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Abstract

The Cloud offers enhanced flexibility in the management of resources for any kind of application while it promises
the reduction of its cost as well as its infinite scalability. In this way, due to these advantages, there is a recent move
towards migrating business processes (BPs) in the Cloud. Such a move is currently performed in a manual manner and
only in the context of one Cloud. However, a multi- & cross-Cloud configuration of a BP can be beneficial as it can
allow exploiting the best possible offers frommultiple Clouds and enable to avoid the lock-in effect by also having the
ability to deploy different instances of the BP in different Clouds close to the locations of BP customers. In this respect,
this article presents a novel architecture of an environment which realises the vision of multi-Cloud BP provisioning.
This environment involves innovative components which support the cross-level orchestration of cloud services as
well as the cross-level monitoring and adaptation of BPs. It also relies on a certain language called CAMEL which has
been extended to support the adaptive provisioning of multi-Cloud BPs.
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Introduction
Cloud computing promises the infinite leasing of cheap
commodity resources with a very flexible, pay-as-you-
go pricing model. As such, it has been adopted as a
very appealing model for application configuration, espe-
cially as also via outsourcing the management at the
resource level, both operational costs and management
effort are reduced. In particular, numerous applications
have already been migrated to the Cloud and benefit from
its main advantages.
Such a flexible and appealing configuration model

seems also to raise the interest of business organisa-
tions with a portfolio of business processes (BPs), which
need to be better optimised and have their costs reduced.
Such organisations have already started the BP migration
process to the Cloud. However, they are facing various
problems including: (a) the lack of expertise; (b) ven-
dor lock-in. Such problems could be solved by utilising
multi-cloud service orchestration frameworks that have
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been recently introduced in the market, such as Google
Anthos1. With the advent of these tools, better customer
proximity and BP performance could be achieved by oper-
ating BP instances near the customers in data centres
of potentially different cloud providers. However, most
of these frameworks are either cloud-specific or require
great expertise from the user to properly utilise them. Fur-
ther, they do not always cover advanced deployment and
adaptation scenarios which could be evident in the con-
text of BPs. Finally, to also support true optimality, BPs
need to be concretised with cloud services that might
come from different cloud providers, thus giving rise to
the need for cross-cloud service orchestration. The lat-
ter is also essential in adaptation scenarios, where whole
cloud data centres might become unavailable such that the
switch to another cloud provider is unavoidable. However,
if we check the current market, we cannot yet see tools
really offering cross-cloud service orchestration.
The above problems are hardened by the fact that a

BP concretisation can involve multiple abstraction lev-
els. In particular, the BP activities can be mapped to

1https://cloud.google.com/anthos/
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(external) SaaS services realising their functionality. Fur-
thermore, internal BP (SaaS) components need to be
deployed on suitable IaaS services so as to properly oper-
ate. In this sense, not only cross-cloud but also cross-level
cloud service orchestrationmust be supported, something
definitely not applicable in the current market.
Even if the latter orchestration type is possible, it is

insufficient for proper BP provisioning. This is due to the
fact that various kinds of (functional or non-functional)
faults can occur within the whole BP hierarchy. As such,
there is a need to appropriately monitor and adapt cloud-
based BPs across multiple levels and clouds [65]. Such
monitoring kind needs a precise and flexible manner
via which metrics can be computed via suitable aggre-
gation formulas spanning different levels and clouds so
as to cover all possible measurability gaps. Further, the
cross-level BP adaptation needs to be performed in a coor-
dinated manner to avoid the vicious adaptation cycle’s
occurrence [65], where the effects of an adaptation mech-
anism in one level are diminished by executing an adapta-
tion mechanism at a different (adjacent) level. By looking
at the literature, only specific cross-level monitoring and
adaptation approaches have been proposed which either
take into account fewer levels than needed [6, 31, 46] or
are not specialised to support adaptation in the Cloud [27,
49, 66].
The above gap was closed by introducing a BP execution

environment that supports the cross-level and cloud adap-
tive BP provisioning. This environment was developed in
the context of the CloudSocket project2 [59], providing
support to all lifecycle phases of a BP [33], which needs
or was moved to the Cloud, by introducing phase-specific
environments. The proposed environment covers the exe-
cution phase by including innovative components which
support: (a) the cross-cloud and -level orchestration of
cloud services for BP execution; (b) the cross-cloud and
cross-level BP monitoring and coordinated adaptation.
It also relies on the existence of CAMEL3 [1, 52],

a multi-domain-specific language (multi-DSL) which
supports the management of multi-cloud applications.
CAMEL has been extended in the CloudSocket project
to support the specification of both the cross-level allo-
cation of a BP as well as the cross-level BP adaptation
via the use of sophisticated adaptation rules. Such rules
map event patterns to an adaptation workflow which
orchestrates adaptation actions that can be performed in
multiple abstraction levels.
The proposed BP execution environment has been vali-

dated through its application on a CloudSocket’s use-case
(see “Validation” section). The validation shows the suit-
ability of the environment and its main benefits, which

2www.cloudsocket.eu
3www.camel-dsl.org

include the automated and adaptive provisioning of a BP
driven by a rule-based approach.
We should highlight that this article focuses on BPs that

can be moved to the cloud. These can correspond to any
kind of BP, whose functionality can be realised by SaaS
services and whose internal software components can be
deployed via using PaaS or IaaS services. Such BPs can be
designed by using BP Design Environments like the one
offered in CloudSocket [22, 28] and might be examined in
terms of their cloud readiness via the use of assessment
tools, like CloudSocket’s Cloud Transformation Frame-
work [40]. The latter tools can be used by business experts
to evaluate whether a whole BP or some of its parts can be
moved to the cloud along with the level of effort needed to
support this migration. However, we do not enter into fur-
ther details on these subjects as both BP assessment and
design is out of scope of this article.
The rest of the article is structured as follows. “Related

work” section analyses the related work. The extended
CAMEL language is detailed in “CAMEL” section. “Busi-
ness process execution environment architecture” section
analyses the BP execution environment’s architecture. The
application of that environment on a CloudSocket’s use
case is elaborated in “Validation” section. Finally, the last
section concludes the article and draws directions for
further research.

Related work
Our work is related to three main research areas: (a)
cloud service orchestration; (b) (cloud) service monitor-
ing; (c) (cloud) service adaptation. In the following three
subsections, we analyse the related work in these areas by
discussing the benefits of the respective concepts, existing
tools as well as limitations with respect to their adoption
for Cloud-hosted BPs.

Cloud service orchestration
Through the evolution of Cloud computing, the need for
Cloud service orchestration has been raised due to the
enhanced needs of complex applications. Therefore the
design time requirements of application modelling with
the associated cloud resources [25] is extended with the
need to select the cloud resources at runtime, deploy
the resources and the application, as well as monitor
and adapt both at runtime [51]. In the first place, the
Cloud Orchestration Tools (COTs) [9] focused on ser-
vice orchestration at the IaaS level. With emerging PaaS
offerings, such as Heroku4 or CloudFoundry5, the need
for COTs focusing on PaaS orchestration has been also
raised by both the industry and academia. Consequently,
to facilitate cloud-based BP provisioning, IaaS and PaaS

4https://www.heroku.com/
5https://www.cloudfoundry.org/
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services should be combined to support a holistic, cross-
level, cloud service orchestration by also exploiting the full
potential of the cloud while avoiding the vendor lock-in.
Yet, the amount of existing cross-level orchestration tools
is minimal as this research area is quite novel. In the fol-
lowing, existing COTs are presented with respect to their
cloud service orchestration capabilities, usually restrained
within one Cloud level.
Container orchestration (with tools like Kubernetes6)

can be seen as an enabling technology for PaaS or even
FaaS (Function as a Service) (see also serverless frame-
works like Kubeless7 relying on Kubernetes). For the latter,
we are in-line with the definition in [32] and consider FaaS
as the core of serverless computing. FaaS is an enhance-
ment of PaaS, in the sense of exempting the user from
strict PaaS offer definitions, such as available libraries or
run-time environments, while leaving provisioning tasks
(like scaling and monitoring) to the provider. As the
orchestration on this end is part of the respective Cloud
provider, we do not consider this abstraction layer in our
analysis. Please also note that in contrast to our own work,
Kubernetes cannot support the orchestration of different
kinds of cloud services at different abstraction layers.

IaaS service orchestration
Benefits Following the need for flexible and dynamic
provisioning of computing facilities, the advent of Clouds
led to a hype resulting in a multitude of public and pri-
vate cloud offerings. These on-demand resource offerings
emphasise the automated application deployment and
orchestration on cloud resources. Yet, as cloud provider
APIs are rather heterogeneous and existing cloud stan-
dards poorly adopted by them, it is tremendously impor-
tant to have an abstraction layer enabling the provider-
independent management of Cloud offerings, so as to
realize multi-cloud service orchestration in an auto-
mated manner. The approaches to enable automation and
abstraction are mainly: (i) libraries, (ii) standards and
models, and (iii) Cloud Orchestration Tools.

Tools: Libraries Common representatives for Cloud
abstraction libraries are Apache jclouds8, Apache Lib-
cloud9 and Fog10. All these libraries provide a single
programmatic interface to users that abstracts provider-
specific characteristics across a multitude of providers. In
some cases (e.g., jclouds), also storage APIs from a subset
of the providers is supported. By using the offered abstrac-
tion layer, not only the provision and deployment of IaaS
resources but also the deployment of applications across

6https://kubernetes.io
7https://kubeless.io
8https://jclouds.apache.org/
9https://libcloud.apache.org/
10http://fog.io/

different clouds providers, i.e., multi-cloud deployment, is
facilitated.
Concerning jclouds, we spotted several inconsistencies /

pitfalls in the abstractions. For example, there was incon-
sistent behaviour when listing available locations. While
jclouds lists all availability zones for Amazon EC2 and
Google Compute Cloud, it shows a different behaviour
for OpenStack’s Compute API (Nova). Further, jclouds
uses Template Options to pass provider-specific features
when starting VMs. For OpenStack, Template Options
are required to assign an availability zone or SSH key.
Contrarily, the EC2 implementation implicitly supports
availability zones and automatically generates and assigns
SSH keys. Other issues include missing Windows sup-
port, incomplete location hierarchies, and inconsistent
behaviour when managing security groups. Apache Lib-
cloud and Fog exhibit similar inconsistencies.

Tools: Standards and Models Standards and model
specifications try to tackle cloud abstraction on the level
of application and resource definition. The Open Cloud
Computing Interface (OCCI)11 targets the definition of an
API for Cloud resources, primarily on the IaaS level. There
have been some attempts to implement OCCI on private
Clouds (e.g., OpenStack) and libraries (e.g., jclouds), but
wide adoption and commercial usage are still missing.
The Cloud Infrastructure Management Interface

(CIMI)12 provides a model and protocol for managing
interactions between an IaaS provider and service con-
sumer. Efforts to implement CIMI in OpenStack and
Apache Deltaclouds are already inactive; therefore, wide
adoption is also missing here.
OASIS TOSCA13 provides an open standard to describe

applications and services in the Cloud. The communica-
tion with the cloud provider, and therefore the technical
abstraction, needs to be provided into TOSCA implemen-
tations. OpenTOSCA14 supplies an infrastructure of tools
to run TOSCA blueprints. ARIA TOSCA15 is a Cloud
orchestration tool implementing TOSCA.
Another cloud application modelling language is

CloudML [24]. Based on a CloudML application descrip-
tion, the CloudMF tool supports the application’s deploy-
ment and adaptation across multiple cloud providers by
applying the models@runtime paradigm [10].
The main concerns about TOSCA are that it offers a

very abstract application model not specific to the Cloud
domain, thus requiring an additional lower abstraction
leve. Further, it does not capture the instance level to cater

11http://occi-wg.org
12https://www.dmtf.org/standards/cmwg
13https://www.oasis-open.org/committees/tosca/
14https://github.com/OpenTOSCA
15http://ariatosca.incubator.apache.org/
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for the models@runtime paradigm. OCCI and CIMI suf-
fer from a poor adoption. Anyway, adopting a language
not widely used comes with the risk that the orchestration
tool built on top of it might also become not very appeal-
ing. As such, it is better to not explicitly base a Cloud
orchestration tool on a certain language. An internal rep-
resentation model can be adopted which can be targeted
by a model transformation approach focusing on sup-
porting not only one but possibly multiple standardised
languages.

Tools: Cloud Orchestration Tools Cloud orchestration
tools need to not only rely on Cloud abstraction APIs but
to also handle both the application deployment based on
a certain topology as well as the whole lifecycle manage-
ment of the resources involved [9]. The latter two aspects
are usually covered by a DSL not always corresponding
to one of the mentioned standards. Besides the appli-
cation deployment, orchestration tools may also exhibit
monitoring and adaptation features.
During the evolution of cloud computing a variety of

scientific and industry driven COTs have been established
[63]. A taxonomy and comprehensive analysis framework
for these COTs is presented in [63].
Apache Brooklyn16 is a framework for application mod-

elling, monitoring, and management via blueprints that
define an application using a declarative YAML syn-
tax, complying with the CAMP17 standard and exposing
many of the CAMP REST API endpoints. An non-official
extension has also been developed to manage TOSCA
blueprints.
Cloudify18 is an orchestration tool using a TOSCA-

aligned modelling language for describing the topology of
the application which is then deployed to allocated VMs
in the Cloud. As in TOSCA, Cloudify splits the blueprint
into a type and a template definition. Types define abstract
reusable entities that can be referenced by templates. The
types, therefore, define the template structure, by, e.g.,
defining the properties a template can have. The template
then provides the concrete property values. This mecha-
nism is used for nodes as well as for relationships between
nodes with an application topology.
A comparison of the industry-driven approaches Cloud-

ify, Openstack Heat19 and the scientific approach TORCH
[12] is provided in [13].
Further commercial Cloud orchestration tools, such as

Scalr20, make use of the aforementioned libraries but
pursue individual rather closed ways of accessing the
functionalities and extending them. This limits their use

16https://brooklyn.apache.org/
17https://www.oasis-open.org/committees/camp
18http://cloudify.co/
19https://wiki.openstack.org/wiki/Heat
20https://www.scalr.com/

in the BP Execution Environment, as most of them are
meant to be used as complete, holistic platforms. Cur-
rent approaches in this respect split the functionalities of
Cloud orchestration tools and focus on partial issues. The
Cloud Native Foundation provides a landscape21 of such
tools online.
A requirement analysis of COTS is detailed and applied

for Apache Brooklyn, Apache Stratos22 and Cloudify in
[9]. Apache Brooklyn uses jclouds and is, therefore, stuck
to the aforementioned limitations. Cloudify comes with
plugins supporting a majority of private and public clouds
but lacks an abstraction layer as each model must explic-
itly reference cloud provider-specific features. Therefore,
this work tackles those shortcomings by applying an
advanced Cloud orchestration tool, described in detail in
“Cloud provider engine” section.
Scientic approaches, such as the orchestrator conversa-

tion [53], propose a novel approach to orchestrate cloud
applications based on a hierarchical collection of inde-
pendent software agents that collectively manage them.
Hereby, each agent can handle independent cloud models
of even different cloud modelling DSLs and manages the
specific parts of a cloud application.
The Roboconf framework [48] provides an own DSL

that enables application description and execution based
on a hierarchical manner. The framework supports pri-
vate, public and hybrid IaaS clouds; it has been validated
against the commercial tools Cloudify and Scalr.

Limitations All presented libraries, standards/models
and COTs ease the automated application operation and
the abstraction from cloud provider specifics. Yet, there
are significant differences in their supported automation
and abstraction features [9]. Moreover, tools address dif-
ferent abstraction perspectives: libraries focus on the pure
technical API abstraction while models and standards
focus on the high-level, application topology abstrac-
tion. COTs combine both perspectives by building upon
established libraries and modelling concepts. Yet, the pre-
sented approaches only focus on the IaaS level; this limits
their adoption for BPs which require multiple cloud level
support [19]

PaaS service orchestration
Benefits While IaaS level orchestration focuses on ser-
vices running on VMs, the PaaS level offers more
application-centric resources based on predefined envi-
ronments like run-time ones. Further, common services,
such as database management systems or load balancers,
can be added to theseenvironments.

21https://github.com/cncf/landscape
22Retired and therefore no further details provided: https://stratos.apache.org/
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Tools The heterogeneity of existing PaaS providers is
analysed in [35] and a standard profile for common PaaS
offering capabilities is presented. In this scope, a model
is derived, which represents the three main PaaS offer-
ing aspects: infrastructure, platform and management.
Moreover, based on that, PaaS can be categorized in
IaaS-centric, generic and SaaS-centric PaaS, depending
on the level of provided management and potential plat-
form control. Hence, such a classification needs to be
considered during application placement reasoning since
an application might demand hard requirements towards
the infrastructure, which cannot be guaranteed by all PaaS
providers.
An PaaS API abstracting layer is presented in [54],

supporting CloudFoundry and OpenShift23. This API
comprises a unified description model allowing a PaaS
provider independent representation of an application
and a generic PaaS deployment API named as COAPS.
In particular, it allows the specification of a manifest for
the application and its environment in a PaaS provider-
independent way. Further, it provides a REST-ful API for
the application’s life-cycle management (e.g., createAppli-
cation, destroyApplication, etc.) that internally maps the
calls to the APIs of the chosen PaaS providers. Therefore,
this approach provides a generic PaaS life-cycle for PaaS
deployment. Yet, the COAPSAPI only focuses on the PaaS
level and does not consider the IaaS level. Further, it pro-
vides only the abstraction of multiple PaaS providers but
not a COT’s full feature set [9].
Another PaaS provider agnostic API is presented

in [34],supporting the PaaS providers cloudControl24,
CloudFoundry, Heroku and OpenShift. The focus of this
PaaS abstraction API relies on the separation between
platform- and application-centric API interactions. Simi-
lar to [54], [34] only provides the abstraction layer for PaaS
providers and not a COT’s full feature set.
While [54] focuses on a uniform PaaS API and PaaS

provider agnostic application description, [61] is pre-
senting a middleware called PaaSHopper for application
orchestration across multiple PaaS providers. Hereby, the
supported PaaS providers are Google App Engine25 and
OpenShift. Similar to [54], PaaSHopper builds upon a uni-
form PaaS API and PaaS provider agnostic application
description with the extension of a policy-driven orches-
tration layer. Hence, the PaaSHopper middleware enables
composing multiple application components running at
different PaaS providers into one application. As [54],
PaaSHopper only focuses on the PaaS level orchestra-
tion and does not support cross-level orchestration or BP
integration.

23https://www.openshift.com/
24cloudControl has been shutdown due to bankruptcy end of February 2016
25https://cloud.google.com/appengine/?hl=en

Limitations As PaaS APIs are even more heterogeneous
than IaaS APIs, this increases the complexity of applica-
tion orchestration across multiple PaaS providers. Com-
pared to IaaS tools, PaaS abstraction tools need to increase
the abstraction by reducing provider specific features to
achieve a common subset of supported PaaS features.
While these features can be sufficient to enable spe-
cific BPs, the presented tools only support orchestration
across the PaaS level; this limits their adoption for generic
BPs [19, 47].

Cross-Level orchestration
Benefits While recent research in cloud orchestration
mainly focuses on either the IaaS or PaaS level, cross-
level orchestration is an emerging topic in cloud research
[51]. Especially, as the heterogeneity of IaaS and PaaS
offerings is still evolving and consequently, the probabil-
ity that different kinds of cloud services will be utilised
to realise a cloud application based on its (evolving)
requirements is increased. Hereby, application deploy-
ments might move from IaaS to PaaS or vice versa due
to changing business requirements or cloud provider
offerings [15]. For instance, if the management over-
head needs to be reduced, an application deployed on
IaaS can be moved to PaaS to avoid the VM-level
management. In return, an application can be moved
from PaaS to IaaS if dedicated control over the VM
is required to apply additional security mechanisms or
integrate legacy applications. Changes in the pricing of
the IaaS or PaaS providers can also initiate the move-
ment of application from one service level to another to
save costs.

Tools The work in [25] identified the challenges in cross-
level orchestration as well as approaches that can be used
to address them. Further, a preliminary COT is presented,
which exploits CloudML models to enable cross-level
orchestration. Cross-level adaptation and the coverage of
all suitable abstraction levels for cloud-based BPs are not
within the scope of this prototype.
The cross-level orchestration approach in [14] extended

Apache Brooklyn with the capability to additionally
orchestrate applications over PaaS services. While [14]
only focuses on the deployment aspect of cross-level
orchestration, an extended version of this tool focuses also
on the adaptation aspect [15]. In this context, [15] intro-
duces an algorithm for migrating applications between
IaaS and PaaS providers. Yet, cross-level monitoring and
extra level-specific adaptation actions in different abstrac-
tion levels are not supported. For instance, even at the IaaS
level, component scaling support is missing.
TOSCAMP [2] combines the TOSCA and CAMPmod-

els to enable cross-level orchestration over the IaaS and
PaaS levels. Hereby, TOSCA models are converted into

https://www.openshift.com/
https://cloud.google.com/appengine/?hl=en
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CAMP execution plans, supporting deployment and run-
time adaptations. While the approach is validated based
on the deployment of a basic three tier Web application
across the IaaS providers Rackspace and IBM Softlayer,
the cross-level orchestration capability is only validated
on a conceptual level. Further, TOSCAMP only supports
a subset of TOSCA which limits its adoption for generic
cloud application deployments.
JUGO [29] is the first approach to cover not only the

IaaS and PaaS but also the SaaS level. It provides a generic
architecture for cloud composition as well as service nego-
tiation and matchmaking. While this work is partially
overlapping with the BPaaS approach, it only provides a
matchmaking framework while a cross-level orchestration
framework is actually missing.

Limitations Cross-level orchestration tools provide the
highest flexibility for cloud-hosted BPs as multiple service
levels are supported. Yet, the existing cross-level COTs
only support a subset of the desired COTs features [9]
due to either prototypical implementations or reduced
features to achieve a common feature set. While the pre-
sented approaches are conceptually suitable to orchestrate
BPs in the cloud, in their current state they are not pro-
viding dedicated integration support for higher-level BP
management frameworks [19] and tools, while not cover-
ing all possible abstraction levels.

Monitoring
This section analyses work first on service and then on
cloud monitoring. While “Adaptation” section covers the
analysis of approaches focusing both on service monitor-
ing and adaptation. We acknowledge that comprehensive
surveys on cloud monitoring already exist (e.g., [62]).
However, apart from reviewing classical service moni-
toring work relevant for BPaaS monitoring, we take into
account two additional dimensions related to cross-cloud
and level monitoring, thus playing a complementary role
to these surveys and their results. In our view, BPaaSes
usually comprise multiple levels of abstraction and thus
require from the monitoring process to: (a) take into
account the dependencies between these levels; (b) have
the ability to monitor information not in just one but mul-
tiple clouds as well as collect and potentially aggregate
such information.

Servicemonitoring
Benefits The monitoring of services is tremendously
important to Cloud-based BP management, as it enables
to propagate measurement information from the infras-
tructure to the service up to the BP level, thus providing
support to both BP deployment reasoning as well as adap-
tation. Where both activities then enable to meet the BP
requirements even at the highest abstraction level.

Tools and Methods The event-based, non-intrusive
monitoring approach in [4], developed in the Astro
project26, extends ActiveBPEL and defines RTML, an
executable language targeting the monitoring of service-
based application (SBA) properties. Event composition is
accomplished by using past-time temporal logics and sta-
tistical functions. Monitoring is performed in parallel to
BPEL process execution by focusing on the mapping of
input and outputmessages sent or received by that process
to monitoring terms (e.g., metrics).
The approach in [44] extends WS-Agreement to sup-

port the non-intrusive monitoring of both functional and
non-functional properties. The EC-Assertion language is
introduced, based on Event Calculus, to complementWS-
Agreement with the specification of service guarantees in
terms of different event types.
The SBA management platform Colombo [17] incor-

porates tools for monitoring, evaluating and enforcing
service requirements expressed inWS-Policy. Concerning
policy enforcement, it supports the execution of certain
actions, such as those related to the approval or rejection
of a certain message delivery.

Limitations Compared to our work, the state-of-the-art
service monitoring work does not enable the monitoring
system reconfiguration when respective changes occur in
the BP, while it does not also cover all appropriate BP
levels.

Cloudmonitoring
Benefits Due to the shift of applications and BPs towards
the Cloud, cloud monitoring tools and methods require to
handle any kind of cloud specificity, including the hetero-
geneity of provider-specific monitoring APIs, as well as to
consider multiple abstraction levels and the possibility of
cross-cloud deployment. Further, the infrastructure main-
tained by them needs to be dynamically adapted so as to
be aligned with the adaptive BP provisioning. The adap-
tive, cross level and cloud monitoring, thus, promises to
provide the right basis for evaluating business and techni-
cal requirements across any abstraction level and to take
the necessary BPaaS management actions in accordance
to these requirements so as to evolve the BPaaS system
when the respective need arises.

Tools and Methods Various tools provided by cloud
providers, such as Amazon’s CloudWatch27 or Cloud-
Monix28, suffer from vendor lock-in as they are restricted
to a single cloud. Well-established open source moni-
toring tools (e.g., Ganglia or Nagios) can monitor large
distributed systems but cannot handle cloud environment

26http://www.astroproject.org/
27https://aws.amazon.com/cloudwatch/
28www.cloudmonix.com
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dynamicity. This means that such tools cannot be self-
adapted in the case of cloud application reconfiguration
or node failures.
Cloud-aware monitoring systems like DARGOS [50]

offer a scalable architecture while also focus on OS and
customisable application-specific metrics. However, they
do not cover additional service levels, like PaaS or SaaS.
The PCMONS [16] framework focuses mainly on moni-
toring private cloud infrastructures. In [36] the monitor-
ing of all cloud service levels is targeted by combining
level-specific solutions in an integrated monitoring sys-
tem. The system architecture is peer-to-peer thus catering
for scalability while offering a set of aggregation lev-
els for the gathered monitoring data. However, such an
aggregation cannot be changed dynamically at run-time.
A scalable and elastic cloud monitoring system also

depends on the applied storage backend. With the evo-
lution of NoSQL databases to offer a suitable perfor-
mance and scalability level [37], various monitoring solu-
tions have started to rely on them [11]. Yet, the selec-
tion of a concrete NoSQL database needs to be care-
fully evaluated as significant differences in their scal-
ability, elasticity and availability levels exist [56–58].
Due to this pattern of adoption, a more monitoring-
centric database type has recently evolved, called a time-
series database (TSDB), over NoSQL databases. This type
expands NoSQL databases with further monitoring capa-
bilities including the evaluation of statistics-based queries,
themeasurement aggregation and amonitoring optimised
data structure [26]. KairosDB29, InfluxDB30 and Druid31
are well-adopted open source TSDBs.
Tower4Clouds32, developed in the MODAClouds

project33, is a monitoring platform for multi-cloud appli-
cations. This platform relies on a rule-based approach
where cloud-provider independent monitoring rules are
specified and considered by the centralised Data Ana-
lyzer which takes care of measurement aggregation and
rule evaluation based on the measurements collected by
Data Collectors. An interesting advantage of this platform
is that it can monitor the response time, throughput
and availability (another extension introduced by the
SeaClouds project) of PaaS applications.
[41] developed a monitoring data distribution archi-

tecture enabling cross-site compatibility by employing
semantic annotations for lifting the measurements drawn
from different monitoring sources. This architecture was
realised in form of a distributed semantic repository pro-
viding a SPARQL endpoint enabling to pose queries over
the semantically lifted monitoring data. Such data are also

29https://kairosdb.github.io/
30https://www.influxdata.com
31http://druid.io
32http://deib-polimi.github.io/tower4clouds/
33www.modaclouds.eu

published to potential subscribers via a distribution hub,
which conforms to data policies focusing on the type of
the data to be published.
The CASVID monitoring architecture [21] focuses on

both infrastructural and application-level monitoring.
However, only level-specific and not cross-level monitor-
ing is supported, thus not actually covering all possible
measurability gaps. An interesting CASVID feature is that
it can automatically detect the most suitable monitor-
ing schedule for metrics by applying a novel optimisation
algorithm that selects the sampling interval with the high-
est utility.
The combined push and pull model for cloud moni-

toring in [30] intelligently switches from one model to
the other based on user requirements and the monitored
resources status. This model is claimed to lead to bet-
ter monitoring performance and cater for different virtual
resource privileges and access styles.
The window-based state monitoring framework for

cloud applications in [45] is quite robust to value bursts
and outliers. It follows a distributed architecture that
applies decentralised tuning by enabling the monitoring
system to scale to multiple monitoring nodes and allowing
these nodes to rely on the local information to tune their
parameters. It can exploit two optimisation techniques to
reduce communication cost between a coordinator and its
monitoring nodes.
The centralised framework for application-level mea-

surement in [42] exploits the Complex Event Processing
(CEP) paradigm. In this framework, metrics are mapped
to event streams which can be correlated to support the
computation of aggregated measurements mapping to
complex metrics. An interesting event hierarchy is also
employed by enabling the correlation to be achieved at the
levels of the host, resource pool and metric.
The runtime model for cloud monitoring in [60] focuses

on common monitoring concerns. Monitoring data are
then collected based on this model which, via using vari-
ous techniques, are exploited to construct a cloud’s perfor-
mance profile. A distributed monitoring framework real-
ising this model was also developed with centralised col-
lection/aggregation capabilities able to address the trade-
off between monitoring accuracy and cost via adaptively
managing the cloud facilities. This framework seems to be
able to cover different levels in the cloud abstraction stack
reaching even the application level.

Limitations As it is evident from the above analysis,
there is no single approach or framework able to sup-
port the adaptive, cross level and cloud BP monitoring,
making the monitoring component in our proposed BP
execution solution as one of its kind. In particular, most
approaches cover 1–2 levels and cannot adapt the BP
monitoring infrastructure. In some cases, the approaches

https://kairosdb.github.io/
https://www.influxdata.com
http://druid.io
http://deib-polimi.github.io/tower4clouds/
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or tools seem also to be either cloud-specific or capable to
monitor applications and BPs only in the context of one
cloud.
We should also note that the monitoring of system

metrics in the context of PaaS providers can only be
performed via the proprietary APIs offered by those
providers. This is also the current way such metrics are
monitored in our own work. An alternative solution, also
supported via our BPaaS Execution Environment, is to
install monitoring probes along with the packaged BPaaS
components and rely on the capabilities of the execution
environment, e.g., the Java Virtual Machine, so as to query
system metrics. This latter solution, though, increases the
user effort, which should be avoided. As also outlined
in the last section, this issue could be ideally addressed
by enhancing the current PaaS abstraction APIs with the
capability to integrate PaaS-specific monitoring APIs or
to produce monitoring API abstraction libraries. In this
case, the monitoring API integration bares the abstrac-
tion library utilised by the orchestration engine. Further,
this enables the orchestration engine to uniformly mon-
itor applications and BPs across the different abstraction
layers.

Adaptation
Benefits The need to monitor both functional and non-
functional requirements, and address their violation in
a proactive or reactive manner has been widely recog-
nised by the industry and academia, as the way forward
to improve and evolve service-based applications and BPs
according to their requirements. To this end, multiple
approaches focusing on both SBAmonitoring and adapta-
tion have been already proposed. This subsection aims at
analysing these approaches and especially those featuring
cross-level and cloud capabilities.

Tools and Methods: Level-Specific Adaptation The
self-healing BPEL process approach in [6] relies on
the Dynamo monitoring framework [5]. This approach
also employs an AOP extension of ActiveBPEL34 plus a
monitoring and recovery subsystem using Drools Event-
Condition-Action (ECA) rules. It also allows defining
assertions over invoke, receiving and picking activities
of a BP via the use of WSCoL and WSReL DSLs. This
approach does not allow the dynamic selection of alter-
native services while it neglects the interface mismatch
problemwhen replacing a service with a new one. Further-
more, the recovery rules cannot be changed dynamically.
The VieDAME environment [46] extended ActiveBPEL

with the capability to support BPEL process monitor-
ing and partner service substitution according to various

34https://sourceforge.net/projects/activebpel502/

strategies. Service substitution is supported by using ser-
vice selectors which operate over a service repository.
VieDAME does not explicitly address fault handling and
does not provide any other adaptation mechanism.
In [31] an architecture and theMONINADSL are intro-

duced allowing to integrate the functionality of different
components and define suitable monitoring and adap-
tation capabilities. Monitoring is carried out via CEP
queries, while adaptation is conducted via condition-
action rules. However, this architecture was not validated
while it lacks cross-level and multi-cloud features.

Tools and Methods: Cross-level Adaptation In [49] a
methodology for the dynamic and flexible adaptation of
multi-level applications is proposed using adaptation tem-
plates and adaptation mismatches taxonomies. Templates
are exposed as BPEL processes, encapsulating adapta-
tion techniques, which are manually mapped to adap-
tation mismatches based on the mismatch types they
can address. The taxonomies introduced are specified for
each level and contain either generic or domain-specific
mismatches. Cross-level adaptation is supported via the
direct or indirect linking of level-specific adaptation tem-
plates. In the first case, a BPEL adaptation template
invokes the WSDL interface of another template. In the
second case, one adaptation template raises an event that
can be caught by another template.
The integrated approach in [27] for monitoring and

adapting multi-level SBAs relies on a variant of MAPE
control loops where all the steps acknowledge the multi-
faceted nature of the system, thus being able to reason
holistically and adapt the system in a cross-level and coor-
dinated way. The proposed methodology comprises four
steps: (i) monitoring and correlation; (ii) analysis of adap-
tation needs; (iii) identification of multi-level adaptation
strategies; (iv) adaptation enactment. Its main drawback
is that it does not also explicate in detail how cross-level
monitoring is performed and, in particular, the exact way
the various events are synchronized.
The CLAM holistic SBA management framework [66]

can deal with cross-level andmulti-level adaptation issues.
CLAM identifies both the application capabilities affected
by the adaptation actions and an adaptation strategy solv-
ing the adaptation problem by properly coordinating an
adaptation capability set. The tree-based approach pro-
posed to define adaptation paths seems interesting but
can be time-consuming. During the ranking of adaptation
branches, the cost is also not considered. Finally, it does
not handle functional faults.

Limitations Our work advances the above adaptation
approaches by handling all possible abstraction levels,
being applicable in the cloud, via the capability to dynam-
ically concretise an adaptation workflow at runtime plus

https://sourceforge.net/projects/activebpel502/
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its ability to store the adaptation history for analysis pur-
poses, which can enable adjusting the adaptation rules
and subsequently optimising the cloud-based BP adaptive
behaviour. It also supports the pro-active BP adaptation
by employing warning events, which notify about the
potential violation of BP requirements.

CAMEL
As highlighted in the previous sections, there is a need
to support the adaptive, cross cloud and level BPaaS
provisioning. This must be achieved in accordance to
BPaaS requirements and should require the least possible
input and cloud-specific expertise from the BPaaS mod-
eller. Model-driven engineering promises to automate the
tasks involved in such provisioning. It embraces models
as its core citizens which encapsulate all required infor-
mation to support the respective BPaaS lifecycle tasks.
Models can be specified via a language which supplies
the right syntax and structure for them. As advocated in
“IaaS service orchestration” section, most existing cloud
modelling DSLs are insufficient to cover the whole BPaaS
lifecycle in terms of the information that they convey.
However, there is one language, called CAMEL [1, 52],
which is almost rich enough and remains at an appro-
priate, high abstraction level which is cloud (provider)
independent. As such, this language has been selected to
enable the modelling of the way BPaaSes can be adap-
tively provisioned in our work. To this end, CAMEL was
extended to cover the whole BPaaS hierarchy plus more
advanced deployment and adaptation scenarios that con-
sider all possible cloud service types.
CAMEL is a multi-DSL, well designed to cover all

appropriate information required for supporting the
deployment and adaptive provisioning of multi-cloud
applications. CAMEL includes multiple sub-DSLs which
capture the information required for a certain aspect. The
aspects covered include deployment, requirement, metric,
scalability, security, organisation and execution.
CAMEL relies on EMF35 Ecore for its abstract syntax

specification, OCL36 for modelling domain and cross-
model validation rules and Xtext37 for its concrete syn-
tax specification. It is also supported by certain editors
enabling the validation of the edited CAMEL models:
(a) the default tree-based Eclipse editor; (b) the textual
CAMEL editor catering for DevOps users. In CloudSocket
a web-based editor38 was also developed which enables
experts to specify CAMEL models without requiring to
have a knowledge of this multi-DSL.
Due to the focus of the article on adaptive BP provi-

sioning, we now concentrate on the analysis only of those

35https://www.eclipse.org/modeling/emf/
36https://wiki.eclipse.org/OCL
37https://www.eclipse.org/Xtext/
38https://site.cloudsocket.eu/allocation-tool

aspects of CAMEL that are most relevant and which have
been extended to address the whole BP hierarchy as well
as more advanced deployment and adaptation scenarios.

Deployment aspect
The deployment meta-model/sub-DSL attempts to cover
a multi-cloud application’s topology. It originally focused
on modelling the mapping of application components on
virtual machines (VMs) plus the description of their con-
figuration and communication. This was performed at
both the type and instance level, thus catering for support-
ing the models@runtime paradigm [10]. However, due to
the need to cover additional levels, e.g., the PaaS, as well
as the whole BPaaS hierarchy, the CAMEL’s deployment
meta-model has been extended. Part of this extension is
shown in Fig. 1.

PaaS Extension The modelling of PaaS requirements
and capabilities relied also on the fact that a PaaS-based
component deployment is normally faster than an IaaS-
based deployment due to the suitable pre-configuration of
the deployment environment in the first place. The PaaS
extension of CAMEL involved generating a new node
type in the topology model which maps to a PaaS. This
node encompasses indirectly a VM node due to the fact
that PaaS is mainly used in CloudSocket for the BPaaS
component provisioning. In this respect, a PaaS node is
associated with requirements which concern both the way
the most suitable PaaS service can be selected but also the
features of the VM to be encompassed. The PaaS require-
ments restrain the environment in which an application
can be hosted and involve constraints on features like
the programming framework, runtime, scaling type, and
pricing type.
The modelling of the PaaS service capabilities did not

require any CAMEL extension as it relies on CAMEL’s
quite generic and flexible feature meta-model/sub-DSL.
Further, the way application components can be config-
ured was extended with the ability to have a PaaS-based
configuration via the use of an appropriate PaaS API.

SaaS Extension CAMEL’s SaaS level extension moved
towards covering the lightweight modelling of SaaS ser-
vices, i.e., the essential details for their exploitation, like
their endpoint and type (SOAP/REST), plus their associ-
ation to the BP workflow tasks that they realise. Further,
two types of SaaS can be modelled: (a) external SaaS ser-
vices provided by external cloud providers. This service
kind is thus considered as an external component, like in
the case of VMs and PaaS services, which is not directly
controlled by the proposed BPaaS Execution Environ-
ment; (b) internal SaaS services, developed or purchased
by the organisation owning the BP, which can be deployed
in the Cloud. Such internal SaaS services were mapped to

https://www.eclipse.org/modeling/emf/
https://wiki.eclipse.org/OCL
https://site.cloudsocket.eu/allocation-tool
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a special kind of an (internal) BPaaS component. This dis-
tinction is essential from the point of level of control and
integration between these two SaaS types. External SaaS
services are just directly integrated at the workflow level.
On the other hand, internal SaaS services are deployed
first as micro-services before they can be fully bound to
the workflow of the BP being managed.

Monitoring & adaptation aspects
Monitoring
The monitoring aspect is covered in CAMEL by the
metric meta-model/sub-DSL [38] (see Fig. 2). This meta-
model attempts to provide all necessary details for metric
measurement. Metrics can be simple (e.g, raw response
time), withmeasurements produced via sensors, and com-
posite (e.g.,mean response time) with measurements pro-
duced via aggregation formulas over other metrics (e.g.,
mean over raw response time measurements). Any metric
kind is mapped to a measurement unit and to the property
being actually measured.

Metrics can be associated with conditions which impose
thresholds over their values. Such conditions are exploited
in a twofold manner in CAMEL: (a) to specify Service
Level Objective (SLO) hard requirements; (b) to specify
single events that can trigger scalability/adaptation rules.
These conditions also determine their evaluation context,
explicating what is the object being measured (e.g., a BP
component or a VM) plus what is themeasurement sched-
ule and window. In case of raw metric conditions, the
sensor exploited for producing the metric measurements
is also specified. In case of composite metric conditions,
a set of composing metric contexts is specified to expli-
cate also the way the component metrics of the composite
metric can be computed.

Adaptation
Originally, CAMEL focused on specifying scalability rules
[38] which explicate the way an application can scale. Such
rules were mappings between events and scaling actions.
Both horizontal and scaling actions were supported.

Fig. 1 Deployment sub-DSL of CAMEL
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Fig. 2Metric sub-DSL of CAMEL

Events can be single or composite. Single events map
directly to metric condition violations, while composite
events (named as event patterns) represent the aggrega-
tion of an event set on which a certain time or logic-based
operator applies. The modelling of event patterns has
been inspired by CEP languages like EPL from Esper39.
Both unary (likeNOT and REPEAT) and binary (likeAND
and PRECEDES) event pattern operators are supported.
The adaptation modelling, however, was too restrictive

by focusing only on one abstraction level, the infrastruc-
ture one. As such, a CAMEL extension, depicted in Fig. 3,
was developed replacing the scalability sub-DSL [38] with
an adaptation one. In this extension, an adaptation rule
maps an event to an adaptation workflow, which can
involve executing different adaptation actions combined
with well-known control flow constructs (sequence, paral-
lel, choice, switch). An adaptation workflow is represented
by the abstraction of an AdaptationTask, which can be
simple or composite. A composite adaptation task applies
a control-flow operator over other adaptation tasks.
On the other hand, a single adaptation task maps to a

level-specific adaptation action. Thus, we have focused on
the suitable modelling of different adaptation actions at

39www.espertech.com/esper/

different abstraction levels. At the IaaS level, we incor-
porated the possibility to migrate a BP component apart
from scaling it. At the SaaS level, we support a SaaS service
replacement in the BP workflow. At the workflow level,
we support BP workflow adaptation via either this work-
flow re-composition or the modification of its tasks (e.g.,
addition, replacement).
In overall, while CAMEL was suitable to cover var-

ious multi-cloud application modelling aspects, it was
extended in a minimalistic but sufficient way to better
cover the peculiarities of a cloud-based BP and all the
levels that it incorporates plus more optimally drive its
adaptation behaviour at runtime.

Business process execution environment
architecture
Our BP Execution Environment relies on a modular

architecture comprising components with well-defined
functionalities and responsibilities. The orchestration
functionality is shared between two components while
monitoring and adaptation are mainly mapped to individ-
ual components. The components communicate via well-
designed interfaces following a service-oriented architec-
ture. There is no real co-location dependency of any of
the environment components. Thus, they can be flexibly
distributed based on our requirements.

www.espertech.com/esper/
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The input to this environment is a so-called BPaaS Bun-
dle. The bundle contains the required CAMELmodel plus
additional information spanning: (a) the SLA between the
BPaaS provider and requester; (b) pricing; (c) business-
oriented information related to the BPaaS categorisa-
tion according to certain classification schemes. This
bundle, initially, is published in a Marketplace so as
to be purchased by BPaaS customers. While origi-
nally in template form, due to missing customer-specific
information, once bought, this bundle becomes concre-
tised and is then forwarded to our environment for
execution.
Our environment does not provide a concrete output in

the form of a file that can be consumed by another com-
ponent or environment. However, it does supply REST
APIs and databases out of which suitable information can
be retrieved and exploited. The information is mainly of
a deployment and monitoring nature and is consumed
by the BP evaluation environment in the CloudSocket
prototype platform to facilitate the evaluation of Key

Performance Indicator (KPIs) and other types of analysis
(e.g., best BP deployment).
In the following, we analyse first the overall architecture

of the BP Execution Environment and then we move to
the analysis of each of the major components that provide
support for the cross- level and cloud adaptive BP pro-
visioning. More technical details about this architecture
and our environment’s components can be found in two
CloudSocket deliverables [64], [22].

Overall architecture
Figure 4 depicts the logical architecture of the BP Execu-
tion environment. As it can be seen, it comprises 5 main
components. The Cloud Provider Engine and the Work-
flow Engine take care of the cross-cloud service orches-
tration in a cooperative manner. The Workflow Engine,
as being an execution environment for service-based BP
workflows, handles the orchestration at the SaaS level
while also contributing to the functionality of both moni-
toring and service replacement. The SaaS orchestration is

Fig. 3 Adaptation sub-DSL of CAMEL
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supported by the capability to manage instances of the BP
workflows deployed and execute them in the cloud. The
monitoring applies mainly for the workflow and service
level as the Workflow Engine, while executing a workflow,
has the opportunity to also collect this kind of monitor-
ing information. The contribution to service replacement
mainly concerns the ability to replace the endpoint of the
affected service (e.g., endpoint) mapping to the respective
task with that of a new service.
On the other hand, in case the BP workflow comprises

internal SaaS components, the Cloud Provider Engine
handles their deployment to make them ready for exe-
cution by exploiting IaaS and/or PaaS services. Apart
from deploying normal SaaS components, this compo-
nent also deploys themonitoring infrastructure. The latter
includes monitoring sensors, which provide the needed
raw measurements, and measurement aggregators that
aggregate these measurements in form of high-level met-
rics which can then be used to evaluate the respective
SLOs of the agreed SLA. The Cloud Provider Engine also
handles the deployment of the BPaaS bundle’s SLA to
the SLA Engine to support its management. Further, it
communicates with the Workflow Engine for two main
reasons: (a) to deploy the BP workflows of the input
BPaaS bundles; (b) to inform the real endpoints of internal
SaaS components of these workflows once these com-
ponents are successfully deployed in the cloud. Thus,
the Cloud Provider Engine plays the role of the envi-
ronment’s entry point as it receives the input BPaaS
bundle and then orchestrates all appropriate actions and

interactions in the environment to guarantee its successful
deployment.
The Monitoring Engine handles the BP monitoring

across different levels and clouds. It is the main compo-
nent always requiring some kind of distribution, which is
supported by exploiting the Cloud Provider Engine facil-
ities. This engine comprises level-specific components
supporting the sensing and aggregation of monitoring
information. These components interact with a publish-
subscribe mechanism. This mechanism also supports the
retrieval of monitoring information for SLO assessment
purposes plus the publishing of SLO evaluation informa-
tion to the SLA Engine and Adaptation Engine.
The SLA Engine handles the SLA management. In par-

ticular, it observes the SLA state and visualises it for both
BP providers and requesters. This enables the follow up
of the SLAs by their main signatory parties, which can
communicate with each other to handle any kind of SLO
violation that might occur. The SLA state is maintained
via the interaction with the Monitoring Engine where the
SLA Engine subscribes to the SLO evaluations produced.
Finally, the Adaptation Engine handles the cross- level

and cloud adaptation of the deployed BP workflows.
It communicates with the Monitoring Engine to obtain
the events that will trigger the adaptation workflows
execution. The actions in these workflows map to a
service-based library providing methods to realise them.
These methods interact in some cases with other BP
execution environment components. For instance, when
performing SaaS replacement, once the new SaaS service

Fig. 4 The logical architecture of the BP execution environment
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is identified, theWorkflow Engine is invoked to replace the
old SaaS service endpoint with that of the new one.
The above architecture is at the logical level. At the

physical level, the architecture can be quite distributed as
each component can operate individually without explicit
technical dependencies which might require a tight cou-
pling or co-location of two or more components. By con-
sidering the load that can incur to our environment, Fig. 5
depicts a possible physical architecture. In this architec-
ture, the components that have most of the load and
need to be distributed are the Workflow Engine, Cloud
Provider Engine and Monitoring Engine. The Workflow
Engine is exploited for manipulating, executing and mon-
itoring multiple instances even of the same BP workflow.
The Cloud Provider Engine is the environment’s entry
point while it handles the BPaaS bundles’ deployment plus
the continuous management of their components. The
Monitoring Engine can be heavily loaded with the moni-
toring of multiple raw and aggregate metrics spanning the
instances of multiple BP workflows.
The distribution is performed mainly at the BP level.

This is accomplished by introducing a Load Balancer
which: (a) distributes the BPaaS bundle requests among
the different environment instances; (b) distributes inter-
nally the requests to internal components by having a
complete picture of the BP execution environment’s dis-
tributed topology. This Load Balancer along with the cen-
tralised components (Adaptation Engine and SLA Engine)
form the central management component agglomeration.
On the other hand, each environment instance comprises
instances of the aforementioned three distributed compo-
nents. An alternative deployment topology would position

also the centralised components in each environment
instance to generate a dedicated environment instance
that handles internally any interactions that need to take
place in the context of the deployed BPaaS bundles there.
In that deployment topology, the Load Balancer would
then be just the entry point in the overall BP execution
environment with the strict load balancing responsibil-
ity only to support the distribution of that environment
across all of its instances.
At a second level, as there is a need to scale a component

even in the case of an environment instance, there can
be a local load balancer per environment component dis-
tributing the load among all the instances of that compo-
nent. The scaling could be supported by using the Cloud
Provider Engine, which has the capability to deploying any
component kind in the Cloud. As such, our physical archi-
tecture contribution comes with a two-level distribution
of the proposed logical architecture. In our opinion, this
two-level distribution will handle any kind of load situa-
tion that can occur in the BP execution environment. It
could also enable the environment to becomemore robust
as it would not be jeopardised by the failure of any of its
component instances.
In the following, we analyse in more detail the internal

architecture of all main components of the BP Execution
Environment.

Cloud provider engine
The Cloud Provider Engine enables the provisioning of
internal SaaS components for BPaaS by orchestrating
them across various IaaS and PaaS providers. To this end,
the Cloud Provider Engine builds upon the multi-tenant

Fig. 5 A distributed architecture of the BP execution environment
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COT Cloudiator40 [8, 18] which enables the deployment,
monitoring and adaptation of distributed applications in a
multi-cloud environment [20].
Figure 6 shows a high-level overview of the Cloud

Provider Engine, depicting the exploited components of
Cloudiator for the internal SaaS provisioning. The Entry
point component provides a RESTful interface to the
Marketplace, enabling to register BP bundles for their
deployment. It also supplies additional meta-data for the
BP bundle and its deployment process. The BP bun-
dle, which as already stated includes a CAMEL model,
is passed to Cloudiator’s Shield component. Shield trig-
gers the deployment of internal SaaS components by
translating the CAMEL model into the required calls
against Colosseum. The Entry point’s modular archi-
tecture enables supporting additional DSLs, such as
TOSCA, by adding the respective Shield components
for them.
Colosseum is the central component of Cloudiator

which exposes a comprehensive REST API unifying
the access to cloud resources across different service
levels (IaaS/PaaS), such as the IaaS providers Ama-
zon EC2, Google Compute, OpenStack as well as PaaS
providers Heroku, OpenShift, CloudFoundry. These sup-
ported IaaS and PaaS providers go along with the com-
monly supported IaaS and PaaS of existing orchestration
frameworks (cf. “Cloud service orchestration” section).
Recent extensions add as well the orchestration support
for Function-as-a-Service providers (AWS Lambda and
Azure Functions) and Big Data processing frameworks
(Apache Spark) [55]. To enable the abstraction of these
cloud providers, two kinds of unified APIs are exploited in
Cloudiator:
(1) Sword unifies IaaS resources in a uniform way by

building and extending jclouds [7]. This extended abstrac-
tion layer supports automated cloud resource discovery
in terms of hardware flavours, image, and locations for
public IaaS providers. More detailed resource information
can also be acquired for private clouds, such as hyper-
visor details or storage details. Further, Sword’s exten-
sion of jclouds offers dedicated support for the physical
layer, e.g., realising the notion of physical nodes (hypervi-
sors) in OpenStack. Besides only listing and discovering
them, Sword supports the selection of a physical node
as a deployment location bypassing Openstack’s sched-
uler. Apart from resource orchestration, Sword enables
installing the Cloudiator internal agents Lance and Visor
via a unified remote access interface for Unix and Win-
dows to the provisioned VMs. Lance is the Cloudia-
tor life cycle agent, installed on each provisioned VM
and handling the installation and configuration of the
internal SaaS components on respective VMs. Visor is

40http://cloudiator.org/

the monitoring agent for collecting raw system- and
application-specific metrics.
(2) the publicly available PaaSUnified Library (PUL)41 is

integrated into Cloudiator to enable the unified access to
PaaS resources [23]. PUL enables managing resources and
applications across multiple PaaS providers via a RESTful
interface or as a library. It supports a comprehensive set of
operations, such as deploy, undeploy, start, stop, scale and
bind.
Based on the IaaS unification of Sword and the PaaS

unification of PUL, Cloudiator constitutes a unified cross-
level orchestration tool for web-based BPs in a multi-
cloud environment.
Further, Cloudiator enables collecting metrics across

IaaS and PaaS via the monitoring agent Visor, which
provides an extensible interface for custom sensors and
the registration of new sensors at runtime. Visor stores
the collected measurements in a TSDB where, cur-
rently, KairosDB and InfluxDB are supported. Cloudia-
tor supports the cloud-based measurement aggregation
and the automated TSDB distribution across multiple
clouds to reduce network traffic and query latencies
[20]. For advanced measurement processing, Cloudia-
tor provides an interface to the Monitoring Engine (cf.
“Monitoring engine” section).
To adapt specific BPaaS services at runtime, Cloudia-

tor offers a comprehensive set of cross-level adaptation
actions via its REST API to the Adaptation Engine (cf.
“Adaptation engine” section), such as scaling a service or
migrating it from IaaS to PaaS or vice versa.
The additionalColosseum components Registries,Work-

ers and Application Repository are used for the internal
storage and processing of the BPaaS deployment state as
well as additional meta-data.
After the successful deployment of the internal SaaS

services, the deployment details are returned from Colos-
seum to the Entry point. The latter extracts the required
information, such as the actual endpoints of the deployed
cloud services and registers them at the Workflow Engine
to update the BP workflow’s service endpoints. An SLA
template is also registered at the SLA Engine, triggering
the observation of the defined SLAs in the BPaaS bundle.
Hence, Cloudiator enables the holistic cross-level ser-

vice orchestration for BPaaS by providing: (1) a unified
abstraction over IaaS and PaaS services, (2) a scalable
measurement infrastructure for cross-level/cloud metrics
and (3) an extensive API for executing cross-level service
adaptations.

Workflow engine
The Workflow Engine is a multi-tenant component
enabling the management of the BPaaS workflows

41https://omi-gitlab.e-technik.uni-ulm.de/archive/cloudsocket/unified-paas

http://cloudiator.org/
https://omi-gitlab.e-technik.uni-ulm.de/archive/cloudsocket/unified-paas
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Fig. 6 The architecture of Cloud Provider Engine

deployed. Multi-tenancy is supported at the level of
the customer organisation. In particular, the Workflow
Engine enables different customers to onlymanipulate and
exploit their own purchased BPaaS workflows. This open-
source component is not only deployable in the Cloud
but also able to handle cloud-based workflows and cater
for their peculiarities, such as the frequent need for their
adaptation which usually maps to modifying respective
service endpoints at the workflow level.
Its input is a service-based workflow of a BPaaS to be

deployed. There is no direct output produced. However,
as this component produces monitoring information and
stores workflow execution history information, its respec-
tive interface can be exploited to draw such information
for, e.g., BPaaS analysis purposes in CloudSocket’s BP
evaluation environment.
This composite component follows a three-tier archi-

tecture, as depicted in Fig. 7, involving the UI, the backend
and the database layer. Some of its subcomponents extend
functionalities exhibited by the BPMN engine actually
exploited, Activiti42, such as the APIs offered, the multi-
tenancy, the impersonalisation of integration services and
the UI usability.
At the UI level, three main sub-components are pro-

vided. The REST Workflow is a RESTful service compo-
nent exposing an API for the programmatic management
of workflows and their instances as well as the retrieval
of workflow execution history information. This API also

42https://www.activiti.org/

extends the basic functionalities of Activiti with capabili-
ties to deploy workflows with dynamic endpoints.
The Workflow Explorer sub-component exposes almost

the same functionality with respect to REST Workflow
but this functionality is supplied for human-oriented con-
sumption only. As such, this sub-component offers an
appropriate interface, a dashboard, via which the lifecycle
of BPaaS workflows can bemanaged in a multi-tenant way
by the roles involved in a BPaaS customer organisation.
The Editor Workflow is a sub-component which does not
belong to the BP execution but the design environment.
Its main responsibility is to provide a suitable graphical
UI via which workflows can be edited. Such an editing
is restricted at the design phase with the rationale that
the structure of BPaaS workflows cannot be altered once
they are purchased43. So, only the BPaaS provider can edit
them at the design phase before they reach the form of a
BPaaS bundle published in CloudSocket’sMarketplace.
The backend layer involves threemain sub-components.

The CoreWorkflow Enginemanages the whole functional-
ity exposed by theWorkflow Engine which can be invoked
by using a certain interface. This sub-component also han-
dles the storage of workflows, their instances plus of other
entities at the underlying database. The Workflow Parser
sub-component can parse BPMN workflows and update
their endpoints. It is can also generate service task tags
for invoking both SOAP and RESTful SaaS services. The

43However, the structure of these workflow instances can be adapted at
runtime

https://www.activiti.org/
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Bind Proxy, finally, enables interacting with the underly-
ing database in the context of the storage and retrieval of
service task to SaaS bindings/mappings.
At the database layer lies theWorkflow Database, which

is a relational database, is responsible for the storage and
retrieval of any information related to the workflows, such
as roles, tenants, and workflow (instances).
Due to the high-correlation of most sub-components of

the Workflow Engine component, any kind of individual
component distribution is not relevant. On the contrary,
this component must be considered as a whole for dis-
tribution and scaling purposes. In this way, the actual
distribution/load-balancing can be achieved either at the
level of the BPaaS workflow (such that BPaaS workflows
can be split among the different instances of this com-
ponent) or the level of tenants (such that the split is
performed based on the number of tenants to be handled
by each instance of this component).

SLA engine
The SLA Engine is the component responsible for manag-
ing SLAs that conform toWS-Agreement (WSAG) [3]. In
particular, it exhibits the following functionality: (a) gen-
eration of SLA templates to be used in BP offerings from
CAMEL models. Such SLA templates represent the ser-
vice level guarantees promised by the BP providers (i.e.,
the brokers) to their customers; (b) generation of an SLA
out of the respective template that should be respected
during the execution of the purchased BP; (c) follow-up of
the actualWSAG SLAs for both BP brokers/providers and

customers. Such a follow-up is possible via the subscrip-
tion to monitoring events coming from the Monitoring
Engine. It includes the evaluation of the SLOs within
the WSAG SLA and the visualisation of their evalua-
tion result. Via its capability to serve both BP providers
and customers, it is obvious that this component is also
multi-tenant.
The SLA Engine’s architecture can be seen in Fig. 8.

This engine includes 6 main sub-components and follows
a three-tier architecture. The UI component is the SLA
Dashboard, responsible for visualising the status of the
WSAG SLAs. This visualisation enables the customers to
observe the status of all SLAs of their purchased BPs.
Similarly, the BP providers/brokers can also observe the
status of all SLAs signed with all their customers. The
REST Service enables the SLA information retrieval while
it encapsulates all SLA Engine’s core functionality offered
and realised by theWSAG Generator.
The follow-up of SLAs becomes possible by involving

the Monitoring Engine Adapter. This component, once
the BP has been purchased and the deployment of both
the BP and its monitoring infrastructure has taken place,
it registers to the publish/subscribe mechanism of the
Monitoring Engine to receive measurements for the met-
rics involved in the SLOs of the respective SLA. These
measurements are then transformed into an appropriate
format and passed to the Assessment component to per-
form the actual SLO assessment. The SLO assessment
result is then imprinted back to the component of the last
tier, the Repository, to enable the follow-up by means of

Fig. 7 The architecture of theWorkflow Engine
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the SLA Dashboard. The Repository is deposits all SLA-
related information that is managed by the SLA Engine,
thus providing appropriate support to its operation.
Please note that the registration to measurement infor-

mation is initiated by the Cloud Provider Engine, which
first checks that both the BP and itsmonitoring infrastruc-
ture has been deployed and then invokes the REST Service
with the CAMEL application model as input. The REST
Service in turn forwards the registration invocation to the
Monitoring Engine Adapter.
The SLA Engine was developed with extensibility and

reusability in mind. In this sense, the Monitoring Adapter
and theWSAGGenerator could be replaced to allow using
other monitoring platforms or other SLA languages.
As indicated in “Overall architecture” section, this is a

lightweight component that does not need to scale when
the BP Execution Environment becomes overloaded. The
only sub-component that could be scaled in very extreme
cases would be the Monitoring Engine Adapter, which
might have some additional processing load for the recep-
tion and transformation of the measurement information.
However, as we foresee that only SLOs over aggregated
metrics will be involved in the signed SLAs, we do not
expect that the load of this component will become very
high to justify its distribution.

Monitoring engine
The Monitoring Engine is a distributed component
advancing the state-of-the-art via its capabilities: (a) to
cover the measurement at any abstraction level and thus
be able to fill-in anymeasurability gap; (b) to flexibly cover
any kind of metric that might need to be monitored, thus
not mapping to a fixed metric list, which would by far
constraint the monitoring capabilities of the BP execution
environment. In addition, by using a publish-subscribe
mechanism, this component is not tightly coupled with
any other component providing a complementary func-
tionality to the environment. In fact, it enables the latter
components to scale as needed such that each component
instance can handle a different share from the informa-
tion published by the Monitoring Engine. For instance,
the Adaptation Engine could become distributed and
based on the distribution logic employ instances which
subscribe to certain partitions of all events that can be
generated by theMonitoring Engine.
The flexible and dynamic metric manipulation comes

with the adoption of CAMEL. CAMEL enables the com-
plete specification of any metric which is then exploited
by the Monitoring Engine to guarantee the deployment of
suitable monitoring components that measure the right
information utilised for the computation of that metric.
Due to the generic way via which metrics are speci-
fied, CAMEL’s adoption enables covering different metric
types: (a) cross-cloudmetrics, i.e., metrics computed from

measurements (i.e., other metrics) derived from differ-
ent clouds; (b) cross-level metrics, i.e., metrics computed
from measurements derived in different abstraction lev-
els.
The input to this engine is the actual CAMEL model

and especially the metric, adaptation and requirement
sub-models. The metric sub-model explicates how met-
rics can be computed, the adaptation what events need to
be generated while the requirement what SLOs need to
be evaluated. The output is the events generated which
can be consumed by other components (i.e., the adap-
tation and SLA engines). Indirectly, the measurement
database(s) enables any component to, e.g., perform addi-
tional analysis on its content. This indeed takes place in
the CloudSocket’s BP evaluation environment, as indi-
cated in the beginning of this section, for supporting KPI
evaluation.
The Monitoring Engine’s internal architecture is

depicted in Fig. 9. It comprises level-specific agglomer-
ations of monitoring components, called level-specific
monitoring mechanisms, plus an evaluation component.
At each level, three component kinds are employed:
(a) the Measurement Database (MDB) for the storage
and retrieval of monitoring information; (b) the sensors
deployed for measuring and storing such information in
theMDB; (c) the Aggregator for aggregating measurement
information according to the CAMEL-based specification
of respective high-level metrics. The latter component
kind also offers a publish-subscribe mechanism via which
measurements can be propagated to the evaluation
component. The same mechanism is also exploited to
propagate measurements to other levels to assist in com-
puting respective metrics. For instance, the Aggregator at
the workflow level can subscribe to the measurements
provided by the Aggregator at the SaaS level to compute,
e.g., execution time metrics for the workflow by relying
on the response time of the respective SaaS services
executed.
The level-specific mechanisms rely on exploiting dif-

ferent monitoring frameworks/components (e.g., SaaS –
[65], IaaS/PaaS – [20]) developed by the three main part-
ners involved in the BP execution environment. All these
frameworks were structured to comply with the expected
interfaces of the monitoring components in each level so
as to be integrated into theMonitoring Engine.
The evaluation component (see more details in [39]),

subscribes only to measurements/metrics mapping to
SLO or single event conditions. As such, it just focuses on
evaluating these conditions to generate the respective SLO
assessments or events which can then be consumed by the
SLA and adaptation engines via the use of the publish-
subscribe mechanism offered. Internally, it employs a
CEP engine (Esper) to handle the further processing of
events so as to generate event patterns, which are mainly
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Fig. 8 The architecture of the SLA Engine

consumed by the Adaptation Engine in the context of
adaptation rules triggering.
The evaluation component also offers a REST interface

via which the event patterns to be detected are managed.
This interface can be handy in case we must manipu-
late new adaptation rules, which require detecting new
event patterns or modifying/deleting existing ones. The
handling of metrics, mapping to these event patterns, is
addressed by the Cloud Provider Engine which takes care
of, e.g., in case that a new metric needs to be measured,
deploying the needed sensor plus reconfiguring the corre-
sponding Aggregator at the appropriate abstraction level
(in case we need to compute a high-level metric).
Each level in the Monitoring Engine’s internal architec-

ture maps to a different distribution logic. The workflow
level is realised within the respective Worflow Engine. As
such, it distributes equivalently with the latter component.
The SaaS level is handled in two complementary ways:
for internal SaaS components, the respective mechanisms
are employed within the VMs hosting these components,
while for external ones, the mechanisms are employed
within theMonitoring Engine’s centralised part which also
involves the CEP component. A similar situation occurs
for the PaaS/IaaS level where the cloud-specific monitor-
ing occurs in the internal SaaS component VMs, while
the cross-cloud monitoring occurs at Monitoring Engine’s
central part. This physical architecture is depicted in
Fig. 10. For reasons of resource economy, the mechanisms
deployed in the same VM share the same physical MDB.
This distribution logic is suitable to handle well the

respective load by considering that most measurements

generated at a high frequency concern mostly the infras-
tructure and service level. When moving to a higher
abstraction level, the measurement frequency becomes
more coarse-grained, thus reducing the load incurring
to the respective monitoring components. Further, this
distribution logic also conforms well to the one map-
ping to the whole Monitoring Engine as explicated in
“Overall architecture” section. In particular, when scaling
the Monitoring Engine to generate its new instances, we
actually scale the components of the central part. The rest
of the components are already distributed and quite fit to
their purpose, so they do not need further distribution.

Adaptation engine
The Adaptation Engine is a novel component, supporting
the cross-level and cross-cloud BP workflow adaptation,
which well advances the state-of-the-art by exhibiting the
following advantages: (a) covers all possible levels involved
in the BP hierarchy; (b) it is cloud-based and handles
cloud-based BPs instead of traditional ones; (c) dynam-
ically concretises the adaptation workflow based on the
current adaptation mechanisms available and by consid-
ering preferences and requirements over adaptation time
and cost; (d) allows the dynamic adaptation rules modifi-
cation during BP execution time; (e) stores the adaptation
history to allow its further analysis. This can enable, for
instance, to derive some knowledge about the success-
ability of certain adaptation rules that can lead to their
improvement via their manual or automatic modification.
This component requires as input a CAMEL model

incorporating the adaptation rules to be triggered plus
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Fig. 9 The architecture of the Monitoring Engine

the event patterns detected by the Monitoring Engine
which can enable this triggering. There is no direct out-
put produced as the main engine’s duty is BP adaptation.
However, as indicated in above point (e), the adaptation
history storage can support the analysis and improvement
of the adaptation rules modelled for a certain cloud-based
BP.
Figure 11 depicts the Adaptation Engine’s architec-

ture. This architecture is quite complex involving multiple
components. The Knowledge Base (KB) is responsible for
storing the adaptation rules as well as their triggering. The
adaptation workflow part of the triggered rules passes via
the Transformer which translates it into a workflow lan-
guage specification (BPMN44). This specification is the
concretised by the Concretiser, which accesses the service
registry to support the needed service discovery and selec-
tion. The completed service-based workflow specification
is then deployed in the Adaptation Workflow Engine, a
normal workflow engine responsible for executing (adap-
tation) workflows. While executing these workflows, this
engine also handles the storage of their execution infor-
mation in the underlying Adaptation Database.

44www.bpmn.org

An adaptation workflow involves the execution of
service-based adaptation actions, which map to services
offered via an adaptation library. These services are organ-
ised into different levels and rely on interfaces offered
by other components in the execution environment. The
workflow level involves services that modify the cur-
rently running BP workflow and thus cooperate with
the Workflow Engine. The service level involves a ser-
vice replacement service, which keeps a dynamic list of
functionally-equivalent services, based on their availabil-
ity, and finds the right service from this list for the
replacement whose endpoint is then used to modify the
respective BP workflow by cooperating with the Work-
flow Engine. The PaaS/SaaS level is covered by migration
and scaling services exploiting theCloud Provider Engine’s
facilities.
TheAdaptation Engine incluses aUI enabling experts to

view the adaptation rules currently specified for a BPaaS
and adjust them as needed. This UI also enables experts
to define new adaptation rules to cover new problematic
situations that might be observed. It also allows experts
to define directly some adaptation workflows in CAMEL
which can then be directly executed by passing them via
the Transformer to the Adaptation Workflow Engine. This
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Fig. 10 The distributed architecture of the Monitoring Engine

can be useful for a rapid reaction to an unforeseen situa-
tion before this situation can be permanently handled by
incorporating an adaptation rule.
The generation of new rules is facilitated by exploiting

a service offered in the CloudSocket’s BP evaluation envi-
ronment. That service can detect event patterns result-
ing in SLO violations by following a logic-based mining
approach [65] and (semi-)automatically generate respec-
tive adaptation rules [65]. These rules are then given as
input to the Adaptation Engine which first passes them to
the Transformer to translate them into the KB’s internal
format. These rules become active only when consulted
and possibly adjusted by the expert via the UI. In fact,
it is in the expert’s discretion which rules from the cur-
rent set mapping to a certain BP can become activated or
deactivated.
Most core components of the Adaptation Engine can be

distributed. The only components which can be mostly
centralised are the UI plus the two types of databases,
the KB and the Adaptation Database. This is due to the
fact that we do not expect much load to be incurred to
the latter components. In any case, we do not expect
that the Adaptation Engine will be much overloaded thus
requiring its appropriate distribution as the respective
adaptation-triggering events will be not so frequent per
each BP workflow.

Validation
The BP execution environment and the whole Cloud-
Socket prototype platform were validated via a number

of use cases which involved the management of respec-
tive cloud-based BPs [43]. In this section, we explicate the
application of the proposed environment over one of these
use cases concerning the management of a supporting BP
for invoice management called “Invoice BPaaS”.
This BP handles the production of invoices based on

client information collected from an external Customer
Relationship Management (CRM) SaaS called “YMENS
CRM” provided by CloudSocket’s YMENS partner, plus
their sending via email to clients. The invoice manipu-
lation is supported by the use of a well-known invoice
management SaaS called “Invoice Ninja”. This SaaS is
internal to the BP which means that it has been pur-
chased and needs to be deployed in the Cloud. Both SaaS
services are operated in Europe due to data privacy con-
formance reasons mapping to respective EU legislation by
considering the fact that European customers are mainly
targeted.
During the first two BP lifecycle phases, the ini-

tially designed BP will be mapped to a service-based
workflow which will then be concretised and trans-
formed into a deployable workflow. This will end up
in producing a BPaaS bundle which will then be
published in theMarketplace. The BPaaS bundle will com-
prise a CAMEL model involving the topology depicted
in Fig. 12.
In this topology, it is well clarified that the “Invoice

Ninja” component will be deployed on the Amazon
AWS’ “m1.medium” VM within the European region
eu-central-1. As shown in the CAMEL excerpt in
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Fig. 11 The architecture of the Adaptation Engine

Fig. 12, both SaaS will be allocated to certain BP workflow
tasks. We have omitted from the analysis configuration
details for “Invoice Ninja” as they are quite technical.
These can be inspected in the respective CAMEL model
available online45.
In this CAMEL model, there exist two main adaptation

rules which will drive the BPaaS adaptation behaviour.
These rules are depicted as follows.

R1 : e1 ⇒ restart
(
i_ninja

)
(1)

R2 : e3 ⇒ sequence(paasDeploy
(
i_ninja

)
,

servReplace
(
i_ninja

)
,

destroyIaaSDep
(
i_ninja

)
) (2)

e3 : e1 ∧ e2 (3)

e1 : meanAvail
(
ininja

)
< 20% (4)

e2 : fail (R1) == 1 (5)

45 https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/
view?usp=sharing

The first rule attempts to re-start the “Invoice Ninja”
component if it is unavailable. Its main rationale is that
many software bugs are transient and can be easily fixed
by restarting the software. However, in case that the bug
insists, the second rule will compensate for this by migrat-
ing the component in another VM. This migration has the
rationale that possibly either the component has become
corrupted and/or reached an inconsistent state such that
it needs to be redeployed from scratch. To support this
migration, a PaaS service is exploited for the redeploy-
ment to enable the component’s rapid recovery and thus
the respective minimisation of its downtime. However,
as the component re-configuration leads to its endpoint’s
modification, a restricted service replacement form can
take place to evolve the BPaaS workflow in a new ver-
sion which includes just endpoint replacement and not the
replacement of all service information in the workflow. In
this sense, we actually deal with an adaptation workflow
for the 2nd rule involving three actions: (a) PaaS deploy-
ment; (b) service replacement; (c) component (instance)
undeployment. The latter action is executed lastly to first
guarantee that the PaaS redeployment comes into effect
before we can undeploy the initial instance of the “Invoice

https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing
https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing
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Fig. 12 Excerpt of CAMEL topology model

Ninja” component. In case that this redeployment fails,
we can still somehow use the initial deployment. For
instance, a manual adaptation action can take place by the
administrator who must detect and correct the respec-
tive component fault by connecting via appropriate means
(e.g., SSH) to the VM hosting this component. Please note
here that as indicated in “Adaptation” section none of the

existing, proprietary platforms support the latter form of
adaptation workflow while the respective research proto-
types do not handle the infrastructure level or were not
extended to become cloud-enabled.
The detection of the component fault is accomplished

by introducing a single event e1 that evaluates whether
the component mean availability has overpassed a certain

Fig. 13Workflow of the initial deployment
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Fig. 14 Cloud Provider Engine’s UI showing the deployment of the “Invoice Ninja” BPaaS component

threshold. The component’s mean availability is a com-
posite metric computed every minute from the compo-
nent’s raw availability, another composite metric com-
puted every 10 seconds. The latter metric is then com-
puted in turn from raw uptimemetric information within

the 10 second period. That event is the only one for Rule
R1. However, for the second rule, R2, we need to consider
the fact that the first rule failed. This is a special event
kind mapping to a system metric that indicates whether
the adaptation rule has failed. In this sense, it is enough

Fig. 15 Sent email content upon successful BPaaS deployment
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Fig. 16 Execution of one BPaaS workflow instance

Fig. 17Workflow of the environment components execution upon the second adaptation rule’s triggering
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Fig. 18 Cloud Provider Engine’s UI showing the PaaS-based deployment of the “Invoice Ninja” BPaaS component

to insert a condition here that checks whether that metric
is equal to 1 (signifying the rule failure). This condition is
mapped to event e2. Both events e1 and e2 are then asso-
ciated with another event e3 which is composite and maps
to their conjunction.
Figure 13 shows the workflow of an initial deployment.

Once the BPaaS is purchased by a customer (1), its bun-
dle will be given as input to Cloud Provider Engine. This
component will then handle the bundle deployment. It
will first deploy the “Invoice Ninja” component in Ama-
zon AWS by creating a suitable VM (2) and installing this
component (3). Then, it will send the BPaaS BPMN work-
flow for deployment to the Workflow Engine along with
the “Invoice Ninja” component’s endpoint. (4) Once this
deployment is successful, it will attempt to set up themon-
itoring infrastructure at the cloud level by deploying the
respective monitoring mechanisms at the VM of “Invoice
Ninja”. (5) Finally, it will deploy the two adaptation rules
to the Adaptation Engine(6) and also deploy the BPaaS
bundle’s SLA in the SLA Engine(7).
Upon successful deployment (see Fig. 14), an email

is sent to the BPaaS customer identifying the Workflow
Engine’s endpoint (8) (see Fig. 15). Via this endpoint, the
customer connects to the latter engine’s UI via which
he/she can create instances of the deployed workflow.
Upon execution of such instances (see Fig. 16), the orches-
tration of the SaaS services is achieved. In parallel, mon-
itoring information is collected from the different levels.

In fact, IaaS/PaaS/SaaS measurements are computed once
the bundle deployment is successful. On the other hand,
measurements at the workflow level are computed only
when the respective BPaaS workflow instances are exe-
cuted. All these measurements generate respective events
which can trigger adaptation rules in the Adaptation
Engine like those aforementioned in this section.
Figure 17 shows the adaptation workflow in our envi-

ronment for the BPaaS at hand. For instance, once
the “Invoice Ninja” component is down (9), it will be
attempted to be restarted by using the respective script-
based command in its CAMEL-based configuration spec-
ification (see rule R1). If this fails, the Adaptation Engine
will attempt to run “Invoice Ninja” on a PaaS provider
(see rule R2). In this case, the Adaptation Engine will first
invoke a respective method of the Cloud Provider Engine’s
REST interface to trigger the deployment on PaaS (10).
The Cloud Provider Engine will then instantiate “Invoice
Ninja” (11) (see respective result in Fig. 18), and update the
respective endpoint at the Workflow Engine) (12). Finally,
the Cloud Provider Engine will trigger the undeployment
of “Invoice Ninja” from its original hosting place by invok-
ing a suitable method of the Cloud Provider Engine API
(13). This adaptation workflow is covered by a certain
demonstration video of CloudSocket at46.

46https://www.youtube.com/watch?v=aGtQ210wih8&authuser=0

https://www.youtube.com/watch?v=aGtQ210wih8&authuser=0
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The use case at hand has been executed and checked
multiple times during CloudSocket lifetime. Upon the
final CloudSocket platform version, all these times
resulted in the successful handling of the use case which
witnesses the suitability and reliability of that platform
and its encompassed environments.

Conclusions
This article has presented a BP execution framework in
the cloud. This framework can support the cross-cloud
and cross-level adaptive provisioning of cloud-based BPs
called BPaaSes. It involves components enabling the
cross-cloud and cross-level orchestration of cloud services
that provide functional and infrastructural support to the
BP. It also involves components supporting the cross-
cloud and cross-level monitoring and adaptation of the
BPaaSes.
Apart from presenting the overall architecture of the

environment as well as the internal architecture of its
main components, this article has also explicated how this
environment can be distributed and scaled in order to
handle the additional workload as well as to become more
robust.
The environment has been applied over various BPaaSes

which have been derived from corresponding use-cases of
the CloudSocket project. In this article, we showcased the
application over one use-case as a validation means which
also explicates some of the main benefits of the proposed
environment.
The following future work directions are envisioned.

First, the implementation and assessment of the pro-
posed distributed physical environment architecture. Sec-
ond, the better coverage of the monitoring at the PaaS
level. Third, the dynamic incorporation of extra adapta-
tion mechanisms in the environment’s Adaptation Engine
to enhance its adaptation capabilities. Fourth, the capabil-
ity to dynamically modify the adaptation rules modelled
or derived for BPs based on their execution history to sup-
port the optimisation of the adaptation behaviour of these
BPs at runtime. Finally, we will pursue the possibility to
automate the transition from old to new provider API ver-
sions to keep pace with the frequency of change of these
APIs. Our intended contribution could be quite beneficial
to cloud abstraction APIs which struggle to be up-to-date
with the provider API changes.
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