Achilleos et al. Journal of Cloud Computing: Advances, Systems
and Applications (2019) 8:20
https://doi.org/10.1186/s13677-019-0138-7

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access

The cloud application modelling and

execution language

Achilleas P. Achilleos'#"

Check for
updates

, Kyriakos Kritikos?, Alessandro Rossini?, Georgia M. Kapitsaki®,

J6rg Domaschka?, Michal Orzechowski®, Daniel Seybold®, Frank Griesinger®, Nikolay Nikolov/,

Daniel Romero® and George A. Papadopoulos®

Abstract

technology acceptance model (TAM).

Cloud computing offers a flexible pay-as-you-go model for provisioning application resources, which enables
applications to scale on-demand based on the current workload. In many cases, though, users face the single vendor
lock-in effect, missing opportunities for optimal and adaptive application deployment across multiple clouds. Several
cloud modelling languages have been developed to support multi-cloud resource management, but still they lack
holistic cloud management of all aspects and phases. This work defines the Cloud Application Modelling and
Execution Language (CAMEL), which (i) allows users to specify the full set of design time aspects for multi-cloud
applications, and (i) supports the models@runtime paradigm that enables capturing an application’s current state
facilitating its adaptive provisioning. CAMEL has been already used in many projects, domains and use cases due to its
wide coverage of cloud management features. Finally, CAMEL has been positively evaluated in this work in terms of its
usability and applicability in several domains (e.g., data farming, flight scheduling, financial services) based on the

Keywords: Cloud computing, Domain-specific language, Model-driven engineering, Models@run-time

Introduction

Cloud computing enables organisations to use (virtu-
alised) resources in a pay-as-you-go model. By adopting
this computing paradigm, organisations can reduce costs
and outsource infrastructure management for their appli-
cations. Also, they can support flexible application pro-
visioning by acquiring additional resources on-demand
based on the current workload. Based on these benefits,
many organisations have decided to move their applica-
tions in the Cloud.

Motivation

To support this migration, various frameworks have been
developed enabling automated user application deploy-
ment and scaling. In some cases, the ability to use vendor
specific tools (e.g., AWS CodeDeploy, Azure Kubernetes
Service (AKS), Amazon Elastic Container Service for

*Correspondence: com.aa@frederick.ac.cy; achilleas@cs.ucy.ac.cy
!Frederick University, Nicosia, Cyprus
“University of Cyprus, Nicosia, Cyprus
Full list of author information is available at the end of the article

@ Springer Open

Kubernetes (Amazon EKS)) to manually deploy applica-
tion components, observe the deployment progress and
monitor the application performance is offered. Also,
there are languages that support the definition of plat-
form specific models (i.e., they are directly bound to a
cloud environment such as Amazon’s CloudFormation
and OpenStack’s HOT). However, such frameworks do
not enable users to move to another Cloud provider
(lock-in effect) when a respective need arises (e.g., better
offerings, bad application performance, costs).

To address the vendor lock-in effects [34], multi-cloud
resource management (MCRM) has been proposed [31],
which offers organisations several capabilities includ-
ing [2]: (a) optimal use of best possible cloud services
from a variety of offerings supplied by a multitude of
cloud providers; (b) ability to sustain an optimal qual-
ity level via the application dynamic reconfiguration; (c)
ability to achieve a better security level by exploiting suit-
able security services; (d) ability to move applications
near the client location to improve application perfor-
mance; (e) ability to conform to national and international
regulations.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0138-7&domain=pdf
http://orcid.org/0000-0002-7661-0302
mailto: com.aa@frederick.ac.cy
mailto: achilleas@cs.ucy.ac.cy
http://creativecommons.org/licenses/by/4.0/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

To support MCRM and exhibit a suitable automation
level, different Cloud Modelling Languages (CMLs) have
been defined in many research projects and prototypes
[8]. These CMLs “focus mainly on design-time aspects,
come from disjoint research activities and lack conver-
gence with proposed standards. They also lack the right
expressiveness level, while commonly cover one service
type (IaaS) in the cloud stack” [8]. On the other hand,
widely used and powerful container orchestrators such
as Kubernetes ! and Docker Swarm? suffer from limita-
tions, such as multi-cloud support and support for basic
scalability rules. For instance, for multi-cloud deployment,
a Kubernetes cluster needs to be deployed manually in
each cloud provider or Pipeline® can be used to deploy
Kubernetes clusters on major cloud providers via a unified
interface prior to deploying the application.

Contributions

To address the aforementioned challenges, the Cloud
Application Modelling and Execution Language
(CAMEL) has been devised. CAMEL is a multi-domain-
specific language (multi-DSL) covering all aspects
necessary for cloud application management at both
design time and runtime. CAMEL has been developed
mainly by appropriately integrating existing cloud-
specific DSLs, such as CloudML [15] and by also defining
additional ones like the Scalability Rule Language (SRL)
[22]. In addition, CAMEL comes with a textual syntax,
which enables the rapid specification of multi-cloud
models by DevOps users.

In relevance to previous approaches, the contribution of
this work lies in the innovative aspects of CAMEL that are
not present in the existing literature: First, by developing a
single, unified and integrated megaDSL, as recommended
in [4], the user avoids having to use a set of heteroge-
neous DSLs and editors. This can reduce the learning
curve, while it caters for better maintainability as it is eas-
ier to control the development of a unified, single DSL.
Second, CAMEL supports the type-instance pattern, well
suited to support the models@runtime approach [9], to
enable users to provide models that abstract away from
technical details, in contrast to other CMLs. In the mod-
els@runtime approach (see Fig. 1), the application state is
monitored and reflected on a certain model that abstracts
from quite technical details, while any changes on this
model are reflected directly on the application and its
provisioning.

Third, the identification of all MCRM needed informa-
tion, based on the experience of CAMEL developers in
implementing other CMLs, enables automated, adaptive
cross-cloud application provisioning. As CAMEL targets

IKubernetes - https://kubernetes.io/
2Docker Swarm - https://docs.docker.com/engine/swarm/
3Pipeline - https://github.com/banzaicloud/pipeline

(2019) 8:20 Page 2 of 25
e mmm_m_E_E—_-——_,—__—_—_—_—_——— N
L Reasoning engine I

Model?
y @run-time

Current
model

Adaptation
engine

Fig. 1 Models@run-time architecture

DevOps, a user study was conducted in this work, in terms
of adaptive provisioning of applications in the Cloud for
various domains (e.g., data farming, flight scheduling).
It shows the unique CAMEL benefits, i.e., a good level
of usability, comprehensiveness and suitability. Fourth, to
address heterogeneity and interoperability, CAMEL has
been also aligned with TOSCA. As expressed in [8]: “Hav-
ing the TOSCA standard, it is desirable to align existing
and potential new CMLs for providing continuous mod-
eling support, for example, by achieving interoperability
among the languages”

Background

CAMEL has been developed in the framework of the
PaaSage EU project* [38]. PaaSage’s goal is to provide
an aPaaS-like abstraction to its users enabling a vendor-
neutral application specification mappable to different
IaaS cloud providers. Hence, PaaSage offers an environ-
ment, where application developers and operators can
easily develop and deploy applications on multiple cloud
infrastructures, taking advantage of flexibility, adaptivity
and scalability, without having to consider the specifics
of different infrastructure requirements and APIs. In that
context, CAMEL is an important part of the PaaSage
development and deployment platform. Its eco-system
supports a dedicated social network, where the users can
share their CAMEL models [30]. Based on the above,
the aim of the current paper is to present the CAMEL
language and how it addresses the issues required for

4PaaSage EU FP7 Project - https://paasage.ercim.eu/

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://github.com/banzaicloud/pipeline
https://paasage.ercim.eu/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

successful multi-cloud application design, whereas the
actual model execution, management and adaptation is
performed by other components of the PaaSage platform.
Their presentation is outside the scope of the current
paper. High-level information on how CAMEL is inte-
grated in the PaaSage platform and its workflow are
provided in “CAMEL in the PaaSage workflow” section,
whereas dedicated papers cover specific aspects of the
platform, such as security enforcement [23].

CAMEL has already been adopted, extended and used
in several EU research projects (PaaSage, CloudSocket®,
CACTOS®) to support the modeling and execution of
applications distributed over multiple cloud environ-
ments. Within these projects, CAMEL has also been
extended to support PaaS and SaaS cloud services [27]
and has been established as a baseline for the provisioning
of Business Process as a Service [18]. It currently contin-
ues to evolve in the H2020 Melodic project’, to address
the challenges of multi-cloud management of large-scale
optimised data-intensive computing applications [20].

Structure of this document

The rest of the article is structured as follows. The next
section presents the key step of the requirements analysis
and the subsequent steps that demonstrate the ratio-
nale behind how CAMEL has been defined, designed and
developed. “The CAMEL language” section provides an
overview of CAMEL, presents the key role of CAMEL
in the workflow of the PaaSage platform and defines
the CAMEL metamodels. “CAMEL application: the data
farming use case” section explicates how a certain use case
from PaaSage can benefit from its modelling via CAMEL
and its subsequent evolution via the application of
PaaSage’s model-based MCRM framework. “Evaluation”
section introduces the user study performed in this
work and discusses its main results. The related work is
reviewed in “Related work” section and a criteria-based
comparative study of the CAMEL language with other
CMLs is also presented in this section. Finally, “Conclusions
& future work” concludes the article and draws directions
for further research.

CAMEL specification and implementation

This section presents the steps for the specification
and implementation of the CAMEL. Initially the analy-
sis and extraction of the CAMEL requirements is pre-
sented. These form the basis for subsequent steps defined
and presented as follows: (i) the definition of a suitable
design and development approach, (ii) the identification
of the complete set of MCRM aspects to be covered
by the CAMEL language, (iii) the selection, adaptation

5CloudSocket EU H2020 Project - https://site.cloudsocket.eu/
6CACTOS EU FP7 Project - http://cactos-cloud.eu/
7Melodic EU H2020 Project - http://melodic.cloud

(2019) 8:20 Page 3 of 25

and extension of existing CMLs and DSLs to cover the
MCRM aspects, (iv) defining the method for integrating
these diverse languages and (v) finally the use of suit-
able technologies to drive the integration method for the
implementation of CAMEL.

Requirements

To create CAMEL, the following requirements were de-
rived based on the challenges presented in “Introduction”
section, summarized as: 1) support design-time and mod-
els@runtime approaches, 2) unify CMLs (aspects) created
in disjoint activities and prototypes and 3) achieve conver-
gence with relevant standards.

— models@runtime (R;): CAMEL must support both
type and instance level, enabling to specify both
provider-independent and provider-specific models.
The first will drive the deployment reasoning phase,
thus enabling users to define non-functional and
deployment requirements in a
cloud-provider-agnostic way. The second will enable
to maintain a cloud-provider-specific model of both
the application and monitoring topology.

— multiple aspects coverage (Ry): CAMEL should
enable the coverage of multiple aspects, to support all
phases of the MCRM lifecycle.

— high expressiveness level (R3): A suitable
expressiveness level should be employed to capture
accordingly required aspects of the respective
domain. This enables both the users to specify the
needed application information and the system to
maintain and derive such information at a detailed
level, so as to support all application lifecycle
management phases.

— Separation of concerns (Rs): CAMEL should support
loosely-coupled packages, each covering an aspect of
MCRM. This will facilitate a faster and more focused
specification of models at each phase.

— Reusability (Rs): CAMEL should support reusable
types for multiple aspects of cross-cloud applications.
This will ease the evolution of models.

— Suitable integration level (Rg): Al CAMEL sub-DSLs
should be mapped to an appropriate integration level
that can support the consistency of the information
provided and minimise overlap across sub-DSLs.

— Textual syntax support (R;): CAMEL targets DevOps
that deal with cloud management and are akin to
textual/code editing. Thus, the need to support
CAMEL textual syntax arises for editing textual
models.

— Re-use of DSLs (Rg): Existing DSLs from disjoint
research activities should be reused and integrated
(Re), as attested also in [8]. This is because they
provide valuable experience and information on

https://site.cloudsocket.eu/
http://cactos-cloud.eu/
http://melodic.cloud

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

MCRM aspects. This also enables involving different
DSLs communities in CAMEL evolution, while it
reduces the learning curve for DevOps already
familiar with them.

Design and development

CAMEL design is inspired by component-based
approaches, which support the requirements of sepa-
ration of concerns (Rs) and reusability (Rs). As such,
deployment models can be regarded as assemblies of
components exposing ports, and bindings between these
ports. Furthermore, CAMEL developers have defined a
design and development approach that satisfies the rest
of the requirements and its composed by the following
steps: (a) Aspect/Domain Identification [Ry]; (b) Selection
of Languages [Ra, R3 and Rg); (c) Integration [mainly R
but also Ry, R4 and Rs]; (d) Implementation [Ry].

More to the point, this approach is based on the ratio-
nale of heterogeneous CMLs convergence, extension and
optimization to produce one complete CML that takes
benefit on the knowledge already captured in these lan-
guages [8]. Also, such an approach makes CML main-
tainability, evolution and alignment with the standards
(i.e., TOSCA) more feasible, as attested also in the CMLs
survey in [8]. Finally, organisations, apart from involving
these experts in CAMEL development, have their own

(2019) 8:20 Page 4 of 25

communities, which could enable CAMEL to keep up with
changes made to those individual CMLs.

Aspect Identification

Based on the knowledge and expertise of modelling
experts in PaaSage, each action involved in MCRM was
mapped to specific information requirements to address
a certain domain/aspect. Table 1 presents the identified
aspects for fully supporting the multi-cloud application
lifecycle management actions.

Language Selection

The aspects identification for MCRM, was then followed
by a careful examination of existing CMLs and DSLs
covering additional aspects (e.g., organisational). PaaSage
experts knowledge and involvement in implementation of
existing CMLs, supported greatly and assisted in selecting
the following CMLs:

— Cloud Modelling Language (CloudML) [15-17]
enabling to specify deployment topology models

— Saloon [35-37] covering the modelling of cloud
providers and value types

— CERIF’s [21] organisation part enabling to model
organisations and their access control policies

— OWL-Q [25] covering the modelling of: (a)
non-functional terms (metrics and attributes), (b)

Table 1 The relevant aspects for multi-cloud application management

Aspect Phase Rationale
Deployment All The PITMs and PSTMs models drive both application reasoning and deployment,
while execution-related activities should be reflected in PSTM models
Requirement Reasoning The user requirements drive application deployment reasoning,
Execution while they are also used to restrain the way local scalability can be performed at runtime
Provider Reasoning, Provider models enable to matchmake and select suitable cloud offerings
Security Reasoning High- and low-level security requirements can drive the offering space
filtering, as well as the application deployment optimisation
according to security criteria apart from the quality ones and cost
Metric Reasoning, Metrics are used as optimisation criteria for deployment reasoning, while they
Execution also explicate how application monitoring can be performed during the execution phase
Scalability Execution Scalability rules drive the local application reconfiguration during execution
Organisation Reasoning, An organisation can have accounts on certain providers which reduces the offering space
Deployment only to them. The credentials to these providers enable the platform to act on user
behalf for deploying application components to suitable VMs
Location Reasoning Location requirements can be used to filter the offering space during deployment reasoning
Execution Reasoning, Previous execution history knowledge can be used to improve application deployment
Unit All Auxiliary aspect enabling to associate units of measurement to metrics and thus,
indirectly, to the conditions (i.e,, SLOs) posed on them
Type All Auxiliary aspect enabling to provide types to language elements like metrics, as well as

to define different kinds of values that can be assigned to element properties

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

respective requirements or capabilities imposed on
them in the form of constraints, and (c) units.

These CMLs and relevant DSLs served as the starting
point covering many aspects for MCRM. Nevertheless,
additional information was necessary and thus the focus
was reverted on the coverage of missing aspects. In spe-
cific, the information coverage for the location aspect was
minimal and thus a relevant metamodel was incorporated
in CAMEL. Furthermore, for the aspects of requirement,
scalability, execution and security, none of the existing
DSLs had sufficient information coverage. Hence, addi-
tional aspect-specific DSLs were developed in CAMEL.
In the end, six aspects were covered by existing partner-
owned DSLs, while five were developed from scratch by
considering the requirements posed on the domain by the
MCRM process.

Integration

In addition to the DSLs selection, some well-known chal-
lenges in DSL integration and evolution [32] had to be
addressed, involving the following: (a) each DSL comes
with its own abstract and concrete syntax, which makes
it then difficult to join two or more DSLs, especially if
they adopt different formalisms to define their syntax, (b)
the DSLs to be integrated can have equivalent or overlap-
ping concepts, which can lead to information repetition
and misconceptions at the modeller side, (c) different
modelling styles can be adopted leading to completely het-
erogeneous DSLs resulting in lack of uniformity, and (d)
different DSLs might exhibit a different description gran-
ularity level, which makes it difficult to find the most
appropriate detail level for integration.

To resolve these challenges, a detailed integration
approach was followed that combines all DSLs to the same
modelling (technical) space, description level and style by
also addressing the equivalence and overlapping concepts
issue. This was done by adopting the Eclipse Modeling
Framework (EMF) that provides: (i) tranformation tools
from various syntaxes (e.g., XML Schema) to the Ecore
meta-language, (ii) semantic intra- and inter- domain val-
idation of models using tools that enable the definition of
Object Constraint Language (OCL) [33] constraints, and
(iii) the production of a uniform, homogeneous concrete
syntax of the CAMEL multi-DSL, using the Ecore meta-
model, which follows the same modelling patterns and
style. This enables modellers to rapidly specify in a similar
and logical manner elements of heterogeneous DSLs. This
reduces the learning curve and promotes the CAMEL
usage.

The above description provides a high-level overview of
the integration approach. Interested readers can find fur-
ther details on the integration procedures for accomplish-
ing a unified CAMEL language, as defined and explained

(2019) 8:20 Page 5 of 25

in [38] and also documented in the CAMEL Technical
Documentation 8.

Implementation

In addition to the rich expressiveness in defining a DSLs
abstract syntax using EMF, as well as both the syntac-
tic and semantic model validation using OCL, Eclipse
offers also programmatic tools enabling the DSL devel-
oper to: (a) produce domain code out of an Ecore model,
(b) produce a graphical editor for this DSL, (c) program-
matically validate the DSL’s models and (d) produce the
DSL concrete syntax. Although the Eclipse tools allow
generating a graphical tree-based editor, the feedback
received from the use cases partners in PaaSage while
using this editor, resulted in the conclusion that DevOps
(i.e., CAMELs main target group) are more accustomed
to code-based textual editors. Hence, the Eclipse’s XText
language framework was used to define the CAMEL tex-
tual syntax. XText supports the automatic generation of
textual editors out of the textual syntax definitions with
user-friendly features, such as error highlighting, auto-
completion and validation. CAMEL and its textual editor
are available in PaaSage’s repository ° under the Mozilla
Public License version 2.0.

Apart from the modelling adjustments in CAMEL' tex-
tual syntax, the CAMEL model importing feature was
implemented. This feature enables users to exchange and
re-use CAMEL models to have a better support in their
modelling tasks. For example, suppose that a user needs
to specify location requirements for the VM nodes of an
application topology model. If no location model is re-
used, the user will need to manually develop a location
hierarchy to model the desired locations of such VMs.
However, by relying on a standardised location model that
can be imported in a currently edited CAMEL model,
the user can reduce the modelling effort by just selecting
from the imported model the desired locations. In fact,
this location model is already available and can be gen-
erated by exploiting the model importer tool available in
PaaSage’s repository. The model is constructed by trans-
forming the United Nation’s FAO geopolitical ontology!°
to a model conforming to the CAMEL location sub-DSL.
This model covers a location hierarchy involving the lev-
els of continents, sub-continents and countries. Thus, it
is quite sufficient to support specifying physical location
requirements.

Requirements fulfillment
The design, integration and implementation steps were
performed by following a process that guarantees that the

8CAMEL Technical Documentation—http://camel-dsl.org/documentation/
9PaaSage’s Git Repository - https://gitlab.ow2.org/paasage/

L0UN FAO geopolitical ontology -http://www.fao.org/countryprofiles/
geoinfo/modulemaker/index.html

http://camel-dsl.org/documentation/
https://gitlab.ow2.org/paasage/
http://www.fao.org/countryprofiles/geoinfo/modulemaker/index.html
http://www.fao.org/countryprofiles/geoinfo/modulemaker/index.html

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

eight requirements described in “Requirements” section
are satisfied. First, the CAMEL language follows the type-
instance pattern [3], facilitating reusability (R3) and the
models@runtime approach (R;). This pattern exploits
two flavours of typing, namely ontological and linguis-
tic [29], as depicted in Fig. 2. In this figure, sL (short for
Small GNU/Linux) represents a reusable type of VM. It
is linguistically typed by the class vm (short for virtual
machine). SL1 represents an instance of the virtual machine
sL. It is ontologically typed by st and linguistically typed by
VMinstance.

Second, CAMEL follows the models@runtime
approach, mapping to the R; requirement, as it has
been designed to utilise the abstraction of provider-
independent models, which are then transformed into
provider-specific ones based on matching cloud capa-
bilities with the respective requirements posed. The
provider-specific models can then be evolved by the
system through the adaptive provisioning of the user
application by still satisfying the requirements given at
the provider-independent level.

The coverage of multiple aspects, i.e., requirement Ry,
is one of the cornerstones of the DSL design approach.
The determination of relevant aspects enabled to pro-
duce an all-inclusive but focused DSL, which attempts to
address the MCRM problem by covering only the most
suitable information pieces. This enabled to discover suit-
able DSLs that were integrated into a coherent super-DSL,
i.e., the CAMEL, to reduce its development effort and
time.

Requirement Rz is guaranteed at two levels: (a) by
selecting and extending (when needed) a suitable DSL
to ascertain the optimal coverage of each aspect; (b) by
adopting a formalism (EMF Ecore + OCL), which enables
to also cover, in an expressive manner, the semantics of the
respective domain.

Separation of concerns (requirement Ry) is achieved by
separating the information aspects to be covered in differ-
ent CAMEL packages enabling their individual evolution.

(2019) 8:20 Page 6 of 25

The approach to integration between DSLs enabled us
to move generic or domain-specific concepts to suitable
packages in the CAMEL metamodel. This allows each
DSL to focus on a specific domain, thus avoiding semantic
overlaps across domains.

Requirement Rs is satisfied via the design of CAMEL
and the aforementioned DSL integration process. In par-
ticular, CAMEL is designed for re-usability by separat-
ing between generic and aspect-specific concepts that
can be re-used across different CAMEL sub-DSLs. For
instance, a Metric (part of metric DSL) is associated with
a respective Measurement (part of execution DSL) incorpo-
rated in an application execution context (i.e., deployment
episode). In fact, the latter is a form of cross-referencing,
also enabling the inter-domain CAMEL model valida-
tion. Apart from this, the CAMEL tools allow importing
other CAMEL models. For example, standardised location
models can be re-used for specifying location require-
ments in multiple CAMEL models.

A suitable integration level (requirement Rg) is achieved
by using the right modelling technologies and employing
the aforementioned DSL integration process. The fol-
lowed procedure enabled to bring all DSLs into the same
modelling space and integrate them into a unified DSL.
The DSL exhibits the same modelling styles/patterns,
while also caters for providing the same detail level, which
is sufficient enough for capturing a specific domain by also
keeping the respective modelling effort at an appropriate
level.

The support for a textual syntax (requirement R7) is
provided by the CAMEL textual editor, which was imple-
mented using XText and enables users to operate with
CAMEL. A good effort has been spent in homogenising
this syntax across different DSLs, by adopting the same
modelling patterns and differentiating with respect to the
default patterns automatically generated via XText. By
providing user-friendly features, such as syntax highlight-
ing and auto-completion, combined with the capability
to import existing CAMEL models, the CAMEL editor

VM <€ VMinstance
N A
linguistic Metamodel I
typing | Model |
1 1
ontological
SL typing SL1
Fig. 2 Linguistic and ontological typing

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

enhances the user experience, exhibits a suitable usability
level, and enables rapid development of CAMEL models.
This has been validated in “Evaluation” section.

Finally, the re-use of DSLs (requirement Rg) was one of
the design cornerstones of CAMEL. It enabled to reduce
CAMEL’s development effort, to cover well the respec-
tive domains in many cases, while also guaranteed the
participation in this development of language engineers
that have a special interest in maintaining the up-to-date
versions of their DSLs within CAMEL.

The CAMEL language

In this section, an overview of CAMEL is presented first,
with respect to its constituent sub-DSLs. Next, the anal-
ysis will focus, also for brevity reasons, on some core
sub-DSLs, i.e., those involved in the modelling of appli-
cation topologies, requirements and scalability rules, thus
targeting the DevOps users.

In this respect, the CAMEL sub-DSLs covered in the
following sub-sections include: the deployment, require-
ment, metric, and scalability ones. More details on other
CAMEL sub-DSLs can be found in CAMEL’s documen-
tation. Also, an analysis over CAMEL'’s security sub-DSL
can be inspected in [24].

CAMEL overview
Based on its previously analysed design method, CAMEL
was realised as a super-DSL integrating multiple sub-
DSLs/metamodels. Table 2 provides an overview of
CAMELs content. It explicates which are the DSLs
included, supplies a list of the core domain concepts cov-
ered by these DSLs, as well as the newly added concepts,
and indicates the roles of users that can be responsible to
provide information for these domains.

The following user roles are expected to be involved in
CAMEL model specification: (a) DevOps: represent users

(2019) 8:20 Page 7 of 25

responsible for defining the application non-functional
and deployment requirements along with scalability rules;
(b) Admin: responsible for specifying: (1) the organisa-
tion model covering information about the organisation
running the platform and the access control policies per-
taining to that platform’s usage; (2) provider models cov-
ering the offerings from both public and private cloud
providers. Thus, there is a separation of concerns as
DevOps users work at a higher abstraction level (provider-
independent level), while Admins at a lower, more cloud
provider-dependent level; (c) System: it maps to the
platform supporting the multi-cloud application deploy-
ment, responsible for specifying and evolving provider-
dependent models, as well as enriching the execution
history of the application(s).

The separation of concerns between roles also defines
when certain CAMEL model parts should be modelled or
modified. In particular, DevOps and Admins are usually
involved in the modelling phase as they provide informa-
tion used mainly for supporting the subsequent phases.
One exception concerns the provider models that can be
updated by the Admin whenever changes in the offer-
ings of respective cloud provider(s) are detected. As this
change can occur at any time, this modification can span
all application management phases. On the other hand,
the System role takes care of updating the initial CAMEL
model provided by the other roles during the subsequent
phases of application reasoning, deployment and execu-
tion.

Some patterns can be derived from Table 2. First, the
DevOps role is responsible to provide most of the domain-
specific models in CAMEL. This is obvious as CAMEL
targets mainly this role. However, while it can be argued
that a lot of modelling effort will be contributed by this
role, this is not necessarily the case. In particular, only
two core models need always to be specified, ie., the

Table 2 The DSLs comprising CAMEL, the core concepts they cover and the roles responsible for providing these DSLs" models

DSL Core concepts covered

Role

Core (Top-Level)

Top model, Container of other Models, Applications

DevOps, System

Deployment Application topology (Internal Components, VMs, Hostings, Communications) DevOps, System
Requirement Hardware, Security, Location, OS, Provider, QoS and Optimisation Requirements DevOps
Provider Provider offerings (in form of a feature-attribute model) Admin

Security Security controls, Attributes and mMtrics DevOps

Metric Metrics, Sensors, Attributes, Schedules, (measurement) Windows, Conditions DevOps, System
Scalability Scalability Rules, Event (Patterns), Horizontal and Vertical Scaling Actions DevOps
Location Physical and Cloud-specific Locations DevOps
Organisation Organisations, Users, Roles, Policies, Cloud/platform credentials Admin
Execution Execution contexts, measurements, SLO assessments, adaptation history System

Unit Units of measurement DevOps

Type Value types and Values DevOps

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

deployment and requirement ones. The specification of
the rest of the models depends on the application require-
ments. For instance, scalability rules are not needed for an
application facing constant load, while security require-
ments do not need to be modelled when the applica-
tion does not access critical organisational assets. Fur-
ther, template models are already offered for basic cloud
providers, metrics, units and locations which could be
re-used.

Second, it is evident that there are two aspects, which
concern two roles, mapping to the deployment and
metric DSLs. This implements CAMELs support for
the models@runtime approach. Hence, the DevOps role
provides the provider-independent topology and met-
ric models, while the System role transforms them into
provider-specific models that evolve at user application
provisioning.

CAMEL in the PaaSage workflow

CAMEL per se is a modelling language and framework for
cloud applications and their execution status. This mod-
elling itself can be generic and on a level that is indepen-
dent from cloud providers, e.g., describing requirements
for an application to be run; on the other hand, the mod-
elling can also be specific and describe very concretely
which application components shall be run on which
virtual machines on what cloud provider. Being a mod-
elling language, CAMEL provides the means to express
these scenarios, but itself does not come with any tools

(2019) 8:20 Page 8 of 25

for manipulating the models or moving from provider-
agnostic models to provider-specific models. Initially,
such tools have been developed and evaluated in the
PaaSage project and been enhanced in work since then.
Even though this paper is about CAMEL as a language,
this section describes PaaSage’s MCRM framework with
CAMEL at its core. We hope that this illustrates the usage
of CAMEL in a larger context and helps the reader to
better understand.

In the following, we focus on the application deploy-
ment and reconfiguration flow supported by the PaaSage
framework. It is important to note that PaaSage has not
been designed to be a cloud broker. Instead, its opera-
tion is similar to configuration management tools such
as ansible and chef and its view is application-centric. In
consequence, the storage of cloud credentials required for
accessing cloud services is not overly critical, as the entire
toolchain runs locally. Despite that, PaaSage uses encryp-
tion to store password and credentials. The use of CAMEL
in cloud-broker scenarios has been investigated by the
CloudSocket project [13, 18, 26], but it is out of the scope
of this document.

Figure 3 illustrates the use of CAMEL in the PaaSage
workflow. In this figure, white trapezes represent activi-
ties performed by the user, while white rectangles repre-
sent processes executed by the PaaSage framework. The
coloured shapes represent modelling artifacts: the blue
shapes pertain to the modelling phase, the red ones to the
deployment and the green ones to the execution phase.

Quality of
service
modelling

Provisioningand
deployment
modelling

Provisioning and
deployment
requirements

Service-level

e Scalability rules

CAMEL

Cloud provider-
independent model

Profiler

Organisation

Provider models
models

Provider
modelling

Organisation
modelling

Fig. 3 CAMEL models in the self-adaptation workflow

Executionware

l I

Adapter

L e

Cloud provider-
specific model

*

Constraint

problem Reasoner

Modelling Deployment Execution

phase phase phase

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

Modelling phase

During the modelling phase, the users develop a CAMEL
application model that includes three pieces of infor-
mation: (a) the provider-independent topology model
(PITM) specifying the types of virtual machine (VM)
nodes on which the application components should be
hosted; (b) the application requirements that include Ser-
vice Level Objectives (SLOs) and optimization goals over
quality, cost and security terms; (c) scalability rules that
drive the local adaptation behaviour of the application.
Apart from the CAMEL application model, users develop
(i.e., organization’s private cloud) or reuse CAMEL cloud
provider models (e.g., Amazon, Azure, Organization’s pri-
vate cloud), which specify the offerings supplied by these
Clouds. The provider models also cover the pricing infor-
mation of the Cloud provider as well as the relative
performance of its offerings.

Deployment phase

The design-time CAMEL application and provider mod-
els are then used by a reasoner to produce an appli-
cation deployment plan solving a constraint problem.
Application requirements are exploited to filter out cloud
providers per application component, thus relying on
component-specific requirements (e.g., # of cores - hard-
ware requirements), as well as on constraints imposed
at the application level (e.g., deployment cost < € 20
). The filtering dynamically generates a constraint opti-
mization model that aims at the best VM offering per
application component, by considering global optimiza-
tion goals defined for the whole application (e.g., minimize
application cost and maximize availability).

This optimisation model is in the CAMEL model lead-
ing to a provider-specific topology model (PSTM), cov-
ering the instance level. It defines how many instances
of an application component are deployed to respective
VM instances, which map to a certain VM offering in the
solution. The PSTM is then exploited by the Adapter to
create a deployment plan, which defines the acquisition
of resources across different Clouds, e.g. virtual machines,
and the application deployment flow, i.e., deployment of
application components on these virtual machines. It is
the Executionware that orchestrates these actions and
invokes provider-specific deployment actions and creates
an execution model.

Execution phase

Once the application deployment finishes, the execu-
tion phase starts. Initially, an execution sub-model is
injected at runtime in the CAMEL model, which main-
tains execution-related information about the current
deployment. It includes the measurements produced by
the Executionware for the running application, plus SLO
violations occurred that occurred at runtime. This model

(2019) 8:20 Page 9 of 25

not only allows to keep track of the running application,
but also to exploit its execution history to improve its
deployment using the Profiler and Reasoner.

The Executionware itself is realised by the Cloudia-
tor toolkit [6], a cross-cloud orchestration toolkit that
handles the acquisition of virtual resources, deployment
of application artifacts, wiring of application component
instances, and monitoring of both applications and vir-
tual resources. Cloudiator makes use of a multitude of
technologies to fulfill its functionality. Yet, for the sake of
acquiring virtual resources, i.e., virtual machines, it relies
on the jclouds!! library where possible [5, 12]. Other cloud
platforms, e.g., Microsoft Azure, are supported through
dedicated drivers.

Reconfiguration and adaptations

Both Executionware as well as Reasoner and Profiler may
trigger actions that lead to changes: The Executionware
monitors the quality of the application execution and
compares live monitoring data against SLO thresholds set
in the CAMEL model. Violations of these may lead to
the executing local scaling rules whose execution leads
to scale out/in of application components and hence to
a change of the CAMEL execution model. On the other
hand, Reasoner and Profiler continuously observe the
application’s execution history and current state and con-
tinuously produces new PSTMs, which are better than
the currently applied one. If such a new configuration is
found, the adapter generates a new deployment plan con-
taining the difference between the current and the desired
deployment that is passed on to the Executionware and
enacted there. As such, a global reconfiguration loop is
supported enabling to converge to an optimal application
deployment, adaptable according to the current situation.
Similarly, the entire process shown in Fig. 3 is triggered
when the user changes the cloud provider model. This
may be due to a new cloud provider being added to the
model or changes in existing cloud provider models, for
instance when the pricing of a provider changes, new
virtual machine flavours are introduced, or the relative
performance changes due to new hardware at provider
side.

Both local and global reconfiguration actions are
reflected in the currently applied PSTM runtime model,
which enables to support the models@runtime approach,
as opposed to other CMLs. In fact, the dynamic modifi-
cation of the CAMEL models is performed by the system
at runtime. This enables self-adaptation, i.e., the CAMEL
model is "live", in contrast to other systems where such
modification is manually performed at design time by the
user. This is an aspect that is missing from current propri-
etary cloud application management systems and CMLs,
that manage even single Clouds.

Hhttp://jclouds.apache.org/

http://jclouds.apache.org/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:20 Page 10 of 25

| L= DeploymentElement |

‘ T name : EString ’

i

S I

[0..*] providedCommunications 'E Component

&
'E CommunicationPort
= portNumber : EInt =0

[0.*] configurations
[|

E ProvidedCommunication]

| g8 RequiredCommunication

[0.*] providedHosts

EQ HostingPort

| E PprovidedHost | | H RequiredHost l(_

| | H InternalComponent | | I l I

| VM
| | &

—, isMandatory : EBoolean
! =false

[1..1] requiredCommunication

[0..1] vmReqguirementSet

1..1] providedCommunication El VMRequirementset 0.1 ¢

| - T T
[1..1] providedHost [1..1] requiredHost

o

positelnternalComponents

E Communication

H configuration

T name : EString

=] Hosting

[2K

= downloadCommand : EString
= uploadCommand : EString
= installCommand : EString

= configureCommand : EString
= startCommand : EString

= stopCommand : EString

[0..1] requiredPortConfiguration

[0..1] providedPortConfiguration

[0..*] requiredCommunications

. ™ [0..1] providedHostConfiguration
/T /1™ _[0..1] requiredHostConfiguration

[0..1] requiredHost

Fig. 4 The type part of the deployment metamodel

CAMEL metamodel

The CAMEL core metamodel is technically represented
as an Ecore model and organised into eleven metamod-
els/packages. Each metamodel/package reflects a certain
domain. The core package includes generic concepts, re-
used across different domains, as well as the CamelModel
acting as a top-level container. For brevity and to limit the
technical details, only the deployment, requirement, met-
ric and scalability metamodels are introduced fully. The
rest of the metamodels are briefly introduced. Readers
can refer to the CAMEL Technical Documentation and
CAMEL Semantics 2 for more details on the individual
metamodels.

Deployment Metamodel

The deployment metamodel follows the type-instance
pattern where the type part specifies a PITM while the
instance part a PSTM. Figure 4 depicts the type part. The
instance part is not shown as it is identical to the type part
with the exception that instances (e.g., VMinstance) of type-
based concepts (e.g., v™M) are modelled, always pointing to
their type.

12CAMEL Semantics - http://camel-dsl.org/documentation/

The top-level entity in the deployment metamodel is
DeploymentModel, i.e., a container of provider-independent
deployment elements. At the type level, the basic but
abstract entity is Component. Following a component-based
modelling approach, this entity has a set of provided
communication and required communication ports. The
former enable it to communicate with other components,
while the latter to host other components. It includes also
a set of Configuration elements, in the form of OS-specific
commands, for lifecycle management, i.e., to download,
install, configure, run and stop this component.

A Component entity subsumes two component types: (1)
the InternalComponent represents a software component to be
deployed in the Cloud, requiring to be hosted by another
Component (either InternalComponent or VM) via a HostingPort (for
instance, a servlet container can host a servlet, where both
are InternalComponents) and (2) the vm which acts as a host for
internal components.

A Communication is established by connecting the provided
and required communication ports of two components.
This communication’s lifecycle can also be managed via
two Configuration elements. The first focuses on managing
the provided, while the second the required communi-
cation port. Furthermore, a Communication has a type that

http://camel-dsl.org/documentation/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

draws the following values from the CommunicationType enu-
meration: (a) LOCAL: denoting that the internal components
connected need to be hosted on the same vm node; (b)
REMOTE: signifying that the two components should be
hosted on different vM nodes; (c) ANY: denotes that the
management platform is allowed to decide about the
related placement of these two components, i.e., whether
to co-locate them or not.

The second connector type maps to the Hosting concept,
representing a hosting relation between two components:
the hosted internal component and a hosting internal
component or VM. Similarly to a Communication, a Hosting
connects the provided and required hosting ports of the
two components, while it includes two Configuration ele-
ments, each devoted to the management of one of the two
hosting ports.

The VMRequirementSet includes a set of references to spe-
cific kinds of requirements that can be modelled in a
requirement model, such as quantitative hardware, location
or OS requirements (see Listing 2). A VMRequirementSet can
be associated to a vM or to the whole DeploymentModel. In
the latter case, it represents global VM requirements that
must hold for the whole application topology. In the for-
mer case, it represents local VM requirements that must
hold for a certain VM only, which take priority over global
requirements.

Requirement metamodel
CAMEL’s requirement metamodel, depicted in Fig. 5, can
capture the user non-functional requirements, including

(2019) 8:20 Page 11 of 25

hardware, quality, cost, location and security ones. It has
been inspired by the WS-Agreement [1] and OWL-Q [25]
languages. This metamodel includes the top-level Require-
mentModel concept, which can contain zero or more Require-
mentS. Arly Requirement can be either hard (see HardRequirement
concept) or soft (see SoftRequirement concept). Hard require-
ments should be satisfied at all costs by the respective
platform, while soft requirements should be satisfied on a
best-fit basis.

Requirements can be grouped by using the Requirement-
Group sub-concept of Requirement. A certain logical operator
(AND, OR or XOR) is applied over the requirements
grouped to formulate goal models, inspired by goal mod-
elling approaches like i-star [41]. The requirement group-
ing enables to specify alternative service levels (SLs),
defined as requirement conjunctions. This caters for a
more flexible filtering of the provider space, increasing
the possibility that a solution to the deployment reasoning
problem can be reached.

Metric metamodel
CAMELs scalability and metric packages rely on the SRL
DSL [14, 22], enabling to specify rules supporting com-
plex adaptation scenarios of cross-cloud applications. The
metric package captures the way application monitoring
can be performed and the main monitoring conditions
to be evaluated. The former is specified via the Metric
abstraction, while the latter by the Condition concept.

The metric metamodel (see Fig. 6) follows the type-
instance pattern, an essential feature that distinguishes it

avm 4 & CloudProvider
———

= public : EBoolean = false

[1..1]vm

= laa$: EBoolean = false

| E VerticalScaleRequirement

B SecurityControl 4

ing

. OptimisationFunction

o ; ” [1..*] securityControls " Type
= min ouble = ..*] providers
= minCores : Elnt = 0 { & ProviderRequirement Wi [& SecurityRequirement] { & RequirementModel
= maxCores : Eint =0
C) C) G -
© minRAM : Elnt = 0 — RequirementOperator
© maxRAM : Elnt =0 ®
= minStorage : Elnt =0 Type
= maxStorage : Elnt = 0 — AND
- OR
[0..1] component [0..*] requirements = XOR
E HorizontalScaleRequirement) N f
N‘[% ScaleRequirement]749[5 HardRequirement | YRequirement L
C)

< mininstances : Elnt =0

:Elnt=0

C)

[name - esting

[1..1] component

7
E InternalComponent e

% Location _[1..7] locations & LocationRequirement | |
< id : EString J

[1..¥] requirements

|ERequirementGroup | [H SoftRequirement }

_ requirementOperator L = priority : EDouble = 0.0 J
T Requi ype = AND

4,{ H HardwareRequirement

[4 OSOrimageRequirement

[DServiceLeveIObjective l ‘ B OptimisationRequirement |
(] i

isati ion :
© OptimisationFunctionType = MINIMISE ’

[1..1] customServiceLevel [0..1] metric

B QuantitativeHardwareRequirement ‘ | B QualitativeHardwareRequirement |
= minCPU : EDouble = 0.0 ‘ = minBenchmark : EDouble = 0.0 ’

© maxCPU : EDouble = 0.0 = maxBenchmark : EDouble = 0.0
© minCores : Elnt =0

= maxCores : Elnt =0
© minRAM : Elnt = 0
© maxRAM : Elnt =0
= minStorage : Elnt = 0
= maxStorage : Elnt = 0

Fig. 5 The requirement metamodel

B ImageRequirement

- &

H Condition “

< name : EString
comparisonOperator :

5 ComparisonOperatorType =
GREATER_THAN

7 threshold : EDouble = 0.0

© validity : EDate

H Metric “

 description : EString
 valueDirection : EShort = 0

© layer : LayerType = Saa$
© isVariable : EBoolean = false

E OSRequirement

< imageld : EString String

640 : EBoolean = true

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

(2019) 8:20 Page 12 of 25

% SingleValue

[0..1] value ﬂ
B MetricFormula [1..%] parameters = E Sensor
7 function : MetricFunctionType = PLUS E MetricFormulaParameter | 7 name : EString
— functionArity : - = configuration : EString
T i i i = ' name : EStrin .
MetricFunctionArityType = UNARY 1 9 I isPush : EBoolean =
- functionPattern : FunctionPatternType = false
MAP
0..*] sensors
[1..1] formula [0-7]
BC oMot H Metric H Property
ompositelvietric
p = description : EString [1 1] property T’ name : EString
| = valueDirection : EShort = 0 = description : EString
= layer : LayerType = SaaS — type : PropertyType =
= isVariable : EBoolean = false ! ABSTRACT

Fig. 6 The Metric concept and its hierarchy

g RawMetricEI

[0..*] subProperties

from the state-of-the-art. This feature enables the respec-
tive (multi-cloud) application management framework to
maintain and evolve the application monitoring infras-
tructure by following the models@runtime approach. This
infrastructure should be synchronised with the changes
performed on the application’s PSTM model.

Scalability metamodel

SRL, apart from measurement constructs, also enables
the modelling of scalability rules by including a scala-
bility metamodel (Fig. 7). SRL is inspired by the Esper
Processing Language (EPL)'® with respect to the specifi-
cation of event patterns with formulas including logic and
timing operators. SRL offers mechanisms to (a) specify
event patterns and associate them with monitoring data,
(b) specify scaling actions, and (c) associate these scal-
ing actions with event patterns. In the following, the main
concepts defined in the scalability package are presented and
analysed.

ScalabilityModel acts as a container for other scalability con-
cepts, from which the most central is ScalabilityRule. This rule
is mainly a mapping from an event to one or more scaling
actions. It also specifies additional details, such as which
is its developer (an Entity) and which scaling requirements
(see ScaleRequirement in Section 8) should limit its triggering.
Any ScalingAction is associated with a certain vm and it can
be either horizontal or vertical.

Other metamodels
Provider Metamodel: The provider package of the CAMEL
metamodel is based on Saloon [35-37]. Saloon is a

B3https://www.espertech.com/esper/

tool-supported DSL for specifying the features of cloud
providers and matching them with requirements by lever-
aging feature models [7] and ontologies [19]. It provides
the capability to define the attributes and sub-features
characterising a private or public cloud provider, e.g., the
attributes characterising the virtual machine flavours pro-
vided by a private or public cloud. It also covers the
costs and relative performance of individual offerings of a
provider. The provider models enable matchmaking and
selecting suitable cloud provider offerings, while they also
unveil details specific to the application deployment.

Execution Metamodel: The execution metamodel in
CAMEL has been developed from scratch with the main
goal to cover the modelling of whole execution histo-
ries of multi-cloud applications. Such information can
then be exploited by the management platform in order
to optimise the deployment of a multi-cloud application,
whether it is a new or an existing one. In this respect, an
execution model is a container of different deployment
episodes and enables the analysis on them to derive the
added-value deployment-reasoning-targeting knowledge.
Such a model not only allows to keep track of the run-
ning application but also to exploit its execution history to
improve its deployment.

Security Metamodel: The security package of the CAMEL
metamodel is not based on existing DSLs and has been
developed to enable the specification of security aspects
of cross-cloud applications. It enables the specification of
high-level and low-level security requirements and capa-
bilities that can be exploited for filtering providers, as
well as adapting cross-cloud applications. Furthermore,
an analysis over CAMELSs security DSL can be inspec-
ted in [24].

https://www.espertech.com/esper/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

(2019) 8:20

Page 13 of 25

& BinaryEventPattern

= lowerOccurrenceBound : Elnt = 0

= upperOceurrenceBound : Elnt = 0
operator :

S BinaryPatternOperatorType =
AND

E Eventinstance

= name : EString
T type : TimerType = WITHIN

< timeValue : Elnt=0
= maxOccurrenceNum : Eint = 0

[0..1] timer

H EventPattern|

[0.1]1

eftEvent |

5’ name : EString
2 status : StatusType = CRITICAL
© layer : LayerType = SaaS

[0..1] rightEvent

E FunctionalEvent

[1..1] event

2 BinaryPatternOperatorType | | € TimerType
= AND = WITHIN
- OR = WITHIN_MAX
= XOR = INTERVAL
= PRECEDES
~ REPEAT_UNTIL
2 UnaryPatternOperatorType | | € StatusType
B UnaryEventPattern |
= EVERY = CRITICAL
o um : Elnt = 0 ’ - NOT - WARNING
operator : — REPEAT — SUCCESS
5 UnaryPatternOperatorType = — WHEN — FATAL

EVERY

B Event [1..1] event

[0..*] scaleRequirements

H ScalabilityRule

%' name : EString

iy

5 SimpleEvent

% functionalType : EString

* EVENT_CREATION

B ScaleRequiremeanJ

1.1] event Euing (0.4 entity—J;
& Entity &
[1..*] actions
g Action _ .
< name : EString [1..1]vm HVM
- type : ActionType =

A

& NonFunctionalEvent ‘ E HorizontalScalingAction

% ScalingAction

H VerticalScalingAction

' isViolation : EBoolean = false

| = count: Elnt =0

= memoryUpdate : EInt=0

[1..1] metricCondition

E MetricCondition E’ | B InternalComponen‘?J

[1..1] internalComponent

[0..*] compositelnternalComponents

Fig. 7 The scalability metamodel

= CPUUpdate : EDouble = 0.0
© coreUpdate : Elnt = 0

= storageUpdate : EInt =0

© ioUpdate : Elnt = 0

= networkUpdate : EInt=0

Location Metamodel: The location metamodel captures
the modelling of hierarchical physical and cloud-based
locations. This modelling enables specifying location
requirements that can drive the filtering of the VM offer-
ing space in deployment reasoning, while also ensur-
ing the compliance to regional or continental regulatory
requirements. For example, as part of the Location an iden-
tifier is defined (e.g., ISO code for physical locations) and
can be further distinguished into a GeographicalRegion and a
CloudLocation.

Organisation Metamodel: The organisation package of the
CAMEL metamodel is based on the organisation subset of
CERIF [21]. CERIF is an EU standard for research infor-
mation. In particular, the organisation package of CAMEL
reuses the concepts from CERIF for specifying organisa-
tions, users, and roles. As a central part of the organisation
model, the specific organisation details are defined, such
as its name, contact email address, web URL.

Type Metamodel: The type metamodel is also based on
Saloon [35-37]. It provides the concepts to specify value
types and values used across the rest of the CAMEL
models (e.g., integer, string, or enumeration).

CAMEL application: the data farming use case

The Scalarm platform’s'# [28] data farming use case allows
illustrating how to specify CAMEL models conforming
to CAMEL’s textual syntax. We limit the presentation
to those specific CAMEL sub-models presented in “The
CAMEL language” section to illustrate the definition of
essential properties for the use case. Readers interested
in the complete concrete syntax of CAMEL should refer
to [39]. The complete Scalarm CAMEL model can be
downloaded from PaaSage’s Git repository at OW?2 1%,

Scalarm overview

Scalarm is a complete platform for conducting data
farming experiments across heterogeneous computing
infrastructures. It has been developed by the Akademia
Grniczo-Hutnicza (AGH) University of Science and Tech-
nology. Data farming represents a methodology via which
a simulation model is repeatedly executed according to an
extensive parameter space such that sufficient data can be

14Scalarm - http://www.scalarm.com/
15Scalarm Model - https://gitlab.ow2.org/paasage/camel/blob/master/
examples/

http://www.scalarm.com/
https://gitlab.ow2.org/paasage/camel/blob/master/examples/
https://gitlab.ow2.org/paasage/camel/blob/master/examples/

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

collected with the goal to provide an insight over the cor-
relation between the model properties and behaviour, as
well as the simulation’s input parameters. Thus, Scalarm
supplies to the user a set of well-known experiment design
methods to generate the experiment parameter space.

Via Scalarm, each data farming experiment can be
monitored, while the initial parameter space can be
extended at runtime. Further, the amount of computa-
tional resources dedicated to the experiment execution
can be increased such that Scalarm can scale itself based
on the experiment size.

Scalarm architecture

The Scalarm architecture follows the master-worker
design pattern and is depicted in Fig. 8. In this architec-
ture, the worker part executes the simulation, while the
master part coordinates the execution of the data farming
experiments. Each part from the two is realized by using
loosely coupled services.

In terms of the worker, the main component is the Sim-
ulation Manager, an intelligent wrapper for simulations
capable to be deployed on different infrastructures. It
implements the Pilot job concept [10] by being a special-
ized application that acquires computations resources to
run actual simulations.

In terms of the master, (3) components are rele-
vant: the Experiment Manager, Information Service and
Storage Manager. The Experiment Manager supplies an
overview about both running and completed data farm-
ing experiments, while it enables analysts to create new

(2019) 8:20 Page 14 of 25

experiments or conduct statistical analysis on existing
experiments. It is also responsible for scheduling sim-
ulations to Simulation Managers. The Storage Manager
constitutes a persistence layer in the form of a ser-
vice enabling other components or services to store
different types of information, which include struc-
tural information about executed simulations and exper-
iments, as well as actual simulation results, either in
the form of binary or text data. Finally, the Informa-
tion Service realizes the service locator pattern, con-
stituting a registry of other services and components
in the Scalarm system enabling the retrieval of their
location.

Due to the master-worker architecture there is no
immediate communication between the workers. Due to
the fact that workers pull their upcoming experiments
from the master, but the compute time per experiment
is significantly longer than this communication (order of
hours compared to orders of seconds), the application is
particularly well suited for multi-cloud deployments, as
there is no dependency on bandwidth and latency.

As-is and to-Be situation

Before employing the PaaSage platform, the user needs
to manage the worker’s resources by manually schedul-
ing extra workers to different infrastructures. More-
over, the administrator needs to manually define scaling
rules to specify scaling conditions and actions for each
internal service for the master. On another note, the
multi-cloud aspect and the complex scaling requirements

O User

simulation code,
resource specification

Scalarm Master Part
deployment, [!
scalingrules k2 A4
O — Experiment Information Storage
Admin Manager Service Manager
e o —Y | —_" I
1 (I 1 1 1
1 Simulation (I Simulation 1 1 Simulation 1
: Manager : : Manager : : Manager :
1 (| 1 1 1
1 (| 1 1 1
t__Cloudl _ | __ Clouwd2 _ _, __ Cloud3__ _,
Scalarm Worker Part

Fig. 8 Scalarm as-is architecture

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

of Scalarm disallow the use of widely used container
orchestrators, such as Kubernetes and Docker Swarm,
since they only support the definition of basic scal-
ability rules and do not support multi-cloud deploy-
ment. As mentioned in Section 8, a Kubernetes cluster
needs to be deployed manually in each cloud provider
or Pipeline can be used to deploy Kubernetes clusters
on major cloud providers through a unified interface
before an actual application and its workload can be
deployed.

By using the PaaSage platform and CAMEL, Scalarm
became a fully autonomous data farming platform. This
was achieved by using suitable scalability rules that
enabled the automatic scaling of Scalarm components
when certain conditions are met. These rules are derived
by the Reasoner component in the PaaSage platform
by considering the user’s non-functional requirements.
Furthermore, Scalarm initial deployment is handled by
PaaSage itself so that there is no need to involve a
system administrator or a user to perform scaling/de-
ployment actions, as the PaaSage platform automatically
handles all Scalarm services. Moreover, via PaaSage and
CAMEL, Scalarm managed to be executed in multi-cloud
environments. Multi-Cloud deployments free Scalarm
from vendor lock-in and allows for fine-grained opti-
mization of computation cost by selecting the cheap-
est possible cloud providers for executing large scale
data experiments. The master-worker architecture of
Scalarm makes it mostly insusceptible to network latency
problems (which may result from highly geographically
distributed deployments), and data farming does usu-
ally only requires to distribute the simulation binary
- the input and output data remain reasonably small
to avoid high of data transfers. Finally, by exploiting
the Scalarm CAMEL model, which is publicly avail-
able, and modifying it according to specific deploy-
ments, PaaSage users can conduct data farming experi-
ments without any prior investment in software infras-
tructure or the development of the right coordination
software.

The scalarm cAMEL model

The key requirements for the Scalarm use case are the
ability to define and modify the deployment model, as well
as to specify both appropriate requirements and rules for
autonomously conducting different data farming experi-
ments. For these reasons and the need to showcase the
Scalarm model definition in a clear and neat way, we
present the deployment, requirement, metric and scala-
bility models. All other models are accessible through the
PaaSage repository!®.

16Scalarm Model - https://gitlab.ow2.org/paasage/camel/blob/master/
examples/

(2019) 8:20 Page 15 of 25

The scalarm deployment model.

The main concepts in the deployment DSL are now exem-
plified via the Scalarm use case. As such, part of the
deployment model is defined in Listing 1 to reduce the
model length and complexity. The “..” denotes additional
CAMEL elements omitted from readability.

Listing 1 Scalarm Deployment model (excerpt)

1 deployment model ScalarmDeployment {
2 requirement set
CoreIntensiveUbuntuGermanyRS
3 os: ScalarmRequirement.Ubuntu
4 quantitative hardware:
ScalarmRequirement .CorelIntensive

5 location: ScalarmRequirement.
| GermanyReq
6
7 vm CorelIntensiveUbuntuGermany {
8 requirement set
CoreIntensiveUbuntuGermanyRS
9 provided host

} CoreIntensiveUbuntuGermanyHost
10
1 requirement set
CPUIntensiveUbuntuGermanyRS {
12 os: ScalarmRequirement.Ubuntu
13 quantitative hardware:
ScalarmRequirement .CPUIntensive

14 location: ScalarmRequirement.
GermanyReq

15

16 vm CPUIntensiveUbuntuGermany {

17 requirement set
CPUIntensiveUbuntuGermanyRS

18 provided host

CPUIntensiveUbuntuGermanyHost
19 }
20 .« e
21 internal component ExperimentManager {

» provided communication ExpManPort {
port: 443}

23 required communication StoManPortReq
{port: 20001 mandatory}

2 required communication InfSerPortReq
{port: 11300}

2% required host

CoreIntensiveUbuntuGermanyHostReq
26

27 }

s internal component SimulationManager {

29 required communication InfSerPortReq
{port: 11300}

30 required communication StoManPortReq
{port: 20001}

31 required communication ExpManPortReq
{port: 443}

32 required host

CPUIntensiveUbuntuGermanyHostReq
33 .
u o}
35 PR
3 communication
SimulationManagerToExperimentManager

37 from SimulationManager.ExpManPortReq
to ExperimentManager.ExpManPort
38 }

39

https://gitlab.ow2.org/paasage/camel/blob/master/examples/
https://gitlab.ow2.org/paasage/camel/blob/master/examples/

40

41

42

43

44

45

46

47
48

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

hosting

13

ExperimentManagerToCoreIntensiveUbuntu i

Germany
from ExperimentManager.
CoreIntensiveUbuntuGermanyHostReq
to
CoreIntensiveUbuntuGermany.
CoreIntensiveUbuntuGermanyHost

hosting
SimulationManagerToCPUIntensiveUbuntu
Germany {
from SimulationManager.
CPUIntensiveUbuntuGermanyHostReq
to
CPUIntensiveUbuntuGermany.
CPUIntensiveUbuntuGermanyHost

1
2
3
4
5
6
7
8
9

As dictated by its architecture (see Fig. 8), Scalarm
comprises four internal components, from which two are
presented here along with their respective deployment
requirements. The ExperimentManager has one provided
communication port (443) and two required communica-
tion ports (20001 & 11300). It also requires to be hosted on
a core intensive VM (i.e., hosting port). simulationManager
has three required communication ports (11300 & 20001
& 443) and requires to be hosted on a CPU intensive VM
(i.e., hosting port). The two internal components define
required hosting ports that need different VM nodes. In
particular, VM nodes must be associated with a 64bit
Ubuntu OS and be located in Germany, i.e., the nearest
place to Poland where major cloud providers have data
centres (see requirement model in Listing 2).

The scalarm requirement model.

In the above deployment model definition, the quanti-
tative hardware requirements that must be respected by
the corresponding VMs are referenced. The core intensive
VM, defined in the model as CorelIntensiveUbuntuGermany,
is associated with a quantitative requirement to incorpo-
rate 8 to 32 cores and have a memory size from 4096
to 8192 MB, while the CPU intensive VM, named as
CPUIntensiveUbuntuGermany, Must support a memory size
between 8192 and 16384 MB. These requirements are
actually specified (along with others) in the requirement
model presented in Listing 2.

Listing 2 Scalarm Requirement model (excerpt)
requirement model ScalarmRequirement {
quantitative hardware Corelntensive {
core: 8..32
ram: 4096..8192

}

quantitative hardware CPUIntensive

core: 1..
ram: 4096..8192
cpu: 1.0..

15
16
17

w

(2019) 8:20 Page 16 of 25

os Ubuntu {os: ’Ubuntu’ 64os}

location requirement GermanyReqg {

locations [ScalarmLocation.DE]

horizontal scale requirement
HorizontalScaleSimulationManager {

component: ScalarmModel.
ScalarmDeployment .SimulationManager
instances: 1 5

slo CPUMetricSLO {
service level: ScalarmModel.
ScalarmMetric.CPUMetricCondition

The scalarm scalability model.

Listing 3 showcases the sole scalability rule of the Scalarm
application, which attempts to increase the number of
instances of the SimulationManager component by one
when the mean CPU utilisation in its corresponding v™ is
equal or goes above 80%.

Listing 3 Scalarm Scalability model (excerpt)
scalability model ScalarmScalability ({
horizontal scaling action
HorizScaleSimulationManager {
type: SCALE OUT
vm: ScalarmModel.ScalarmDeployment.
CPUIntensiveUbuntuGermany
internal component: ScalarmModel.
ScalarmDeployment .SimulationManager

non-functional event CPUAvgMetricNFEAny

metric condition: ScalarmModel.
ScalarmMetric.CPUAvgMetricConditionAny
violation

scalability rule CPUScalabilityRule {

event: ScalarmModel.
ScalarmScalability.CPUAvgMetricNFEAny

actions [ScalarmModel.
ScalarmScalability.
HorizScaleSimulationManager]

scale requirements [
ScalarmRequirement.
HorizontalScaleSimulationManager]

This scalability rule, named as cpuscalabilityRule,
maps the CPU specific event cpuavgMetricNFEAny to the
HorizontalScalingSimulationManager scaling action. It is
also associated to the HorizontalScalesimulationManager
scale requirement (see Listing 2) denoting that the
number of instances of SimulationManager should
be at most 5, thus representing the actual upper
scalability limit to hold for the scalability rule. The
HorizontalScalingSimulationManager action indicates
that the SimulationManager component should scale

20
21
22
23
24
25
26

27

37

38

40

41
42

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

out, as hosted by the cpuintensiveubuntuGermany VM
node, with an additional instance. On the other hand,
the cpuavgMetricNFEAny is a single non-functional
event directly mapping to the violation of the
CPUMetricCondition condition, as indicated in Listing 4.

The scalarm metric model

For brevity, the analysis focuses only on how the
CPUAverage composite metric and its condition can be
specified in CAMEL (see Listing 4. This metric condition
participates in the CPUMetricsLO as indicated in Listing 2 and
the cruavgMetricNFEAny non-functional event in Listing 3.

Listing 4 Scalarm Metric model (excerpt)

metric model ScalarmMetric {

property CPUProperty {
type: MEASURABLE
sensors [ScalarmMetric.CPUSensor]

}

sensor CPUSensor

configuration: ’‘de.uniulm.omi.
cloudiator.visor.sensors.
SystemCpuUsageSensor’

push

raw metric CPUMetric {

value direction: 0

layer: IaaS

property: ScalarmModel.
ScalarmMetric.CPUProperty

unit: ScalarmModel.ScalarmUnit.
CPUUnit

value type: ScalarmModel.
ScalarmType.Range 0 100

composite metric CPUAverage

description: "Average of the CPU"
value direction: 1
layer: PaaS

property: ScalarmModel.
ScalarmMetric.CPUProperty

unit: ScalarmModel.ScalarmUnit.
CPUUnit

metric formula Formula_ Average
function arity: UNARY
function pattern: REDUCE
MEAN (ScalarmModel.
ScalarmMetric.CPUMetric)

}

raw metric context CPURawMetricContext
metric: ScalarmModel.ScalarmMetric.
CPUMetric
sensor: ScalarmMetric.CPUSensor
component: ScalarmModel.
ScalarmDeployment .SimulationManager
schedule: ScalarmModel.
ScalarmMetric.SchedulelSec
quantifier: ANY

47

50
51
52
53
54

55
56
57
58
59
60
61
62

63
64
65
66
67

68
69
70
71
72
73

75

(2019) 8:20 Page 17 of 25

composite metric context
CPUAvgMetricContextAny {

metric: ScalarmModel.ScalarmMetric.
CPUAverage
component: ScalarmModel.

ScalarmDeployment .SimulationManager

window: ScalarmModel.ScalarmMetric.
WinlMin

schedule: ScalarmModel.
ScalarmMetric.SchedulelMin

composing metric contexts [
ScalarmModel.ScalarmMetric.
CPURawMetricContext]

quantifier: ANY

metric condition CPUMetricCondition
context: ScalarmModel.ScalarmMetric
.CPUAvgMetricContextAny
threshold: 80.0
comparison operator: >

schedule SchedulelMin {

type: FIXED RATE

interval: 1

unit: ScalarmModel.ScalarmUnit.
minutes

schedule SchedulelSec ({

type: FIXED RATE

interval: 1

unit: ScalarmModel.ScalarmUnit.
seconds

window WinlMin ({

window type: SLIDING

size type: TIME_ONLY

time sgize: 1

unit: ScalarmModel.ScalarmUnit.
minutes

The cruaverage composite metric is calculated by the
Formula_average formula, which applies the mean function
over the cpuMetric, a raw metric computed by the push-
based crusensor sensor, part of the PaaSage platform and
especially the Executionware module.

CPUMetricCondition 1S a composite metric condi-
tion imposing that the metric refer to as cruaverage
should be less than 80%. This condition refers to the
CPUAvgMetricContextAny composite metric context. This
context explicates the cruaverage metric’s schedule and
window, as well as that it is applied over the Simulation-
Manager component. It also refers to the composing met-
ric’s raw metric context named as cPURawMetricContext.
The cpuaverage’s scheduleimin schedule specifies that the
metric’s measurements will be computed repeatedly every
1 min, according to the metric’s winimin sliding window.

CPURawMetricContext is the raw metric context for the
cpuMetric. It explicates that the crusensor will be used
to measure this metric and it is associated with the

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

Schedule1sec schedule, which means that crumetric’s mea-
surements will be calculated every 1 s.

Evaluation

Population

For evaluation purposes, CAMEL was exposed to differ-
ent practitioners in the context of the PaaSage project use
cases. Practitioners were recruited from the personnel of
the organisations participating in the project that were
responsible for specific use cases. 23 individuals partici-
pated in the study. In order to drive analysis of the results,
using the two way ANOVA test, the participants were
separated to four groups based on their MDE and cloud
knowledge. MDE and cloud knowledge were selected as
the two independent variables due to the need for eval-
uation of CAMEL against the dependent variable: i.e.,
usefulness or ease of use. In fact, the groups are: (i) 35%
of the participants are under Group 1 with less to aver-
age knowledge of MDE and cloud (MDE < 3, Cloud < 3),
(ii) 22% of the participants are under Group 2 with less
to average knowledge of MDE and excellent knowledge of
Cloud (MDE < 3, Cloud > 3), (iii) 13% of the participants
are under Group 3 with excellent knowledge of MDE and
less to average knowledge of Cloud (MDE > 3, Cloud < 3)
and (iv) 30% of the participants are under Group 4 with
excellent knowledge of MDE and with excellent knowl-
edge of Cloud (MDE > 3, Cloud > 3). Hence, the research
questions were defined by taking into consideration the
competences of the groups. Finally, all participants com-
pleted the evaluation questionnaire, which indicates that
all results are valid for analysis.

Methodology

The main aim of the evaluation was to collect practi-
tioners’ feedback regarding the use and capabilities of
CAMEL, and this feedback was considered in the first
evaluation steps for updating CAMEL and its modelling
environment, in order to make sure that the language
covers well different needs. The research study evalua-
tion methodology is based on two factors. In specific,
the evaluation results were extracted on the basis of the
Technology Acceptance Model (TAM) [4, 11], where the
following TAM factors were considered:

— Perceived Ease of Use (PEU): the degree to which a
user believes that CAMEL reduces the effort in
modelling tasks.

— Perceived Usefulness (PU): the degree to which a
user believes that using CAMEL enhances the
modelling tasks’ performance.

The participants used CAMEL language and edi-
tor in the context of different business and research
domains, ie., Data Farming, Automotive Simulation,

(2019) 8:20 Page 18 of 25

Flight scheduling, ERP, Financial Services and Human
Milk Bank, and completed a questionnaire for evaluat-
ing the above TAM factors. The studied use cases are
summarised in Table 3. For more information on the use
cases the interested reader may refer to the PaaSage web-
sitel”. In specific, the following steps were used for the
evaluation:

— The participants were familiarised with different
CAMEL versions, reported bugs, requested features,
and supplied feedback to developers.

— The participants modelled their use cases scenarios
with the final version of CAMEL language and editor.

— The participants assessed CAMEL features via an

online questionnaire'8.

Based on the above, the final questionnaire was
divided into different section, covering : usability of the
CAMEL Textual Editor, CAMEL documentation, CAMEL
Requirements, CAMEL Metric Model, CAMEL Deploy-
ment Model, CAMEL Scalability Rules and CAMEL
Organisation Model, whereas demographic data and prior
user knowledge were also collected. The most important
results are assessed in “Technology acceptance” section
to examine the opinion of the participants as to the use-
fulness and the ease of use of the CAMEL language and
editor, which indicates their willingness to accept and use
the new technology. The evaluation of the whole PaaSage
platform, e.g., in terms of performance, is not covered in
this work.

Moreover, a statistical analysis is applied on the eval-
uation results for reliability purposes and for detecting
useful conclusions (e.g., does the MDE experience of the
participants affects their opinion in terms of PU and PEU
for CAMEL). Initially, the Cronback’s Alpha coefficient
was used for testing the reliability of the scale items.
Following, a two factor ANOVA with replication was per-
formed to examine the effect of the two independent
variables (MDE and Cloud experience) on a dependent
variable — PU or PEU (i.e., the test was executed twice).
This test also examines whether the interaction of the two
independent variables affect each other to influence either
the PU or PEU dependent variable. Finally, a paired sam-
ple t-test was performed to determine whether the mean
difference between two sets of observations (i.e., PU and
PEU) is significant for the same population.

Reliability analysis

Cronbach’s alpha was used in this work as a measure
of internal consistency (i.e., reliability) for the designed
instrument. This coefficient is used since it provides the
capability to determine if a scale that is composed of
multiple Likert questions in a survey is reliable. In specific,

17paaSage use cases - https://paasage.ercim.eu/use- cases/
18Evaluation Questionnaire - https://goo.gl/forms/Fwr3Lc33SGqTJj832

https://paasage.ercim.eu/use-cases/
https://goo.gl/forms/Fwr3Lc33SGqTJj832

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

Table 3 The PaaSage use cases

(2019) 8:20 Page 19 of 25

Name Sector Use case provider Organisation type Relevant application
Data farming eScience AGH University of Science research Scalarm
and Technology
Automotive eScience High Performance Computing research HPC systems, e.g.
simulation Centre, Automotive Simulation Computer Aided
Centre Stuttgart Engineering
Flight scheduling industrial Lufthansa Systems consulting, IT services NetLine/Sched
ERP industrial BeWan [T services Multi Tenant
Financial service industrial University of Cyprus, IBSCY research, IT services Quorum
Human milk bank public EVRY Solutions IT services Human Milk

Bank Project

the reliability of each measurement is analogous to the
extent that is a consistent measure of a concept, and the
alpha coefficient is one way of measuring the strength of
that consistency. It is calculated by correlating the score of
each scale item (i.e., question) with the total score of a par-
ticipant’s observation and by comparing it to the variance
of individual scale item scores. Based on the survey results
the alpha coefficient was computed for PU (@ = 0.93)
and for PEU (@ = 0.70). The results indicate high relia-
bility of the scale items (i.e., questions) for PU and PEU.
In fact, the literature accepts that a value of « > 0.70
indicates high internal consistency (i.e., reliability) for the
designed instrument. It also defines that as the number
of questions increases then the reliability also increases.
This actually showcases the difference between the PU
and PEU alpha values, since for the model completeness
attribute of PU more questions were defined for evalu-
ating the completeness of each model (e.g., deployment,
requirement).

Technology acceptance

The evaluation results are first examined in terms of the
two factors of PU and PEU. In specific, based on the par-
ticipants responses it can be securely attested that the
usefulness of CAMEL is high but the ease of use is rather
low. This is evident in Fig. 9a, which shows that both
the mean and median values for perceived usefulness are
higher than that of perceived ease of use. Further exami-
nation of each TAM factor reveals more details as to the
influence of individual attributes on perceived usefulness
and perceived ease of use. In fact, for PU the two attributes
examined are the models completeness and the models
quality. Figure 9b presents the results from the analysis
of these attributes. This indicates that both the model
completeness and model quality are valued by the partic-
ipants, which shows that CAMEL language covers a large
and diverse set of requirements for defining complete
and quality cloud management models. Moreover, the

participants high scores for model quality indicates that
they are satisfied also with the features provided by the
CAMEL editor, e.g., code completion, syntax highlighting,
error reporting.

Because of the importance of CAMEL model complete-
ness, which is one of the main contributions of this work,
the analysis was performed also at the level of individual
models as presented in Fig. 9c. In fact, from the analysis of
the results it is evident that the participants rate higher the
deployment, scalability and requirements models, while
the metric model is evaluated lower. This can be attributed
to the fact that in most use cases simple metric models
were defined using single metrics, such as CPU utilisa-
tion. Nevertheless, more complex models and composite
metrics can be defined, but the platform limitation is that
it only supports CPU and RAM sensors. This means that
for complex monitoring of VM resources the appropriate
sensors should be manually implemented and deployed in
the platform as Java classes.

Moreover, the PEU of the CAMEL language and edi-
tor was evaluated based on the attributes of effective-
ness and learning curve. The mean score for effective-
ness (see Fig. 9d) is the lowest one recorded from the
entire set of attributes. This can be attributed, by exam-
ining the context and results of the individual questions
for effectiveness. In specific, the installation and use of
the CAMEL editor and language is rated higher than
the user-friendliness and model creation related ques-
tions. These outcomes are further supported by the learn-
ing curve’s higher score. In fact, the participants gave
a low score to the easiness of learning how to use the
CAMEL language and textual editor, but the extensive
documentation provided for CAMEL is highly valuable
to the users as indicated by the high scores on user-
support provided by the documentation. This strongly
suggests that the users find the detailed documenta-
tion as a key aspect that can minimise the learning
curve.

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50

0.00

6.00

5.00

3.00

2.00

1.00

3.00

2.00

1.00

Technology Acceptance Model (TAM)

[Perceived Usefulness (PU) Perceived Ease of Use (PEU)

4.57
4.14

%3:57 3.57

3.29

(a) Technology Acceptance Factors

Perceived Usefulness

[J Model Completeness Models Quality

5.00
4.77 —

IN'N
Bl

4.33
1% 394X

380 367

3.41

3.00—— 3:60—3.00

(b) PU - Completeness and Quality

PU - Model Completeness

Requirements Model [] Metric Model (] Deployment Model [Scalability Mode

500 a0 500

416 .20
3.80

3.00 300 3.00

(c) Completeness of CAMEL models
Perceived ease of use

[Effectiveness Learning Curve

5.00

4.33——
4.00—————

4.25
377 3.75

3.33—3:29%
3

3.25

2.50

(d) PEU - Effectiveness and Learning

Fig. 9 Evaluation Results. a Technology Acceptance Factors. b PU -
Completeness and Quality. € Completeness of CAMEL models. d PEU
- Effectiveness and Learning

(2019) 8:20 Page 20 of 25

Finally, a paired samples t-test was performed to con-
firm the results displayed in Fig. 9. This type of test is
a statistical procedure used to determine the mean dif-
ference between two sets of observations for the same
sample size. In this work it is used to confirm that there
is a significant mean difference between the participants
observations for PU and PEU. Like many statistical proce-
dures, the paired sample t-test has a null hypothesis that
assumes that the true mean difference between the paired
samples is zero. Statistical significance is determined by
looking at the p — value, which defines the probability
of testing the survey results under the null hypothesis.
Executing the t-test on the scores of the same set of par-
ticipants on PU and PEU resulted to a p — value = .005.
Hence, the computed p-value is less than or equal to the
commonly accepted significance level (p — value < .05),
which means that the null hypothesis (PU and PEU mean
difference is zero) can be rejected. This indicates a statis-
tically significant difference between the users opinions.
This practically means that users find CAMEL highly use-
ful, but believe that it can be improved in terms of ease
of use.

Group-Based analysis

On the basis of the technology acceptance model the per-
ceived usefulness and perceived ease of use factors are
evaluated in this survey study. An important aspect that
requires further analysis is what are the opinions of partic-
ipants in accordance to the groups defined in this study. In
specific, it maybe expected that participants under Group
1 that have low to average knowledge of MDE and Cloud
(i.e., MDE < 3, Cloud < 3) would provide a lower score
to perceived ease of use of the CAMEL language and edi-
tor. Therefore, in order to detect if there are differences in
the observations of participants across groups a two-way
ANOVA statistical test was performed. This kind of test
compares the mean differences between groups that have
been split based on two independent variables (i.e., MDE
and Cloud experience of participants). The primary pur-
pose of this test is to understand if there is an interaction
between the two independent variables on the dependent
variable (i.e., PU or PEU - test was executed twice). In
this work, the two-way ANOVA was performed to under-
stand whether there is an interaction between MDE and
Cloud knowledge, which has an effect on the PU or PEU
evaluation scores.

Table 4 presents the results of the two-way ANOVA test,
i.e., for PU and PEU. The ANOVA was used to test the
following null hypotheses:

(i) H1 - The means of observations grouped by one
factor (i.e., MDE knowledge level) are the same. On the
basis of the tests executed, H; cannot be rejected for PU
since the p — value = .53 and also it cannot be rejected for
PEU since the p — value = .20. The values are way higher

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:20 Page 21 of 25
Table 4 Two-way ANOVA analysis results
PU - MEANS PEU - MEANS
Cloud < 3 Cloud > 3 Cloud < 3 Cloud > 3
MDE < 3 3.99 3.76 3.88 MDE < 3 3.7 3.23 3.46
MDE > 3 423 3.82 4.03 MDE > 3 4.10 343 3.76
4.11 3.79 3.90 333

than the critical p — value = .05, which indicates that the
means for the group MDE < 3 and the group MDE > 3
can be practically considered the same. This is because no
statistical difference is observed from the sample, in terms
of the participants opinions for the two groups. A possible
explanation is that the participants are highly knowledge-
able of the model-driven CAMEL language and editor due
to their involvement in the research project.

(ii) Hy - The means of observations grouped by the
other factor (i.e., Cloud knowledge level) are the same.
H; cannot be rejected for PU since the p — value = .19,
but it can be rejected for PEU since the p — value = .002.
The calculated value for PEU is lower than the critical
p — value = .05, which indicates that the means for the
group Cloud < 3 and the group Cloud > 3 are different.
This is because a statistical difference is observed from
the sample, in terms of the participants opinions for the
two groups. An assumption that can be made in terms of
this result is that cloud experts are able to think ahead and
consider the complexity involved in defining a model for a
complex cloud deployment and adaptation scenario.

(iii) H3 - There is no interaction between the factors
(i.e., MDE and Cloud knowledge level). Finally, H3 can-
not be rejected for PU since the p — value = .71 and also it
cannot be rejected for PEU since the p — value = .66. The
values are way higher than the critical p — value = .05,
which indicates that the means for the intersection groups
(e.g., MDE < 3, Cloud < 3) can be practically considered
the same since no statistical difference is observed from
the sample. Hence, the participants opinions for the four
intersection groups have a strong similarity.

Based on the above group-based statistical analysis it
is strongly suggested that MDE knowledge level does not
influence the observations of participants in terms of the
factors of PU and PEU, while the Cloud knowledge level
has an effect on the participants observations for the
PEU. Finally, the claim can be made that the interaction
between MDE and Cloud knowledge has no effect on the
participants observations for both PU and PEU.

Threats to validity

In terms of external validity —i.e., the extent to which
the conclusions can be generalised, the selected use cases
cover a wide spectrum of identified aspects of self-
adaptive cross-cloud applications. However, extending the

evaluation of CAMEL to other scenarios, environments,
or even demographics may alter the findings. Internal
validity, i.e., the extent to which the conclusions based
on a study are warranted is not affected, since the data
are unambiguous. In terms of construct validity, i.e. the
degree to which a test measures what it claims, is not
affected, since all questions were carefully prepared to
cover all capabilities of CAMEL and its textual editor.
Finally, the small sample size (N = 23) and the fact
that the participants were part of the PaaSage project are
perhaps the greatest threat to the validity of the results.
For this reason different statistical analysis test were per-
formed for checking the reliability of the survey results
(i.e., Cronbach’s Alpha) and for cross-checking the valid-
ity of the conclusions (i.e., paired t-test), e.g., participants
find CAMEL more useful and not that easy to use. Finally,
ANOVA tests were performed to conclude if MDE and
Cloud knowledge level affects the results.

Related work

In the following, the CAMEL language is compared with
related work. The focus is mainly on CMLs that specialize
on cloud computing and not generic languages that might
cover one or more aspects relevant to MCRM. Such lan-
guages should also have the right abstraction level, this
being able to cover multiple and not just one cloud. In
this respect, cloud-specific languages, such as CloudFor-
mation, which are tight to a certain cloud, as well as too
detailed and technical ones are excluded from the analysis.

Comparison criteria

In the following, six comparison criteria are defined to
evaluate the CMLs focusing on their usefulness, usabil-
ity, and self-adaptation. The abstract syntax and aspect
coverage, delivery model support, and models@run-time
support reflect the usefulness of the language; con-
crete syntax and integration level reflect the usabil-
ity; and models@run-time support also reflects the self-
adaptation.

Abstract syntax. A DSLs abstract syntax describes the
set of concepts, their attributes and relations, plus the
rules for combining them to specify valid statements con-
forming to this syntax. The abstract syntax can be defined
using formalisms with different capabilities. For instance,
XML Schema is suitable for tree-based structures, while

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

MOF-based formalisms are more suited for graph-based
structures, offer better tool support and are better inte-
grated with constraint languages like OCL. This criterion
identifies the formalism used by a CML. Its evaluation
spans the values of “XML Schema” and “MOF".

Concrete syntax. A concrete syntax describes the textu-
al/graphical notation rendering the abstract syntax con-
cepts, their attributes and relations. The concrete syn-
tax can be defined using notations that have a trade-off
between the syntax intuitiveness and effectiveness. For
instance, a textual syntax may be less intuitive but more
effective than a graphical syntax. This criterion is used
to identify the notations supported by a DSL. Its evalua-
tion spans the values of “XML, “txt” (textual), and “gra”
(graphical).

Aspect coverage. A language may cover multiple aspects
within the same or across multiple domains. For instance,
in CAMEL the life cycle of cross-cloud applications is
specified using 11 aspects. This criterion reflects how
many of these aspects are covered by a language. Its eval-
uation spans the values of “low” if the DSL covers at most
three aspects, “medium” if it covers at most six aspects,
and “high” otherwise.

Integration level. A DSL that covers multiple aspects
may provide different integration levels, especially when
these aspects include similar or equivalent concepts. The
integration solution must: (a) join equivalent concepts and
separate similar ones into respective sub-concepts; (b)
homogenise the remaining concepts at the same granu-
larity level; (c) enforce a uniform formalism and notation
for the abstract and concrete syntaxes; (d) enforce model
consistency, correctness, and integrity. Each of these steps
is a precondition to the following one and requires an
increasing amount of effort. This criterion reflects how
many steps have been adopted to integrate the sub-DSLs.
Its evaluation spans the values of “low” if the sub-DSLs
were integrated following only step (a), “medium” if they
were integrated following steps (a) and (b), “high” if they
were integrated following all steps, and “N/A” if they were
not integrated. The last evaluation value maps to sub-DSL
independence that leads to the following disadvantages:
(a) it raises the DSL complexity, since each sub-DSL has
its own abstract and concrete syntax; (b) it steepens the
learning curve and increases the modelling effort for the
same reason; (c) it leads to the modelling duplication for
similar or equivalent concepts; (d) it leads to the manual
validation of cross-aspect dependencies.

Delivery model support. A cross-cloud application may
exploit any of the cloud delivery models (e.g., IaaS and
PaaS). Thus, a language for specifying the life-cycle of
such application should support concepts for every cloud
delivery model. As such, this criterion attempts to exam-
ine this. Its evaluation spans the values of “laa$S’, “Paa$S”
and “SaaS$”.

(2019) 8:20 Page 22 of 25

Models@run-time support. As indicated in “Introduction”
section, models@run-time [9] can enable the automatic
provisioning of multi-cloud applications and can be
implemented using the type-instance pattern [3]. In
CAMEL, the type-instance pattern was implemented in
the deployment and metric aspects. In the deployment
aspect, it allows to automatically adapt the component-
and VM instances in the deployment model based on
scalability rules (e.g., scale out a Scalarm service and its
underlying VM). In the metric aspect, the deployment
adaptation is reflected also on the monitoring infrastruc-
ture. This criterion reflects how many of these aspects
within a CML implement the type-instance pattern. Its
evaluation spans the values of “deployment” and “metric”

Analysis

Table 5 shows the comparison results for the DSLs based
on the aforementioned criteria. As it can be seen below,
CAMEL scores best in all criteria. Its superiority is high-
lighted in terms of the aspect coverage and integration
level criteria, plus its better support to different kinds of
cloud services and to the specification of different type-
instance models focusing both on the deployment and
monitoring aspects. Thus, the claim that CAMEL does
advance the state-of-the-art in cloud application mod-
elling and MCRM can be validated. The coverage of Paa$S
and SaaS$ services has been recently introduced in CAMEL
via its extension in the CloudSocket project.

The key CAMEL competitors are the Arcadia Con-
text Model, StratusML and more recently CloudMF. The
first has been included, due to its good aspect cover-
age which does not, however, go to a sufficient level
of detail. The second, due to its high DSL integration
level, which is mainly the outcome of following a similar
integration approach as in CAMEL. However, the main
differentiation is that less integration effort has been put
in StratusML, due to the generation of all DSLs from
scratch and the minimalistic size of the overall language,
containing around 60 concepts. StratusML does also sup-
port the modelling of semantic domain validation rules.
However, also witnessed by its small size, this language
is not expressive and extensive enough, not going to an
appropriate level of detail in the aspects covered. Further-
more, the coverage of other aspects is missing. CloudMF
is the only CML that supports deployment and metric
in terms of the models@runtime support. In specific, it
provides a domain-specific language for specifying the
provisioning and deployment of multi-cloud applications,
as well as an adaptation DSL implemented though as Java
plain objects, offering a models@run-time environment
for the continuous provisioning, deployment and adapta-
tion of applications. Finally, CloudMF presents a medium
aspects coverage with a minimal set of concepts and a low
integration level as a result.

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:20 Page 23 of 25

Table 5 Cloud Languages Comparative Analysis

Language Abstract Concrete Aspect Integration Delivery Model Models@run-time
Syntax Syntax Coverage Level Support Support

Reservoir OVF Extension (2009) XML Schema XML low N/A laaS N/A

Optimis OVF Extension (2010) XML Schema XML medium N/A laaS N/A

Vamp (2011) XML Schema XML low N/A laaS N/A

4CaaSt Blueprint Template (2011) XML Schema XML low N/A laas, PaaS N/A

TOSCA (2013) XML Schema XML, txt medium medium laas, PaaS N/A

Provider DSL [40] (2014) MOF XML, gra low medium laaS N/A

GENTL (2014) MOF gra, XML low N/A laas N/A

ModaCloudML (2014) MOF XML, gra, txt medium low laas, PaaS deployment

CAML (2014) MOF gra medium medium laaS N/A

CAMEL (2014) MOF XML, gra, txt high high laa$, Paas$, SaaS deployment, metric

ARCADIA Context Model (2015) XML Schema XML high medium laaS deployment

StratusML (2015) MOF XML, gra medium high laaS deployment

CloudMF (2018) MOF XML, gra medium low laas, PaaS deployment, metric

TOSCA and CAML come in the third place. In our
view, TOSCA is not a competitor to CAMEL. It is rather
a standard that could benefit from CAMEL based on the
following directions: (a) coverage of additional domains
not captured by TOSCA; (b) support for the type-instance
pattern and thus models@runtime. By following the sec-
ond direction, there is some integration work currently
being conducted in form of a TOSCA interest group
attempting to bring the PSTM part of CAMEL deploy-
ment metamodel into TOSCA.

With the exception of TOSCA, the other three lan-
guages (i.e., StratusML, Arcadia Context Model and
CAML) do not have a good community support. This
is evident from the fact that StratusML has been devel-
oped from a university group, while the other two lan-
guages have been developed within certain European
projects but their support seems to be discontinued. On
the other hand, CAMEL undergoes constant evolution
and some extensions have been already performed on it,
like the aforementioned PaaS/SaaS features, while oth-
ers are currently in development or planned. As such,
CAMEL will be further optimised (e.g., Melodic EU
H2020 Big-Data Cloud project), by also attempting to
adopt some interesting modelling features from these
languages.

As the languages are presented in a chronological order
in the comparison table, some interesting time-based pat-
terns can be inferred from this table:

— With the exception of Arcadia Context Model, most
recent languages rely on MOF for their abstract
syntax. Maybe this can be explained partly due to the
use of the language in a model-driven management
framework and due to the various advanced tools

available for MOF-based languages that assist in their
rapid development.

— Coupled with the first finding is the fact that the most
recent languages do provide support for the
production of graphical/textual models according to
the language’s concrete syntax. This enables then to
move from the cumbersome XML-based to a more
human-readable form, which also makes the models
more concise and easier to be edited/manipulated.

— Most recent DSLs do cater for the models@runtime
approach, thus providing better support for the
adaptive provisioning of multi-cloud applications,
with CAMEL and CloudMF being the only ones that
support both deployment and metric. This means
that they do not only support the adaptation of the
application and VM instances in the deployment
model based on scalability rules, but they cater so
that the adaptation is reflected also on the
monitoring infrastructure.

In this respect, based on these findings, both the design
requirements and choices made by the CAMEL develop-
ers can be validated, as the exploitation of Eclipse EMF &
Ecore enabled CAMEL to be rapidly developed and have
the right modelling tools supporting its continuous evolu-
tion, while the models@runtime support enabled CAMEL
to satisfy a quite recent, in its acknowledgement, but
critical modelling feature.

Conclusions & future work

This article has explained the development and imple-
mentation of an innovative multi-DSL language called
CAMEL, which advances the state-of-the-art by inte-
grating DSLs covering all suitable aspects required

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

for MCRM. The core parts of this DSL were anal-
ysed by also utilising a running use case drawn from
the PaaSage project, the actual development space of
CAMEL. CAMEL is also accompanied by a textual editor,
covering its concrete syntax and targeting mainly DevOps
users, which exhibits some nice features like syntax and
error highlighting as well as auto-completion.

Both CAMEL and its textual editor were evaluated via
a user study involving well-qualified participants from
use case partner organisations in PaaSage. The evalua-
tion results show that the editor’s usability is appropri-
ate and that CAMEL covers well its respective domains.
Some interesting suggestions were also supplied, cur-
rently considered in the development of the forthcom-
ing version of CAMEL. CAMEL is being continuously
evolving due to its active community that spans at
least three organisations: SINTEF, University of Ulm
and ICS-FORTH. This has been evident through cor-
responding extensions that have been performed on
it in the context of European projects that succeeded
PaaSage. Two examples of these projects are defined
below.

CloudSocket targeted the development of a platform
supporting the design and adaptive provisioning of
business-process-as-a-service (BPaaS) services. In that
project, two main extensions of CAMEL have been
achieved: (a) support for PaaS and SaaS modelling; (b)
modelling of advanced adaptation rules [27] that map
event patterns to adaptation workflows incorporating
level-specific adaptation actions (e.g., scaling and ser-
vice replacement ones). Melodic aims to support big
data application management. CAMEL is at the core of
Melodic, which attempts to build upon the PaaSage plat-
form to provide support to this application kind. As such,
CAMEL is planned to be enhanced to cover the big data
aspect. As Melodic is a formal PaaSage successor, also the
improvements over the user survey suggestions will be
included in the forthcoming CAMEL release. That release
is also planned to be enhanced with CAMEL extensions
from other projects, like CloudSocket. This will then
map in producing an even more complete and extensive
DSL, also broadening its application scope. Hence, the
CAMEL community will continue its effort in optimising
CAMEL and further extending it, possibly via participat-
ing in forthcoming projects that guarantee the respective
funding needed.

Abbreviations

CAMEL: Cloud application modelling and execution language; CML: Cloud
modelling language; DSL: Domain specific language; EMF: Eclipse modelling
framework; laaS: Infrastructure as a service; MCRM: Multi-cloud resource
management; MDE: Model driven engineering; PaaS: Platform as a service;
PITM: Provider independent topology model; PSTM: Provider specific topology
model; OCL: Object constraint language; SaaS: Software as a service; SL:
Service level; SLO: Service level objective; SRL: Scalability rules language;

TOSCA: Topology and orchestration specification for cloud applications; XML:
Extensible metadata language; VM: Virtual machine

(2019) 8:20 Page 24 of 25

Acknowledgements
Special thanks to the PaaSage project partners for their individual
contributions to CAMEL and the PaaSage platform.

Authors’ contributions

AA defined the evaluation framework, executed the survey and produced the
evaluation results including the statistical analysis. AA written the evaluation
part of the manuscript and coordinated/refined/merged the different
sections/contents of this manuscript. KK and AR contributed to the definition,
design and implementation of CAMEL and contributed most of the content
on the CAMEL DSLs. GK assisted in the formulation of the evaluation
framework, the execution of the survey and the results of the evaluation, and
revised the evaluation section content. JD contributed mainly to the
implementation of CAMEL (in particular in respect with the interaction with
PaaSage components) and contributed/reviewed the content on the CAMEL
DSLs sections in the manuscript. MO contributed to the definition and
realisation of the CAMEL scalarm use case and the writing of the use case
section in the manuscript. DS and FG assisted mainly to the implementation of
CAMEL (in particular in respect with the interaction with PaaSage
components) and contributed/reviewed the content on the CAMEL DSLs
sections in the manuscript. NN and DR assisted in the definition, design and
implementation of CAMEL. GP assisted in the definition of the evaluation
framework and revised the relevant section in the manuscript. All authors have
reviewed the complete manuscript and provided comments and suggestions
that were taken into consideration by AA to finalise the paper.

Authors’ information

CAMEL is an innovative multi-DSL language, which advances the
state-of-the-art by integrating and extending DSLs covering all suitable
aspects required for multi-cloud resources management. It addresses both
design time and model@runtime aspects and continues to evolve as a
language to address the many different facets of multi-cloud resources
management. In specific, it continues currently to evolve as part of the
MELODIC H2020 project to enable big data-aware application deployments
on geographically distributed and federated cloud infrastructures.

Funding

CAMEL was defined in the EU PaaSage project that was funded from the
European Union’s FP7 Research and Innovation Programme under the topic
ICT-2011.1.2 - Cloud Computing, Internet of Services and Advanced Software
Engineering with Grant Agreement No 317715.

Availability of data and materials

Survey Data and Evaluation results used in this work can be found here:
http://tiny.cc/pmaibz Relevant documentation for CAMEL can be found here:
http://camel-dsl.org/documentation/ and the code/models repositories can
be found here: https:/gitlab.ow2.org/paasage/ under the CAMEL repository.
No additional data have been used in this study.

Competing interests
No competing interests between authors for this manuscript.

Author details

TFrederick University, Nicosia, Cyprus. 2|CS-FORTH, Heraklion, Crete, Greece.
3pwC Consulting, Oslo, Norway. *University of Cyprus, Nicosia, Cyprus. >Ulm
University, Ulm, Germany. °AGH, Warsaw, Poland. ’ SINTEF, Oslo, Norway. 8LIFL,
Inria Lille, France.

Received: 27 March 2019 Accepted: 22 August 2019
Published online: 16 December 2019

References

1. Andrieux A, Czajkowski K, Dan A, Keahey K, Ludwig H, Nakata T, Pruyne J,
Rofrano J, Tuecke S, Xu M (2010) Web Services Agreement Specification
(WS-Agreement). https://www.ogf.org/ogf/doku.php/documents/
documents

2. Andrikopoulos V, Binz T, Leymann F, Strauch S (2013) How to adapt
applications for the cloud environment. Computing 95(6):493-535.
https://doi.org/10.1007/500607-012-0248-2

3. Atkinson C, Kuhne T (2002) Rearchitecting the UML infrastructure. ACM
Trans Model Comput Simul 12(4):290-321

http://tiny.cc/pmqibz
http://camel-dsl.org/documentation/
https://gitlab.ow2.org/paasage/
https://www.ogf.org/ogf/doku.php/documents/documents
https://www.ogf.org/ogf/doku.php/documents/documents
https://doi.org/10.1007/s00607-012-0248-2

Achilleos et al. Journal of Cloud Computing: Advances, Systems and Applications

22.

Bagozzi RP, Davis FD, Warshaw PR (1992) Development and Test of a
Theory of Technological Learning and Usage. Hum Relat 45:659-686
Baur D, Domaschka J (2016) Experiences from building a cross-cloud
orchestration tool. In: Proceedings of the 3rd Workshop on CrossCloud
Infrastructures & Platforms, CrossCloud '16. ACM, New York. pp 4:1-4:6.
http://doi.acm.org/10.1145/2904111.2904116

Baur D, Seybold D, Griesinger F, Masata H, Domaschka J (2018) A
provider-agnostic approach to multi-cloud orchestration using a
constraint language. In: Proceedings of the 18th I[EEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid '18. IEEE Press,
Piscataway. pp 173-182. https://doi.org/10.1109/CCGRID.2018.00032
Benavides D, Segura S, Cortés AR (2010) Automated analysis of feature
models 20 years later: A literature review. Inf Syst 35(6):615-636
Bergmayr A, Breitenblcher U, Ferry N, Rossini A, Solberg A,
ManuelWimmer Kappel G, Leymann F (2018) A Systematic Review of
Cloud Modeling Languages. ACM Comput Surv 51:1-38

Blair G, Bencomo N, France R (2009) Models@run.time. IEEE Comput
42(10):22-27

Chiu PH, Potekhin M (2010) Pilot factory - a Condor-based system for
scalable Pilot Job generation in the Panda WMS framework. J Phys Conf
Ser 219(6):062,041. http://stacks.iop.org/1742-6596/219/i=6/a=062041
Davis FD (1989) Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Q 13(3):319-340
Domaschka J, Baur D, Seybold D, Griesinger F (2015) Cloudiator: A Cross-
Cloud, Multi-Tenant Deployment and Runtime Engine. In: SummerSOC
2015: 9th Workshop and Summer School On Service-Oriented
Computing 2015. https://www.summersoc.eu/wp-content/uploads/
2015/07/2.6.domaschka_cloudiator_summesoc2015.pdf

Domaschka J, Griesinger F, Seybold D, Wesner S (2017) A cloud-driven
view on business process as a service. In: CLOSER. pp 739-746. https.//
doi.org/10.5220/0006393107670774

Domaschka J, Kritikos K, Rossini A (2015) Towards a Generic Language for
Scalability Rules. In: Ortiz G, Tran C (eds). Advances in Service-Oriented
and Cloud Computing—Workshops of ESOCC 2014, Communications in
Computer and Information Science, vol. 508. Springer. pp 206-220.
https://doi.org/10.1007/978-3-319-14886-1_19

Ferry N, Chauvel F, Rossini A, Morin B, Solberg A (2013) Managing
multi-cloud systems with CloudMF. In: Solberg A, Babar MA, Dumas M,
Cuesta CE (eds). NordiCloud 2013: 2nd Nordic Symposium on Cloud
Computing and Internet Technologies. ACM. pp 38-45. https://doi.org/
10.1145/2513534.2513542

Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems. In: O'Conner L (ed). CLOUD 2013: 6th IEEE
International Conference on Cloud Computing. IEEE Computer Society.
pp 887-894. https://doi.org/10.1109/cloud.2013.133

Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: Applying
MDE to Tame the Complexity of Managing Multi-Cloud Applications. In:
Bilof R (ed). UCC 2014: 7th IEEE/ACM International Conference on Utility
and Cloud Computing. IEEE Computer Society. pp 269-277. https://doi.
org/10.1109/ucc.2014.36

Griesinger F, Seybold D, Wesner S, Domaschka J, Woitsch R, Kritikos K,
Hinkelmann K, Laurenzi E, Iranzo J, Gonzélez RS, Tuguran CV (2017) Bpaas
in multi-cloud environments - the cloudsocket approach. In: European
Space Projects: Developments, Implementations and Impacts in a
Changing World - Volume 1: EPS Porto 2017. INSTICC, SciTePress.

pp 50-74. https://doi.org/10.5220/0007901700500074

Gruber TR (1993) A translation approach to portable ontology
specifications. Knowl Acquis 5(2):199-220

Horn G, Skrzypek P (2018) Melodic: utility based cross cloud deployment
optimisation. In: 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA). IEEE.

pp 360-367. https://doi.org/10.1109/waina.2018.00112

. Jeffery K, Houssos N, Jorg B, Asserson A (2014) Research information

management: the CERIF approach. IJMSO 9(1):5-14

Kritikos K, Domaschka J, Rossini A (2014) SRL: A Scalability Rule Language
for Multi-Cloud Environments. In: Guerrero JE (ed). CloudCom 2014: 6th
IEEE International Conference on Cloud Computing Technology and
Science. IEEE Computer Society. pp 1-9. https://doi.org/10.1109/
cloudcom.2014.170

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

(2019) 8:20 Page 25 of 25

Kritikos K, Kirkham T, Kryza B, Massonet P (2015) Security Enforcement for
Multi-Cloud Platforms—The Case of PaaSage. Procedia Comput Sci
68:103-115. Cloud Forward 2015: 1st International Conference on Cloud
Forward: From Distributed to Complete Computing

Kritikos K, Kirkham T, Kryza B, Massonet P (2017) Towards a
security-enhanced paas platform for multi-cloud applications. Futur
Gener Comp Syst 67:206-226

Kritikos K, Plexousakis D (2006) Semantic QoS Metric Matching. In:
ECOWS. IEEE Computer Society. pp 265-274. https://doi.org/10.1109/
ecows.2006.34

Kritikos K, Plexousakis D (2015) Multi-cloud application design through
cloud service composition. In: 2015 IEEE 8th International Conference on
Cloud Computing. IEEE. pp 686-693. https://doi.org/10.1109/cloud.2015.
96

Kritikos K, Zeginis C, Seybold D, Griesinger F, Domaschka J (2017) A
Cross-Layer BPaaS Adaptation Framework. In: FiCloud. https://doi.org/10.
1109/ficloud.2017.12

Krol D, Kitowski J (2016) Self-scalable services in service oriented software
for cost-effective data farming. Futur Gener Comp Syst 54:1-15

Kuhne T (2006) Matters of (meta-)modeling. Softw Syst Model
5(4):369-385

Magoutis K, Papoulas C, Papaioannou A, Karniavoura F, Akestoridis DG,
Parotsidis N, Korozi M, Leonidis A, Ntoa S, Stephanidis C (2015) Design
and implementation of a social networking platform for cloud
deployment specialists. J Internet Serv Appl 6(1):19

Munteanu VI, Sandru C, Petcu D (2014) Multi-cloud resource
management: cloud service interfacing. J Cloud Comput 3(1):3. https://
doi.org/10.1186/2192-113X-3-3

Nikolov N, Rossini A, Kritikos K (2015) Integration of DSLs and Migration of
Models: A Case Study in the Cloud Computing Domain. Procedia Comput
Sci 68:53-66

(2014) Object Management Group: Object Constraint Language. http://
www.omg.org/spec/OCL/2.4/

Opara-Martins J, Sahandi R, Tian F (2016) Critical analysis of vendor lock-in
and its impact on cloud computing migration: a business perspective. J
Cloud Comput 5(1):4. https://doi.org/10.1186/513677-016-0054-z
Quinton C, Haderer N, Rouvoy R, Duchien L (2013) Towards multi-cloud
configurations using feature models and ontologies. In: MultiCloud 2013:
International Workshop on Multi-cloud Applications and Federated
Clouds. ACM. pp 21-26. https://doi.org/10.1145/2462326.2462332
Quinton C, Romero D, Duchien L (2013) Cardinality-based feature models
with constraints: a pragmatic approach. In: Kishi T, Jarzabek S, Gnesi S
(eds). SPLC 2013: 17th International Software Product Line Conference.
ACM. pp 162-166. https://doi.org/10.1145/2491627.2491638

Quinton C, Rouvoy R, Duchien L (2012) Leveraging Feature Models to
Configure Virtual Appliances. In: CloudCP 2012: 2nd International
Workshop on Cloud Computing Platforms. ACM. pp 21-26. https://doi.
org/10.1145/2168697.2168699

Rossini A (2015) Cloud application modelling and execution language
(CAMEL) and the PaaSage workflow. In: Celesti A, Leitner P (eds). ESOCC
2015: Workshops of the 4th European Conference on Service-Oriented
and Cloud Computing, EU Research Projects Track. Springer. pp 437-439.
https://doi.org/10.1007/978-3-319-33313-7

Rossini A, Kritikos K, Nikolov N, Domaschka J, Griesinger F, Seybold D,
Romero D (2015) D2.1.3—CAMEL Documentation. In: PaaSage project
deliverable. https://paasage.ercim.eu/about/project-deliverables/206-
d2-1-3-camel-documentation

Silva GC, Rose LM, Calinescu R (2014) Cloud DSL: A language for
supporting cloud portability by describing cloud entities. In: Proceedings
of the 2nd International Workshop on Model-Driven Engineering on and
for the Cloud (CloudMDE), co-located with the 17th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS 2014), CEUR-WS.org., vol. 1242. pp 36-45. http://ceur-ws.org/
Vol-1242/

Yu E, Giorgini P, Maiden N, Mylopoulos J (2011) Social Modeling for
Requirements Engineering. In: The MIT Press. https://dl.acm.org/citation.
cfm?id=1941925

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://doi.acm.org/10.1145/2904111.2904116
https://doi.org/10.1109/CCGRID.2018.00032
http://stacks.iop.org/1742-6596/219/i=6/a=062041
 https://www.summersoc.eu/wp-content/uploads/2015/07/2.6.domaschka_cloudiator_summesoc2015.pdf
 https://www.summersoc.eu/wp-content/uploads/2015/07/2.6.domaschka_cloudiator_summesoc2015.pdf
https://doi.org/10.5220/0006393107670774
https://doi.org/10.5220/0006393107670774
https://doi.org/10.1007/978-3-319-14886-1_19
https://doi.org/10.1145/2513534.2513542
https://doi.org/10.1145/2513534.2513542
https://doi.org/10.1109/cloud.2013.133
https://doi.org/10.1109/ucc.2014.36
https://doi.org/10.1109/ucc.2014.36
https://doi.org/10.5220/0007901700500074
https://doi.org/10.1109/waina.2018.00112
https://doi.org/10.1109/cloudcom.2014.170
https://doi.org/10.1109/cloudcom.2014.170
https://doi.org/10.1109/ecows.2006.34
https://doi.org/10.1109/ecows.2006.34
https://doi.org/10.1109/cloud.2015.96
https://doi.org/10.1109/cloud.2015.96
https://doi.org/10.1109/ficloud.2017.12
https://doi.org/10.1109/ficloud.2017.12
https://doi.org/10.1186/2192-113X-3-3
https://doi.org/10.1186/2192-113X-3-3
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.1145/2462326.2462332
https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1145/2168697.2168699
https://doi.org/10.1145/2168697.2168699
https://doi.org/10.1007/978-3-319-33313-7
https://paasage.ercim.eu/about/project-deliverables/206-d2-1-3-camel-documentation
https://paasage.ercim.eu/about/project-deliverables/206-d2-1-3-camel-documentation
http://ceur-ws.org/Vol-1242/
http://ceur-ws.org/Vol-1242/
https://dl.acm.org/citation.cfm?id=1941925
https://dl.acm.org/citation.cfm?id=1941925

	Abstract
	Keywords

	Introduction
	Motivation
	Contributions
	Background
	Structure of this document

	CAMEL specification and implementation
	Requirements
	Design and development
	Aspect Identification
	Language Selection
	Integration
	Implementation

	Requirements fulfillment

	The CAMEL language
	CAMEL overview
	CAMEL in the PaaSage workflow
	Modelling phase
	Deployment phase
	Execution phase
	Reconfiguration and adaptations

	CAMEL metamodel
	Deployment Metamodel
	Requirement metamodel
	Metric metamodel
	Scalability metamodel
	Other metamodels

	CAMEL application: the data farming use case
	Scalarm overview
	Scalarm architecture
	As-is and to-Be situation
	The scalarm cAMEL model
	The scalarm deployment model.
	The scalarm requirement model.
	The scalarm scalability model.
	The scalarm metric model

	Evaluation
	Population
	Methodology
	Reliability analysis
	Technology acceptance
	Group-Based analysis
	Threats to validity

	Related work
	Comparison criteria
	Analysis

	Conclusions & future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

