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Abstract

Understanding and improving the robustness of networks has significant applications in various areas, such as
bioinformatics, transportation, critical infrastructures, and social networks. Recently, there has been a large amount of
work on network dismantling, which focuses on removing an optimal set of nodes to break the network into small
components with sub-extensive sizes. However, in our experiments, we found these state-of-the-art methods,
although seemingly different, utilize the same refinement technique, namely reinsertion, to improve the performance.
Despite being mentioned with understatement, the technique essentially plays the key role in the final performance.
Without reinsertion, the current best method would deteriorate worse than the simplest heuristic ones; while with
reinsertion, even the random removal strategy achieves on par with the best results. As a consequence, we, for the
first time, systematically revisit the power of reinsertion in network dismantling problems. We re-implemented and
compared 10 heuristic and approximate competing methods on both synthetic networks generated by four classical
network models, and 18 real-world networks which cover seven different domains with varying scales. The
comprehensive ablation results show that: i) HBA (High Betweenness Adaption, no reinsertion) is the most effective
network dismantling strategy, however, it can only be applicable in small scale networks; ii) HDA (High Degree
Adaption, with reinsertion) achieves the best balance between effectiveness and efficiency; iii) The reinsertion
techniques help improve the performance for most current methods; iv) The one, which adds back the node based
on that it joins the clusters minimizing the multiply of both numbers and sizes, is the most effective reinsertion
strategy for most methods. Our results can be a survey reference to help further understand the current methods and
thereafter design the better ones.
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Introduction
Many real-world systems can be described through the
complex network perspective, including air transport [17],
power grid [3], malicious organization [9, 10], Internet [3]
or inter-personal networks [15]. One of the most impor-
tant topics on these networks is about the robustness, i.e.,
the capacity to maintain the functionality after a major
failure [29]. Since connectivity is the fundamental basic
for almost all behaviors on networks, researches thus try
to quantify how the connectivity is affected by node(or
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link) removal, and there comes with the well-defined net-
work dismantling problem [1], which aims at identifying
an optimal sequence of nodes that maximizes the dam-
age on the network connectivity [5]. Such analysis yields
a wide range of practical applications, such as immu-
nize the epidemic propagation in populations [23], block
the rumor spreading on social networks [15], prevent the
virus diffusion in computer networks [7], etc.
However, the exact solution is computationally

intractable for medium and large networks due to its
NP-hard nature [5], thus a large number of approximate
methods have been proposed, including the heuristic
methods [4, 11, 12, 21, 23, 31], and some message-passing
algorithms [5, 22]. The former methods often greedily
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select target nodes based on local metrics, like node
degree, which often leads to sub-optimal solutions; the
latter ones are more accurate and global, while they need
to iterate certain steps on the whole network to select the
suitable candidate nodes [31], which would sacrifice some
efficiency.
Although these methods looks different from each

other, many of them [5, 21, 22, 24, 31] share the same
refinement technique, named reinsertion (we later intro-
duce it in detail in Section 2), which is just simply
mentioned in the respective literature, while has sig-
nificant influence on the final results. As illustrated in
Fig. 1, we draw the robustness curves (“Robustness mea-
sure” section) of random removal, simplest heuristic HDA
and the representative CI (details of these methods will
be introduced in “Competing methods” section) on a real-
world Gnutella31 network [18]. We can see that without
reinsertion, the representative method CI cannot even
beat the simplest heuristic HDA, while with reinsertion,
the random removal strategy can achieve comparable
performance than the state-of-the-art results. In some
literature, people just compare their methods enhanced
with reinsertion with others without reinsertion, and then
report the ’fake’ superiority of their model, since we are
not sure whether the superiority comes from the model
itself or just the reinsertion. Such confused results pre-
vent us from selecting the best algorithm to handle the
application at hand.
In this paper, we systematically investigate the power of

reinsertion on the current methods for network disman-
tling. As far as we know, there are no previous efforts

that conduct such comprehensive ablation studies for the
reinsertion. We aim at figuring out the following three
questions: i)Which is the current best method if all without
reinsertion? ii)Which one is the best if all with reinsertion?
iii)Which is the best reinsertion strategy?
To achieve this, we conduct ablation study

(with/without reinsertion) for all the current network dis-
mantling methods, including both traditional heuristics
and the state-of-art message-passing ones, on synthetic
networks and real-world networks. We use four random
network models, including ER [8], WS [30], BA [3] and
PLC [13], to generate diverse graphs with varying sizes
and structures by controlling the model parameters. For
real-world networks, we select 18 real networks covering
7 domains and with different scales. Considering that the
network robustness can be described by different mea-
sures, we choose the area under the robustness curve as
the main evaluation metric, since it captures the response
of the whole dismantling process. Extensive experi-
ments demonstrate that the reinsertion can significantly
improve the performance regardless of the network types
and the methods. Besides, since reinsertion is rather
effective for the network dismantling problem, perhaps
people should focus on this technique itself rather than
other aspects, so as to design a better attack strategy.
The main contributions of this paper are summarized as

follows:

1. We conduct comprehensive ablation studies that are
with and without reinsertion for the network
dismantling problem. We compare 10 competing

Fig. 1 Illustration of the reinsertion power on Gnutella31 network



Fan et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:24 Page 3 of 13

methods on both synthetic graphs generated from
four random network types and 18 real-world
networks covering seven domains and scales up to
hundreds of thousands nodes;

2. We design two other reinsertion strategies, and
empirically prove that they have surpassed the
previous reinsertion technique in a large margin;

3. The results obtained in this paper could provide a
valuable guide for selecting and designing the most
appropriate method for practical network
dismantling problems.

The rest of the paper is organized as follows. We
introduce the reinsertion method, robustness mea-
sures, competing methods and experimental data in
“Method” section. We analyze the comprehensive abla-
tion results and effects of different reinsertion strategies
in “Results” section. Finally, we conclude the paper in
Section 5.

Method
In this section, we introduce the experimental setups.
We first introduce the robustness measure to evaluate
the dismantling efficacy, then we introduce the reinser-
tion technique that is widely adopted in most current
competitors. After that, we describe the competitors we
are to analyze and the experimental data, including both
synthetic graphs and real-world networks.

Robustness measure
Network dismantling is to identify a sequence of nodes
of which removal would degrade the network connec-
tivity maximally, and this connectivity disintegration is
often measured as the relative reduction in the size of
the giant(largest) connected component (GCC size) [5,
21]. The smaller the remaining GCC size, the more the
network is considered to have been disintegrated.
We consider the area under the robustness curve as the

evaluation metric, which is plotted with horizontal axis
being the fraction of nodes removed, and the vertical axis
being the remaining GCC size. It is defined as:

R = 1
N

N∑

Q=1
s(Q) (1)

whereN is the number of graph nodes, s(Q) is the remain-
ing GCC size after removingQ nodes. Intuitively this mea-
sure is equivalent to assessing how many nodes the GCC
contains when a new node is deleted from the network,
and sum this for all nodes [29]. Note that Eq. 1 captures
the network’s response to the dismantling throughout the
whole process, and the computation of R requires a rank-
ing of the nodes, we are interested in minimizing R over
all possible node orders.

In this paper, we evaluate the ablation performance of
reinsertion for this robustness measure.

Reinsertion technique
The reinsertion is firstly proposed as an independent
strategy for network destruction and immunization [27],
and later developed as an important refinement tech-
nique for other dismantling strategies. The reinsertion
starts from the point, where the network has been dis-
mantled over by a certain strategy, it adds back one of the
removed node, chosen such that, once reinserted, it joins
the smallest number of clusters. When the node is rein-
serted, restore the edges with its neighbors which are in
the network (but not the ones with neighbors not yet rein-
serted, if any). Repeat the above the procedure until all the
nodes are back in the network.
As is shown in Fig. 2, each node is assigned an index

c(i) given by the number of clusters it would join if it is
reinserted in the network. The red node has c(red) = 2,
while the blue one has c(blue) = 4, the green node has
c(green) = 3. Then the node with the smallest c(i) is
reinserted, i.e., the red node. After that, the c(i)s are recal-
culated and the new node with smallest c(i) is found and
reinserted. Repeat these steps until the terminal criteria
meets.
We will later show with extensive experiments how

powerful such a simple technique is to the current net-
work dismantling methods.

Fig. 2 Illustration of the reinsertion procedure
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Competing methods
In this paper, we compare with 9most representative com-
peting methods. The first five are traditional heuristics
which are based on some local or global structure cen-
trality, such as degree, betweenness, closeness, pagerank,
or collective influence. The remaining five are specifically
designed for dismantling networks. Note that we also add
a Random removal strategy as a worst possible baseline.
High Degree Adaptive (HDA) [23]. HDA is an adap-

tive version of high degree method [2]. Within each step,
the node with the highest degree is removed, and then the
remaining degrees are updated.
High Betweenness Adaptive (HBA) [12]. HBA is the

adaptive version of the high betweenness method, where
the betweenness centrality of the remaining nodes is
recomputed after each node removal. Betweenness cen-
trality of a node equals to the sum of the fraction of all
pairs shortest paths that pass through this node. It is a very
useful centrality measure that benefits many network-
related applications such as community detection and
network vulnerability. However, the high computing cost
prohibits its use in large-scale problem settings.
High Closeness Adaptive(HCA) [4]. HCA is the adap-

tive version of the high closeness method. Closeness cen-
trality describes how close a node is to all the other nodes
in the graph. It is calculated as the reciprocal of average
distances from one node to all the others. Similar as HBA,
the high complexity cost prevents its application in large
networks.
High PageRank Adaptive (HPRA) [6]. HPRA is the

adaptive version of high PageRank method. PageRank has
been widely employed in search engines, as it provides a
global ranking of all web pages, regardless of their content,
based solely on their location in theWeb’s graph structure
[6]. PageRank computes the probabilities for a random-
walking agent to reach every node in the network, which
is also regarded as useful indications to supervise the
network attack.
Collective Influence(CI) [21]. The Collective Influence

measure is defined as the product of the node’s reduced
degree (i.e. original degree minus one) with the sum of the
reduced degrees of the nodes that are within a constant
hops away from it. This measure describes the propor-
tion of other nodes that can be reached from a given
node, assuming the nodes with higher CI values play
more crucial roles in networks. The CI method sequen-
tially removes the node with the highest CI value and
recalculating the collective influence for the rest following
operations.
MinSum [5]. MinSum is proposed to address the net-

work dismantling problem. It consists three stages, which
firstly utilizes a variant of message-passing algorithm to
break all the cycles, and then breaks the remaining tree
into small components by removing a fraction of nodes

that vanishes in the large size limit. In the third stage, it
greedily reinserts some nodes that close cycles without
increasing too much the size the largest component, to
reduce the total number of nodes removed.
Belief Propagation-guided Decimation (BPD) [22].

BPD is very similar as MinSum, which contains the same
three stages. The difference lies on that BPD treats the
decycling problem as the minimum-FVS construction.
The FVS refers to the feedback vertex set, which is a
set of node that will cause the network to become a for-
est if being deleted. To solve this problem, BPD proposes
a belief propagation-guided decimation algorithm. After,
it conducts the same subsequent steps, including tree
breaking and node reinsertion.
CoreHD [31]. CoreHD also contains the similar three

stages. The only difference lies in the decycling stage.
Unlike the message-passing or belief-propagation algo-
rithm, CoreHD instead seeks to remove the minimum
nodes to empty the 2-core subgraph in the network, since
the network is acyclic equals to that the 2-core subgraph is
empty. CoreHD greedily remove the highest degree node
in the 2-core subgraph until the end.
GND [25]. GND is the state-of-the-art method to

address the network dismantling problem with non-unit
removal costs. It first defines a node weighted Laplacian,
and then proposes a simple and elegant approximate algo-
rithm to calculate its second smallest eigenvector, based
on which the set of nodes are removed. GND repeats the
process until the end. Note that the unit-cost GND is just
the spectral cut method.
We use SNAP software1 to implement the heuris-

tic methods, including Random, HDA, HBA, HCA and
HPRA. For the other baselines, we use the source
codes23456 released online, and use the defaut parameter
settings for each method.

Synthetic graphs
We evaluate all competitors against various synthetic
networks. Synthetic networks are the result of applying
generative function, present the advantage of displaying
specific topological features that are both a prior known
and tunable [29]. More specifically, we select a collection
of 4 most common network types, summarized in Table 1.
Note that there are many other random network models,
such as regular graphs, circle graphs, grid graphs, lad-
der graphs, etc, we do not consider them since they are
not difficult to dismantle, and there always exists some
effective heuristic methods for them.

1http://snap.stanford.edu/snap/
2https://github.com/zhfkt/ComplexCi
3http://power.itp.ac.cn/~zhouhj/codes.html
4https://github.com/abraunst/decycler
5https://github.com/hcmidt/corehd
6https://github.com/renxiaolong/Generalized-Network-Dismantling

http://snap.stanford.edu/snap/
https://github.com/zhfkt/ComplexCi
http://power.itp.ac.cn/~zhouhj/codes.html
https://github.com/abraunst/decycler
https://github.com/hcmidt/corehd
https://github.com/renxiaolong/Generalized-Network-Dismantling
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Table 1 Overview of four random network types

Abbre Name Parameters

ER Erdos-Renyi n in [500, 800], p in [0.10,0.15,0.18,0.20,0.25],

WS Watt-Strogatz n in [500, 800], k in [5,6,7,8,9], p in
[0.1,0.2,0.3,0.4,0.5,0.6,0.7]

BA Barabasi-Albert n in [500, 800], m in [2,3,4,5,6]

PLC Powerlaw-Cluster n in [500, 800], m in [2,3,4,5,6], p in
[0.10,0.15,0.18,0.20,0.25]

Erdos-Renyi(ER) [8]. ER model is first introduced by
Paul Erdos and Alfred Renyi, it returns aGn,p graph, where
n is the graph nodes, p is the edge creation probability. The
Gn,p chooses each of the possible edges with probability
p. This model can be used in the probabilistic method to
prove the existence of graphs satisfying various properties,
or to provide a rigorous definition of what it means for a
property to hold for almost all graphs [8].
Watt-Strogatz(WS) [30]. WS is a random generative

model that produces graphs with small-world properties,
including short average path lengths and high clustering.
It was proposed by Duncan J. Watts and Steven Strogatz
in 1998. The tunable parameters include the node number
n, k nearest neighbors in a ring topology that each node is
joined with, and the probability of rewiring each edge p.
Barabasi-Albert(BA) [3]. BA is a model that generates

random scale-free networks using a preferential attach-
ment mechanism. Many real-world networks are thought
to be approximately scale-free and contain few nodes
(called hubs) with unusually high degree as compared to
the other nodes. The BA model tries to explain the exis-
tence of such nodes in real networks. The algorithm is
named for its inventors Albert-Laszlo Barabasi and Reka
Albert and is a special case of a more general model called
Price’s model [28]. It generates a graph of n nodes by
attaching new nodes with each adding m edges that are
preferentially attached to existing nodes with high degree.
Powerlaw-Cluster(PLC) [13]. PLC is a mode for gen-

erating graphs with powerlaw degree distribution and
approximate average clustering. It is essentially the BA

growth model with an extra step that each random edge is
followed by a chance ofmaking an edge to one of its neigh-
bors too (and thus a triangle) [13]. Themodel improves on
BA in the sense that it enables a higher average clustering
to be attained if desired. The tunable parameters include
the number of nodes n, the number of random edges to
add for each new node m, and the probability of adding a
triangle after adding a random edge p.
Figure 3 visualizes one instance for each of the above

four networks types.

Real-world networks
We also conduct experiments on 18 real-world networks,
which cover a wide range of domains, including malicious
networks, PPI networks, infrastructure networks, social
networks, citation networks, communication networks,
etc. Specifically, they are:
Corruption [26], a malicious network where nodes are

people listed in scandals, and the ties indicate that two
people were involved in the same corruption scandal;
Crime [16], a malicious network from the projection

of a bipartite network of persons and crimes, each node
denotes a person, an edge represents that two person are
involved in the same crime;
USairport [16], a network of flights between US air-

ports in 2010. Each node is an airport, and each edge
represents a connection from one airport to another;
Hamster [16]. This Network contains friendships and

family links between users of the website hamster.com;
Figeys [16], a network of interactions between pro-

teins in Humans (Homo sapiens), from the first large-
scale study of protein–protein interactions in Human cells
using a mass spectrometry-based approach;
CA-GrQc [18], a collaboration network from the e-

print arXiv and covers scientific collaborations between
authors papers submitted to General Relativity and Quan-
tum Cosmology category;
HI-II-14, the corresponding Human Interactome

dataset covering Space II and reported in 2014.
Each node represents a distinct protein, each edge
denotes the interaction between the corresponding
proteins;

Fig. 3 Visualization of one instance for each type of random networks



Fan et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:24 Page 6 of 13

Powergrid [16], a power grid network of the Western
States of the United States of America. An edge repre-
sents a power supply line. A node is either a generator, a
transformator or a substation;
CA-HepPh [18], a collaboration network from the e-

print arXiv and covers scientific collaborations between
authors papers submitted to High Energy Physics - Phe-
nomenology category;
DBLP [16], a citation network of DBLP, a database of

scientific publications such as papers and books. Each
node in the network is a publication, and each edge repre-
sents a citation of a publication by another publication;
Cora [16], a citation network of Cora. Nodes represent

scientific papers. An edge between two nodes indicates
that the left node cites the right node;
Digg [16], a reply network of the social news website

Digg. Each node in the network is a user of the website,
and each edge denotes that a user replied to another user;
Email-Enron [20], the Enron email communication net-

work which covers all the email communication within a
data set of around half million emails. Each node is an
email address, and an edge denotes at least one email
communication;
Brightkite [16], a social network contains user–user

friendship relations from Brightkite, a former location-
based social network were user shared their locations.
A node represents a user, and an edge indicates that a

friendship exists between the user represented by the left
node and the user represented by the right node;
Gnutella31 [19], a sequence of snapshots of the

Gnutella peer-to-peer file sharing network from August
2002. Nodes represent hosts in the Gnutella network
topology and edges represent connections between the
Gnutella hosts;
Facebook [16], contains friendship data of a small sub-

set of Facebook users. A node represents a user and an
edge represents a friendship between two users;
Epinion [16], the trust network from the online social

network Epinions. Nodes are users of Epinions and
directed edges represent trust between the users;
Douban [16], a social network of Douban, a Chinese

online recommendation site. A node represents a user of
Douban and an edge represents a friendship between two
users.
We treat all the networks as undirected ones and remove

the self-loops. We extract the largest connected com-
ponent. Basic statistics of the extracted networks are
reported as Table 2.
We also draw the degree distributions for these net-

works in Fig. 4. We can see most real networks (except
Corruption network) share an approximate scale-free
structure, which presents a well-known resilience against
random failures, but disintegrate rapidly under intentional
attacks targeting key nodes [2].

Table 2 Basic statistics for real-world networks. Ordered by the number of nodes. Values are for the giant component of the network.
MSP is the mean shortest path length, CC is the clustering coefficient, Assor is the assortativity, PE is the powerlaw exponent

Network N E MAX DEG AVGDEG Diameter MSP CC Assor PE Type

Corruption 309 3,281 86 21.24 7 2.99 0.9288 0.5324 5.13 Malicious

Crime 829 1,473 25 3.55 10 5.04 0.0058 –0.1645 2.65 Malicious

USairport 1,572 17,214 314 21.90 8 3.12 0.5048 -0.1134 3.07 Infrastructure

Hamster 2,000 16,098 273 16.10 10 3.59 0.5401 0.0227 2.67 Social

Figeys 2,217 6,418 314 5.79 10 3.84 0.0403 -0.3318 2.92 PPI

CA-GrQc 4,158 13,422 81 6.46 17 6.05 0.5569 0.6392 2.47 Collaboration

HI-II-14 4,165 13,087 286 6.28 11 4.16 0.0444 –0.2016 2.68 PPI

Powergrid 4,941 6,594 19 2.67 46 18.99 0.0801 0.0035 2.50 Infrastructure

CA-HepPh 11,204 117,619 491 21.00 13 4.67 0.6216 0.6295 2.67 Collaboration

DBLP 12,495 49,563 709 7.93 10 4.42 0.1178 -0.0461 3.22 Citation

Cora 23,166 89,157 377 7.70 20 5.74 0.2660 -0.0553 2.44 Citation

Digg 29,652 84,781 310 5.72 12 4.68 0.0054 0.0027 2.46 Communication

Email-Enron 33,696 180,811 1,383 10.73 11 4.03 0.5092 –0.1165 2.62 Communication

Brightkite 56,739 212,945 1,134 7.51 18 4.86 0.1734 0.0096 2.50 Social

Gnutella31 62,561 147,878 95 4.73 11 5.96 0.0055 –0.0927 2.91 Infrastructure

Facebook 63,392 816,831 1,098 25.77 15 4.31 0.2218 0.1768 2.92 Social

Epinions 75,877 405,739 3,044 10.69 15 4.40 0.1378 –0.0406 2.69 Social

Douban 154,908 327,162 287 4.22 9 5.10 0.0161 -0.1803 2.65 Social
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Fig. 4 Degree distribution of the real-world networks. X axis is the node degree, y axis is the number of nodes corresponding to that degree, and we
choose double logarithmic coordinates to more intuitively determine whether it is scale-free

Results
In this section, we first demonstrate the effectiveness of
the reinsertion technique on both synthetic graphs and
real-world networks, then we explore the effects of differ-
ent reinsertion techniques.

Synthetic results
We test all methods w/o the reinsertion technique on
synthetic graphs randomly generated by four classic mod-
els introduced in “Synthetic graphs” section. For each
model, we generate 100 graphs with the parameters in

Table 3 Comparison results (%) on synthetic graphs without reinsertion. Each result is averaged over 100 test instances. The result
format is mean±variance. The bold ones indicate the best results for that network

R(No reinsert) ER WS BA PLC Avg

Random 49.91±0.02 44.19±3.66 45.80±2.87 46.37±2.66 46.57±2.30

HDA 49.55±0.25 32.44±5.32 21.43±7.70 21.89±7.53 31.33±5.20

HBA 49.47±0.29 25.55±7.59 19.96±7.65 20.23±7.52 28.80±5.76

HCA 49.58±0.23 28.33±7.07 20.99±7.87 21.26±7.72 30.04±5.72

HPRA 49.55±0.25 33.10±4.88 22.46±7.77 22.92±7.64 32.01±5.13

CI 49.70±0.25 31.21±5.81 21.94±7.67 22.35±7.51 31.30±5.31

MinSum 49.45±0.31 32.43±5.09 20.58±7.70 21.40±7.36 30.96±5.12

BPD 49.58±0.24 33.69±4.60 22.75±7.63 23.21±7.49 32.31±4.99

CoreHD 49.56±0.26 32.48±5.33 21.01±7.76 21.72±7.50 31.19±5.21

GND 49.62±0.14 27.10±7.62 22.89±7.67 23.01±7.42 30.66±5.71
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Table 4 Comparison results (%) on synthetic graphs with reinsertion. Each result is averaged over 100 test instances. The result format
is mean±variance. The bold ones indicate the best results for that network

R(With reinsert) ER WS BA PLC Avg

Random 48.97±0.44 33.12±4.24 27.24±7.17 28.14±7.56 34.37±4.85

HDA 48.84±0.51 31.36±4.59 20.75±7.20 21.21±7.12 30.54±4.86

HBA 48.92±0.46 33.18±4.28 25.41±7.47 25.90±7.79 33.35±5.00

HCA 48.87±0.48 31.72±4.43 20.90±7.24 21.27±7.13 30.69±4.82

HPRA 48.84±0.51 31.32±4.61 20.77±7.22 21.16±7.13 30.52±4.87

CI 49.67±0.29 31.16±5.47 21.68±7.53 22.12±7.41 31.16±5.17

MinSum 48.80±0.53 31.61±4.48 20.78±7.22 21.19±7.10 30.59±4.83

BPD 49.39±0.35 31.22±4.97 21.17±7.45 21.60±7.34 30.84±5.03

CoreHD 49.36±0.36 31.48±5.02 21.24±7.42 21.66±7.35 30.93±5.04

GND 49.20±0.33 31.84±5.67 21.67±7.62 22.10±7.60 31.20±5.30

Table 5 The promotion of R (%) on synthetic graphs with reinsertion. Each result is averaged over 100 test instances. The result format
is mean±variance. The bold ones indicate the best results for that network

Promotion ER WS BA PLC Avg

Random 1.88±0.86 24.96±8.41 41.23±12.72 40.01±13.75 27.02±8.94

HDA 1.43±0.53 2.77±7.41 2.54±2.57 2.67±2.27 2.35±3.19

HBA 1.13±0.36 -43.55±54.37 -33.61±19.64 -33.95±21.25 -27.50±23.91

HCA 1.44±0.53 -18.16±30.91 -1.07±4.68 -1.73±5.42 -4.88±10.39

HPRA 1.45±0.55 5.12±7.94 7.50±2.09 7.76±2.09 5.46±3.17

CI 0.05±0.13 -0.11±2.34 1.08±0.92 0.96±0.84 0.49±1.06

MinSum 1.33±0.46 2.16±4.85 -2.38±4.29 0.52±3.16 0.41±3.19

BPD 0.40±0.26 7.62±3.18 7.59±2.70 7.71±3.35 5.83±2.37

CoreHD 0.41±0.28 2.95±3.00 -2.18±3.55 -0.07±2.38 0.28±2.30

GND 0.85±0.52 -22.46±21.35 5.97±4.67 4.96±4.20 -2.67±7.68

Table 6 Time (/s) comparison of different methods on synthetic graphs. Each result is averaged over 100 test instances. The result
format is mean±variance. The bold ones indicate the best results for that network

Time/s ER WS BA PLC Avg

HDA 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

HBA 426.71±271.03 41.03±20.11 31.53±18.58 33.42±20.92 133.17±82.66

HCA 311.23±201.09 20.21±9.83 14.10±8.49 14.83±9.47 90.09±57.22

HPRA 0.77±0.24 0.53±0.13 0.45±0.12 0.46±0.13 0.55±0.15

CI 8.67±6.30 0.02±0.01 0.03±0.03 0.03±0.02 2.19±1.59

MinSum 22.21±9.92 2.28±0.47 1.93±0.81 2.69±0.80 7.28±3.00

BPD 148.21±100.97 0.85±0.46 0.94±0.66 1.02±0.68 37.76±25.69

CoreHD 3.06±1.14 0.12±0.04 0.18±0.08 0.20±0.09 0.89±0.34

GND 0.86±0.35 0.18±0.10 0.15±0.08 0.14±0.09 0.33±0.15
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Table 7 Comparison results (%) on real-world networks without reinsertion. The bold result is the best one of that network

R(No reinsert) Random HDA HPRA CI MinSum BPD CoreHD GND

Corruption 38.50 8.48 8.81 16.42 33.27 33.74 8.37 6.37

Crime 38.64 11.51 11.83 36.77 17.95 36.59 36.74 37.61

USairport 43.73 11.39 10.15 13.02 13.12 13.01 12.44 8.94

Hamster 44.40 19.00 16.02 16.36 23.27 22.77 20.23 15.58

Figeys 37.93 3.13 3.16 3.38 4.27 4.46 3.65 3.90

CA-GrQc 37.41 10.81 8.56 9.37 12.30 12.38 11.33 7.48

HI-II-14 40.60 5.75 5.89 22.41 7.28 23.14 23.18 23.80

Powergrid 21.47 5.25 5.90 5.23 5.58 4.74 5.49 2.20

CA-HepPh 42.41 18.55 14.78 16.71 20.84 20.71 19.31 13.14

DBLP 41.32 10.65 10.00 11.16 12.29 12.21 11.98 11.07

Cora 42.87 14.85 14.92 14.41 16.82 16.65 15.36 10.98

Digg 40.16 8.75 9.12 29.00 26.39 26.35 26.53 27.72

Email-Enron 39.63 4.53 4.18 18.97 6.30 19.20 19.88 16.78

Brightkite 39.30 8.73 8.79 8.47 9.55 22.07 9.03 9.05

Gnutella31 39.66 11.47 10.88 27.24 11.74 26.44 26.62 26.95

Facebook 45.81 27.24 27.06 41.68 27.91 41.22 41.58 41.91

Epinions 38.61 5.19 5.20 18.26 6.11 18.26 18.47 18.39

Douban 36.73 2.38 2.20 2.76 2.89 2.87 2.93 2.63

Avg 39.40 10.43 9.86 17.31 14.33 19.82 17.40 15.81

Table 8 Comparison results (%) on real-world networks with reinsertion. The bold result is the best one of that network

R(With reinsert) Random HDA HPRA CI MinSum BPD CoreHD GND

Corruption 12.78 11.66 11.73 18.40 18.63 18.34 18.82 21.14

Crime 14.19 11.33 11.41 36.47 14.18 36.32 36.12 36.60

USairport 14.49 9.85 9.76 11.68 9.61 9.58 9.65 9.82

Hamster 18.31 14.71 15.16 15.57 16.23 16.38 16.66 16.24

Figeys 3.99 3.14 3.13 3.28 3.44 3.39 3.43 3.76

CA-GrQc 10.31 8.59 8.66 8.70 8.85 8.67 8.75 7.70

HI-II-14 7.00 5.68 5.70 22.00 5.76 22.75 22.76 23.07

Powergrid 7.93 6.94 7.16 4.90 5.02 4.92 5.08 4.44

CA-HepPh 15.40 14.41 14.49 14.53 15.39 15.14 15.19 13.98

DBLP 10.42 8.75 8.75 8.94 10.18 10.05 10.15 9.79

Cora 17.00 13.48 13.49 13.11 14.05 13.79 14.04 13.83

Digg 10.96 8.59 8.60 28.21 26.28 26.24 26.24 26.94

Email-Enron 6.01 3.96 3.95 17.91 4.25 18.46 18.68 16.20

Brightkite 10.18 8.20 8.21 7.69 8.41 22.06 8.35 8.41

Gnutella31 11.20 10.07 10.07 25.98 10.83 25.87 25.86 25.46

Facebook 25.38 22.39 22.37 40.67 25.65 40.67 40.68 39.96

Epinions 5.70 4.96 4.94 17.95 4.97 18.18 18.18 18.00

Douban 2.72 2.09 2.09 2.17 2.38 2.36 2.36 2.31

Avg 11.33 9.38 9.43 16.56 11.34 17.40 16.72 16.54
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Table 9 The promotion of R (%) on real-world networks with reinsertion. The bold result is the best one of that network

Promotion of R Random HDA HPRA CI MinSum BPD CoreHD GND

Corruption 66.81 -37.50 -33.14 -12.06 44.00 45.64 -124.85 -231.87
Crime 63.28 1.56 3.55 0.82 21.00 0.74 1.69 2.69
USairport 66.86 13.52 3.84 10.29 26.75 26.36 22.43 -9.84
Hamster 58.76 22.58 5.37 4.83 30.25 28.06 17.65 -4.24
Figeys 89.48 -0.32 0.95 2.96 19.44 23.99 6.03 3.59
CA-GrQc 72.44 20.54 -1.17 7.15 28.05 29.97 22.77 -2.94
HI-II-14 82.76 1.22 3.23 1.83 20.88 1.69 1.81 3.07
Powergrid 63.06 -32.19 -21.36 6.31 10.04 -3.80 7.47 -101.82
CA-HepPh 63.69 22.32 1.96 13.05 26.15 26.90 21.34 -6.39
DBLP 74.78 17.84 12.50 19.89 17.17 17.69 15.28 11.56
Cora 60.35 9.23 9.58 9.02 16.47 17.18 8.59 -25.96
Digg 72.71 1.83 5.70 2.72 0.42 0.42 1.09 2.81

Email-Enron 84.83 12.58 5.50 5.59 32.54 3.85 6.04 3.46
Brightkite 74.10 6.07 6.60 9.21 11.94 0.05 7.53 7.07
Gnutella31 71.76 12.21 7.44 4.63 7.75 2.16 2.85 5.53
Facebook 44.60 17.80 17.33 2.42 8.10 1.33 2.16 4.65
Epinions 85.24 4.43 5.00 1.70 18.66 0.44 1.57 2.12
Douban 92.59 12.18 5.00 21.38 17.65 17.77 19.45 12.17
Avg 71.56 5.88 2.11 6.21 19.85 13.36 2.27 -18.02

Table 1, and report the values of mean and standard
variance results. Table 3 shows the comparison results
of Eq. 1 without reinsertion, we can clearly see that
HBA the best across different types of networks, which
is widely validated by previous research [14, 27], since

Table 10 Time (/s) comparison of different methods on
real-world networks. The bold result is the best one of that
network

Time/s HDA HPRA CI MinSum BPD CoreHD GND

Corruption 0.00 0.11 0.02 3.13 2.00 0.08 0.18

Crime 0.00 0.55 0.01 1.47 0.30 0.09 0.11

USairport 0.01 1.96 0.61 13.20 17.00 1.20 0.55

Hamster 0.01 4.74 0.44 13.89 7.00 0.90 0.68

Figeys 0.00 1.57 0.06 5.06 2.00 0.41 0.13

CA-GrQc 0.04 18.33 0.07 12.63 3.00 0.46 1.29

HI-II-14 0.02 10.66 0.49 10.51 9.00 1.98 1.32

Powergrid 0.05 23.06 0.01 5.90 1.00 0.21 1.48

CA-HepPh 0.31 170.96 13.90 138.90 140.00 8.50 20.69

DBLP 0.13 97.31 2.81 46.97 21.00 3.33 6.30

Cora 1.07 593.75 2.12 97.97 22.00 4.91 189.27

Digg 1.12 702.55 10.99 103.33 31.00 11.52 55.01

Email-Enron 1.63 876.55 70.74 242.27 86.00 36.20 35.70

Brightkite 4.47 2974.39 32.63 298.20 4.00 20.13 181.76

Gnutella31 3.05 2509.09 9.38 172.59 41.00 11.87 386.31

Facebook 9.03 6706.60 2723.23 1044.96 839.00 214.83 4614.54

Epinions 5.76 4115.42 668.43 522.51 254.00 142.92 233.14

Douban 2.88 3832.00 87.38 337.04 79.00 30.20 186.03

Avg 1.64 1257.76 201.30 170.58 86.57 27.21 328.58

HBA adaptively removes the highest betweenness nodes,
which are key to the whole network connectivity. HCA,
which adaptively removes the highest closeness nodes,
also performs excellently due to the similar reasons. How-
ever, considering the high computational costs of these
two methods (Table 6), they are not practical in large or
even medium scale networks. We can also see in methods
achieve good results in ER graphs, since these graphs are
purely random ones that there are no ’critical’ nodes that
determine the graph connectivity.
In Table 4, we enhance eachmethodwith the reinsertion

technique introduced in “Reinsertion technique” section,
and report the refined results, and we also show the

Table 11 Average promotion of R on synthetic graphs for
different reinsertion techniques. Each result is averaged over all
test graphs (including four types of graphs, and 100 graphs for
each type), and the result format is mean±variance. The bold
result is the best one for that method

Avg Promotion of R Reinsert_I Reinsert_II Reinsert_III

Random 27.02±8.94 32.73±10.87 33.36±10.74

HDA 2.35±3.19 9.96±5.16 10.67±4.81

HBA -27.50±23.91 -11.47±7.94 -10.53±7.82

HCA -4.88±10.39 5.08±1.80 5.82±1.81

HPRA 5.46±3.17 12.68±5.68 13.48±5.43

CI 0.49±1.06 -0.52±1.07 -0.14±0.93

MinSum 0.41±3.19 8.17±5.41 8.86±5.11

BPD 5.83±2.37 4.73±2.95 5.86±3.34

CoreHD 0.28±2.30 -0.96±2.81 0.35±2.77

GND -2.67±7.68 -4.50±7.57 -3.04±7.11
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promotion (Eq. 2) after adding the reinsertion in Table 5.
We can see that most methods (except for HBA, HCA
and GND) get improved after using reinsertion, and on
average, HPRA (reinserted) performs the best among all.
We also observe two interesting things: i) The best per-
formed HBA gets deteriorated greatly when utilized with
reinsertion, however, even the best result for reinserted
methods (HPRA) cannot beat the vanilla HBA (Table 3).
This indicates that the vanilla HBA has achieved the
close-to-optimal performance for the network disman-
tling problem, at which the reinsertion is no longer a
refinement, but a hindrance; ii) The pure Random strat-
egy gets greatly improved with reinsertion, making the
reinserted random strategy be close to those manually-
designed state-of-the-arts.

promotion = (Roriginal − Rreinsert)

Roriginal
(2)

However, if taking account of running time, we find
actually the simple heuristic HDA achieves the best bal-
ance between effectiveness and efficiency (Tables 3, 4 and
6). The reinserted HDA is only 1.74% worse than the best
result (vanilla HBA), while is hundreds of times faster
(Table 6). Note that we do not list the time for Random
strategy, since it basically takes no time to obtain a random
solution.

Real-world results
Now we will see the effects of reinsertion on real-world
networks. Since HBA and HCA are computationally pro-
hibitive on medium or large networks (e.g., HBA takes
over 5 days to finish computation on the Cora network,
with 23,166 nodes and 89,157 edges.), we do not compare
with them in this section.
Table 7 shows the results of vanilla methods without

reinsertion. We can see that HDA, HPRA and GND per-
forms relatively better than other methods, and HPRA
is the best (0.0986) among all, and followed by HDA
(0.1043). Table 8 gives the results after reinsertion, and
Table 9 shows the promotion results. Consistent with the
observations from synthetic results, most methods get
improvements for different levels, with the refinement of
reinsertion. For example, the random strategy obtains an
average 71.56% gain (Table 9) with reinsertion, making it
even beat the state-of-the-art MinSum strategy (Table 8).
Among the reinsertedmethods, HDA achieves the highest
performance with an average 0.0938 (Table 8) robustness
score (Eq. 1). However, GND is deteriorated on some net-
works when refined with reinsertion (Table 8), the reason
behind remains to be explored.When considering the exe-
cution, HDA is far more efficient than the other ones, e.g.,
it is about 767 times faster than HPRA, which is very close
to HDA in effectiveness.

Effects of different reinsertion strategies
We have observed the impressive gains brought by
the reinsertion technique in “Synthetic results” and
“Real-world results” sections, now we may ask: Is the rein-
sertion in “Reinsertion technique” section the best one?
Does there exist more effective reinsertion methods? In this
section, we try to answer this question by exploring other
potential reinsertion techniques (Table 10).
We name the previous reinsert method as Reinsert_I,

and here we propose two other ones, and call them
Reinsert_II and Reinsert_III respectively. Basically, the
general reinsertion technique is to add back one of the
removed node (together with the adjacent edges), cho-
sen based on some criteria, until all nodes are back in
the network. Different reinsertion methods define differ-
ent criteria, based on which, we define the following three
reinsertion strategies:

• Reinsert_I: The criteria is once reinserted, it joins
the smallest number of clusters;

• Reinsert_II: The criteria is once reinserted, it joins
the clusters of smallest sizes;

• Reinsert_III: The criteria is once reinserted, it joins
the clusters minimizing the multiply of both numbers
and sizes;

In Fig. 2, each node is assigned an index c(i) given by the
criteria specified by the reinsertion technique. For Rein-
sert_I, c(red) = 2, c(blue) = 4, c(green) = 3, then the red
node is reinserted; for Reinsert_II, c(red) = 10, c(blue) =
5, c(green) = 6, then the blue node is reinserted; for
Reinsert_III, c(red) = 20, c(blue) = 20, c(green) = 18,
then the green node is reinserted. After that, the c(i)s
are recalculated and the new node with smallest c(i) is
found and reinserted. Repeat these steps until the end. As
a consequence, different reinsertion strategies determines
different nodes to be reinserted first, leading to differ-
ent refinement results. To decide which one is better in

Table 12 Average promotion of R on real-world networks for
different reinsertion techniques. Each result is averaged over all
test networks (total 18 real-world networks), and the bold ones
are the best results for that method

Avg Promotion of R Reinsert_I Reinsert_II Reinsert_III

Random 71.56 77.31 78.24

HDA 5.88 21.71 23.98

HPRA 2.11 19.14 21.45

CI 6.21 4.46 6.01

MinSum 19.85 16.72 20.59

BPD 13.36 12.33 14.49

CoreHD 2.27 6.92 9.79

GND -18.02 -9.43 -8.16
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practice, we compare the average performance promotion
for each method on both synthetic graphs and real-world
networks (Tables 11 and 12).
It can be clearly observed in Tables 11 and 12 that Rein-

sert_III achieves the most promotions for most methods
(except CI) on both synthetic and real-world networks,
compared to other two reinsertion strategies, and excels
to a significant extent to the current strategy Reinsert_I.
For CI method, Reinsert_I tends to be more effective. All
the three reinsertion strategies fail in HBA and GND.
To illustrate the effects of these three strategies more

intuitively, we draw the robustness curve of CA-GrQc net-
work for different methods with different reinsertions in
Fig. 5, which is plotted with horizontal axis being the
fraction of removed nodes, and vertical axis being the
remaining giant connected component size. Actually, the
value of Eq. 1 approximates the area under the robust-
ness curve. The figure clearly shows that the reinsertion
greatly helps reduce the area under the curve, compared to
the original method, and Reinsert_III is among the most
effective one, while all the reinsertions produce negative
effects on the GND method.

Conclusion
In this paper, we, for the first time, systematically explore
the effects of reinsertion techniques for the network dis-
mantling problem. Previous research tend to use their
reinserted results to compare with other un-reinserted
baseline methods, which may mislead us in the selection

of the real best dismantling strategy for applications at
hand. We conduct comprehensive ablation studies on
both synthetic graphs generated by four classical ran-
dom network models, i.e., ER, WS, BA and PLC, and
18 real-world networks across seven different domains
and with different scales, and the results show that: i)
HBA (no reinsertion) is the most effective network dis-
mantling strategy, however, it can only be applicable in
small scale networks; ii) HDA (with reinsertion) achieves
the best balance between effectiveness and efficiency. It
is surprising that such a simple heuristic method would
beat most state-of-the-art methods if enhanced with rein-
sertion techniques; iii) The reinsertion technique helps
improve the performance for most current methods,
except for HBA, HCA and GND (on small-world type
graphs); iv) Reinsert_III, which determines the node based
on that it joins the clusters minimizing the multiply of
both numbers and sizes, is the most effective reinsertion
strategy for most methods (except for CI, where Rein-
sert_I suits best).We believe the results in this paper could
provide as a reference for choosing and designing the
most effective strategy for realistic network dismantling
applications.
However, we still lack a deep understanding about why

such a simple reinsertion technique works so well for
the network dismantling problem, which would be a very
meaningful future research topic to be explored. We will
later release the codes and data to support the research in
this direction.

Fig. 5 Robustness curve of CA-GrQc for different reinsertion techniques
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