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Abstract

With the development of information technology such as cloud computing, IoT, etc, software becomes the
infrastructure. On the one hand, it is critical to ensure the reliability of software, on the other, sample code can be
mined from open source software to provide reference for automatic debugging. Most of existing automated
debugging researches are based on the assumption that defect programs are nearly correct, therefore they can
successfully pass some test cases and fail to execute others. However, this assumption sometimes does not hold. In
view of the fact that a programs may fail for all the given test cases in the test suite, but there are a large number of
examples available for reference, a sample based fault localization method is studied. A fault localization method by
analyzing the context of failure propagation is proposed, which locates suspicious statements by identifying the
execution status and structural semantics differences between the defective program and sample program. Through
the interactive analysis of value sequences and structure semantics, the influence of code variations and failure
propagation is reduced. The experimental results have shown that the method can effectively locate suspicious
statements and provide assistance for defect repair when there are enough sample programs.
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Introduction
Software becomes the infrastructure of human society.
For example, software defines computing, which gives
birth to cloud computing. The computing resources
can be configured arbitrarily, and the network can be
controlled with little management work. All hardware
products in the IoT (Internet of Things) era have the char-
acteristics of intelligence and networking. Each product
is an intelligent terminal, and the other end of all prod-
ucts must be connected to cloud computing, so these
products are all defined by software. All edge devices
have broader value because of the definition of software.
The intelligent identification, location, tracking, moni-
toring and management of items can not be separated
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from software implementation [1–5]. The development
of cloud computing, big data and artificial intelligence
requires strong system software support [6–9]. However,
bugs often appears in software, which reduce the safety,
security, reliability, etc. of the system. Automatic debug-
ging is helpful to improve the efficiency of software devel-
opment andmaintenance as well as the quality of software.
Therefore, a lot of researches have been carried out on
automatic fault localization [10–12] and repair [13–15] for
industrial software. Especially, with the development of
open source software, the research of mining open source
code to aid automatic debugging has become a research
hotspot [16–18].
In the field of computer-aided education, the support of

automatic debugging technology is also needed. For mas-
sive open online courses with a large number of students,
it is difficult for teachers to interact with each student.
This brings new challenges to information technology:

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00164-z&domain=pdf
mailto: wangtiantian@hit.edu.cn
http://creativecommons.org/licenses/by/4.0/


Wang et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:17 Page 2 of 13

how to automatically evaluate students’ learning effects,
provide adequate feedback, and interact with students?.
For the practical programming course, the solution of this
problem is particularly important. In the process of pro-
gramming exercises or examinations, a large number of
programs implementing the same task can be obtained.
Many of these programs are correct and can be used as
potential sample programs to guide the fault localization
and repair of other defective programs.
This paper focuses on accurately localization of suspi-

cious statements, when sufficient sample programs are
provided. The main contributions are as follows. A fault
localization method by analyzing the context of failure
propagation is proposed, which locates suspicious state-
ments by identifying the execution states and structural
semantics differences between the defective program and
the sample program. It identifies the equivalent and dif-
ferent statements between the defective program and
the sample program, by interactive analysis of execution
value sequences and structural semantics. Execution value
sequences analysis helps to reduce the impact of code
variation on program difference analysis, and structural
semantics analysis helps to reduce the impact of fail-
ure propagation. These two operations cooperate with
each other and help to improve the effectiveness of fault
localization. When sufficient sample programs are pro-
vided, this method can accurately identify the differences
between the defective program and the sample program.
Even if the defective programs cannot pass any test case
in the given test suite, it can effectively locate the suspi-
cious statements in the defective programs and assist in
understanding the causes of failure and repairing defects.
The rest of our paper is organized as follows: the

“Related work” section discusses related work of fault
localization and automatic debugging. In “Problems of
code variation and failure propagation” section, the
phenomenon of code variation and failure propagation
and their influence on fault localization is analyzed.
“Research framework” section presents the overview of
the proposed approach. In “Clustering similar programs
with code variations” section, the clustering method is
described in detail. In “Fault localization by analyzing fail-
ure propagation” section, the fault localization method
is detailed, whereas “Experimental analysis” section con-
tains the experimental results and evaluation. Finally,
conclusions and future work are highlighted in the
“Conclusion” section.

Related work
Fault localization
Software fault localization can help developers improve
the reliability and safety of information systems, such
as cloud computing systems, etc. So many approaches
have been proposed. These approaches can be divided

into program spectra-based, program slicing, state-based,
model-based, program invariant based, mutation analysis,
and machine learning-based approach [19–23] etc. These
methods have their own advantages and disadvantages
[10, 11].
Among them, the program spectra-based method has

been widely studied because of its low computational
complexity and simple implementation. Program spectra-
based methods locate suspicious code by comparing the
program spectrum of failure execution and successful exe-
cution. Predefined measurement formulas are used to
calculate the suspiciousness of each program element (e.g.
statement), and the program elements are ranked accord-
ing to the suspiciousness. The main difference of various
program spectra-based methods is that the measurement
formulas used are different. Some formulas are equivalent
in terms of localization effectiveness [24–26].
Empirical studies have been carried out to evaluate the

effectiveness of fault localization tools [27–33], especially
the spectra-based methods. Although the conclusion are
different from different researches because of different
study subjects, some common observations can be got
from these researches. To sum up, in order to be well-
adopted by practitioners, the following future work of
fault localization is needed.

• Fault localization techniques need to be more
trustworthy, scalable, able to provide insightful
rationales, and integrated to popular IDEs [29].

• In the researches, fault localization and bug fixing are
two separate tasks, however, in practice, they are
tightly coupled and there is no clear boundary
between them [27, 33].

• Browsing the context of failure propagation and
providing program comprehension is necessary and
helpful in debugging [27, 30].

• Existing work are limited in localizing missing code,
however a tool that can recommend additional code to
insert maybe helpful in the debugging process [28, 31].

• Existing bug isolation methods are limited in
localizing multiple faults, as mis-grouping usually
occurs due to the clustering algorithm may not able
to divide failed test cases accurately [31, 32].

Besides these observations, it is particularly important
to note that except for the program slicing method, most
of existing approaches perform fault localization by com-
paring the execution information of successful test cases
and failure test cases [34, 35]. However, defective pro-
grams may fail for all the test cases in the given test suite.
We call such programs “completely failed programs". In
this case, these fault localization methods will not work.
Therefore, it is necessary to study the scenarios without
successful test cases in the given test suite.
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Automatic program repair
It is difficult to obtain a complete formal specification of
requirements for industrial software. Therefore, in soft-
ware fault localization and repair, the execution informa-
tion of test cases is usually used to assist the analysis.
However, only using testing results as the criteria of auto-
matic software repair may cause the overfitting problem.
Even if a patched program passes all tests, it may still be
incorrect [16, 17]. Therefore other information is needed
to complement the test suite. Existing work has shown
that example programs mining from open source soft-
ware, can provide useful information for the generation of
patches [18].
Yi et al. studied the performance of current popular

industrial software repair tools, GenProg [36], AE [37],
Prophet [38] and Angellix [39], in guiding students to
debug programs [40]. All the four tools adopt a test-driven
approach, that is, if the patch passes all test cases in
the test suite, it is considered a successful fix. For exam-
ple, GenProg first uses program spectra-based method to
locate suspicious statements by comparing the statements
of successful test cases with those of failed test cases,
and assigns suspicious statements a higher probability
of selection to be modified. Then genetic programming
algorithm is used to transfer correct statements from
other locations of the program to be repaired. After con-
tinuous evolution, patches that can pass all tests are

searched. The results have shown that the repair rate
of these tools is low. One reason is that student pro-
grams usually have multiple bugs, which require com-
plex modifications, and often need to introduce new
program logic when making modifications. However,
the studied tools are difficult to repair missing state-
ments and complex defects with dependencies. Another
reason is that these tools use the program spectra-
based fault localization method to identify poten-
tial modification locations. The program spectra-based
method locates suspicious statements by comparing the
successful execution and failure execution, while the
students’ programs may fail for all the given test cases
in the test suite. In this case, the spectra-based method
can not be applied. The inaccuracy of fault localization
results will directly reduce the effectiveness of program
repair.
The enlightenment of the above researches to this paper

is as follows.
(1) It is necessary to further study the fault localization

method under the scenario of complex defects which lead
to the failure of all the given test cases.
(2) In addition to test cases, sample programs can also

be mined from a large number of correct programs to
provide auxiliary information for fault localization.
This paper focuses on the sample based fault localiza-

tion method.

Fig. 1 Example programs with code variations
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Problems of code variation and failure propagation
This paper studies how to locate suspicious statements in
defective programs by analyzing the differences of execu-
tion state and structure semantics between the defective
program and the sample program. However, code varia-
tions and failure propagation bring difficulties to program
difference analysis and reduce the effectiveness of fault
localization.
This section takes the source code in Fig. 1 as an exam-

ple to analyze the problem. The goal of program codes
A, B and C in the figure is to use iterative algorithm to
achieve the desired function of computing baseexp. A and
B are correct programs, C is a defective program, lacking
the initialization statement of variable r.
(1)Code variation
In addition to the identical representation, there

may be two other situations for functionally equivalent
programs: one is that they adopt completely different
implementations (e.g. different algorithms and data struc-
tures); the other is that they adopt the same algorithms
and data structures but have different syntactic rep-
resentations, such as different variable names, control
structures, expression forms, statements order, etc. This
phenomenon is called code variation [41].
Code variation makes it difficult to identify differences

between the defective program and the sample program.
For example, in Fig. 1, if the for statement in program A
and the while statement in program B can not be iden-
tified as equivalent code, when program A is used as
the sample program to match with program B, the two
loop structures will be identified as difference statements,
which will lead to fault location misdetection. In addition,
program A and program B have different orders of equiv-
alent statements and variable names. Failure to accu-
rately identify these code variations can also lead to false
positives. So, how to recognize code that syntactically dif-
ferent but functionally equivalent, is a key problem to be
solved.
There are two advantages of identifying equivalent pro-

gram with code variations. On the one hand, it can be
used to reduce the number of sample programs that need
to be provided. For example, only one sample program
is needed for program A, program B and program C.
On the other hand, it can improve the accuracy of dif-
ference analysis between the defective program and the
sample program, thereby improving the effectiveness of
fault localization.
(2)Failure propagation
The bottom of Fig. 1 shows the sequence of execution

values for each variable when fact (3, 4) is called.
Definition (Execution value sequence): Given a test

case set T, the sequence of execution values of variable
var assigned at assignment statement si in program P is as
follows:

ValueSeqs(T , si, var) = {value(si, var, t)|t ∈ T} (1)

value(si, var, t) denotes the values of variable var when
executing statement si with test case t.
The values of the variable at each assignment statement,

got by executing all test cases, constitutes the execution
value sequence of the variable. Execution value sequences
reflect how the program defines and uses variables, so
they imply the execution semantics of the program.
Variables that achieve the same function usually have
the same value sequence in the execution. These value
sequences are not affected by code variations. Especially,
the influence of statement order and variable name vari-
ation on identifying equivalent codes can be eliminated,
by matching execution value sequences. For example,
because the variables j in program C and i in program A
have the same value sequence for the same test case, so
(j, i) is a matching variable pair. According to the variable
pair (j, i), the statements "j = j + 1;" in C and "i++" in A can
be matched accurately.
However, unfortunately failure propagation may cause

equivalent variables to fail to obtain the same sequence of
execution values. For example, due to the lack of initializa-
tion statement for variable r in defective program C, the
value of r is randomnumber, which is an error state. As the
program is executed, the error state is propagated, result-
ing in r at "r = r∗base;" getting a error value sequence. As
a result, the statement cannot match the "r∗ = base;" in
program A, but in fact the two statements are equivalent.
To sum up, in the case of failure propagation, identifying
differences between the defective program and the sample
program only by matching the value sequences will also
lead to false detection of fault location. Therefore, how
to reduce the impact of failure propagation on program
difference analysis, is also a key problem.

Research framework
Based on the above analysis, a fault localization method
by analyzing failure propagation with samples is proposed.
The research framework is shown in Fig. 2. The inputs
include a defective program, a program set implementing
the same task, and a set of test cases. The output is the
bug context to provide assistance in understanding and
repairing the defects.
(1) In order to identify new reference programs

from large scale program sets, a program clustering
method based on structural metrics and execution value
sequences is proposed. The main steps are as follows.
Step 1: test the programs and collect execution

information.
The programs are executed with test cases and the out-

put results are collected. Compare the actual running
results of the program with the expected output results
of the test cases. If a program pass all the test cases,
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Fig. 2 Research framework of fault localization by analyzing failure propagation with samples

it is considered as potentially functionally correct and
used as a reference program. Follow-up cluster analysis is
performed on such programs.
Step2: perform program clustering based on struc-

tural metrics to quickly identify programs with similar
structure.
Programs with similar structure are divided into the

same cluster, while programs with different structure are
divided into different clusters.
Step 3: perform program clustering based on the execu-

tion value sequences.
Programs are instrumented based on abstract syntax

tree to print the values for each variable. The instru-
mented programs are executed with test cases, and the
execution value sequences are collected. Programs that
implement the same algorithm are divided into the same
cluster, programs of different algorithms can be divided
into different clusters. Furthermore, a template program
can be selected from each cluster to form a template set.
(2)Select the sample program to be matched with the

defective program.

Computing the similarity of structure metrics and exe-
cution value sequences of defective program and template
programs, selecting the template program which is most
similar to defective program as an sample program for
subsequent fault localization. The correct program which
is has the highest similarity with the defective program is
chosen as the sample program. This is because the more
similar, the more likely the sample program adopts the
similar algorithm with the defective program.
(3) In order to effectively locate complex defects, reduce

the search space of suspicious statements and explain the
causes of errors, a fault localization method by analyzing
the context of failure propagation is proposed.
This method identifies the difference of execution states

and structural semantics [42] between the defective pro-
gram and the sample program, and locates suspicious
statements even in the absence of successful test cases. It
focus on solving the problem of code variation and failure
propagation.
Firstly, in order to avoid the influence of code

variations, especially the statement order variation
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and the variable name variation, the execution value
sequences of variables in the defective program and
the sample program are matched, to identify map-
ping variables and assignments between these two
programs.
Then, in order to reduce the false positives of suspicious

statements caused by failure propagation. The structural
semantics of the programs is further analyzed based on
control dependence trees [42], to identify possible match-
ing variable pairs and statements.
Finally, the different statements identified in the pro-

cess of structure semantics matching are identified as
suspicious statements, and the possible mutation opera-
tions to repair the suspicious statements are identified,
which helps to analyze the causes of failure, and provides
a reference for further repair.
Because this method identifies suspicious statements

based on structural semantics difference analysis, it can
locate various types of defects, including the missing
statements defect. It does not require successful test cases.
The fault localization method can also be integrated

into the program repair framework based on genetic pro-
gramming, which provides support for suspicious state-
ment localization in the absence of successful test cases,
and lays a foundation for repairing programs based on
samples.

Clustering similar programs with code variations
This paper proposes two levels of program clustering
method. Firstly, the method based on structure metrics is
performed to quickly identify the programs with similar
structures with lower complexity. On this basis, the exe-
cution value sequences of variables are further analyzed.
By detecting the similarity of the execution sequences, it
is possible to recognize functional equivalent programs
more accurately, no matter whether the syntactic rep-
resentations are different. The related definitions are as
follows.
Definition (Metric vector): A metric vector is a point

in Euclidean space, that is obtained by statistics of the size,
structure, and complexity of the abstract syntax tree of the
program.
For example, v(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10),
v1: the number of nodes; v2: the number of opera-

tors; v3: the number of assigned nodes; v4: the number
of loop structures; v5: the number of selection structures;
v6: the number of system function calls; v7: the num-
ber of special data types (such as pointers, arrays and
structures); v8: the longest path length; v9: the length of
recursive call path; v10: the longest nested path depth of
circular.
Definition (Structure similarity) [42]: The structure

similarity of two programs is the similarity of their metric
vectors as shown in Equation 2.

Structure_sim(v, v
′
) = 1 −

√
√
√
√

1
n

n−1
∑

i=0
(vi − v′

i)/max(vi, v
′
i)
2

(2)

In which, v and v′ are metric vectors.
The structural similarity between programs is com-

puted based on the structural metric vectors statistically
calculated based on the abstract syntax trees of the two
programs.
Definition (Similarity of two value sequences):

Assuming that Xi and Yj are two execution value
sequences, their similarity is defined in Equation 3.

Seq_sim(Xi,Yj) = LCS(Xi,Yj)
(|Xi| + |Yj|)/2 (3)

In which, LCS(Xi,Yj) represents the maximum num-
ber of common subsequences in the execution value
sequences of Xi and Yj , where the subsequences may be
discontinuous.
Definition (Execution value similarity): Assuming

that the execution value sequence set of programs A
and B is SA =< X1,X2,X3, ...,Xi...,Xn > ,SB =<

Y1,Y2,Y3, ...,Yj...,Ym > respectively, then the execution
value similarity of programs A and B is defined in
Equation 4.

Value_sim(SA, SB) = 1
n

n
∑

i=1

m
∑

j=1
MAX(Seq_sim(Xi,Yj))

(4)

Theprogramclusteringalgorithmis shown in Algorithm 1.
The input is a set of programs, and the output is the set of
program clusters.
Line 2 to 8 describe the clustering based on structure

metrics.
Line 5, in order to analyze the syntax and structural

semantic of programs, each program is parsed and its
abstract syntax tree is created.
Line 6, the abstract syntax tree is traversed to statisti-

cally calculate the metric values, and a metric vector is
generated for each program, to approximately evaluate the
structure of the program.
Line 8, the programs are clustered and grouped accord-

ing to the values of Structure_sim (see Equation 2) with a
hierarchical clustering method.
Line 9 to 20 describe the clustering based on execution

value sequences. The result of the structure metrics based
clustering is further analyzed.
Line 12, in order to collect the execution information

of variables, each program is instrumented based on the
abstract syntax tree. Probe statements are inserted into
the syntax tree to output the line numbers and variable
values of the executed statements.
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Algorithm 1 Clustering programs with code variations
Require:

TP: a set of template programs,
T : A set of test cases

Ensure:
� = ω1,ω2, ...,ωk :clustering set

1: � = �

2: //clustering based on structure metrics
3: V = �

4: for each tp ∈ TP do
5: ASTtp = CreateCDT(tp)
6: vtp = GetStructureMetrics(ASTtp), V = V ∪ {vtp}
7: end for
8: �structure = HierarchicalCluster(V )
9: //clustering based on execution value sequences

10: for each omegai ∈ �structure do
11: for each tp ∈ omegai do
12: Itp = Instrument(tp)
13: tr(Itp) = �

14: for each t ∈ T do
15: tr(Itp, t) = Execute(Itp, t),tr(Itp) = tr(Itp) ∪

tr(Itp, t)
16: end for
17: Seqtp = GetValueSeqs(tr(Itp))
18: end for
19: �valuei = HierarchicalCluster(Seqtp ), � = � ∪

�valuei
20: end for
21: return �

Line 13 to 18, the instrumented program is exe-
cuted with each test case, to collect the execution value
sequences.
Line 19, the programs are clustered and grouped

according to the execution value similarity with a hierar-
chical clustering method. The execution value similarity
of two programs, as shown in Equation 3 and 4, is calcu-
lated by the longest common subsequence algorithm.

Fault localization by analyzing failure propagation
Execution value sequences analysis is helpful to identify
the equivalent codes with code variations in the defec-
tive program and the sample program. Therefore, this
paper identifies the equivalent variable pairs and equiva-
lent assignment statements in two programs by matching
execution value sequences. However, due to the fail-
ure propagation, the equivalent assignment statements
may not obtain the matched execution value sequence.
Therefore, it is necessary to further identify whether the
unmatched value sequences is caused by the failure prop-
agation based on the structural semantics, by matching
assignment expressions and their context.

Definitions
The combination of dynamic execution value sequences
analysis and static structural semantics analysis helps to
identify the differences between the defective program
and the sample program accurately and locate the sus-
picious statements in defective programs. The related
definitions are as follows.
Definition (Variable pairs matched by value

sequences): Given a test case set T, variable varb at
assignment statement sb in program Pb, variable vars at
assignment statement ss in program Ps, variable varb and
vars are variable pairs matched by value sequences, and
sb and ss are matched assignment statements, if and only
if ValueSeqs(T , sb, varb) ≡ ValueSeqs(T , ss, vars), that is,
varb and vars have the same execution value sequence.
Definition(Control dependence tree): program P’s

control dependence tree, defined as T = (V ,E), is a
directed, ordered tree, where V is a set of nodes, repre-
senting statements and predicates in the program, E is a
set of control dependency edges and procedure call edges
[39]. The following attributes are satisfied.
(1) T is a directed tree. The control dependence edge

from node u to node v represents the control dependence,
and v control depends on u. Thismeans that whether node
v executes or not depends on the value of predicate in
node u.
(2) T is an ordered tree. If node v and node u have the

same parent node, they are called brothers. If v is the left
brother of u, v precedes u in the execution.
(3) The node is a triple (id, type, exp), where id is the

line number of the statement in the program, type is
the statement type, exp is the abstract syntax tree of the
expression.
(4) The procedure call edge represents the call relation-

ship between functions, and connects the function call
node and the entry node of the function being called.
Based on the control dependence tree to perform struc-

tural semantic analysis, the variable pairs matched by
structural semantics are further identified.
Definition(Variable pairs matched by structural

semantics): Given a test case setT, variable varb at assign-
ment statement sb in program Pb, variable vars at assign-
ment statement ss in program Ps, variable varb and vars are
variable pairs matched by structural semantics, and sb and
ss are matching assignment statements, if and only if in
the control dependence tree of Pb and Ps, the syntax trees
of sb and ss are completely matched, and both the control
dependent paths of sb and ss have the same type of nodes.

Fault localization algorithm
Fault localization by analyzing the context of failure prop-
agation is shown in Algorithm 1. The inputs include a
defective program, the sample program, and a test case
set. The goal is to identify the statements that are different
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between the defective program and the sample program
as suspicious locations, return mutation operations that
may be performed to repair defects, and map variables in
the defective program and the sample program to assist
program repair.
Lines 1 to 5, instrument and execute the defective pro-

gram and the sample program with each test case, so as to
collect the execution value sequence of each assignment
variable.
Lines 6 to 9, map the equivalent variables and assign-

ment statements in the defective program and the sample
program by matching the execution value sequences.
Line 10, create the control dependence tree for the

defective program and the sample program respectively.
Lines 11 to 15, and Lines 16 to 20, mark the equiv-

alent assignment statements matched by the execution
sequences in the two control dependence trees, respec-
tively.
Line 21, The dynamic programming algorithm is used to

find the maximum matching between two control depen-
dence trees. On the one hand, the equivalent assignments
and the variable pairs matched by structural semantics
are identified to reduce the false positives of suspicious
statements caused by failure propagation. The variable
pairs are added to the variable mapping table. On the
other hand, the different statements in the two programs
are assigned higher suspiciousness, the mutation opera-
tions (insertion, deletion, replacement) that may repair
the suspicious statements are identified and given higher
mutation operation probability.
Finally, The variable mapping table, mutation operation

probability, suspicious location and probability are out-
put to assist understanding the causes of errors. Statement
nodes with high probability are suspicious, and mutation
operation with high probability is a more likely editing
operation to repair the suspicious statement. The control
dependence trees with the matching marks can also be
output to assist the understanding of the failure context.

A sample
Figure 3 is an example of the structural semantic analy-
sis of the programs in Fig. 1. By matching the subtrees of
the program control dependence trees, the similar nodes
and different nodes of the defect program C and the sam-
ple program A are identified, so as to localize the nodes
that may contain defects, identify the possible mutation
operations to repair the defects, and narrow the search
scope.
Each node in the node sequence of the defect program

and the sample program is given a weight, the mis-
matched node is given a higher probability (value is 0.8),
and the matched node is given a lower probability
(value is 0.2). The unmatched nodes in the defec-
tive program are regarded as suspicious statement. The

Algorithm 2 Fault localization by analyzing failure
propagation
Require:

Pb:A buggy program,
Ps:A sample program,
T : A set of test cases;

Ensure:
SS:SuspiciousStatements,
Mu:Mutations,
Var:MapVaraibles;

1: IPb = Instrument(Pb), IPs = Instrument(Ps)
2: for each item t ∈ T do
3: tr(IPb, t) = Execute(IPb, t)
4: tr(IPs, t) = Execute(IPs, t)
5: end for
6: SeqPb = GetValueSeqs(tr(IPb))
7: SeqPs = GetValueSeqs(tr(IPs))
8: MapVariables(SeqPb, SeqPs)
9: Map = MapAssignement (Pb,Ps)

10: CDTb = CreateCDT(Pb) , CDTs = CreateCDT(Ps)
11: for each node vi ∈ CDTb do
12: if vi.pos ∈ Map then
13: mark vi
14: end if
15: end for
16: for each node vj ∈ CDTs do
17: if (vi.pos, vj.pos) ∈ Map then
18: mark vj
19: end if
20: end for
21: SS,Mu,Var=MaxMatch(CDTb,CDTs)
22: return SS,Mu,Var

unmatched nodes in the sample program are likely
to be statement nodes that can be used to repair
defects.

Experimental analysis
Research questions
The research questions are as follows.
(1) RQ1: What is the effectiveness of the program clus-

tering method? Ideally, programs with similar structure
and semantics but possibly with code variations should be
divided into the same cluster, and programs with different
implementation logic or algorithms should be divided into
different clusters.
(2) RQ2: What causes a program failed on all the test

cases?
(3) RQ3: Can the proposed fault localization method

effectively identify the differences between the defective
programs and the sample program? Which factors affect
the effectiveness of fault localization?
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defective program C sample program A

Matching control dependence trees

Difference:

C: <C1, C2, C3, C4, C5,…., Cn>

A: <A1, A2, A3, A4, A5,…., Am>

Probability of suspicious location:

C:  <0.2, 0.2, 0.2, 0.2, 0.8,…., 0.2>

A:  <0.2, 0.2, 0.2, 0.2, 0.8,,…., 0.2>

Probability of mutation operation:
C1: < WI=0.33, WR=0.33, WD=0.33>

…
C5: <WI= 0.5, WR=0.25, WD=0.25>

…

declaration i

Entry

assignment 

i 0

iteration(i<exp)

assignment

i +

i 1

assignment

r *
r base

assignment

r 1

return r

declaration r

declaration j declaration r

assignment 

j 0

iteration(j<exp)

assignment

j +

j 1

assignment

r *

r base

return r

Entry

Variable mapping

(base,base)

(exp,exp)

(j,i)

(r,r)

Fig. 3 Structural semantic analysis example

Benchmarks
Yi et al. provided a benchmark, as shown in Table 1, when
studying the performance of industrial software repair
tools in debugging students’ programs [40].
These programs are actually written by students in the

course of introductory programming. Each experiment
has 4-8 programming tasks. The principle of Yi et al. in
choosing programming tasks is to cover as many syn-
tactic structures and algorithms as possible. The correct
versions and the buggy versions are distinguished by com-
paring the actual and expected results. In the benchmark,
each programming task provides a correct template pro-
gram andmultiple program pairs (Pb, Pc). Pb is a defective
program version, which failed on one or more test cases.
Pc is a modified version of Pb, which is obtained by the
same person who modifies Pb. Pc can pass all test cases

Table 1 Benchmark of programs to be clustered and localized

Labs TasksBuggy VersionsCorrect VersionsDescription

Lab3 4 63 67 Expressions, printf, scanf

Lab4 8 117 125 Conditionals

Lab5 8 82 90 Loops, Nested Loops

Lab6 8 79 87 Integer Arrays

Lab7 8 71 79 Character Arrays and Functions

Lab8 6 33 39 Multi dimensional Arrays

Lab9 8 48 56 Recursion

Lab108 53 61 Pointers

Lab118 55 63 Algorithms

Lab128 60 68 Structures
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in the test suite. There are 661 defective programs in the
data set, all of which contain logic errors and no syntactic
errors.
There are two reasons for our experimenting on this

benchmark. The first one is that it provides not only the
buggy versions, but also the correct versions which helps
in verify our sample based approach. The second one is
that we want to test the capability of our method in deal
with programs with complex bugs that cannot pass any
test case, this benchmark provides such buggy versions.

Clustering effect analysis
To answer RQ1, the correct versions of each program-
ming task were clustered to select template programs.
Ideally, the programs in each cluster are structurally and
semantically equivalent, and the programs in different
clusters should adopt different implementation logic or
algorithms. In order to improve the efficiency of code
review, Gumtree [43] was used to generate syntax tree
differences between two programs, and then these differ-
ences were manually examined to determine whether the
two programs should belong to the same cluster.
Clustering result is related to distance threshold. The

smaller the distance threshold is, the higher the similar-
ity between programs in the same cluster will be, and the
more clusters will be generated. It is expected that the
programs in the same cluster should be as similar as pos-
sible to avoid filtering out too many template programs
to provide sufficient template programs, so the distance
threshold is set to 0.1.
The clustering effectiveness was evaluated by Purity

and Entropy. Purity calculates the proportion of the cor-
rect clustered programs to the total number of programs.
Entropy reflects the uncertainty of clustering results.

The average Purity is 0.95576, and the average Entropy
is 0.15497. The clustering partition and the actual expec-
tation partition are in good agreement. Therefore, the
program clustering method is effective.

Cause analysis of complete failure
To answer RQ2, the benchmark provided by Yi et al. are
further analyzed [40]. Among 661 defective programs, 206
defective programs failed to pass any test case in the test
suite. Because there is not any successful test case infor-
mation, these programs cannot analyzed by traditional
fault localization methods, such as spectra-based method.
This subsection focuses on the analysis of these programs,
which are called “completely failed programs".
In the complete failed program set, 86 programs only

contain one defect and 120 programs contain multiple
defects. Figure 4 counts the number of program ver-
sions containing single defect and multiple defects in each
programming task.
As shown in Table 2, the types of defects in completely

failed programs are various. For example, an operator
error, a logical expression error, or an output format error
may cause the programs failed on the whole test case set,
and the interaction of different kinds of defects may also
lead to completely failure. In the completely failed pro-
gram set, the single defective program mainly contains
the following types of defects: input and output format,
logical expression, arithmetic expression, variable initial-
ization, variable assignment, array subscript, function
parameter errors, etc. The defect types of multiple defect
programs include not only the defect types in the single
defective programs mentioned above, but also the large
concepts missing, complex control structure errors, func-
tion invocation errors, statement order errors and so on.

Fig. 4 Number of bugs in programs failed for all the given test cases in the test suite
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Table 2 Types of bugs which cause programs failed on all the given test cases in the test suite

ID Defect type Number Description

1 output error 118 output format error, missing or redundant output statements

2 input error 21 input format error, missing or redundant input statements

3 logical expression error 36 error logical expressions

4 variable-related errors 30 variable initialization missing or errors in assignments, missing
variables and corresponding processing statements

5 larger conceptual deficiencies 28 missing key statements or conceptual errors

6 control structure error 26 loop or branch decision control flow error or missing

7 function error 22 missing function calls or function definitions, errors in
parameters and arguments

8 array subscript error 17 increase or decrease array access expressions, array sizes

9 statement order error 10 errors in statement order lead to errors in calculation results

10 arithmetic expression error 7 incorrect arithmetic expression

11 other incorrect uses 4 add semicolons before for loop body, string terminator errors,
struct − > and. misuse

A program may also contain many types of defects. These
defects interact with each other, resulting in the failure of
the program on the entire test case set.

Effectiveness analysis of fault localization
To answer RQ3, the effectiveness of fault localization on
defective programs failed on all test cases in three cases
was analyzed.
Case1: Provide sufficient sample programs. Using the

original data in the benchmark, that is, there is a corrected
version of Pc corresponding to each defective program Pb.
Case 2: Perform clustering to select sample program.

A program is randomly selected from each cluster and
added to the template set. In this case, for a defective pro-
gram Pb, in the process of fault localization, the matching
sample program may not be its initial corresponding ver-
sion Pc, but semantically equivalent to the Pc, but there
may be multiple correct versions such as expressions,
variable names, statement order, etc.
Case 3: The sample program is inadequate. On the

basis of Case2, the set of template programs is reduced.
From the set of template programs generated by clustering
algorithm, 1/2 and 1/3 number of template programs are
randomly selected to form a new template set.
Table 3 counts the number of false positives of fault

locations in three cases. It is considered that the defects in
the program are correctly localized only when the location
of defects is identified as suspicious. If a correct statement
is identified as suspicious statement, it is considered as a
false positive.
The following conclusions can be drawn from Table 3

and Fig. 5.

• In the case of providing the corresponding correct
program as the sample program, this method can

accurately identify these defect locations as difference
statements, and the corresponding correct
statements in the example program as potential
repair statements. Moreover, the effectiveness of fault
localization is not limited by the number and type of
defects.

• When the sample program is selected by program
clustering, the defect statement can still be accurately
localized, which shows that the proposed clustering
method combined with fault localization method can
effectively localize various defects, including the
missing code defect.

• When the number of templates is small and the
sample program provided is insufficient, the correct
statement will be misreported as suspicious
statement. The fewer sample programs available, the
greater the probability of false positives. Therefore,
the precondition for the effectiveness of this method
is that there are enough sample programs available.

Table 3 False positives of fault localization in three cases

Labs Versions Case1 Case2 Case3(1/3) Case3(2/3)

Lab 3 24 0 0 6 13

Lab 4 32 0 0 15 18

Lab 5 24 0 0 9 13

Lab 6 41 0 0 19 25

Lab 7 16 0 0 6 10

Lab 8 8 0 0 4 5

Lab 9 22 0 0 10 13

Lab 10 9 0 0 4 5

Lab 11 15 0 0 6 8

Lab 12 15 0 0 7 9

Tatol 206 0 0 86 119
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Fig. 5 Number of bugs in programs failed for all the test cases

Conclusion
A fault localization method based on sample programs
by analyzing failure propagation is proposed. The exper-
imental results have shown that, when sufficient sample
programs are provided, even if the defective program can
not pass any test cases, the proposed methods of pro-
gram clustering and fault localization working together
can effectively locate the suspicious statements.
With the development of swarm intelligence and open

source software, this method is expected to be applied
to industrial software and learn to debugging from open
source code, so as to improve the software reliability for
information systems such as cloud computing and IoT
systems. We will collect example in open source code
and verify the effectiveness of our approach in industrial
systems in the future work.
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