factor in the approach. But replace-
ability in true sense has not been achieved in these two
approaches. Finally a method in [2] was a significant one
with respect to service replaceability issues in web. This
approach replaces the critically failed components in a
service composition plan. But this issue handles a few

of QoS parameters that may not be sufficient to work
in a vast domain like federated cloud. Considering all
the above approaches for federation and service replace-
ment, a new approach for service replaceability along
with energy efficiency in a federated cloud environment
is designed.

Scope of the work
It is clear from “State of the art” section that to assess ser-
vice offers we need to see the price and the quality perfor-
mances. In this regard, the competitiveness can be judged
by a set similar services and Risky services (which ser-
vice don’t have any similar alternatives). While comparing
business offers and providing the best possible solution to
consumer, it is always a challenge to avoid harming the
balance in federation. Replacement and negotiation are
twomain strategies for achieving this. These are helping in
accommodating the user request into existing federation
and prevent frequent re-federation. The cloud federation
may be conceptualized as an Ecosystem and depicted in
Fig. 1.
The Combined Service Pool, Request Queue and the

Brokerage are the participating entities within the Ecosys-
tem. The pool is a collection of the services provided by
each CSP participating in federation. The request queue
has been formed through just appending the request of the
consumers. The brokerage plays the role of middleman
and responsible for ideal service provisioning.

Fig. 1 Cloud federation

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 4 of 14

Ecosystem as defined in [18] signifies the producer con-
sumer relationship. In general, there is a state, called Equi-
librium that ensures the balance between the producer
and consumers. The equilibrium state of the proposed
ecosystem is achieved when the Request Queue is empty;
i.e. all the requested services are served as per require-
ments. The loss of equilibrium may happen due to many
reasons like when the already selected provider is failing to
provide the service with desired QoS level. This deviation
from equilibrium may trigger "Re-federation". The objec-
tive of the work is to make the federation autonomic in
this context. The broker will take an attempt to bring back
the equilibrium through well defined adjustment mech-
anism at earliest. As a result the re-federation may be
avoided until the situation compels to do so.
There is a recent work [11] which takes care of inter

operating cloud solutions. This approach in [11] tried
to accommodate huge data in mobile devices exploring
several IoT characteristics. This scenario invites some per-
formance related concerns. For example, one user needs
data storage service for his work backup. He has options
as Google Drive, DropBox, etc. For this services con-
cerned QoS parameters are Storage size, Response time,
Availability. Even after subscribing for one service (say
Google Drive here), thementioned qualities may not seem
good enough in some point of time. In this situation, the
replacement mechanism would work to find the similar
alternative matching the user’s quality criteria. When any
of the available alternate solution is notmatching the qual-
ity requirement, the user may be offered to negotiate in
some QoS(s). In both the cases, migration cost for shifting
from one ongoing offering to a new one should be kept in
mind.

Problem formulation
The problem clearly states that the service performances
are degraded due to several reasons and those services are
needed to be replaced by similar services to satisfy con-
sumer. Moreover, there may be no exact matched service
as per the consumer requirement. Then how to nego-
tiate the consumer(s) with available services is another
concern. The problem scenario is a collection of two
sub-problems. The first one is the problem of replace-
ability. It demands a solution to exchange an identified
service with degraded quality by another from available
service pool. This leads to find out a perfect match for the
required service from a possibly large set of similar ser-
vices. The problem of service replaceability is essentially
a search problem [2]. The second problem is mitigation
and QoS negotiation (in case of unavailability of perfect
match to replace). This can be seen as a special decision
problem [23].
Service consumers express their requirements by query.

It contains a set of functionality to be supported by offered

services matching the quality requirement(s) specified in
it. Let us consider the set of all services for a typical func-
tionality fi denoted by Si = {sij : j ∈ I} where j belongs to
set of positive integers.Each service have a quality specifi-
cation Qij for jth service in Si. Quality specification within
a query is Q = {qk = reqk}where qk is the kth qual-
ity parameter and reqk is the value of that kth quality
parameter. The set of replaceable services is denoted by R.

Search problem formulation
The Replaceability problem can be formally defined as a
search problem. Let us consider for a specific functional
requirement all set of services as the search space. The ini-
tial state is the state where only the services with required
functionalities were found and no service is added to R.
That is at initial state R = {}. There are some restric-
tions in terms of QoS parameters declared by query. The
Actions are defined to take arbitrary service from Si and
check if it follows the QoS restrictions in Q or not. The
goal state comprises of all services from Si who allows th
restrictions in Q are transferred to R. The search problem
is solved here efficiently by reducing the search space by
narrowing it with respect to the QoS restrictions given.

Function problem formulation
QoS negotiation between two services can be defined in
terms of decision (negotiable or not). It signifies whether
a service is acceptable or not with a deviated QoS as an
alternate of required service. Let us also define a relation-
ship as N i.e. negotiable. It is a binary relation among
two services denoting that the corresponding services are
negotiable with each other. Formally N is defined as N =
{Ni : i ∈ I}.Ni is defined over Si for a specific functionality
fi. i.e. Ni ⊂ Si × Si. Let us consider Ni(a, b) as a collec-
tion of Boolean formula m with variables as x1, x2, ..., xn
(x ∈ {True, False}). Let us consider lqi ’s are quality levels
of qthi QoS. Each ‘level’ is defined as a range of permissi-
ble QoS values (Quantitative or Qualitative) mapped as a
single qualitative value. Allowed levels for any qi th QoS
parameter are assumed as lq1 , lq2 , ..., lqn . The problem is to
find an assignment of xi’s such thatm is collectively True.

Service ecosystem and related term definitions
In this section some definitions are discussed that will
be used in rest of the paper. A services Set (S) contains
all the possible atomic services. S is defined as follows,
S = ∪iSi where Si is the set of services as defined
above. Each service sij has quality offerings declared by
service providers as Qij. Qij is declared as set of qual-
ity parameters and corresponding levels as follows Qij ={
qk �→ lpqk∀k and p ∈ Z+}

. A query is denoted by Q
which has a functional as well as a quality portion. Func-
tional part of query describes the functionalities that
are to be collectively satisfied by the service(s). Quality

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 5 of 14

requirements are specified by the following set as qk = req
where qk is the kth QoS parameter. Query is always sub-
mitted to service broker that is mid entity between end
users and cloud providers. Broker has two queues where
it maintains the service request and service provisioning
information. Service requests are submitted by providers
are stored in the queue named REQ. Service request infor-
mation already served by the broker are saved within a
RES queue.
Ecosystem Ecosystem is defined with a set of services,

service consumers along with broker(s). Here set of ser-
vices has different service quality offerings and consumers
have some service requirement. The ultimate objective of
ecosystem is to provision required services by the con-
sumers. The ecosystem changes its state(s) every time it
receives newer request or older service adjustment to be
done. The state of the ecosystem is represented by Et for
describing at a specific time point t. The possible state of
the ecosystem are equilibrium and disturbed_equilibrium.
There are a few components bu which the ecosystem is
defined here. First of all the service pool is the main part
of the ecosystem. It contains all services that are available
for consumption. Two queues namely Request (REQ) and
Response (RES) are stating the consumer requirement and
status of ongoing services at any time. These two queues
are used to decide the ecosystem states at any time.
Equilibrium It signifies a state in the whole ecosystem

when the broker’s REQ is empty and there is no interme-
diate request that is un-served. i.e. not added to the RES
queue. Suppose, the status of the RES and REQ is stated
by RESt = {served services at time t},REQt = {}. This
typical state of the ecosystem is called equilibrium and
the ecosystem at equilibrium is denoted by ξt . The equi-
librium state of the ecosystem may be disturbed (named
as disturbed_Equilibrium) due to the new service request
and the degrading quality performances of the already
provisioned ongoing services. That is at a specific time t,
the ecosystem may be at ξt . But at time t′ the ecosys-
tem goes to the stat Et′ . Broker then take roles to restore
equilibrium state ξt′ .
Congruence Distance and Congruence Two services

sij & sik are said to be at δ distance if sij & sik ∈ Si and
QoS parameters are the same but differs in δ QoS param-
eter levels. Here δ is called congruence distance between
si & sj. Furthermore, two services sij & sik are said to
be in δ - congruence relationship if sij & sik ∈ Si and
QoS parameters are the same i.e. same QoS parameters
are specified (i.e. Qij and Qik) though the subsequent lev-
els are not the same. They differ in δ QoS parameter’s
levels. Say for example, sij & sik are two services with “pay-
ment” functionality from Bank domain. sij & sik are said
to be congruent if QoS parameter Availability is men-
tioned in both the service description; but the may be sij
is leveled as “high” & sik is leveled as “medium” available.

These qualitativemeasurements of QoS parameter is done
by clustering on the QoS values with same functionality
domain. In this case sij & sik varies in 1- congruence dis-
tance (as there is one level distance between “high” and
“medium”).
Functional Similarity Two services sij & sik are said to

be in functionally similar relationship if sij & sik ∈ Si but
the subsequent QoSs may not match.
Absolute Similarity Two services sij & sik are said to be

in absolute similar relationship if sij & sik ∈ Si and QoS
parameters are same (i.e Qij and Qik are same) as well as
subsequent QoS parameter’s levels are also same.
Goodness Similar Selection of the services based on

a few specific quality parameter may lead to dissatisfac-
tion of consumers with respect to other important QoS
parameters. It is important to provide services at moder-
ate satisfaction for all QoSs. A method for such collective
measures of QoSs are well described in [4]. It involves all
QoS parameter to calculate the goodness of services. This
measure is used here to calculate overall goodness of the
services. Two services sij & sik are said to be similarly good
sij & sik ∈ Si and QoSs are the same. i.e. (Qij and Qik)
are same and also goodness values of sij & sik (Gij,Gik)
are within a small threshold distance from each other. i.e.
|Gij − Gik| = Th. Value of the threshold (Th) depends on
the functional criteria of services. Sometimes Th ≤ 1.
Goodness Distance Two services sij & sik are said to

be at k-goodness distance if sij & sik ∈ Si and QoSs are
the same i.e. Qij and Qik are same and goodness values
of sij & sik (Gij,Gik) are within ±θ from each other. i.e.
|Gij − Gik| = θ .
Emission Quotient Each of the atomic service (SaaS) is

collection of some operations. Operations may be of com-
puting, data access or other types. Based on the type of
operations the carbon emission amount can be calculated.
The total emission amount of a single service is defined as
the Emission Quotient of the service. This is denoted by
Ei and defined as follows.

Ei =
∑

j
(ej × nij) (1)

where ej denotes the standard emission quantity for jth
operation and nij is number of jth operation in ith service.

Solution proposal
In this section, we have presented the solutions consid-
ering the identified three sub problems as mentioned in
“Introduction” section. The first problem has the solu-
tion in terms of service replaceability. It is a mechanism
for replacing a service while it is a part of ongoing ser-
vice allocation plan. This already provisioned service with
degraded quality may be replaced by another service of
similar quality on the fly (not or negligibly interrupting the
provision).

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 6 of 14

Newer service requests can be fulfilled by any avail-
able service(s) whose quality criteria matches with that of
the required service(s). In general, in real life broker pro-
vides a higher quality service to the consumers (more than
requirement as specified inQ) in case there is no available
service(s) that exactly matches the quality requirement(s).
It may generate satisfactory performance but it is harmful
for the proper utilization of service capabilities in terms
of quality. Over-provisioning is often a common mis-
take or compulsion that happens. Many poor allotments
of services may exhaust the full capacity of the federa-
tion. Broker has to build up a negotiation mechanism that
would work in accordance with replaceability mechanism.
Replaceability and negotiation mechanism helps the

cloud broker towards the optimized consumption of SaaS
resources. Iterative application of these mechanisms grad-
ually moves the federation towards saturation of its ser-
vice provisions (mainly respect to the QoSs). Full exhaus-
tion of offered services would result the federation to
reconstruct further. This is called the process of re-
federation. Often the federation advertises for newer ser-
vice providers to join the federation based on the frequent
requirements and availability of those services.

Service replacement on the fly
Service Replaceability is defined in [2] in terms of fit-
ness and penalties. Violation from the QoS constraints
increases penalty that in turn decreases Replaceability. But
the process involves fewer QoSs parameters. In this pro-
posed approach replaceability is measured in terms of all
available QoSs and their corresponding constraints. The
proper understanding of the replaceability and replace-
ment algorithm needs some more terms to be described.
Congruent- Replaceable A set of all services that are

in k congruence relation with sij are said to be congru-
ent replaceable set for service sij. It is denoted by (CRk

ij)

where k can vary over Z+. It is important to notice that
lesser the value of k the more accurately replaceable is the
corresponding set of services.
Goodness- Replaceable A set of all services that are

goodness similar with sij are said to be goodness replace-
able set for service sij. It is denote by GRij.
Absolute ReplaceableA set of all services that are abso-

lute similar with sij are said to be absolute replaceable
set for service sij. It is denoted by ARij. It is also to note
that 0-Congruent replaceable set is the same as Absolute
Replaceable set. So, It is clear that CR0

ij = ARij.
Functionally Similar Services A set of all services

that are functionally similar with sij are said to be set of
functionally similar service for service sij. It is denoted
by FSij.
In the definition of service replaceability all of the above

cases are aggregated with the relative importance it holds.
It is clear that the set of absolute replaceable services are

the most desired ones when we are thinking of replacing
a service. So in the measurement of service replaceabil-
ity it should carry the most weight. From the findings
of [4] it is evident that the services with similar good-
ness often carry similar QoS performances. Congruent is
the most compromised solution of service replaceabili-
ties. The replaceability quotient for the replaceability of
jth service in Si is rij and is defined as

rij =
||ARij|| + ||GRij|| + ∑

k=1

(
1

k+1

)
||CRk

ij||
||FSij|| (2)

The more the Replaceability value of a service more the
service is replaceable. Often, in some composition plans
the candidate services having the least replaceability are
called as critical component services. Replacement for
those services is very difficult and often consumer has to
compromise in some of the QoS parameters. The reduced
problem of replacement after defining replaceability can
be modified as a two objective optimization problem.
Here objective function can be written as Maximize

Z = a × rij + b ×
(

1
Eij

)
(3)

Subject to the QoS constraints on the existing ongoing
service.
Here a and b are quotient which signifies the impor-

tance of the objectives. It can be tuned according to the
application’s need. If replaceability is the most important
issue then a should be more than b. Otherwise a less than
b. The service replacement algorithm is described in the
following subsection .

Replacement
In the Replaceability algorithm that the steps for choosing
the most replaceable and least emissive services. Individ-
ually these are interchangeable depending on the value of
a&b in Eq. 3. If a ≥ b then replaceability step has to be
executed first otherwise emissivity is first to decide. On
going service demands as well as newer service requests
both are submitted to the REQ. Broker finds services
with previous service specifications and replaceability val-
ues. These are older service requests. Where as in newer
request that replaceability quotient is absent. In case of
newer request standard broker based discovery runs for
initial solution to the query. Based on discovered services
the replaceability quotient of that service is calculated. But
often there is no existing available services that could be
given readily. In that cases, the new requests are mapped
into already provisioned services and a set of absolute sim-
ilar services are found. Some of those absolute similar ser-
vices may be replaced with lower quality services (found
suitable either by replacement or negotiation) and freed.

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 7 of 14

The new request is served immediately with the freed ser-
vice. Here Q is latest the query in REQ. The method of
replaceability is discussed through the algorithm.

Algorithm 1 REPLACE
Input: fi,Qij, θ ,Eij of the service sij, SRij = {},Ti =

{},ARij,GRij,CRk
i ∀θ

Output: Best Replaceable service set forsij(SRij) with max-
imum rijandEij

1: Initialize: Th=0.2
2: Search for the services inARij such that |rij−rik| = 0.2

into the set Tij
3: Search for the service having Eik ≤ Eij
4: Save the service in SRij
5: if SRij ={} then
6: Search for the services in GRij such that |rij − rik| ≤

Th into the set Tij
7: Search for the service having Eik ≤ Eij
8: Save the services in SRij
9: if SRij = {} then

10: for p = 1 to θ do
11: Search for the services in CRij having Eij ≤ Eik
12: Save the service in SRij
13: end for
14: end if
15: end if
16: return The service (s) in SRij as best alternative to sij.

Service negotiation for newer request
Negotiationmechanismworks among the provider’s qual-
ity offerings and the new service requirement(s). When
newer requests for service provisioning along with spe-
cific quality demand occur, broker at first tries to choose
services that have higher replaceability and lower emis-
sion quotient. It may happen that there is no service
available with the required level of QoSs according to the
newer service requirement. In that case broker adjusts the
existing over-provisioned services with the lower quality
alternatives and provisions those services to the newer
requester.
The negotiation algorithm is associated with replace-

ment algorithm. The process of negotiation is initiated
when the service discovery procedure cannot find the
exact match of the requested service along with its quality
requirements. This process has two parts. In the first part
the required service (already (over) provisioned to another
service provider) and proper replacement for that service
are identified. If this replacement cannot be found then
the newer service request is satisfied by a compromised
solution with respect to some of the QoS parameters. In

Algorithm 2 NEGOTIATE
Input: Qi, θ , Priority QoS list (Pr),Ng = {}(Set of services

that are negotiable with sij)
Output: Ng

Find the QoS constraint type for each QoS (qx) param-
eter in Qi.
for y = 1 to θ do

for x = 1 to n do
if qx is upper then

if qix ≤ qyx then
py + +

else
ry + +

end if
else

if qix ≥ qyx then
py + +

else
ry + +

end if
end if

end for
if for every ry parameters qyr ∈ Pr then

sij and sik are not negotiable
else

sij and sik are negotiable
end if
Put sik is Ng

end for
return Ng

those cases, negotiation can be done among the goodness
levels and less important quality parameters. The QoS
constraint type referred in the algorithm is found in [2]. If
a constraint is of upper type then it accept the lower values
than the required on as a valid choice. Similarly if the con-
straint is of lower type then it accepts the higher values as
valid choice. Response Time is a typical example of Upper
constraint and Availability is a lower constraint param-
eter. The above two algorithms work often individually
and in some cases collectively to regain the equilibrium
within the brokerage system. The algorithm for regain-
ing equilibrium uses either replacement, negotiation or
both. The brokerage algorithm for regaining equilibrium
is described as follows.

Experiments
In this proposed work the federation environment is sim-
ulated. A software as a service pool with 56 distinct func-
tionalities are considered. Randomly generated queries
ran on the simulated environment created by CloudSim

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 8 of 14

Algorithm 3 EQUILIBRIUM
Input: Quality requirement for newer request (QN) that

cannot be served by existing available services, Qual-
ity requirement of provisioned services which have
degraded quality (QE), Service allocation and necessary
information about all services.

Output: Decision-State of equilibrium is regained or not
if QN is empty then

call REPLACE (QE)
if no replacement found then

call NEGOTIATE(QE)
if Ng is empty then

Equilibrium cannot be achieved
else

QE=Null
end if

end if
else

if QE is empty then
call NEGOTIATE(QE)
if Ng is empty then

Equilibrium cannot be achieved
else

Equilibrium achieved
end if

end if
end if

(described in Table 1). It handles mainly IaaS services on
top of which the SaaS federation was constructed. Queries
were run consecutively. In this section the dataset prepa-
ration and experimental results are discussed along with
some inferences drawn.

Implementation and dataset
Dataset according to functionality are prepared from
QWS dataset available in [3]. Here, Nine standard QoS

Table 1 System specification

System parameters Specification

Simulation engine CloudSim-3.0.3

Operating system Windows 8

Front end Eclipse Juno

Virtual Machine Monitor Xen

System architecture x86

Number of data centers 5

Number of host 100

Number of VM 100

Number of cloudlets 300

Number of users 20

Types of workload Random

Table 2 Experiment on federation

Specifications Value

SaaS functionalities 56

Number of services 2508

Total Queries run 300

Involved QoS parameters 9

parameters for a total of 2508 service invocations are
listed. Parameters are namely, Response Time, Through-
put, Availability, Reliability, Successability, Compliance,
Latency, Best Practices and Documentation. This dataset
is considered as the combined service pool in the
federation. Similar services are grouped according
to Absolute replaceable, Goodness replaceable and
Congruent-replaceable services as discussed before. Then
the service similarity also measured for each of the group
of services. Among those similar services, QoS values
are clustered and included into levels (such as high, low,
medium, etc.). Random carbon emission quotient per
service is generated. Each of the saas is allocated to VMs
upon request based on availability. Moreover, the IaaS
parameters as Response Time, CPU per cycle and size of
input/output data are monitored for each of the ongoing
services when each new request is served. Predefined
threshold are there. Overcoming those threshold indi-
cates the degraded performance in corresponding SaaS
(s) and replacement mechanism starts working. Each of
the system level parameters are monitored at every new
request arrivals to check the quality levels (signified by 9
QoSs) of the on going services. The system specification
of the simulation environment is described in the Table 1.
Set of random queries are generated. These queries

are considered as requirements from consumers. Each
of these queries contains specific functionality with
some QoS constraints (mostly qualitative constraints
mentioned for majority of the mentioned nine QoS

Fig. 2 Number of QoSs vs. Number of congruent services

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 9 of 14

Fig. 3 Number of risky services per domain

parameters). Functionalities here are constrained to 5
(Account, Analysis, Bank, Map, Scan) domains. As a
whole total 11 domains are involved in the pool. Each of
the functionalities has multiple queries to run on. Each
query runs replaceability as proposed as well as accord-
ing to replaceability measure discussed in [2]. Moreover,
each query is also run for proposed equilibrium gaining
algorithm and other two algorithms discussed in [19] and
[17]. The details of the experiment on federation is given
in Table 2.

Results
There is an interesting relationship derived among the no
of QoS parameters and number of congruent services in
Fig. 2. It signifies that the number of congruent services is
highly dependent on the number of QoS parameters spec-
ified. If the number of QoS parameters is less in the query
then it is a possibility that there will be more number of
congruent services.
Another analysis is being done for five functionalities.

A service is pointed as a risky service if it has no congru-
ent services. This signifies that the failure or over demand
of those services may completely disturb the equilibrium
and the federation will be broken. The Fig. 3 signifies that

Fig. 4 Trend of risky services

Table 3 Outcome of 5 Queries in “Account” Domain

Total Absolute Goodness 1 Con 2 Con 3 Con 4 Con

7 1 2 4 2 0 0

7 1 1 2 3 1 0

9 1 2 3 3 1 1

12 2 3 4 5 1 0

6 1 1 2 3 0 0

“Analysis" services the highest set of functionally similar
services as well as the number of risky services.
Another interesting inference can be drawn from the

Fig. 4 that the number of risky services increases with the
number of functionally similar services.
For five queries in “account” functionalities Table 3 is

generated. Corresponding service replaceability quotient
is also depicted in Table 4. It is evident from Table 4
that the services that have more congruence services are
easily replaceable. Goodness similar services also affect
the replaceability. More the available goodness similar
services, more the replaceability obtained.

Comparison
The performance of the proposed approch is compared
with respect to two aspects. Firstly the proposed approach
is considered with respect to replaceability capability and
compared with the approach in [2] . Then two self adap-
tation strategies as mentioned in [19] and [17] were com-
pared with the proposed approach to signify how well
the proposed approach can adapt with dynamic changes
within federation.

Replaceability
Replaceability mechanism for service composition is
implemented in [2]. We have compared proposed replace-
ability approach with that of [2] which considers fit-
ness of GA as the key criteria while choosing services
within a replaceable workflow. The comparative results
are shown in Fig. 5. The replaceability Mechanism in [2]
result in 19% matching executable services and 81% non-
matching services. After employing proposed replaceabil-
ity mechanism the Executable services were increased

Table 4 Replaceability values

Query Replaceability

1 0.81

2 0.61

3 0.66

4 0.70

5 0.66

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 10 of 14

Fig. 5 Comparison among replaceability mechanisms. a Approach in [2]. b Proposed approach

41%. After introducing negotiation the total service-
able option increased to 74% (41% Replaceable + 34%
Negotiable).
The replaceable set of services are calculated consider-

ing several different similar services. The percentage of
Absolute Replaceable, Goodness replaceable and Congru-
ent Replaceable services are 20%, 25% and 41% respec-
tively. The result is depicted in Fig. 6.
In case of proposedNegotiationmechanism the services

with 1 priority specification is higher achievable among
the all other priority specification. This is depicted in
Fig. 7 . Here the One specified priority QoS have a chance
of 75% success while two, three and four priority QoS
specification would have 59%, 46% and 40% success rate
respectively.

Autonomous self-adaption
Thomas and Chandrasekaran [19] proposed a method of
self adaptation in federation. How well this approach and
proposed approach find out wide ranges of alternatives
that have been listed. The number of satisfied services for
each of the query run with proposed approach and the
approach in [19] are noted. Same set of queries ran on
the same service pool. Figure 8 signifies that the num-
ber of service alternatives is better in case of proposed

Fig. 6 Service types found in all executions

approach. The services satisfied through the proposed
approach have more alternatives compared to [19].
In Fig. 9, the service ecosystem has been observed for

300 queries (results shown for first 50 queries) on the
same service pool with the proposed approach as well as
the approach in [19]. The state of Disturbed equilibrium
(possible re-federation) is attained more number of times
for the approach in [19]. The proposed approach attained
much less in disturbed_equilibrium state. It is evident that
with the proposed approach the possible re-federation will
be reduced.
Another recent approach on self adaptation as [17] is

compared with the proposed approach. Number of service
alternatives were listed for another random 50 random
queries for [17] and proposed approach. Comparative
performance is depicted in Fig. 10
Later [17] and proposed approaches were examined for

an ongoing federation and checked how frequently both
the approaches adapted with the changing environment.
The results of equilibrium and disturbed equilibrium is
depicted in Fig. 11. It is clearly shown that proposed
approach (in Blue) adapts more appropriately when equi-
librium gets disturbed.
The number of possible re-federation requests as gen-

erated by the proposed approach and approaches in [19]
and [17] over 300 queries are depicted in Figs. 12 and
13 respectively. It is evident that the proposed approach
invites less number of re-federation requests due to the
imposed replacement and negotiation mechanism within
the proposed equilibrium algorithm.

Conclusion
In this paper, the service ecosystem is defined for better
service provisioning in cloud federation. Service offer-
ings are here the producers and end users are the con-
sumers of those service offerings. Often services meet the
offered quality by the services provider at the beginning
of provisioning. But often this is not maintained due to
several reasons. Thus the poor performing services are
needed to be replaced on the fly. On the other hand newer

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 11 of 14

Fig. 7 Average number of services found for different restricted negotiation. a 1 QoS in priority. b 2 QoS in priority. c 3 QoS in priority. d 4 QoS in
priority

Fig. 8 Service alternatives in case of [19] and proposed approach

Fig. 9 State of equilibrium in case of [19] and proposed approach

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 12 of 14

Fig. 10 Service alternatives in case of [17] and proposed approach

Fig. 11 State of equilibrium in case of [17] and proposed approach

Fig. 12 Re-federation requests in case of [19] and proposed approach

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 13 of 14

Fig. 13 Re-federation requests in case of [17] and proposed approach

service requests may have such a typical demand of ser-
vice QoS levels that may not be possible to readily pro-
vide by the existing state of the ecosystem (federation).
Here the replacement and negotiation are two mecha-
nisms that help to regain the equilibrium in the ecosystem.
Result shows that lesser the number of QoS parame-
ters more the congruent services will occur. The risky
points according to functionality are identified and it is
shown that for analysis functionality the services have
more risky components. The federation maintenance by
mitigating the above issues will not only make the ser-
vice provisioning better in quality and seamlessness but
it will effectively increase the elasticity and scalability
also. Services often in cloud are over provisioned due to
the unavailability of services at a required level of QoSs.
Replacement and negotiation of those over provisioning
services help in increasing the elasticity and scalability
indirectly. The proposed approach helped to solve three
issues discussed in Introduction and as a consequence the
frequency of re-federation is also reduced over a period
of time. Future work includes the mechanism for insuring
those services for guaranteed QoS levels as per require-
ment. Number of the service alternatives increase signifi-
cantly by incorporating service replaceability. Equilibrium
algorithm uses negotiation and replacement algorithm
as per need to regain disturbed equilibrium within the
ecosystem. Results show that the service ecosystem equi-
librium is maintained more successfully for most of the
incoming queries compared to recent approaches in [19]
and [17].
Abbreviations
AR: Absolute replaceable; Con: Congruent; CR: Congruent replaceable; CSP:
Cloud service provider; EM: Emission equivalent; GD: Goodness replaceable;
QoS: Quality of service; SaaS: Software as a service

Acknowledgements
We are thankful to Ms. Soma Das M.Tech final year student of Department of
CSE, University of Calcutta for her valuable contribution towards the proposed
work.

Authors’ contributions
All authors have participated in conception and design, or analysis and
interpretation of the data, drafting the article or revising it critically for
important intellectual content, approval of the final version.

Authors’ information
Not applicable.

Funding
This manuscript is not supported by and research grant or fellowship.

Availability of data andmaterials
This manuscript uses data from the repository [3]. We have requested for the
credential to download that data and was supplied with the same. This
dataset contains service id with url and 9 QoS parameters for 2508 services.
Later for the sake of implementation here we have attached some QoS values
which were randomly generated.

Competing interests
This manuscript has not been submitted to, nor is under review at, another
journal or other publishing venue. The authors have no affiliation with any
organization with a direct or indirect financial interest in the subject matter
discussed in the manuscript.

Author details
1University of Calcutta, Kolkata, India. 2Università Ca Foscari Venezia, Venice,
Italy.

Received: 30 March 2019 Accepted: 21 August 2019

References
1. Al Falasi A, Serhani MA, Elnaffar S (2013) The sky: a social approach to

clouds federation. Procedia Comput Sci 19:131–138
2. Al-Helal H, Gamble R (2014) Introducing replaceability into web service

composition. IEEE Trans Serv Comput 7(2):198–209
3. Al-Masri E, Mahmoud QH (2008) The qws dataset. http://www.uoguelph.

ca/~qmahmoud/qws/indexhtml. Accessed: 12 Mar 2013
4. Bhattacharya A, Choudhury S (2016) An efficient service selection

approach through a goodness measure of the participating qos. In:
Proceedings of the International Conference on Informatics and Analytics.
ACM. p 94. https://doi.org/https://doi.org/10.1145/2980258.2980451

5. Buyya R, Ranjan R, Calheiros R (2010) Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services. Algorithms Architectures Parallel Process:13–31. https://doi.org/
https://doi.org/10.1007/978-3-642-13119-6_2

6. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Futur Gener Comput Syst 25(6):599–616

http://www.uoguelph.ca/~qmahmoud/qws/index html
http://www.uoguelph.ca/~qmahmoud/qws/index html
https://doi.org/https://doi.org/10.1145/2980258.2980451
https://doi.org/https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/https://doi.org/10.1007/978-3-642-13119-6_2

Bhattacharya et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:14 Page 14 of 14

7. Canfora G, Di Penta M, Esposito R, Villani ML (2005) Qos-aware replanning
of composite web services. In: Web Services, 2005. ICWS 2005.
Proceedings. 2005 IEEE International Conference on, IEEE. pp 121–129.
https://doi.org/https://doi.org/10.1109/icws.2005.96

8. Celesti A, Tusa F, Villari M, Puliafito A (2010) How to enhance cloud
architectures to enable cross-federation. In: Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. IEEE. pp 337–345. https://doi.
org/https://doi.org/10.1109/cloud.2010.46

9. El Zant B, Gagnaire M (2014) Dynamic break even pricing for cloud
federation. In: GlobecomWorkshops (GC Wkshps), 2014. IEEE. pp 70–74.
https://doi.org/https://doi.org/10.1109/glocomw.2014.7063388

10. Kertesz A (2014) Characterizing cloud federation approaches. In: Cloud
Computing, Springer. pp 277–296. https://doi.org/https://doi.org/10.
1007/978-3-319-10530-7_12

11. Kertesz A (2015) Interoperable data management using personal and
infrastructure clouds. IEEE Cloud Comput 2(1):22–28

12. Kertsz A, Kecskemeti G, Marosi A, Oriol M, Franch X, Marco J (2012)
Integrated monitoring approach for seamless service provisioning in
federated clouds. In: Parallel, Distributed and Network-Based Processing
(PDP) 2012 20th Euromicro International Conference on. IEEE.
pp 567–574. https://doi.org/https://doi.org/10.1109/pdp.2012.25

13. Kohne A, Spohr M, Nagel L, Spinczyk O (2014) Federatedcloudsim: a
sla-aware federated cloud simulation framework. In: Proceedings of the
2nd International Workshop on CrossCloud Systems. ACM. p 3. https://
doi.org/https://doi.org/10.1145/2676662.2676674

14. Mell P, Grance T, et al. (2011) The nist definition of cloud computing.
https://doi.org/https://doi.org/10.6028/nist.sp.800-145

15. Mihailescu M, Teo YM (2010) Dynamic resource pricing on federated
clouds. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, IEEE Computer
Society. pp 513–517. https://doi.org/https://doi.org/10.1109/ccgrid.2010.
123

16. Na J, Li Gh, Zhang B, Zhang L, Zhu Zl (2010) An adaptive replanning
mechanism for dependable service-based systems. In: e-Business
Engineering (ICEBE), 2010 IEEE 7th International Conference on. IEEE.
pp 262–269. https://doi.org/https://doi.org/10.1109/icebe.2010.68

17. Nallur V, Bahsoon R (2013) A decentralized self-adaptation mechanism for
service-based applications in the cloud. IEEE Trans Softw Eng
39(5):591–612. https://doi.org/10.1109/TSE.2012.53

18. Olson JS (1963) Energy storage and the balance of producers and
decomposers in ecological systems. Ecology 44(2):322–331

19. Thomas MV, Chandrasekaran K (2017) Dynamic partner selection in cloud
federation for ensuring the quality of service for cloud consumers. Int J
Model Simul Sci Comput 08:1750036

20. Wenge O, Siebenhaar M, Lampe U, Schuller D, Steinmetz R (2012) Much
ado about security appeal: cloud provider collaborations and their risks.
In: European Conference on Service-Oriented and Cloud Computing.
Springer. pp 80–90. https://doi.org/https://doi.org/10.1007/978-3-642-
33427-6_6

21. Wu CS, Khoury I (2012) Qos-aware dynamic research component
composition for collaborative research projects in the clouds. In: Cloud
Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on. IEEE. pp 883–888. https://doi.org/https://
doi.org/10.1109/cloudcom.2012.6427536

22. Xin L, Datta A (2010) On trust guided collaboration among cloud service
providers. In: Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2010 6th International Conference on.
IEEE. pp 1–8. https://doi.org/https://doi.org/10.4108/icst.trustcol.2010.6

23. Yu P (1973) A class of solutions for group decision problems. Manag Sci
19(8):936–946

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/https://doi.org/10.1109/icws.2005.96
https://doi.org/https://doi.org/10.1109/cloud.2010.46
https://doi.org/https://doi.org/10.1109/cloud.2010.46
https://doi.org/https://doi.org/10.1109/glocomw.2014.7063388
https://doi.org/https://doi.org/10.1007/978-3-319-10530-7_12
https://doi.org/https://doi.org/10.1007/978-3-319-10530-7_12
https://doi.org/https://doi.org/10.1109/pdp.2012.25
https://doi.org/https://doi.org/10.1145/2676662.2676674
https://doi.org/https://doi.org/10.1145/2676662.2676674
https://doi.org/https://doi.org/10.6028/nist.sp.800-145
https://doi.org/https://doi.org/10.1109/ccgrid.2010.123
https://doi.org/https://doi.org/10.1109/ccgrid.2010.123
https://doi.org/https://doi.org/10.1109/icebe.2010.68
https://doi.org/10.1109/TSE.2012.53
https://doi.org/https://doi.org/10.1007/978-3-642-33427-6_6
https://doi.org/https://doi.org/10.1007/978-3-642-33427-6_6
https://doi.org/https://doi.org/10.1109/cloudcom.2012.6427536
https://doi.org/https://doi.org/10.1109/cloudcom.2012.6427536
https://doi.org/https://doi.org/10.4108/icst.trustcol.2010.6

	Abstract
	Keywords

	Introduction
	State of the art
	Scope of the work
	Problem formulation
	Search problem formulation
	Function problem formulation

	Service ecosystem and related term definitions
	Solution proposal
	Service replacement on the fly
	Replacement
	Service negotiation for newer request

	Experiments
	Implementation and dataset
	Results

	Comparison
	Replaceability
	Autonomous self-adaption

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

